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Introduction: Despite the established role of peripheral adenosine receptors in
sepsis-induced organ dysfunction, little or no data is available on the interaction
of central adenosine receptors with sepsis. The current study tested the
hypothesis that central adenosine A3 receptors (A3ARs) modulate the
cardiovascular aberrations and neuroinflammation triggered by sepsis and
their counteraction by the cholinergic antiinflammatory pathway.

Methods: Sepsis was induced by cecal ligation and puncture (CLP) in rats pre-
instrumented with femoral and intracisternal (i.c.) catheters for hemodynamic
monitoring and central drug administration, respectively.

Results: The CLP-induced hypotension, reduction in overall heart rate variability
(HRV) and sympathovagal imbalance towards parasympathetic predominance
were abolished by i.v. nicotine (100 μg/kg) or i.c. VUF5574 (A3AR antagonist, 2 µg/
rat). In addition, the selective A3AR agonist, 3-iodobenzyl-5′-N-
methylcarboxamidoadenosine IB-MECA, 4 µg/rat, i.c.) exaggerated the
hypotension and cardiac autonomic dysfunction induced by sepsis and
opposed the favorable nicotine actions against these septic manifestations.
Immunohistochemically, IB-MECA abolished the nicotine-mediated
downregulation of NFκB and NOX2 expression in rostral ventrolateral
medullary areas (RVLM) of brainstem of septic rats. The inhibitory actions of
IB-MECA on nicotine responses disappeared after i.c. administration of PD98059
(MAPK-ERK inhibitor), SP600125 (MAPK-JNK inhibitor) or wortmannin (PI3K
inhibitor). Moreover, infliximab (TNFα inhibitor) eliminated the IB-MECA-
induced rises in RVLM-NFκB expression and falls in HRV, but not blood pressure.
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kinase; NFκB, nuclear factor kappa B; NOX, nicotinamide adenine dinucleotide phosphate (NADPH)
oxidases; PI3K, phosphoinositide-3 kinases; rMSSD, the square root of the mean squared differences of
successive N-N intervals; RVLM, rostral ventrolateral medulla; SDNN, the standard deviation of the NN
intervals; TNF-α, tumor necrosis factor-α.
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Conclusion: Central PI3K/MAPKs pathway mediates the A3AR counteraction of
cholinergic defenses against cardiovascular and neuroinflammatory aberrations
in sepsis.
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1 Introduction

Sepsis is a life-threatening inflammatory condition that results
in continuous activation of inflammatory and coagulation cascades
and end-organ damage (Gyawali et al., 2019). Among the various
signaling pathways involved in the hyperinflammatory phase of
sepsis, mitogen activated protein kinase (MAPK) pathway is of
crucial importance (Strassheim et al., 2002; Abraham, 2005). The
inhibition of MAPK signaling pathways is believed to suppress the
inflammatory response and improve survivability in sepsis (Scherle
et al., 1998; Kotlyarov et al., 1999; Meng et al., 2014). By contrast, the
cholinergic antiinflammatory pathway has been recognized as a
primary pathway in suppressing inflammation in sepsis and in other
inflammatory conditions such as inflammatory bowel disease and
rheumatoid arthritis (Webster et al., 2002; Wang et al., 2021). The
released acetylcholine upon vagal activation acts via neuro-immune
circuits (Borovikova et al., 2000; Kanashiro et al., 2017) to attenuate
macrophage activation by facilitating the Jak2-STAT3 signaling and
suppress the production of proinflammatory mediators in human
monocytes (de Jonge et al., 2005; Yoshikawa et al., 2006). In addition
to its antiinflammatory action, the cholinergic (vagal) innervation to
the heart is pivotal to cardiovascular homeostasis and regulation of
arterial baroreceptor and chemoreceptor reflexes (Capilupi et al.,
2020; Rajendran et al., 2024).

Adenosine is an endogenous purine nucleoside that modulates
many physiological processes via activating four subtypes of
adenosine receptors (ARs) namely: A1Rs, A2aRs, A2bRs and
A3Rs (Borea et al., 2018). ARs are also expressed in a wide
variety of tissues including almost all types of immune cells,
thereby playing a pivotal role in regulating immune responses
and inflammatory conditions (Pasquini et al., 2021; Zhang et al.,
2022). The activation of A1 and A3 ARs in peripheral tissues reduce
the sepsis-related inflammation and mortality, and kidney and liver
damage (Gallos et al., 2005; Lee et al., 2006). Nevertheless, other
studies showed that elimination of A1 and A3 ARs protect against
sepsis induced kidney and lung injury, respectively (Inoue et al.,
2008; Wilson et al., 2014). Unlike peripheral ARs, studies on the role
of central ARs in sepsis are limited and contradictory. We recently
reported that central A1ARs counteract neuroinflammation and
associated cardiovascular dysfunction in sepsis (El-Naggar et al.,
2023) while Guo et al. (2023) reported that astrocytic A1ARs
exacerbate neuroinflammation contributing to sepsis induced
encephalopathy. To the best of our knowledge, no data is
available on the role of central A3ARs in sepsis.

Therefore, the current study employed pharmacologic and
molecular means to test the hypotheses (i) central A3ARs
arbitrate cardiovascular and neuroinflammatory insults of sepsis
and (ii) the cholinergic antiinflammatory pathway contributes to the
A3AR/sepsis interaction. Studies were undertaken in conscious rats

pre-instrumented with indwelling femoral and intracisternal
catheters to assess the effect of separate or combined treatment
with nicotinic and A3AR ligands on cardiovascular, autonomic, and
inflammatory responses elicited by sepsis. The role of the central
PI3K/MAPKs/TNFα cascade in the A3AR/nicotine interaction was
also evaluated.

2 Materials and methods

2.1 Animals

Adult male Wistar rats (220–250 g) were obtained from the
Animal facility of the Faculty of Pharmacy, Alexandria University,
Egypt, and were maintained under controlled laboratory conditions
and allowed free access to standard rat chow and tap water. All
experimental protocols were approved by the Institutional Animal
Care and Use Committee, Alexandria University, Egypt (Approval
No. AU/06.2020.6.7.2.73) and carried out in accordance with the
Declaration of Helsinki and the Guide for the Care and Use of
Laboratory Animals.

2.2 Drugs

Betadine® (povidone iodine solution 10%), heparin® (heparin
sodium, 5,000 I.U/mL), pencitard® (1,200,000 I.U benzathine benzyl
penicillin), thiopental® (thiopental sodium, 500 mg vial), remicade®

(infliximab, 100 mg vial, Janssen Biotech, Inc.), nicotine (Merck
Schuchardt OHG, Hohenbrunn, Germany), IB-MECA (N(6)-(3-
iodobenzyl)-5′-N-methylcarboxamidoadenosine), PD98059 (2-(2-
Amino-3-methoxyphenyl)-4H-1-benzopyran-4-one), SP600125
(1,9-Pyrazoloanthrone), VUF5574 (N-(2-Methoxyphenyl)-N′-[2-
(3-pyrindinyl)-4-quinazolinyl]-urea), wortmannin (Sigma
Chemical Co., St. Louis, MO, United States).

2.3 Induction of sepsis by cecal ligation and
puncture (CLP)

Cecal ligation and puncture (CLP) was conducted as previously
described (Toscano et al., 2011; El-Naggar et al., 2023) 24 h before
conducting cardiovascular monitoring. The abdominal area of
thiopental-anesthetized rats (50 mg/kg, i.p.) was shaved and
disinfected using betadine solution. A midline laparotomy
(~1.5 cm) was performed, the cecum was exposed and one-third
of the distal end, away from the ileocecal valve, was tightly ligated.
The cecum was then punctured three times on the same side using a
21-gauge needle and gently compressed to extrude a small amount
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of fecal content into the peritoneal cavity. At the end, the cecum was
returned to the abdominal cavity and the skin and underlying
abdominal musculature were stitched.

2.4 Intracisternal cannulation

Five days before the day of experiment (i.e., 4 days before
intravascular cannulation and CLP), a stainless steel guide
cannula (23 G, Miami, FL, United States) was implanted into the
cisterna magna of thiopental-anesthetized rats (50 mg/kg, i.p.) as
previously described in our studies (El-Mas et al., 2009; El-Mas et al.,
2012). The guide cannula was passed between the occipital bone and
the cerebellum so that its tip protruded into the cisterna magna. The
cannula was secured in place with dental luting cement (Glass
Ionomer, Hangzhou, China). Each rat received an i.m. injection
of benzathine benzyl penicillin (60,000 U) and was housed
individually.

2.5 Intravascular cannulation

Intravascular cannulation was performed on the same day of
CLP as previously described (El-Mas and Abdel-Rahman, 1995;
El-Mas and Abdel-Rahman, 1997; El-Mas and Abdel-Rahman,
1999; El-Mas et al., 1997). Briefly, rats were anesthetized with
thiopental (50 mg/kg, i.p.) and polyethylene catheters were
inserted into the abdominal aorta and vena cava via the
femoral artery and vein for hemodynamic measurement and
i.v. drug administration, respectively. Catheters were tunneled
subcutaneously, exteriorized at the back of the neck between the
scapulae, flushed with heparin (100 U/mL), and plugged by
stainless steel pins. One day later, the arterial catheter was
connected to a BP transducer (model P23XL; Astro-Med, West
Warwick, RI, United States) that was attached through
MLAC11 Grass adapter cable to a computerized
data acquisition system with LabChart-7 pro software (Power
Lab 4/35, model ML866/P; AD Instruments Pty Ltd., Castle Hill,
Australia) for the measurement of blood pressure (BP), heart rate
(HR) and heart rate variability (HRV) as mentioned below.

2.6 Time-domain analysis of HRV

Two statistically-derived parameters of HRV were measured:
SDNN, the standard deviation of NN intervals (R-R interval of
normal beats) and rMSSD, the square root of the mean squared
differences of successive NN intervals (Stein et al., 1994; Omar and
El-Mas, 2004). The NN intervals were computed from the HR
signals (i.e., the reciprocal of HR in ms). SDNN is recognized as
a measure of the overall activity of the autonomic control of the
heart and correlates with the total power which is the variance of NN
intervals (Stein et al., 1994). rMSSD can be taken as a measure of the
parasympathetic activity and correlates with the high frequency
(HF) power of the spectrum (Stein et al., 1994; Berntson et al., 1997).
Time-domain parameters of HRV, SDNN and rMSSD, were
measured before (baseline) and at 10 min intervals after drug
treatments.

2.7 Frequency-domain analysis of HRV

Spectral analysis of HRV was used to reflect changes in
sympathetic and parasympathetic control of the heart.
Frequency-domain parameters of HRV were analyzed based on
the fast Fourier transform algorithm (FFT) which has the advantage
of simplicity and high processing speed (Stein et al., 1994; El-Naggar
et al., 2018). Spectra were integrated into two frequency bands, LF
(0.25–0.75 Hz) and HF (0.75–3 Hz) bands and expressed in
normalized units (LFnu and HFnu) which minimizes the effect
of total power on the values of LF and HF components and reduces
the effect of noise (Sztajzel, 2004). The LF/HF ratio is taken as a
measure of the cardiac sympathovagal balance. Frequency-domain
parameters of HRV were estimated before (baseline) and at 10 min
intervals after drug treatments.

2.8 Immunohistochemistry

Immunohistochemical analysis was performed according to the
technique described in previous studies (Chen and Sun, 2006; Helmy
et al., 2015). The protein expressions of NFκB and NOX2 were
determined in brainstem areas of rostral ventrolateral medulla
(RVLM). Rat brainstems were fixed in 10% formalin and embedded
in paraffin blocks. Approximately 5 μm sections of rat brainstem
(−12.0 mm relative to bregma) (El-Mas and Abdel-Rahman, 1995;
El-Mas and Abdel-Rahman, 1997) were cut and placed on positively
charged adhesion glass slides (Epredia™, Braunschweig, Germany),
then deparaffinized in xylene and rehydrated in a series of descending
ethanol concentrations (100%, 95% and 70%). Heat-induced epitope
retrieval was performed by immersing the slides in coplin jars
containing 10 mM citrate buffer solution and incubated in a
microwave at power 100 for 1 min then power 30 for 9 min.
Endogenous peroxidases were blocked by 3% hydrogen peroxide for
10 min. The diluted primary polyclonal antibodies (1:300, rabbit anti-
NFκB p65, Bioss ™, United States) and (1:250, rabbit anti-NOX2,
ThermoFisher, United States) were applied to the slides and then
sections were incubated at 4 C overnight. The secondary antibody
(HRP conjugate) was applied for 30 min. The chromogen 3,3′-
diaminobenzidine (DAB) was prepared and applied as instructed by
the manufacturer for protein visualization. Slides were counterstained
with hematoxylin and dipped in ascending concentrations of alcohol
and then xylene. Images were taken by OptikamB9 digital camera
(Optika ® microscopes, Italy) and Fiji Image J software version 1.51n
(National Institutes of Health, Bethesda, MA, United States) was
employed to measure the area fraction of DAB positive staining in
brainstem areas of RVLM.

2.9 Protocols and experimental design

2.9.1 Role of central A3ARs in nicotinic modulation
of septic manifestations

This experiment investigated the effects of nicotine on
cardiovascular and autonomic derangements observed in septic
rats and its possible modulation by central A3ARs. A total of
seven groups of conscious rats (n = 8 each) were employed and
designed to receive one of the following regimens: (i) sham + saline
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(i.v.), (ii) CLP + saline (i.v.), (iii) CLP + nicotine (100 μg/kg, i.v.)
(Sallam et al., 2018), (iv) CLP + IB-MECA (selective A3AR agonist,
4 µg/rat, i.c.) (Chen et al., 2006), (v) CLP + IB-MECA (i.c.) + nicotine
(100 μg/kg, i.v.), (vi) CLP + VUF5574 (A3AR antagonist, 2 µg/rat, i.c.)
(El-Mas et al., 2011), or (vii) CLP + VUF5574 (i.c.) + nicotine
(100 μg/kg, i.v.). A 10-min interval was allowed between the two
successive treatments of each regimen, and hemodynamic monitoring
continued for 2 h after the last treatment. Notably, the high potency
and selectivity of IB-MECA and VUF5574 as A3AR agonist and
antagonist, respectively, have been established. VUF5574 has a K(i)
value of 4 nM and is at least 2,500-fold selective for A3AR over A1AR
and A2ARs (van Muijlwijk-Koezen et al., 2000). On the other hand,
IB-MECA has a K(i) value of 1.1 nM at A3ARs which is 50-fold higher
than K(i) for A1 and A2a ARs (Gallo-Rodriguez et al., 1994).

Changes in MAP, HR and HRV parameters were computed at
10 min intervals. At the end of the observation period, rats were
euthanized with an overdose of thiopental (100 mg/kg), brainstems
were quickly removed, fixed in 10% formaldehyde solution, and
processed for immunohistochemical measurement of the protein
expression of NFκB and NOX2 as described above. The
diagrammatic representation of the timeline of surgical procedures
and drug regimens employed in the experiments is depicted in Figure 1.

2.9.2 Role of PI3K/MAPK/TNFα signaling on IB-
MECA-nicotine septic interaction

Pharmacologic studies were utilized to evaluate the role of the
PI3K/MAPK/TNF-α cascade in the counteraction by IB-MECA of
cholinergic defenses against sepsis. Additional four groups of conscious
rats (n = 8 each) subjected to CLP operation were allocated to receive
one of the following drug regimens: (i) PD98059 (MAPK-ERK
inhibitor, 10 µg/rat, i.c.) (Sallam et al., 2016; Sallam et al., 2017) +
IB-MECA (4 µg/rat, i.c.) + nicotine (100 μg/kg, i.v.), (ii) SP600125
(MAPK-JNK inhibitor, 30 µg/rat, i.c.) (Sallam et al., 2016; Sallam et al.,
2017) + IB-MECA (4 µg/rat, i.c.) + nicotine (100 μg/kg i.v.) (iii)
wortmannin (PI3K inhibitor, 0.5 µg/rat, i.c.) (Sallam et al., 2016;
Sallam et al., 2017) + IB-MECA (4 µg/rat, i.c.) + nicotine (100 μg/kg,
i.v.) or (iv) infliximab (TNF-α inhibitor, 100 µg/rat, i.c.) (Dadsetan et al.,
2016; Mohamed et al., 2023) + IB-MECA (4 µg/rat, i.c.) + nicotine

(100 μg/kg, i.c.). A 10-min interval was allowed between each two
successive treatments, and hemodynamic monitoring continued for 2 h
after the last treatment. Changes in MAP, HR and HRV parameters
were computed at 10 min intervals. At the end of hemodynamic
monitoring, rats were euthanized with an overdose of thiopental
(100 mg/kg), brainstems were quickly removed, fixed in 10%
formaldehyde solution, and processed for immunohistochemical
measurement of the protein expression of NFκB and NOX2 as
described earlier. The diagrammatic representation of the timeline of
surgical procedures and drug regimens employed in the experiments is
depicted in Figure 1.

2.10 Statistical analysis

Values are expressed as means ± standard error of the mean
(SEM). The area under the curve (AUC) was calculated for each
parameter to express the cumulative effect of tested regimens over
the entire period of hemodynamic monitoring. AUCs were
computed by GraphPad Prism 8.0.2. using trapezoidal integration
and zero line as the baseline. Peaks that go below the baseline were
also considered by computing the “net area” which represents the
area of peaks below the baseline minus the area of peaks above the
baseline. The unpaired Student’s t test was used to test for
significance between two independent groups. The one-way or
repeated measures ANOVA followed by the Tukey’s post hoc test
was used to test for significance among multiple groups. These
analyses were performed by GraphPad InStat, software release 3.05.
Probability levels less than 0.05 were considered significant.

3 Results

3.1 Cardiovascular and autonomic effects
of sepsis

Baseline values of BP, HR and HRV measured 24 h after CLP or
sham operation are depicted in Figure 2. CLP significantly reduced in

FIGURE 1
Diagrammatic representation of the timeline of surgical procedures and drug regimens.
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BP (Figure 2A) while having no effect on HR (Figure 2B). CLP also
produced significant reductions in the two time-domain indices of
HRV, the standard deviation of NN intervals (SDNN, Figure 2C) and
root mean squared differences of NN intervals (rMSSD, Figure 2D).

The total power band of the HRV spectrum (Figure 2E) as well as the
LF/HF ratio (Figure 2F) were significantly less in CLP rats than in
respective values of sham rats, denoting a shift in cardiac
sympathovagal balance towards parasympathetic predominance.

FIGURE 2
Effect of sepsis on blood pressure (BP, panel (A), heart rate (HR, panel (B), time-domain parameters of HRV (SDNN, panel (C); rMSSD, panel (D)] and
frequency-domain parameters of HRV [total power, panel (E); LF/HF, panel (F)] in male rats. ap < 0.05 vs. sham values.
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3.2 Central A3ARs offset the favorable
cardiovascular effects of nicotine
against sepsis

The effects of pharmacologic manipulation of central A3ARs on
septic responses and their interaction with nicotine are depicted in
Figures 3–5. Intravenous administration of nicotine (100 μg/kg)
caused significant increases in MAP (Figures 3A, B) and HR
(Figures 3C, D) compared with respective values in saline-treated
CLP rats, confirming the ability of nicotine to reverse the
hypotensive response initially caused by the septic challenge and
shown in Figure 2A. Likewise, HRV analysis revealed that the sepsis-
evoked reductions in time (SDNN and rMSSD, Figure 4) and
frequency (total power, Figures 5A, B) domain indices of HRV
were significantly upturned by nicotine. Nicotine also enhanced the
depressed sympathovagal balance in CLP rats as indexed by the rise
in the LF/HF ratio (Figures 5C, D). Together, Figures 4, 5
demonstrate the ability of nicotine to alleviate hemodynamic and
HRV disturbances induced by sepsis.

The i.c. treatment of CLP rats with the selective A3AR agonist
IB-MECA (4 µg/rat) accentuated the cardiovascular and HRV
responses elicited by sepsis. In other words, IB-MECA
significantly reduced MAP (Figures 3A, B), overall HRV indices
(SDNN, Figures 4A, B; total power, Figures 5A, B) and

parasympathetic cardiotonic activity (rMSSD, Figures 4C, D).
Further, IB-MECA blunted the pressor, tachycardic, and rises in
HRV indices produced by subsequent administration of nicotine
(Figures 3–5).

Alternatively, the blockade of central A3ARs by i.c. VUF5574
(2 µg/rat) in CLP rats produced effects that mimicked those
produced by nicotine. VUF5574 significantly increased MAP
(Figures 3A, B), and time (Figure 4) and frequency (Figure 5)
indices of HRV indices. The cardiovascular and HRV changes
evoked by the combined VUF5574/nicotine regimen were similar
caused by nicotine alone (Figures 3–5).

3.3 Central PI3K/MAPKs/TNFα cascade
modulates the IB-MECA/nicotine
interaction

The influence of pharmacologic inhibition of individual
components of the PI3K/MAPKs/TNFα pathway on the IB-
MECA-nicotine interaction in septic rats was evaluated. Figures
6A, B demonstrate that the depressant action of IB-MECA on
nicotine hypertension was eliminated following central inhibition
of MAPK-ERK, MAPK-JNK, or PI3K evoked by i.c. administration
of PD98059 (10 µg/rat), SP600125 (30 µg/rat), and wortmannin

FIGURE 3
Effects of central adenosine A3 receptor activation (IB-MECA) or blockade (VUF5574) on the nicotine-evoked changes in time-course [panels (A–C)]
and cumulative values [AUCs, panels (B–D)] of MAP and HR in septic male rats. ap < 0.05 vs. “CLP/saline”, bp < 0.05 vs. “CLP/NIC”.
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(0.5 µg/rat), respectively. By contrast, the counteraction of nicotine
hypertension by IB-MECA was preserved in rats treated with i.c.
infliximab (TNFα inhibitor, 100 µg/rat). Analysis of HRV illustrated
that i.c. treatment with each of the above inhibitors (PD98059,
SP600125, wortmannin or infliximab) reversed the inhibitory effects
of IB-MECA on the nicotine-induced increments in time-domain
indices of total cardiac autonomic control (SDNN, Figure 6C) as well
as on cardiac vagal cardiotonic activity (rMSSD, Figure 6D). The
spectral index of total autonomic activity (total power, Figure 6E)
was also reversed by the tested inhibitors, whereas the falls caused by
IB-MECA in the cardiac sympathovagal balance (LF/HF ratio,
Figure 6F) remained unaltered by any of these inhibitors.

3.4 Brainstem expression of NFκB and NOX2

Immunohistochemical analysis showed that the protein
expression of the proinflammatory NFκB (Figure 7A) and
oxidant NOX2 (Figure 8A) in neuroanatomical areas of the
brainstem RVLM were significantly increased in CLP compared
with sham rats. The CLP-associated overexpressed signals of NFκB
and NOX2 were restored back to near-sham levels after treatment of
CLP rats with nicotine and resurfaced upon simultaneous

administration of the A3AR agonist IB-MECA (Figures 7, 8).
Consistent with the abovementioned cardiovascular data, i.c.
administration of PD98059, SP600125, wortmannin, or infliximab
opposed the counteracting effects of IB-MECA on nicotine
downregulation of NFκB neuronal expression (Figure 7A). On
the contrary, none of these inhibitors alleviated the inhibitory
action of IB-MECA on nicotine-evoked downregulation of
NOX2 expression (Figure 8A). Representative images of the
immunostained neuronal areas are shown in Figures 7B, 8B.

4 Discussion

The involvement of circulating as well as cardiac and renal
proinflammatory cytokines in the cholinergic modulation of
cardiovascular sequels of sepsis has been repeatedly investigated
in previous reports from our laboratory (Sallam et al., 2018; Wedn
et al., 2020; El-Naggar et al., 2023). This study is the first to report on
the role of central pathways of A3ARs in the cholinergic modulation
of cardiovascular and inflammatory responses to sepsis. The data
revealed that nicotine reversed the hypotensive response elicited by
sepsis and simultaneous reduction in HRV and upregulation of
brainstem NFκB and NOX2 expression. Selective activation of

FIGURE 4
Effects of central adenosine A3 receptor activation (IB-MECA) or blockade (VUF5574) on the nicotine-evoked changes in time-course [panels (A–C)]
and cumulative values [AUCs, panels (B–D)] of time-domain indices of HRV (SDNN, rMSSD) in septic male rats. ap < 0.05 vs. “CLP/saline”, bp < 0.05 vs.
“CLP/NIC”, cp < 0.05 vs. “CLP/VUF”.
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A3AR by IB-MECA aggravated the already existing hypotension
and cardiac autonomic dysfunction and counterbalanced the
favorable cardiovascular and brainstem neuroinflammatory
actions evoked by nicotine. The hostile response to A3AR
agonism was mostly ameliorated after central pharmacological
inhibition of PI3K, MAPK-ERK, MAPK-JNK, or TNFα. Further,
these inhibitors restored the nicotine downregulation of heightened
RVLM NFκB, but not NOX2, expression. Collectively, the data
implicate central PI3K/MAPK/TNFα signaling in the A3AR
counteraction of the ameliorative action of nicotine on
cardiovascular and neuroinflammatory derangements in sepsis.

Myocardial dysfunction and altered hemodynamics are major
complications of sepsis and septic shock (Hochstadt et al., 2011;
Greer, 2015). More specifically, HRV features have been recognized
as key predictors of organ dysfunction in sepsis. For example,
human electrocardiographic recordings showed that 3-h
measurements of time and frequency indices of HRV is
predictive of progressive organ dysfunction during early days of
sepsis (van Wijk et al., 2023). Others reported remarkable negative
correlations between HRV-LF power and circulating IL-6 in
hospitalized septic patients on the one hand, and the decline in
blood pressure on the other hand (Tateishi et al., 2007). Lear et al.
(2014) reported that the inflammatory response to acute

endotoxemia in sheep is associated with a drop in blood pressure
together with consecutive increases and decreases in HRV. In the
current study, we showed that CLP, the gold standard model of
sepsis (Dejager et al., 2011), resulted in hypotension and suppression
of time- and frequency-domain indices of HRV. This gains support
from the observations that CLP rats exhibited (i) diminished overall
cardiac autonomic control as indexed by the falls in SDNN and total
power, and (ii) shifts in sympathovagal balance towards
parasympathetic predominance as verified by the reductions in
LF/HF ratios. The increased vagal activity and depressed
sympathetic modulation of the heart have been reported in septic
patients (Hsu et al., 2020). Clinically, the depressed HRV in septic
patients correlates with worsened prognosis and mortality in sepsis
(Barnaby et al., 2002; Pontet et al., 2003; de Castilho et al., 2018).
Further, the counteraction by systemically administered nicotine of
the hypotensive and cardiac autonomic neuropathic actions of sepsis
reinforces the shielding action of the cholinergic antiinflammatory
pathway against sepsis (Sallam et al., 2018; Sallam et al., 2019; El-
Naggar et al., 2023).

Although the immunomodulatory function of adenosine in
peripheral tissues in sepsis pathophysiology has been recognized
(Zhang et al., 2022), reports on the role of central adenosinergic
pathways in sepsis are scarce. For instance, we recently

FIGURE 5
Effects of central adenosine A3 receptor activation (IB-MECA) or blockade (VUF5574) on the nicotine-evoked changes in time-course [panels (A–C)]
and cumulative values [AUCs, panels (B–D)] of frequency-domain indices of HRV (total power, LF/HF ratio) in septic male rats. ap < 0.05 vs. “CLP/saline”,
bp < 0.05 vs. “CLP/NIC”, cp < 0.05 vs. “CLP/VUF”.
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demonstrated that myocardial and brainstem A1ARs act tonically to
boost the protection conferred by the cholinergic antiinflammatory
system against cardiomyopathic sequels of sepsis (El-Naggar et al.,
2023). Similarly, Igarashi et al. (2023) demonstrated a favorable role
for central A2BARs in the vagally-dependent diminution of
mortality risk in endotoxemia. Contrary to such apparently
privileged roles of A1ARs and A2BARs in the fight against
sepsis, the current data suggests an exacerbating action for
central A3ARs on cardiovascular irregularities induced by sepsis.
Such distinct effect of A3ARs is supported by experiments that
tested the effect of the A3AR agonist IB-MECA alone or combined
with nicotine. Indeed, the hypotension and cardiac autonomic
dysfunction induced by sepsis were significantly intensified
following central administration of IB-MECA into the cisterna
magnum. Further, IB-MECA abolished the rises in BP and time
and spectral indices of HRV indices evoked by consequent treatment
with nicotine in septic rats. These findings highlight a pivotal role for
downregulation of the cholinergic antiinflammatory pathway in the
worsened cardiovascular profile in septic rats upon A3AR activation.

To further consolidate the role of A3ARs in sepsis
pathophysiology, we tested the influence of central A3AR
blockade by VUF5574 on septic responses. Fascinatingly, we

found that VUF5574 acted in a similar fashion to nicotine,
i.e., caused remarkable elevations in BP and time- and frequency-
domain HRV parameters. Likewise, the use of VUF5574 or nicotine
significantly increased the cardiac sympathovagal balance (LF/HF
ratio, Figure 5D), inferring a rise in cardiac sympathetic activity. The
separate effects of nicotine and VUF5574 in this context were
indistinguishable, both qualitatively and quantitatively, suggesting
positive roles for the enhanced HRV and sympathetic activity of the
heart, and probably other sympathetic neural beds, in the
counterbalancing actions of the two drugs against cardiovascular
manifestations of sepsis. These observations together with the data
of the agonistic IB-MECA study point clearly toward a tonic
facilitatory role for central A3ARs in mediating cardiovascular
and autonomic aberrations induced by sepsis. A similar role for
A3ARs has been described by Inoue et al. (2008) who reported less
lung injury and improved survivability in A3AR-knockout CLP
mice compared with wild-type septic mice.

The current study investigated the role of central inflammatory
and oxidative molecules in the A3AR-nicotine interaction. This was
accomplished by immunohistochemical determination of NFκB and
NOX2 expression in neuroanatomical areas of the RVLM. NFκB is a
pivotal transcription factor that predicts sepsis severity and

FIGURE 6
Effects of intracisternal administration of PD98059 (MAPK-ERK inhibitor), SP600125 (MAPK-JNK inhibitor), wortmannin (PI3K inhibitor) or infliximab
(TNFα inhibitor) on IB-MECAmodulation of nicotine-induced cumulative changes in MAP, HR [panels (A,B)], time-domain indices of HRV [SDNN, rMSSD;
panels (C,D)] and frequency-domain indices of HRV [total power, LF/HF ratio; panels (E,F)] in septic (CLP) male rats. ap < 0.05 vs. “CLP/saline”, bp < 0.05 vs.
“CLP/NIC”, cp < 0.05 vs. “CLP/IB-MECA/NIC”.

Frontiers in Pharmacology frontiersin.org09

El-Naggar et al. 10.3389/fphar.2024.1418981

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1418981


FIGURE 7
Panel (A) shows the effects of central adenosine A3 receptor activation (IB-MECA) on the nicotine-evoked downregulation of elevated NFκB
expression in the RVLM of septic rats in absence and presence of PD98059 (MAPK-ERK inhibitor), SP600125 (MAPK-JNK inhibitor), wortmannin (PI3K
inhibitor) or infliximab (TNFα inhibitor). Representative images for immunostained sections are shown in panel (B). ap < 0.05 vs. “sham/saline”, bp < 0.05 vs.
“CLP/saline”, cp < 0.05 vs. “CLP/NIC”. dp <0.05 vs. “CLP/IB-MECA/NIC”.
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FIGURE 8
Panel (A) shows the effects of central adenosine A3 receptor activation (IB-MECA) on the nicotine-evoked downregulation of elevated
NOX2 expression in the RVLM of septic rats in absence and presence of PD98059 (MAPK-ERK inhibitor), SP600125 (MAPK-JNK inhibitor), wortmannin
(PI3K inhibitor) or infliximab (TNFα inhibitor). Representative images for immunostained sections are shown in panel (B). ap < 0.05 vs. “sham/saline”, bp <
0.05 vs. “CLP/saline”, cp < 0.05 vs. “CLP/NIC”.
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mortality and induces a variety of downstream proinflammatory
effectors (Barnes and Karin, 1997; Böhrer et al., 1997; Arnalich et al.,
2000; Abraham, 2003; Basak and Akashi-Takamura, 2024). NOX2 is
a superoxide generating enzyme that positively relates to NFκB
signaling and to the oxidative burst featured during sepsis (Ouyang
et al., 2024). Consistent with these reports, our data revealed about
tenfold increase in the expression of NFκB and NOX2 in the RVLM
of CLP, compared with sham, rats. More importantly, we also found
that these inflammatory and oxidative upsets disappeared upon
systemic exposure of Septic rats to nicotine and reinstated after
simultaneous i. c. administration of the A3AR agonist IB-MECA.
Together, these novel findings suggest a prime role for the
inflammatory and oxidative response incited by central A3AR
activation in the depression of the cholinergic defense against
cardiovascular dysfunction and autonomic neuropathy induced
by sepsis. Notably, immunohistochemical studies were specifically
performed in the RVLM because this ventrolateral medullary area of
the brainstem plays a key role in cardiovascular homeostasis (Saha,
2005) and in the central processing of peripheral inflammatory
signals of sepsis (Sallam et al., 2019; Abuiessa et al., 2020). Peripheral
inflammatory signals are believed to enter the brain through the
brainstem nucleus of the solitary tract, which acts through its
polysynaptic neuronal projections to the RVLM and other
medullary and hypothalamic nuclei to integrate cardiovascular
and inflammatory irregularities of endotoxemia (Lin et al., 1999;
Pavlov et al., 2003; Sirivelu et al., 2012). We have previously reported
that the upregulation of brainstem neuroinflammatory pathways of
NFκB mediates septic hypotension and autonomic depression
(Sallam et al., 2018; Sallam et al., 2019; El-Naggar et al., 2023).

We performed more pharmacologic and molecular studies to
investigate whether the PI3K/MAPK signaling provokes the
restraining influence of A3ARs on the cholinergic
antiinflammatory action. In spite of the pathogenic role of
MAPKs in microglial neuroinflammation as well as downstream
activation of NFκB and other proinflammatory mediators (Sallam
et al., 2016; An et al., 2020), contradictory reports are available
regarding whether A3ARs and MAPK inflammatory signaling are
interrelated (Martin et al., 2006; Ye et al., 2020). Our data showed
that central inhibition of PI3K (wortmannin), MAPK-ERK (PD
98059), or MAPK-JNK (SP600125) comparably counterbalanced
the depressant effects of IB-MECA on the advantageous nicotine
responses in septic animals. More specifically, the IB-MECA-evoked
rises in the RVLM NFκB expression and associated falls in blood
pressure and time and frequency indices of overall HRV were all
circumvented after the administration of each of the above
inhibitors. It is tempting to speculate that the presence of intact
and functional PI3K/MAPK-ERK/MAPK-JNK/NFκB cascade is a
pre-requisite for switching off the protection conferred by the
cholinergic antiinflammatory pathway against the adverse
cardiovascular effects of sepsis.

Contrary to NFκB, RVLM-NOX2 does not seem to contribute to
the PI3K/MAPK-dependent IB-MECA/nicotine interaction. Indeed,
our data showed that the rise caused by IB-MECA in RVLM
NOX2 expression was preserved following central inhibition of
PI3K, MAPK-ERK, or MAPK-JNK. A variety of NOX isoforms
have been identified and shown to distinctly contribute to sepsis
pathophysiology. In one study, NOX4, but not NOX1 or NOX2, is
implicated in septic manifestations of acute lung injury and

endothelial dysfunction (Jiang et al., 2020). Others reported that
NOX1 contributes to cardiomyocyte apoptosis and ventricular
systolic dysfunction (Matsuno et al., 2012) while NOX4 mediates
renal tubular inflammation, apoptosis and mitochondrial
dysfunction in sepsis (Li et al., 2023). NOX2 relates to cognitive
impairment, neuronal hyperexcitability and seizures in sepsis
(Hernandes et al., 2014; Huang et al., 2018; Huang et al., 2020).
That said, more studies are warranted to investigate the possible
contribution of other NOX isoforms to the A3AR/cholinergic
interaction in septic cardiovascular aberrations.

TNFα has long been considered as a primary offensive molecule
in sepsis severity and mortality (Damas et al., 1989; Debets et al.,
1989; Marks et al., 1990). Notwithstanding, our results revealed
inconsistent effects for central inhibition of TNFα by infliximab.
Whereas infliximab did effectively reverse the IB-MECA-induced
increments in RVLM-NFκB expression and decrements in total
HRV markers (SDNN and total power) and cardiac vagal activity
(rMSSD), it failed to alter the associated falls in blood pressure and
cardiac sympathovagal balance (LF/HF ratio). The disparity in the
way TNFα inhibition interfered with the neuroinflammatory and
cardiovascular autonomic effects of IB-MECA suggests the
involvement of both TNFα-dependent and -independent
inflammatory pathways in the A3AR-cholinergic interaction.
While TNFα and IL-1 activate the canonical NFκB pathway,
other TNF family of cytokines such as CD40 and lymphotoxin
beta can activate the non-canonical pathway (Sun, 2011; Hayden
and Ghosh, 2014; Lu et al., 2021). More studies are needed to
investigate this possibility.

It is imperative to comment on the role of the autonomic
activity in sepsis progression as well as in the cholinergic
antiinflammatory response to the septic insult. Despite the
current reductions in time and frequency indices of HRV, the
associated decline in LF/HF ratio is indicative of a shift in the
cardiac sympathovagal balance towards parasympathetic
dominance. The latter has been implicated in cardiomyopathic
and hypotensive actions of sepsis (Mink et al., 2007; El-Mas et al.,
2011). Further, proinflammatory cytokines are believed to
suppress central sympathetic vasomotor tone and cardiac
baroreflex mechanisms, which might account for the loss of
vascular resistance during severe bacterial infections (Sayk
et al., 2008; Milanez et al., 2022). Paradoxically, a possible
defensive role for the parasympathetic nervous system against
the cytokine storm provoked by sepsis has also been reported
(Borovikova et al., 2000). This view receives support from the
observation that subdiaphragmatic vagotomy inhibits behavioral
and neural effects of peripherally administered LPS, thus
implicating vagal afferent in the central transmission of
peripheral immune signals (Hosoi et al., 2005). Remarkably, the
reversal of septic cardiovascular responses by the cholinergic
stimulant nicotine or the adenosine A3R receptor blocker VUF
in the current study suggests a therapeutic potential for either drug
therapy in the setting of sepsis. Nevertheless, the data argue against
an additional advantage for the combined nicotine/VUF therapy
because its effect was not significantly different from those of
respective individual treatments.

Collectively, integrative and molecular data of the current study
demonstrate that central A3ARs act tonically to exacerbate
cardiovascular, autonomic, and neuroinflammatory sequels of
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sepsis and simultaneously counterbalance the shielding effect of the
cholinergic antiinflammatory pathway against these insults. The
study also highlights a therapeutic potential for A3AR blockade
against cardiovascular derangements of sepsis. Further experimental
and clinical investigations are necessary to validate this
presumption.
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