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Background: Osteosarcoma (OS), a bone tumor with high ability of invasion and
metastasis, has seriously affected the health of children and adolescents. Many
studies have suggested a connection between OS and the epithelial-
mesenchymal transition (EMT). We aimed to integrate EMT-Related genes
(EMT-RGs) to predict the prognosis, immune infiltration, and therapeutic
response of patients with OS.

Methods: We used consensus clustering to identify potential EMT-Related
OS molecular subtypes. Somatic mutation, tumor immune
microenvironment, and functional enrichment analyses were performed
for each subtype. We next constructed an EMT-Related risk signature and
evaluated it by Kaplan-Meier (K-M) analysis survival and receiver operating
characteristic (ROC) curves. Moreover, we constructed a nomogram tomore
accurately predict OS patients’ clinical outcomes. Response effects of
immunotherapy in OS patients was analyzed by Tumor Immune
Dysfunction and Exclusion (TIDE) analysis, while sensitivity for
chemotherapeutic agents was analyzed using oncoPredict. Finally, the
expression patterns of hub genes were investigated by single-cell RNA
sequencing (scRNA-seq) data analysis.

Results: A total of 53 EMT-RDGs related to prognosis were identified,
separating OS samples into two separate subgroups. The EMT-high
subgroup showed favourable overall survival and more active immune
response. Significant correlations were found between EMT-Related DEGs
and functions as well as pathways linked to the development of OS.
Additionally, a risk signature was established and OS patients were divided
into two categories based on the risk scores. The signature presented a good
predictive performance and could be recognized as an independent
predictive factor for OS. Furthermore, patients with higher risk scores
exhibited better sensitivity for five drugs, while no significant difference
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existed in immunotherapy response between the two risk subgroups. scRNA-
seq data analysis displayed different expression patterns of the hub genes.

Conclusion: We developed a novel EMT-Related risk signature that can be
considered as an independent predictor for OS, which may help improve
clinical outcome prediction and guide personalized treatments for patients
with OS.
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Introduction

Osteosarcoma (OS), growing from osteogenic mesenchymal stem
cells, has long been thought to be the most dangerous tumor in
teenagers (Brown et al., 2017; Yang et al., 2021). Patients suffering
from localized OS have a 5-year survival rate of approximately 65%, in
contrast to roughly 20% for those with recurrent and metastatic OS
(Miwa et al., 2019). At present, many treatments have been applied for
the therapy of patients with OS, including surgery, chemotherapy, and
neoadjuvant chemotherapy, but the overall effects are still unsatisfactory
due to the emergence of drug resistance and tumor progression (Kager
et al., 2017; Zhou et al., 2023). Therefore, elucidating the potential
molecular mechanisms in the development of this tumor and finding
new therapeutic approaches are especially important for individuals
with OS to get more favourable clinical outcomes.

Many studies have reported that epithelial-mesenchymal transition
(EMT) is linked to embryonic growth, cancer invasion and metastasis,
and drug resistance emergence (Zhang et al., 2021). During this process,
epithelial cells develop into mesenchymal cells with the ability to
migrate and invade other areas of the body by losing their apical-
basal polarity and intercellular adhesion (Cai et al., 2024). Moreover,
EMT is abnormally activated, making cancer cells have the invasive
phenotype that extend from the original tumor into the circulatory
system. This results in increased cell stemness and the ability of tumor
cells to resist different types of therapeutics (Derynck and Weinberg,
2019; Bakir et al., 2020; Zhang et al., 2023).

As a new research approach, bioinformatics analysis could be used
to further investigate the connection between diseases and cancer-
associated gene sets based on polyphyletic data sources (Gong et al.,
2018). In recent years, with the rapid development of genomics, a large
amount of genetic data has been provided for the diagnosis and
prediction of diseases (Sommer et al., 2022). Meanwhile, various
bioinformatics tools and public databases have been established
successively, and the cross-fusion of different disciplines also makes
the research of bioinformatics analysis more in-depth in medicine.
These enable researchers to make great progress in the screening and
identification of tumormarkers, precisemolecular typing of tumors and
novel targeted therapies (Wang Q. et al., 2020; Lu et al., 2021; Matsuoka
and Yashiro, 2024).

Recent research has demonstrated that EMT is connected to the
progression of a variety of malignant cancers, including OS (Yang
et al., 2013; Shi et al., 2019). For example, a study by Shao et al.
(2022) reported that activation of EMT induced by Tetraspanin
7 overexpression could promote the proliferation and metastasis of
OS cells. Moreover, Ruh et al. (2021) found that the process of
osteoblastic differentiation in OS cells could be blocked by EMT-
transcription factor, ZEB1. These results suggest that the EMT

signature might be an OS prognostic factor. In this study, we
investigated the connection among EMT, immune response and
prognosis in OS patients combining with clinical and gene
expression information from openly available databases. We also
constructed a risk signature to better predict the prognosis of OS
patients. Evaluation of therapeutic response in patients with OS was
then been carried out, which may provide implications for
developing new treatments and making better clinical strategies.

Materials and methods

Data acquisition

Figure 1 displays the flowchart for this investigation.
Information of OS samples, including RNA sequencing data and
clinical characteristics, were extracted from the Therapeutically
Applicable Research to Generate Effective Treatments (TARGET;
https://ocg.cancer.gov/programs/target) database. Excluding
samples that lacked comprehensive clinical information, 85 OS
samples were included for further analysis. Gene expression in
803 normal samples was attained from the Genome Tissue
Expression (GTEx; https://gtexportal.org/home/datasets) database.
Additional 53 OS samples were retrieved from the GSE21257
(https://www.ncbi.nlm.nih.gov/) as the validation cohort.

The EMT-RGs were acquired from the two datasets listed below:
1184 EMT-RGs were download from the EMT gene database
(https://www.dbemt.bioinfo-minzhao.org/), and 200 EMT-RGs
from the HALLMARK_EPITHELIAL_MESENCHYMAL_
TRANSITION gene set in the Molecular Signatures Database
(MsigDB; https://www.gsea-msigdb.org/gsea/msigdb). Given that
all data in this study was freely accessible online and patients
were not involved in the research directly, informed permission
and ethical committee approval were not essential.

Screening EMT-Related DEGs associated
with prognosis

The “DESeq2” R package was utilized to compare the gene
expression levels of the OS and normal samples, thus screening
differentially expressed genes (DEGs). And the thresholds for
significance were set to adjust |log2 (FC)| > 2.5 and adjusted
P-value < 0.01. Then the selected genes were intersected with
EMT-RGs to determine the EMT-Related DEGs. By univariate
Cox regression analysis, EMT-Related DEGs related to prognosis
were screen out for further investigation.
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Consensus clustering and survival analysis

After the identification of prognostic associated EMT-Related
DEGs, we identified potential molecular subtypes of the OS in terms
of these genes utilizing the ConcensusClusterPlus package in R
software. To identify the ideal number of clusters, the k-means
clustering method was used for eight cluster numbers k, ranging
from 2 to 9, and the procedure was replicated one thousand times to
ensure stable outcomes. Then, the K-M survival analysis was
employed in order to confirm whether the EMT-Related subtypes
had a notable influence on OS patients’ prognosis.

Somatic mutation landscape

In order to elucidate the notable predictive variances among
subtypes from somatic mutation, we acquired data on somatic
mutations of OS patients from the Cancer Genome Atlas
database (https://portal.gdc.cancer.gov/). Later on, we employed
the maftools R package to create waterfall plots to visualize and
summarize the mutation landscape of the EMT-Related subgroups.

Tumor immune
microenvironment landscape

In addition, we also attempted to explain the prognostic
differences between subtypes from tumor immune
microenvironment landscape. The Estimation of Stromal and
Immune cells in Malignant Tumor tissues using Expression
(ESTIMATE) is often used to assess the existence of stromal cells

and immune cells as well as the purity of malignancies in tumor
tissues (Yoshihara et al., 2013; Xie et al., 2020). Utilizing the
ESTIMATE algorithm, we determined the stromal-, immune-,
estimate-scores, and tumour purity of each OS sample. We
analyzed the immune checkpoint (ICP) expression levels in order
to assess the correlation between EMT-Related genotyping and
immunological function. Furthermore, utilizing the CIBERSORT
(deconvolution algorithm), 22 different kinds of human immune
cells in OS were estimated, and the wilcoxon test was carried out to
assess the difference of immune cell composition between EMT-
Related genotyping.

Enrichment analysis landscape

To explain the prognostic differences between subtypes from the
landscape of the pathway and functional landscape, we performed
functional enrichment analysis in this study. Firstly, we utilized
“DESeq2” R package to identify DEGs between the EMT-Related
subtypes [log2 (FC) > 2.5, adjusted P-value < 0.01]. Then, the
screened genes were employed for Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis. There are three main categories contained in the GO
database, including biological process (BP), cellular
component (CC), and molecular function (MF). We showed
the top five significant terms in BP, CC and MF. KEGG
analysis showed all enriched pathways with significant
differences. Furthermore, we presented the top five enriched
pathways in each subtype by performing Gene Set Enrichment
Analysis (GSEA) to determine which pathways were most
substantially enriched in each subtype.

FIGURE 1
Flowchart of this study.
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Construction and assessment of an EMT-
Related risk signature

Before signature construction, we performed log2 (TPM + 1) on
the expression data, and then used the combat function of the limma
package to process the debatch effect on the training set TARGET
data and the validation set GSE21257 data. In order to avoid the
model overfitting, we used a combination of univariate Cox
regression and LASSO Cox regression to identify suitable genes
for constructing the risk signature. Each sample’s risk score value
was determined by the following formula:

Risk score � ∑
n

i�1
coefi × xi

where coefi denotes the LASSO Cox regression coefficient of the
prognosis-related genes, xi denotes EMT-Related gene expression
level, and n indicates gene counts. Then, regarding the median risk
score, patients in the training (TARGET-OS) and validation cohorts
were separated into two risk subgroups (the high- and the low-risk
subgroups). The differences of overall survival between the two
subgroups were assessed using K-M survival analysis, with the
significance of P-value < 0.05. Furthermore, we generated ROC
curves and calculated the area under the curve (AUC) to assess the
overall survival rate at 1-, 3-, and 5-years, thereby evaluating the
predictive precision of the risk model.

Independence evaluation of the risk
signature and nomogram construction

In order to ascertain whether the risk signature was independent
of other clinical factors, we evaluated the risk model for OS patients
using multivariate Cox regression analysis. Moreover, based on risk
scores and clinical features, we constructed a nomogram to more
precisely quantify the prognosis of OS patients. A score was assigned
to a variable (including gender, age, tumor-site, metastatic situation
and risk score) in the scoring system of the nomogram, and all the
scores from each sample were added together to get the final score.
Then, by the function of converting the score to its probability of the
result, we could predict the probability of overall survival with each
patient (Park, 2018; Liu et al., 2023). A calibration curve was
generated to compare the actual and predicted 1-, 3-, and 5-year
survival rates of OS patients in the training cohort in order to assess
the nomogram model’s predictive performance (45° dotted line
represents the greatest prediction).

Immunotherapy responsiveness and
potential chemotherapeutic agents analysis

We performed immunotherapy responsiveness analysis and
explored chemotherapeutic agents to further explore the potential
treatment measures of OS patients. In the perspective of
immunotherapy, we imported the gene expression matrix into
the TIDE online database (http://tide.dfci.harvard.edu/) to predict
the immune checkpoint blockade (ICB) responses in OS patients,
where a lower TIDE score indicated a more favorable

immunotherapy response. Moreover, to identify the immune cells
that had a significant association with the risk score, spearman
correlation analysis was performed to examine the relationship
between the risk score and the 22 immune cell scores that the
CIBERSORT algorithm estimated.

OncoPredict, an R package designed by Maeser et al. (2021), is
often used to predict the sensitivity of patients with cancers to drug
therapies. Genomics of Drug Sensitivity in Cancer (GDSC) database
(http://www.cancerrxgene.org/downloads), encompassed
information of drug sensitivity (IC50) from 1,000 cell lines,
facilitating the study of drug reactions and resistance in OS cell
lines (Groisberg et al., 2017; Xie et al., 2022). To assess the
responsiveness of TARGET-OS samples to drugs, the oncoPredict
R package was employed, and the wilcoxon test (P < 0.005) was
utilized to determine if chemotherapy sensitivity varied between the
high and low-risk categories.

Single-cell RNA sequencing data analysis

Single-cell RNA sequencing data analysis is a ground-breaking
technique in cancer research, which allows researchers to study gene
expression variations at the single-cell level and determine the
composition of tumor cells. Researchers will probably benefit
from a thorough analysis of the immune cell composition in OS
samples, which will expand their understanding of prognostic
biomarkers (Su et al., 2022; Wang et al., 2022; Ji et al., 2023; Liu
et al., 2024). For a deeper insight into the OS tumor immune
microenvironment, we demonstrated the cellular composition in
OS tumor microenvironment through Tumor Immune Single-cell
Hub (TISCH; http://tisch.comp-genomics.org/gallery/) online
platform. We performed multivariate Cox regression based on
the genes screened by LASSO regression to find the hub genes
affecting the prognosis of OS. Then, we demonstrated the expression
and distribution of these hub genes in each cell of the tumor
microenvironment through TISCH platform.

Results

Screening EMT-Related DEGs and
identifying two EMT-Related subtypes

We identified 10,280 DEGs between 85 samples and 803 normal
samples, of which 8,435 DEGs were Upregulated and 1845 DEGs
were Downregulated (Figure 2A). After removing duplicate genes,
1317 EMT-RGs were collected from the two databases. And
401 genes, including 389 Upregulated genes and
12 Downregulated genes, were associated with EMT-RDGs
(Figure 2B). Then, using the univariate Cox regression approach,
53 EMT-RDGs related to prognosis were identified for further
investigation.

Consensus clustering analysis was carried out to investigate the
potential molecular subtypes related to EMT-RDGs in OS, where the
number of clusters was denoted by the letter k. When k = 2, the
lowest inter-group collinearity and the highest intra-group
collinearity was observed. In view of the different EMT-RG
expression patterns, the OS samples in the TARGET cohort were
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divided into two subgroups by k-means clustering (Figures
2C–E). Comparing the gene expression levels of patients in
the two cohorts of C1 and C2, they were divided into EMT-
high subtype and EMT-low subtype, respectively. Figure 2F
demonstrated the expression of 53 EMT-RDGs related to
prognosis in the two subtypes. Additionally, K-M survival
analysis revealed a noteworthy distinction between the EMT-
high and EMT-low groups, with the former showing a longer
survival length (P < 0.001, Figure 2G).

Somatic mutation landscape and tumor
immune microenvironment in two EMT-
Related subtypes

In the two gene subtypes, we created waterfall plots in order to
visually demonstrate mutated genes (Figures 3A,B). Compared to
the EMT-high group, the results presented nine decreased gene
mutation frequency in the EMT-low group, including TP53,
CNTNAP5, ALMS1, HECTD4, PCLO, MAPRE3, MYH7,

FIGURE 2
Screening differentially expressed EMT-RGs and identifying potential molecular subgroups. (A) Volcano plot showed the Upregulated and
Downregulated DEGs between the OS and normal samples. (B) Venn diagram displayed the number of EMT-Related DEGs. (C) Heatmap showed the
consensus clustering solution for 53 EMT-RDGs performed best when k = 2, and OS patients were devided into two clusters. (D, E) The consensus
clustering delta area curve showed corresponding variations in the area under the cumulative distribution function (CDF) curve for k = 2–9. (F)
Heatmap displayed the expression of 53 EMT-RDG in the two subtypes. High expression is denoted by red, and low expression is denoted by blue. (G) K-M
analysis suggested that the EMT-high subgroup manifested a more extended survival period than the EMT-low group, with a notable discrepancy
(P < 0.001).
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DNAH9 and UNC79, and the gene that showed highest frequent
mutations in both groupings was TP53.

An increasing body of research indicates that immune cells in
the tumor microenvironment play a crucial role in the
progression of tumor (Cai et al., 2022). Utilizing the
ESTIMATE, we determined the stromal-, immune-, estimate-
scores, and tumor purity levels between the two subgroups,

finding that the group with higher EMT-Related gene
expression had a higher stromal score, while the other three
showed no notable distinctions (Figure 3C). ICP expression
analysis suggested that PDCD1LG2 was upregulated in the
EMT-high subgroup (Figure 3D). Subsequently, we assessed
the extent of immune infiltration in 22 different kinds of
immune cell types of OS patients in the TARGET database by

FIGURE 3
Comparison of somatic mutation landscape and immune landscape in the EMT-high and EMT-low subgroups. (A, B) The top 20 genes that were
mutated the most often in the two subgroups were displayed in waterfall plots. (C) Comparisons between the two subgroups in terms of stromal score,
immune score, estimate score, and tumor purity. (D) Box plot presented multiple immune checkpoints between the EMT-high and EMT-low subgroups.
(E) Barplot showed 22 infiltrating immune cells’ composition in each TARGET-OS sample. (F) Violin plot illustrated the compositional differences
between the two subgroups of the 22 invading immune cells.
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the CIBERSORT (Figure 3E). In specifics, patients in the EMT-
high class showed greater amounts of plasma cells, activated
memory CD4 T cells and resting NK cells, whereas the fraction of
resting dendritic cells was reduced in the EMT-high
subgroup (Figure 3F).

GO, KEGG and GSEA enrichment analysis

GO and KEGG enrichment analysis were conducted based on
53 prognosis-related EMT-Related DEGs to clarify the potential
functions and pathways related to EMT-RGs. In GO enrichment

FIGURE 4
Functional enrichment analyses based on 53 prognosis-related EMT-Related DEGs. (A) GO enrichment analysis showed the top five significant
terms in BP, CC, and MF. (B) KEGG enrichment analysis showed all the pathways with significant differences. (C) GO GESA enrichment analysis showed
the top five enriched pathways in different subtypes.
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analysis, we noted that these genes were positively related with “B cell
mediated immunity,” “immunoglobulin mediated immune response,”
“immunoglobulin complex,” “antigen binding,” and “immunoglobulin
reception binding” (Figure 4A). KEGG analysis revealed three pathways
where these genes enriched in, including “wnt signaling pathway,”
“potential digestion and absorption,” and “retinol metabolism” and
other pathways (Figure 4B). In addition, throughGOGSEA enrichment
analysis, we found that the main enriched pathways in the EMT-low
subgroup included “detection of stimulus involved in sensory
perception,” “sensory perception of chemical Stimulus” and “sensory
perception of smell.” EMT-high subgroup, on the other hand, were
mainly enriched by other pathways including “B cell receptor signaling
pathway,” “immunoglobulin complex” and “immnoglobulin complex
circulating” (Figure 4C). These enriched terms and pathways might be
important in the development of tumor cells.

Construction of the EMT-Related
risk signature

We identified 49 prognosis-related genes that were correlated with
OS patient’s overall survival. The expression of 28 genes was linked to
extended overall survival of OS patients, whereas 21 genes was linked to
reduced overall survival of OS patients (Figure 5A). Eight genes
obtained by LASSO analysis as more important genes (including
GRN, SERPINH1, EDIL3, ESRRA, COL5A2, SEMA3E, TNFRSF11B,
and TERT) were used to establish the risk model (Figures 5B,C).

Predictive performance evaluation of the
EMT-Related risk signature

In the training cohort, the risk model’s prognostic value was
initially ascertained, and then verified by the

GSE21257 validation cohort. Patients in the training and
validation cohorts were separated into the high- and low-risk
categories based on the median risk score. The high-risk
group had a higher quantity of deaths in both cohorts,
indicating poorer prognosis of patients in this group (Figures
6A, B). As shown by the K-M survival analysis, the overall
survival rate of the high-risk group of patients was lower than
that of the low-risk group (Figures 6C, D). Utilizing ROC
analysis, OS patients in the training cohort showed 1-, 3-, and
5-year survival rates with AUC values of 0.823, 0.793, and 0.808,
respectively (Figure 6E). Similarly, the AUC values of the risk
model were 0.750, 0.683, and 0.677 for the validation cohort at 1-,
3-, and 5-years, respectively (Figure 6F). Collectively,
these findings suggest that the risk model demonstrated a high
level of predictive accuracy in both the training and
validation cohorts.

EMT-Related risk signature as an
independent predictive factor for OS

Employing the multifaceted Cox regression analysis, the
study unequivocally established that patients with OS may be
able to use the risk score as an independent predictor of their
overall prognosis (Figure 7A). Additionally, to help better predict
the clinical outcomes of OS patients, a nomogram was created
with the scoring system depicted in the top part and the
prediction system in the bottom part (Figure 7B). From
Calibration curves, we could find that the predicted survival
time could be very close to the actual survival time at 1-, 3-,
and 5-years (Figure 7C). The findings above suggested that the
EMT-Related risk signature could be considered as an
independent predictor of OS and had a lot of promise for
therapeutic applications.

FIGURE 5
Construction of the EMT-Related risk model. (A) 49 EMT-RGs were shown to be connected to OS patients’ overall survival by univariate Cox
regression. (B, C) Eight prognostic EMT-RGs were screened by LASSO Cox regression and used for constructing the risk signature. “*” was used to
highlight the eight genes.

Frontiers in Pharmacology frontiersin.org08

Li et al. 10.3389/fphar.2024.1419040

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1419040


Evaluation of immunotherapy sensitivity

We first analyzed the immunological features between the high-
and low-risk groups. We found that the low-risk group presented
statistically higher stromal score, immune score, estimate score, and

lower tumor purity (Figure 8A). Further analysis revealed that there
was a positive relationship between the risk and with resting
dendritic cell expression (R = 0.22, P < 0.05) while a negative
relationship existed with activated memory CD4 T cell levels
(R = −0.28, P < 0.01; Figure 8B). The MSI score was then

FIGURE 6
Assess the EMT-Related risk signature’s prediction performance. The training (A) and validation (B) cohorts of OS patients were classified as low-risk
and high-risk subgroups based on the median risk score, and the high-risk group had a higher incidence of deaths in both cohorts. In the training (C) and
validation (D) cohorts, the overall survival rates for OS patients in the high-risk groups was notably lower, according to K-M survival analyses. ROC
analyses demonstrated the AUC values of the risk model for 1-, 3-, and 5-year survival rates of OS patients in the training (E) and validation
(F) cohorts.

FIGURE 7
Independent prognostic evaluation and nomogram construction. (A) Multivariate Cox analysis demonstrated that the risk score may be used
independently to predict OS patients’ prognosis. (B) The nomogram for predicting the survival percentage of patients at 1-, 3-, and 5-years in TARGETwas
constructed using gender, age, tumor-site, metastatic situation, and risk score. (C) Calibration curves revealed that there may be a similarity between the
nomogram-predicted overall survival of OS patients and their actual survival duration.

Frontiers in Pharmacology frontiersin.org09

Li et al. 10.3389/fphar.2024.1419040

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1419040


calculated, and we discovered that the high-risk group had a
substantially higher MSI score compared to the low-risk
subgroup (Figure 8C). In addition, through TIDE analysis, we
found that dysfunction score was decreased in the high-risk
group, while TIDE and exclusion scores did not show apparent
differences between the two subtypes (Figure 8C). And the
percentage of ICB therapy non-responders was similar to that of
responders, which indicated that patients with OS may be not
sensitive to immunotherapy (Figure 8C). Furthermore, giving the
significance of human leukocyte antigen (HLA) genes in anti-cancer
immunity, we examined 24 HLA genes across different risk classes.
Our findings indicated that most genes were downregulated in the
high-risk subgroup (Figure 8D). This result suggested that potential
association may existed between the risk score and HLA gene
expression levels, which may serve as prospective
immunotherapy biomarkers.

Prediction of potential
chemotherapeutic agents

The correlation between the risk score and sensitivity of some
chemotherapeutic agents was calculated by “oncoPredict”
package in R software. And the results indicated lower
IC50 values and better sensitivity of vorinostat, lapatinib,
VSP34_8731, I-BRD9, and NVP-ADW742 in the high-risk
group, which implied that aforementioned chemotherapeutic

agents would be more beneficial for individuals with higher
risk scores (Figure 9).

Single-cell landscape of hub genes

The cellular heterogeneity in tumor tissues of OS patients was
characterized using scRNA-seq data analysis. In the UMAP plot, a
total of 28 main cell clusters were displayed. Followed all clusters
annotated using markers, the UMAP representing all sequenced
cells revealed eight main cell types: CD4Tconv, CD8Tex,
endothelial, fibroblasts, malignant, Mono/Macro, osteoblasts, and
plasmocytes (Figure 10A). Among these cell types, Mono/Macro
was found to occupy the highest proportion in the tumor
microenvironment (Figure 10B). Furthermore, three prognostic
hub genes were screened, including EDIL3, SEMA3E, and
TNFRSF11B (Figure 10C). Further analysis demonstrated
different expression patterns of each gene in various cell types.
EDIL3 showed a high expression level in endothelial cells and
fibroblasts, while SEMA3E in malignant cells, and TNFRSF11B in
fibroblasts and malignant cells (Figure 10D).

Discussion

Osteosarcoma (OS) is a well-known malignant bone tumor with
great harm in children and adolescents (Gilsenan et al., 2021; Rojas

FIGURE 8
Evaluation of immunotherapy sensitivity in the high-risk and low-risk subgroups. (A) Comparisons between the two subgroups in terms of stromal-,
immune-, estimate-scores, and tumor purity. (B) Spearman correlation study demonstrated the association between immune cells (including resting
dendritic cell and active memory CD4 T cells) and risk score. (C) The differences of TIDE score, dysfuction score, exclusion score, MSI score, and the
proportion of patients whether response to ICP between the two subgroups. (D) Box plot presented differential expression of HLA genes between
the two subgroups.
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et al., 2021). Owing to this tumor’s high malignancy, OS patients
continue to have an unsatisfactory survival rate, with over half dying
from tumor cell metastasis and resistance to chemotherapy (Chou
and Gorlick, 2006; Benjamin, 2020). Consequently, gaining a more
profound understanding of the possible biomechanisms linked to
the advancement of OS is especially crucial, thus creating novel
therapies to improve the clinical outcomes for patients with OS. EMT, a
cellular process, has been identified to be closely associated with the
initiation and migration of cancers, including breast and bladder
cancers (Chen et al., 2021; Kong et al., 2021). It has also been
proved to result in drug resistance in lung and breast cancers (Luo
et al., 2018; Tulchinsky et al., 2019). Moreover, many studies have
demonstrated the connection between EMT and immunity in human
cancers (Lou et al., 2016; Mak et al., 2016). Recently, there are studies
showing that EMT plays a important role in the progression of OS,
potentially elucidating why EMT leads to poorer clinical results in OS
patients (Jiang et al., 2019). A multitude of distinct prognostic EMT-
RGs have been investigated (Zhang Y. et al., 2019; Chen et al., 2019).
Here, we explored the prognostic value of EMT-RGs by bioinformatics
analysis and constructed created a novel EMT-Related risk signature. It
has been shown that prognostic-related gene signatures from
sequencing data play important roles in the identification of risk
stratification and prediction of survival, developing precise treatment
strategies for cancer patients (Gong et al., 2023).

Our research revealed that patients with OS can be divided into
two distinct categories based on the EMT-Related DEGs, exhibiting

significant differences in somatic mutations, immune responses, and
possible mechanisms. The stromal score of the EMT-high subgroup
was significantly higher, indicating that stromal cells inside the
tumor microenvironment may be the source of EMT-RG
expression in OS. This idea was also supported by earlier
research on colorectal, urothelial, and OS cancers (Isella et al.,
2015; Wang et al., 2018). The EMT-high subtype was related to
positive clinical results along with an active immune reaction. Peng
et al. (2020) revealed that a high EMT score was linked to
significantly poor overall survival in OS patients, which was
contrary to the result of this study. But judging by the results of
the immune response, we could discover that immune cells, such as
plasma cells and activated memory CD4 T cells, were increased in
the EMT-high subtype, while resting dendritic cells were lower than
the EMT-low subgroup. The anti-tumor immunity and
immunosurveillance against cancer are beneficially mediated by
plasma cells and CD4 T cells, and the enhancement of their
responses may make cancer immunotherapies more effective
(Wouters and Nelson, 2018; Yamamoto et al., 2020). By
processing immune signals and presenting antigens to T cells,
activated dendritic cells can initiate immunological cascades,
which may explain lower levels of immunoreaction in patients
with higher amounts of resting dendritic cells (Gardner and
Ruffell, 2016; Hato et al., 2024). PDCD1LG2 was also discovered
to be higher in the EMT-high subgroup by ICP expression analysis.
It’s been established that improved general survival in hepatocellular

FIGURE 9
Five chemotherapeutic agents, including vorinostat, lapatinib, VSP34_8731, I-BRD9, and NVP-ADW742, were discovered to be more beneficial for
OS patients with higher risk scores.
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carcinoma is linked to this gene expression (Lei et al., 2021). All
these above could explain the better overall survival in the EMT-high
subgroup to some extent. Therefore, we speculated that the
prognosis of OS patients may be not directly related to the
expression of EMT-RGs, but associated with the immune
response accompanying the process of EMT, and active immune
response may contribute to better clinical outcomes in OS patients.

To acquire a deeper insight into the possible pathways of EMT-
RGs in OS development, functional enrichment studies were
subsequently carried out. The results of GO analysis showed
possible mechanisms in the progression of OS affected by EMT-
RGs. To be specific, abnormal activation of B cells promoted by
antigen binding, induce immunoglobulin production which bind to
the corresponding receptors, leading to abnormal immune
responses ultimately. In KEGG analysis, pathways mainly
enriched were metabolic process related pathways, implying a
coordinated interaction of these processes in OS. In light of the
possible link between GO analysis outcomes and immune-related
pathways, GSEA was employed in the two EMT-Related subgroups.
And the results indicated a very close relationship between EMT-
RGs and immunity in the occurrence and development of OS. These
results could provide implications when developing new treatment
methods for OS, especially immunotherapy.

Furthermore, we constructed a predictive risk signature using
eight EMT-RGs, including GRN, SERPINH1, EDIL3, ESRRA,
COL5A2, SEMA3E, TNFRSF11B, and TERT. GRN, by encoding
granulin precursor, mainly controls the survival and differentiation
of neurons, and is linked to immune, inflammatory, and stress
reactions in the nervous system (Chu et al., 2023; Cai et al., 2024).
SERPINH1, also known as HSP47, is noteworthy in the
development of several kinds of human malignancies, including

breast cancer, cervical cancer and other malignancies (Nagata et al.,
1986; Yamamoto et al., 2013; Yoneda et al., 2020). Xia et al. (2024)
revealed than SERPINH1 could enhance the malignancy of OS via
PI3K-Akt signaling pathway. EDIL3 acts as a pro-angiogenic factor
and associates with worse clinical outcomes of several cancers, such
as gastric, breast and pancreatic cancers (Jiang et al., 2016; Kun et al.,
2019; Zhang et al., 2020). There are studies suggesting that
EDIL3 may promote EMT in cancer cells by facilitating autocrine
or paracrine signaling (Gasca et al., 2020). ESRRA, full name
estrogen related receptor alpha, is considered as an orphan
nuclear receptor (Li FN. et al., 2021). Earlier research indicates a
link between the over expression of ESRRA and unfavorable cancer
outcomes, as it hastens the cancer cell proliferation and improves
their ability to migrate and invade (Zhang L. et al., 2019; Wang L.
et al., 2020). COL5A2 is crucial for regulating the immune system,
promoting angiogenesis, and facilitating tumor metastasis (Ding
et al., 2021). It was found by Han et al. (2022) that COL5A2 could
prevent the malignant progression of OS. SEMA3E was found to
play an important role in OS metastasis induced by
UHRF1 overexpression. TNFRSF11B, also called osteoprotegerin
(OPG), has been confirmed to participate in OS growth. Marley et al.
(2015) revealed that OPG could increase proliferation in human
derived OS cell lines. TERT, fully known as telomerase reverse
transcriptase, is a catalytic subunit of telomerase, abnormal
expression of which can activate the telomerase and play a key
role in the cancer formation (Zou et al., 2020). A vitro study by Xie
et al. (2023) indicated that inhibiting TERT may reduce the motility,
metastasis, and proliferation of OS cells.

According to survival analyses, eight previously listed genes
showed a strong correlation with the prognosis of OS patients and
the high-risk individuals had a worse prognosis. The predictive

FIGURE 10
Single-cell landscape of hub genes. (A) UMAP plots displayed 28 main cell clusters and eight main cell types. (B) Pie chart displayed the immune cell
composition ofOS samples. Mono/Macrowas found to dominate the tumour immunemicroenvironment. (C)Multivariate Cox regression identified three
hub genes that affected the prognosis of OS, including EDIL3, SEMA3E, and TNFRSF11B. (D) Violin plots showing hub EDIL3, SEMA3E, and TNFRSF11B at
the single-cell level in each of the eight main cell types.

Frontiers in Pharmacology frontiersin.org12

Li et al. 10.3389/fphar.2024.1419040

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1419040


precision of the risk model underwent additional validation by ROC
curves. Moreover, multivariate Cox regression analysis provided
convincing proof of the independence of the risk model. In order to
improve the prediction of OS patients’ prognosis, we created a
nomogram that incorporated clinical features such as gender, age,
tumor-site, and metastatic situation. In the training cohort, the
nomogram’s predictive performance was demonstrated with
effectiveness, evidenced by survival rates at 1-, 3-, and 5-years,
which further proved the risk model’s prediction effectiveness.

MSI score of tumor tissues can show how well ICB is working as
a treatment, and the higher the score, the better the effects
(Lichtenstern et al., 2020; Lin et al., 2020; Jiang et al., 2021). The
high-risk group exhibited a higher MSI score in our research,
suggesting that patients in this category may benefit more from
ICB. However, upon comparing the immunological characteristics
of the two risk groups, we discovered that patients with higher risk
scores presented poorer immune infiltration. Additionally, we
discovered the risk score was positively related with the
expression levels of resting dendritic cells, while negatively
correlated with activated memory CD4 T cells. Integrating all of
these factors, we speculated that while highMSI scores would induce
immune reactions, missing activated dendritic cells would
eventually prohibit T cells from activation to efficiently attack
cancer cells. A study by Pan et al. (2022) also has the similar
speculation. The following TIDE analysis showed that the
percentage of patients who responded to immunotherapy and
those who did not shown any discernible variation. To
summarize the above, we could suspect that OS patients may be
not very sensitive to immunotherapy. In reality, OS is regarded as a
“cold” tumor that may not respond well to ICP inhibitor therapy or
be receptive to ICB (Wu et al., 2020; Li X. et al., 2021). Finally, upon
conducting oncoPredict, it was discovered that patients in the high-
risk subtype had lower IC50 values and greater sensitivity for five
drugs, including vorinostat, lapatinib, VSP34_8731, I-BRD9, and
NVP-ADW742. These findings may help guide individualized
treatments for OS patients.

Data from scRNA-seq represents a novel method in cancer
studies, aimed at identifying tumor cell composition and analyzing
gene expression changes at the individual cell scale (Guo et al., 2024).
This study revealed Mono/Macro as the predominant cell type in the
tumor microenvironment, indicating their potential critical roles in
the pathogenesis of OS. Further analysis of scRNA-seq data
indicated that the cell types in which three hub genes highly
expressed were not exactly same. These discoveries gain
comprehensive insight on the molecular and cellular variations of
OS, and have significant ramifications for developing novel
treatment approaches that target particular cell types and genes.
Nonetheless, more studies are required to corroborate these findings
and ascertain their clinical relevance.

However, this study has several limitations. First of all, the
training cohort of this study contains only 85 OS samples from the
TARGET database, making the sample size small. Also, our model
needs to be further validated using datasets outside of the GSE21257.
Moreover, eight genes we have identified that may influence the
prognosis of OS patients require further experiments in vivo and
in vitro to elucidate their exact mechanisms of action. Nevertheless,
our findings emphasize the significance of EMT-Related gene
classifications in assessing the tumor immune microenvironment

as well as predicting the prognosis of patients with OS. These
findings not only contribute to the development of new
treatment methods, but also help clinicians better predict the
clinical outcomes of patients.

Conclusion

In summary, our study analyzed the tumor immune
microenvironment, immune response and biological functions in
EMT-Related subtypes. And the prognosis of OS patients could be
independently predicted by the risk signature constructed based on
eight EMT-Related DEGs. Our results may give physicians novel
perspectives into how to evaluate the prognosis of OS patients
and develop more customized and efficient therapy regimens for
OS patients, yet further study is still needed to validate
our findings.
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