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Drug combinations have emerged as a promising therapeutic approach in cancer
treatment, aimed at overcoming drug resistance and improving the efficacy of
monotherapy regimens. However, identifying effective drug combinations has
traditionally been time-consuming and often dependent on chance discoveries.
Therefore, there is an urgent need to explore alternative strategies to support
experimental research. In this study, we propose network-based prediction
models to identify potential drug combinations for 11 types of cancer. Our
approach involves extracting 55,299 associations from literature and
constructing human protein interactomes for each cancer type. To predict
drug combinations, we measure the proximity of drug-drug relationships
within the network and employ a correlation clustering framework to detect
functional communities. Finally, we identify 61,754 drug combinations.
Furthermore, we analyze the network configurations specific to different
cancer types and identify 30 key genes and 21 pathways. The performance of
these models is subsequently assessed through in vitro assays, which exhibit a
significant level of agreement. These findings represent a valuable contribution to
the development of network-based drug combination design strategies,
presenting potential solutions to overcome drug resistance and enhance
cancer treatment outcomes.
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1 Introduction

There has been huge progress in the discovery of drug combination therapies for cancer
treatment in recent years, regarding the advantages of better efficacy, lower dose
requirement, and fewer adverse side effects (Zhou et al., 2019; Jin et al., 2020; Zhang
et al., 2020). Despite the accelerating clinical impact and a substantial increase in the
number of FDA-approved drug combinations from 2011 to 2021 (Fudio et al., 2022). The
current speed of development of drug combinations still falls short of meeting the urgent
clinical needs of cancer patients.

Generally, there were two types of strategies to foster the development of drug
combinations: computational-based methods and wet experiment. Considering the vast
size of chemical space (comprising >1060 molecules), AI technologies such as deep learning,
machine learning, and system biology have been widely applied to increase success rates in
drug development (Güvenç Paltun et al., 2021; Paul et al., 2021). For instance, DeepSynergy
implemented a feed-forward neural network by utilizing chemical descriptors for drug A,
drug B, and genomic information from cell lines to predict anti-cancer drug synergy (Preuer
et al., 2018). Similarly, MatchMaker (Kuru et al., 2022) and AuDNNsynergy (Zhang et al.,
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2021) automatically extracted features from drug structures and
genomic information of cell lines for drug combination prediction.
Machine learning methods encompassed supervised learning,
unsupervised learning, and semi-supervised learning approaches
to tackle drug combination prediction tasks. DECREASE
incorporated a compendium of 23,595 drug combination
matrices tested across various cancer cell lines to predict the
effects of drug combinations (Ianevski et al., 2019). ComboFM
employed two molecular fingerprints of drugs, concentration
values of both drugs, and gene expression profiles of cancer cell
lines as input features, utilizing a factorization machine model to
predict complete dose-response matrices (Julkunen et al., 2020).
Although the models achieved relatively high predictive
performance in the prediction of drug combinations, almost all
the studies circumvented the problem of lack of target information,
which probably oversimplified the actual situation of the drug
combination in cancer treatment. To address the problem, Cheng
et al. designed a network-based proximity measure between targets
of two drugs for predicting drug combinations. This approach
provided a robust network methodology for identifying effective
combination therapies (Cheng et al., 2019). However, the study
ignored the heterogeneity of diseases and missed multiple PPIs in
literature-derived low-throughput experiments.

Today, high-throughput screening (HTS) assays, using
biochemical, binding-based, and cell-based approaches,
automatically mined compound libraries for biologically active
molecules, and thus have opened new avenues of drug discovery
in pharmacological industries (Blay et al., 2020; van Vlijmen et al.,
2021). In a study focusing on diffuse midline glioma (DMG), Lin
et al. (2019) conducted sequential quantitative HTS using six DMG
cultures and a library of 2,706 approved and investigational drugs,
generating 19,936 individual dose-response profiles for single-agent
compounds. Similarly, Di Marco et al. (2020) utilized an HTS assay
with a library of 44,000 non-proprietary compounds to identify two
compounds that effectively reduced mitochondrial calcium influx.
However, HTS success rates are only roughly 50% successful
obtention of a hit. The main miscalculations stem from poorly
validated targets, limited screening libraries, and artificial assay
systems that do not closely resemble physiological conditions
(Costa et al., 2020). Consequently, the selection of drug
combinations still remains far from optimal. HTS alone cannot
determine all possible plausible combinations among drugs.

In our research, we aimed to predict small-molecule combinations
for cancer treatment by considering the actual complexities of drug
combinations and accounting for heterogeneity within cancer cell
lines. To achieve this, we extracted valuable associations from
14,394 PubMed literature articles, encompassing information on
drugs, genes, gene regulation, cancer cell types, and cancer types.
Then, human protein interactomes were separately constructed for
each cancer phenotype by integrating drug-protein interaction
information based on our collected literatures and DrugBank
database. We designed a network-based strategy for drug
combination prediction by measuring the network proximity of
drug–drug relationships and employing a correlation clustering
framework for community detection. This approach represents a
significant advancement in predicting effective drug combinations
for cancer treatment.

2 Materials and methods

2.1 Drug-gene network construction

55,299 cancer-related literatures ranging from 1995 to
2021 was collected from PubMed. Review, meta-analysis,
clinical assays, and computational studies were screened out.
Keywords about drug, gene, cancer cell line, cancer type, and
drug treatment outcome were extracted from the abstracts of
remaining 14,394 literatures by text-mining, with the aim to
construct semantic relationship among the keywords, i.e., drug
X leads to certain treatment outcome on a specific cancer
cell line from a specific type of cancer by regulating
certain genes. To correct the noisy information and improve
the robustness, three medical experts and 10 medical
students manually curated the relationships. Drug-target
relationships were further downloaded from the DrugBank
database and were then integrated with our manually curated
relationships.

A large gene-gene network was constructed, as shown in
Algorithm 1. The network edge is the connection between two
genes. For each type of cancer (non-small cell lung cancer, colon
cancer, acute myeloid leukemia, pancreatic cancer, breast cancer,
gastric cancer, ovarian cancer, renal cancer, liver cancer, head and
neck cancer, prostate cancer, cervical cancer, endometrial cancer,
thyroid cancer), a cancer-specific network was constructed,
respectively.

Input: cancer-drug-gene relation matrix DGRn×m and drug-

gene information list ListDG from collected references.

Output: cancer-specific network Gc <Vc,Ec >.

Steps:

1. For each type of cancer, iterate the drug-gene

information list and search for related genes

that appeared in the same literature.

2. Edges are created among those genes in the same

literature.

3. Delete isolated nodes and edge loops.

4. Return nodes set and edge set.

Algorithm 1. Algorithm for cancer-specific network construction.

2.2 Community detection in cancer-
specific networks

Louvain community detection algorithm consisted of two main
phases, i.e., local maximamodularity and new network building. The
changed modularity of a node and community C was calculated
as follows.

ΔQ � 1
2m

Cin + kini( ) − Cout + ki( )2
2m

[ ] − Cin − Cout( )2
2m

− k2i
2m

[ ]{ }
where Cin represents the sum weights of inner links. Cout means the
sum weights of outer links. kini represents the inner degree of node i.
ki represents the total degree of node i.
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Input: Cancer-specific networks Gca <Vca,Eca >.

Output: Communities C � C1 ,C2 , . . . ,Cn{ }.
Steps:

1. Initialize each node as a single community.

2. Search neighbor nodes of node i. Calculate, if

ΔQ >0, then add the neighbor node i into the

corresponding community C.

3. Repeat the process until the scale of

communities does not change.

4. Construct a new graph to compress nodes in the

same community as a node. And change links and

weights according to the changed nodes.

5. Repeat Steps 1–3 until the nodes do not change.

Algorithm 2. Louvain community detection algorithm.

2.3 Network-based proximity measure

Network-based proximity used the separation measure to
quantify the network-based relationship between the targets of
two drugs. The separation measure scoring algorithm consisted
of two steps, i.e., the searching step and the calculation step. The
detail of the separationmeasure scoring algorithmwas shown below.

Input: Gene sets genes_a and genes_b.

Output: Separation measure of genes_a and genes_b, sAB.

Steps:

1. Search target genes modules A of drug_a and B of

drug_b.

2. Calculate the mean shortest distance within

modules A and B which are noted as �dAA and �dBB.

3. Calculate the mean shortest distance �dAB within

links between modules A and B.

4. Calculate the separation measure score sAB as

follows. sAB � �dAB − �dAA+�dAB
2 .

Algorithm 3. Algorithm for separation measure scoring.

2.4 Drug combination prediction in cancer-
specific network

We predicted drug combination by combining network-based
proximity and communities in the cancer-specific network. For a
drug pair, A and B have targets TA andTB. Network-based
proximity between the targets of the drug pair, SAB, was
calculated by Algorithm 3.

Furthermore, we defined a cancer-specific network as
Gca <Vca, Eca > . We detected the communities within Gca by
Algorithm 2, and separated Gca into C � C1, C2, ..., Ci{ }. For a drug
X, we calculated the number and the ratio of drug targets within each
community to quantify whether the drug X hits a community:

CX � Cj Cj ∩ TX

∣∣∣∣ ∣∣∣∣≥ min α, β, Cj

∣∣∣∣ ∣∣∣∣( ), Cj

∣∣∣∣ ∣∣∣∣≥ γ, Cj ∈ C{ }
where CX represents the community hit by the drug X, Cj is the
community within Gca, TX is the target set hit by the drug X. β is a

constant between 0 and 1, representing what proportion of drug
targets in a community can be considered to hit the community. γ is
a constant greater than or equal to 1, representing the minimum
number of targets that the community Cj should contain to calculate
community hits. This parameter is used to prevent false positive
results. α, β, and γ were set to 10, 0.15, and 10 based on community
size, i.e., in a community with more than 10 nodes, drug X was
identified to hit the community when the drug hit 10 or 15% nodes.
If there is community overlap hit by drug pair (A, B),
i.e., CA ∩ CB ≠∅, SAB < 0, we define the drug pair (A, B) has
drug combination.

2.5 Materials

Bortezomib (S1013, batch No. 17), Curcumin (S1848, batch
No. 07), Palbociclib HCl (S1116, batch No. 14),
Dihydroartemisinin (S2290, batch No. 09) and Sorafenib
(S7397, batch No. 07) was purchased from Selleck Chemicals
LLC (United States). All human cancer cells were purchased
from Procell Life Science&Technology Co., Ltd. (China).
SW480, HCT-116 and BxPC-3 cells were maintained in RPMI-
1640 (GIBCO, United States) containing 10% fetal bovine serum
(FBS; GIBCO, United States) and 1% penicillin/streptomycin
(GIBCO, United States). MCF-7 was maintained in Dulbecco’s
Modified Eagle’s medium (DMEM; GIBCO, United States)
containing 10% FBS, 10 μg/mL insulin (MERCK,
United States), and 1% penicillin/streptomycin. MDA-MB-
231 and Panc-1 cells were maintained in DMEM containing
10% FBS and 1% penicillin/streptomycin. HL-60 and MV-4-
11 cells were maintained in Iscove’s Modified Dulbecco
Medium (IMDM; GIBCO, United States) containing 20% FBS
and 1% penicillin/streptomycin. All cell lines were authenticated
with short tandem repeats (STR) analysis, cultured for fewer than
6 months after resuscitation, and tested for mycoplasma
contamination every 3 months using MycoAlert (Lonza).
Annexin V-FITC Apoptosis Kit was purchased from
ZOMANBIO (China).

2.6 Inhibitors treatments

HCT-116 and SW480 cell lines were treated with a fixed BTZ
concentration of 30 nM and 80 nM, respectively, alongside
increasing concentrations of Curcumin (5 μM–60 μM). MCF-7
and MDA-MB-231 cell lines were exposed to a fixed PD
concentration of 10 μM and 5 μM, respectively, with escalating
doses of Curcumin (5 μM–60 μM for MCF-7 and 2.5 μM–40 μM
for MDA-MB-231). Panc-1 cell line received a fixed DHA
concentration of 10 μM with incremental additions of Sorafenib
(1 μM–40 μM). BxPC-3 cell line was treated with a fixed DHA
concentration of 60 μM and various Sorafenib concentrations
(2.5 μM–20 μM). MV-4-11 cell line was subjected to a fixed
BTZ concentration of 5 nM with a range of DHA
concentrations (50 nM–600 nM). HL-60 cell line was treated
with a fixed DHA concentration of 500 nM alongside escalating
BTZ concentrations (1.25 nM–10 nM). The 48-h treatment
duration was chosen to ensure adequate exposure and
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interaction time between the drugs. After this period, the
Combination Index (CI) values were determined for each
combination to assess the nature of drug interactions, with
interpretations as follows: CI > 1 suggests antagonism, CI =
1 indicates an additive effect, 0.7 < CI < 1 indicates slight
synergism, 0.3 < CI < 0.7 indicates synergism, and CI <
0.3 indicates strong synergism. The average CI values for each
cell line were calculated to provide a quantitative measure of the
overall drug interaction effects.

2.7 Cell death assay and flow
cytometry analysis

Cell death assay was performed using the Annexin V-FITC
Apoptosis Kit according to the manual. Briefly, 5 × 105 cells were
resuspended in 500 μL binding buffer with 5 μL Annexin V-FITC
and 10 μL PI staining solution for 10 min at room temperature. The
acquisition was performed on the Accuri C6 (BD Biosciences,
Franklin Lakes, NJ, United States) and data were analyzed with
FlowJo software (Tree Star, Ashland, OR, United States).

2.8 Statistic analysis

Statistical analyses and data visualization were conducted
utilizing SPSS (V26.0), GraphPad (V9.5) or R software (V4.2.3).
To assess the statistical significance of differences between groups, a
one-way ANOVA was applied, followed by Tukey’s post hoc test for
multiple comparisons. The p values obtained from these analyses
were used to determine the significance of the differences, with p <
0.05 considered to indicate statistical significance. All cellular
experiments were conducted with a minimum of three biological
replicates.

Five different statistic methods were used to estimate
performance of the network-based strategy for drug combination
prediction, including Exact, Wilson, Agresti, Clopper-Pearsons,
and Jeffreys.

3 Results

3.1 Network-based proximity measure and
community detection of drug-drug
relationships

We first collected cancer-related literatures dated from 1995 to
the 2020 in PubMed. Keywords including drug, gene, cancer cell
line, cancer type and drug treatment outcome were extracted from
each abstract, and sematic associations among 6,261 drugs,
3,764 genes, 2,002 cancer cell lines, and 73 cancer types were
identified. After standardization of drugs, genes, cancer cell lines,
and cancer types based on PubChem, DrugBank, and UniProt,
associations between 1,317 drugs and 1,315 genes were obtained.
Next, background protein–protein interactions (PPIs) were
assembled from five data sources, i.e., BioGRID (https://
thebiogrid.org/), MINT (https://mint.bio.uniroma2.it/), BIND
(http://bind.ca), DIP (http://dip.doe-mbi.ucla.edu), IntAct

(https://www.ebi.ac.uk/intact/) and HPRD (http://hprd.org/index_
html), which included 27,123 nodes and 663,114 edges. Based on the
PubMed-derived drug-gene associations and the background
network, we constructed networks for 11 most common cancer
subtypes, including non-small cell lung cancer (NSCLC), colon
cancer, acute myeloid leukemia (AML), pancreatic cancer, breast
cancer, ovarian cancer, liver cancer, prostate cancer, osteosarcoma,
glioma (Figures 1A, B; Supplementary Figures S1–S9).

For each cancer subtype, network-based proximity of drug–drug
relationships were measured by comparing the mean shortest
distance within the interactome between the targets of each of
two drugs, to the mean shortest distance between the target pairs
of two drugs (Cheng et al., 2019). For network-based proximity <0,
the two drugs were denoted as a drug combination, while for
network-based proximity ≥0, the two drugs were denoted as no
interaction. We further examined associations of the network-based
proximity with molecular function similarity and sequence
similarity of target proteins. As shown in Figures 1C–E, sequence
similarity of target proteins decreased with the increase of network-
based proximity. Also, we found that molecular function similarity
of target proteins derived from Gene Ontology annotations
decreased with the increase of network-based proximity (Figures
1F–H). The same results were also found in the other cancer types
(Supplementary Figures S10, S11). These results indicated that for
the two drug-target modules with separated topology (network-
based proximity ≥0), the drugs were pharmacologically distinct,
while for the two drug-target modules with overlapping topology
(network-based proximity <0), the drugs had higher similarities in
their biological and functional profiles.

In addition, we used the Louvain method for community
detection in each cancer subtype. The results showed that the
smaller the network-based proximity, the more the overlapping
number of communities and the closer the biological and
pharmacological relationships of the two drugs (Figures 1C,
D). Also, the results showed that the bigger the network-based
proximity, the less the overlapping number of communities and
the more distant the biological and pharmacological
relationships of the two drugs. For example, Bortezomib is
the first proteasome inhibitor approved by US FDA to treat
multiple myeloma. Dihydroartemisinin was reported to induce
autophagy and apoptosis of multiple myeloma cell lines (Wu
et al., 2020).

As shown in Figure 2A, Bortezomib’s targets were in the same
network neighborhood as the targets of Dihydroartemisinin in the
AML network, and the network-based proximity between the targets
was −0.334. Community detection further showed Bortezomib and
Dihydroartemisinin shared one community, suggesting their
biological and functional similarities. On the other hand,
Gemcitabine is a nucleoside analogue with activity in NSCLC.
Triptolide is a promising agent for NSCLC, which suppresses
cancer growth and metastasis by inhibiting β-catenin-mediated
epithelial-mesenchymal transition. In the NSCLC network, the
targets of Gemcitabine were in a topologically distinct
neighborhood from the targets of Triptolide (Figure 2B), having
a network-based proximity of 0.205. No overlapping communities
were found between the targets of the two drugs. The results
indicated lower similarities in the biological and functional
profiles between Gemcitabine and Triptolide.
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FIGURE 1
The relationship between gene networks and gene sequence similarity of AML and NSCLC, as well as network-based proximity networks. (A,B)
respectively illustrate the gene networks of AML and NSCLC. Each node represents a gene, and the size of the node and its label indicate the importance
of the gene in the network (represented by betweenness centrality). The color of the nodes represents the network communities to which the genes
belong. The edges between two nodes represent potential interactions between genes under certain mechanisms. (C–E) respectively demonstrate
the relationship between gene sequence similarity and network-based proximity in AML, NSCLC, and all cancer types included in this study. (F–H)
respectively illustrate the relationship between gene functional similarity and network-based proximity in AML, NSCLC, and all cancer types included in
this study.
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FIGURE 2
Typical drug combinations in AML and NSCLS. (A) The target proteins hit by Bortezomib and Dihydroartemisinin in the gene network of AML. The
color of each node represents the network community to which the corresponding gene of the target protein belongs. Triangles represent the target
proteins of Dihydroartemisinin, squares represent the target proteins of Bortezomib Associations betweenmolecular function similarity of target proteins
from Gene Ontology annotations and network-based proximity in 12 cancer types, and pentagons represent the common target proteins of
Bortezomib and Dihydroartemisinin. (B) The target proteins hit by Gemcitabine and Triptolide in the gene network of NSCLC. Triangles represent the
target proteins of Gemcitabine, and squares represent the target proteins of Triptolide.
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Based on the overlapping communities (≥1) and the network-
based proximity (<0), we identified 61,754 combinations for
NSCLC, 65,838 for colon cancer, 50,457 for AML, 63,226 for
pancreatic cancer, 102,771 for breast cancer, 64,114 for ovarian
cancer, 71,464 for liver cancer, 60,463 for prostate cancer,
45,432 for osteosarcoma, 41,459 for glioma and 67,627 for
hepatocellular cancer (Supplementary Tables S1–S11). We
found that 19,031 combinations appeared in more than
10 cancers, 39,079 in more than six cancers, and
70,015 uniquely synergistic combinations. This indicated the
similar and specific characteristics of different cancers. For
example, Bortezomib was the first proteasome inhibitor to be
approved by the US FDA. Topotecan was a chemotherapy drug.
Bortezomib and Topotecan was predicted to be combinational in
11 cancer types. This indicated the similarity of different cancer
types. In addition, Bruceine D is a major bioactive component
isolated from the traditional Chinese medicinal plant Brucea
javanica. Harmine is a β-carboline alkaloid found in multiple
medicinal plants. The combinational effect of Bruceine D and
Harmine was only found in NSCLC.

3.2 Network configurations of
11 cancer types

To further understand the difference and similarity of cancer
types, we analyzed the biological signaling pathways in cancer types.
Betweenness centrality was used to describe the importance of nodes
in a network in terms of the fraction of shortest paths that pass
through them. For each cancer subtype network, betweenness
centrality for each node was calculated and sequenced. In this
study, nodes with higher betweenness centrality (nodes at top
60%) were identified as important genes for each cancer subtype
network. Within the important genes, gene frequency was further
calculated, and genes co-occurred in more than ten cancer types
were identified as hot cancer genes, which included MYC, AKT1,
BCL2, MCL1, CASP8, BAX, MAPK8, CDKN1A, PCNA, MTOR,
PTEN, BCL2L11, VEGFA, FASN, PARP1, PIK3R1, EGFR, CDK2,
JUN, CASP3, BCL2L1, FLT4, XIAP, BAD, PRKAA1, PRKAB1,
CDK1, STAT3, BECN1, and MAP1LC3B. As shown in Table 1,
these genes were enriched in pathways promoting carcinogenesis,
proliferation, invasion, and metastasis of tumor cells and pathways

TABLE 1 Important biological signaling pathways occurring in more than 10 cancer types.

Promoting carcinogenesis, proliferation, invasion, and metastasis of tumor cells

Pathway FDR Genes

PI3K-Akt signaling pathway 2.9E-16 CDKN1A, HSP90AA1, PRKAA1, CDKN1B, BAD, FLT4, PTEN, PIK3R1, EGFR,MTOR, PTK2, VEGFA, BCL2L11, CCND1,
CDK4, MYC, CDK2, BCL2, AKT1, MCL1, BCL2L1

JAK-STAT signaling pathway 6.74E-09 CDKN1A, CCND1, MYC, STAT3, BCL2, AKT1, PIK3R1, EGFR, MTOR, BCL2L1, MCL1

HIF-1 signaling pathway 5.61E-08 CDKN1A, CDKN1B, STAT3, BCL2, AKT1, PIK3R1, EGFR, MTOR, VEGFA

Insulin signaling pathway 4.34E-06 PRKAA1, MAPK8, BAD, FASN, AKT1, PIK3R1, PRKAB1, MTOR

VEGF signaling pathway 9.94E-06 SRC, BAD, AKT1, PIK3R1, PTK2, VEGFA

TNF signaling pathway 1.72E-05 JUN, MAPK8, CASP8, CASP3, AKT1, PIK3R1, BIRC3

Adipocytokine signaling pathway 2.15E-05 PRKAA1, MAPK8, STAT3, AKT1, PRKAB1, MTOR

Prolactin signaling pathway 2.31E-05 MAPK8, CCND1, SRC, STAT3, AKT1, PIK3R1

Neurotrophin signaling pathway 2.44E-05 JUN, MAPK8, BAD, BCL2, BAX, AKT1, PIK3R1

Thyroid hormone signaling pathway 2.68E-05 CCND1, SRC, BAD, MYC, AKT1, PIK3R1, MTOR

Relaxin signaling pathway 3.85E-05 JUN, MAPK8, SRC, AKT1, PIK3R1, EGFR, VEGFA

Ras signaling pathway 0.000145 MAPK8, BAD, FLT4, AKT1, PIK3R1, EGFR, BCL2L1, VEGFA

MAPK signaling pathway 0.000557 JUN, MAPK8, MYC, CASP3, FLT4, AKT1, EGFR, VEGFA

IL-17 signaling pathway 0.001183 HSP90AA1, JUN, MAPK8, CASP8, CASP3

NF-kappa B signaling pathway 0.001721 PARP1, BCL2, XIAP, BCL2L1, BIRC3

mTOR signaling pathway 0.007371 PRKAA1, PTEN, AKT1, PIK3R1, MTOR

Wnt signaling pathway 0.052484 JUN, MAPK8, CCND1, MYC

B cell receptor signaling pathway 0.062964 JUN, AKT1, PIK3R1

Inhibiting cancer proliferation and growth

FoxO signaling pathway 2.12E-12 CDKN1A, PRKAA1, CDKN1B, STAT3, PTEN, PIK3R1, PRKAB1, EGFR, MAPK8, BCL2L11, CCND1, CDK2, AKT1

AMPK signaling pathway 2.68E-05 PRKAA1, CCND1, FASN, AKT1, PIK3R1, PRKAB1, MTOR

GnRH signaling pathway 0.011011 JUN, MAPK8, SRC, EGFR
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FIGURE 3
The drug combinations selected from our predicationmodel induce synergistic lethality in colorectal cancer and Breast cancer cells. Annexin V flow
cytometry of HCT116 (A) or SW480 (B) cells underwent treatment of Bortezomib (30 nM for HCT116, 80 nM for SW480), Curcumin (40 μM), alone or in
combination for 48 h (C,D) Apoptotic cell death was analyzed and shown on the left. Combination Index (CI) of Bortezomib and Curcumin was analyzed
in colorectal cancer cells using the Compusyn software. Annexin V flow cytometry of MCF-7 (E) or MDA-MB-231 (F) cells were subjected to
administration of 10 or 5 μM Palbociclib, 20 μM Curcumin, alone or in combination for 48 h (G,H) Apoptotic cell death was analyzed and shown on the
left. CI of Bortezomib and Curcumin was analyzed in breast cancer cells using the Compusyn software on the right. Data shown represent the means
(±SEM) of biological triplicates. *p < 0.05, **p < 0.01, ***p < 0.001.
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inhibiting cancer proliferation and growth. It was reported that
acting on multiple targets inside the cancer cell with several
biological mechanisms was favorable to overcome drug resistance
(Karges et al., 2020). Supplementary Table S12 showed drugs
targeted to more than two hot cancer genes in each cancer
network. We found many targeted drugs such as Metformin,
Celecoxib, and Sorafenib repeatedly appeared in difference
cancers. This implied that these drugs probably had higher
potency to overcome drug resistance, compared with other drugs
that acted on less targets.

Further, we found unique pathways in different cancer types by
enriching gene sets that co-occurred in less than four cancer types,
i.e., RIG-I-like receptor signaling pathway for colorectal cancer
(FDR = 0.02), Notch signaling pathway for AML (FDR = 0.08),
TGF-beta signaling pathway for pancreatic cancer (FDR = 0.04),
Apelin signaling pathway for liver cancer (FDR = 0.01), prolactin
signaling pathway (FDR = 0.03) for prostate cancer. For RIG-I-like
receptor signaling pathway in colorectal cancer, MAPK9, MAPK14,
MAP3K7, and RELA were enriched in the pathway. The results
indicated the specificity of different cancer types.

3.3 Validation of network-based drug
combination design strategy

We selected four types of cancer - colorectal cancer, breast
cancer, pancreatic cancer, and AML - to assess the effectiveness of
our prediction model. To evaluate the impact of combination
treatment on apoptosis, we conducted Annexin V/PI based flow
cytometry analysis after administering drug treatments to the
chosen cancer cells.

For colorectal cancer, we investigated the combined effects of
Bortezomib and Curcumin. This combination had not been
reported previously. Bortezomib is an FDA-approved proteasome
inhibitor used in the first-line treatment of multiple myeloma.
Curcumin, derived from the herb Curcuma longa, exhibits anti-
cancer properties against colorectal cancer through various cellular
mechanisms (Weng and Goel, 2022). In our study, we treated
HCT116 and SW480 cells with Bortezomib, Curcumin, or a
combination of both. As anticipated, the Bortezomib/Curcumin
combination synergistically enhanced the sensitivity of colorectal
cancer cells to Curcumin-induced cell death at a concentration that
did not cause significant toxicity when administered individually
(Figures 3A, B; Supplementary Figures S12A, B). To further validate
the synergistic effects, we utilized CompuSyn software, which
employs the Chou-Talalay method to calculate the combination
index (CI). This method provides a quantitative measure of
synergistic (CI < 1), additive (CI = 1), and antagonistic (CI > 1)
effects (Chou, 2010). As depicted in Figures 3C, D, the CI values for
HCT116 and SW480 cells were 0.427 and 0.606, respectively, further
confirming the synergism between Bortezomib and Curcumin.

In breast cancer, we examined the combination of Palbociclib
(CDK4/6 inhibitor) and Curcumin, a novel approach that has not
been previously explored in other types of cancer. Our results
demonstrated a strong synergistic effect between Palbociclib and
Curcumin in estrogen receptor (ER) positive breast cancer cell line
MCF-7 as well as triple-negative breast cancer cell line (TNBC)
MDA-MB-231. The corresponding CI values for MCF-7 and MDA-

MB-231 cells were 0.246 and 0.382, respectively, indicating a
promising therapeutic option for breast cancer treatment (Figures
3E–H; Supplementary Figures S12C, D).

Pancreatic cancer poses considerable difficulties due to its high
mortality rate and limited treatment options. In an effort to tackle
this issue, we explored the potential of combining
Dihydroartemisinin, a natural herbal product, with the tyrosine
kinase inhibitor sorafenib. Our findings revealed a strong synergistic
effect of this combination in inducing cell death in Panc-1 and
BxPC-3 cells (Figures 4A, B; Supplementary Figures S12E, F).
Notably, the respective CI values for Panc-1 and BxPC-3 cells
were 0.790 and 0.3 (Figures 4C, D), further highlighting the
promising therapeutic potential of this approach.

In the context of hematological malignancies, we focus was on
AML, which is the most prevalent malignant myeloid disorder in
adults. An innovative combination therapy involving
Dihydroartemisinin and Bortezomib, not previously explored in
leukemia, was investigated. The synergistic effects of this
combination were evaluated in MV4-11 and HL-60 cells. After
determining effective concentrations (Supplementary Figures
S12G, H), a fixed concentration of Dihydroartemisinin and
Bortezomib was administered respectively to induce apoptosis. As
illustrated in Figures 4E, F, the combination of Dihydroartemisinin
and Bortezomib significantly enhanced apoptosis compared to
either drug treatment alone. The respective CI values for MV4-
11 and HL-60 cells were 0.252 and 0.515 (Figures 4G, H). Overall,
our results demonstrate that the selected combination therapy
groups, determined using our prediction model, exhibited
synergistic effects in different types of cancer cells, including
solid tumors and hematological malignancies.

A critical aspect of our selection process was to identify drug
combinations that have not been previously reported for the
treatment of the specified types of tumors, thereby ensuring the
novelty and potential impact of our findings. From the extensive list
of 1,317 drugs and the subsequent tens of thousands of
combinations predicted by our network-based strategy, we
handpicked a diverse subset for experimental validation. This
subset was chosen based on unique network proximity measures
and community overlap, indicative of potential synergistic
interactions that have not been explored in the context of the
tumor types we studied.

Our drug selection process was grounded in scientific literature,
bioinformatics predictions, and the interdisciplinary expertise of our
team. We aimed to explore a broad spectrum of potential drug
combinations, leading us to a systematic and unbiased selection of
drugs that not only included established anticancer treatments but
also encompassed compounds traditionally used for other diseases
and natural agents with potential anti-cancer activity.

Furthermore, we used the confusion matrix method to measure
the performance of our prediction strategy, i.e., when SAB < 0 and
community overlap ≥1 for two drugs, we defined the two drugs were
combinational. The accuracy, sensitivity and specificity were 78.9%,
75.0% and 80.0%, showing good agreement between the predicted
and the experimental combination drugs (Table 2). The result
validated the reliability of our drug combination design strategy.
As shown in Supplementary Table S13, we further used five statistics
methods to estimate the 95% confidence interval of accuracy,
sensitivity and specificity. The lower bounds of the 95%
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FIGURE 4
The drug combinations selected from our predication model induce synergistic lethality in pancreatic cancer and AML cells. Annexin V flow
cytometry of Panc-1 (A) and BxPC-3 (B) underwent treatment of Dihydroartemisinin (20 μM for Panc-1, 60 μM for BxPC-3), Sorafenib (10 μM), alone or in
combination for 48 h (C,D) Apoptotic cell death was analyzed and shown on the left. CI of Dihydroartemisinin and Sorafenib was analyzed in pancreatic
cancer cells using the Compusyn software on the right. Annexin V flow cytometry of MV4-11 (E) and HL-60 (F) were subjected to administration of
five or 7.5 nMBortezomib, 400 or 500 nMDihydroartemisinin, alone or in combination for 48 h (G,H) Apoptotic cell deathwas analyzed and shown on the
left. CI of Bortezomib and Dihydroartemisinin was analyzed in AML cells. Data shown represent themeans (±SEM) of biological triplicates. *p < 0.05, **p <
0.01, ***p < 0.001.
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prediction interval of accuracy were always more than 0.544, which
indicated that the drug interaction prediction strategy proposed in
this study only has a probability of less than 5% of false positive
conclusions due to insufficient experimental results. The upper
bounds of the 95% prediction interval of accuracy were always
more than 0.915, which indicated the great application potential of
our drug interaction prediction strategy. Similar results were found
for the 95% confidence interval of specificity, i.e., the upper and the
lower bounds of the 95% confidence interval of specificity were more
than 0.986 and 0.640, respectively. Reliable specificity helped to
distinguish negative results from a large number of combination
hypotheses, which was crucial for reducing false positive results in
high-throughput testing and saving drug combination
development costs.

To evaluate the robustness of network-based prediction models,
we tested different α, β, and γ (Supplementary Table S14). The
results showed that the accuracy of network-based prediction
models changed between 63.1% and 84.2%. When α and β were
set to 10 and 0.2, the accuracy of prediction was 84.2%, sensitivity

50.0%, and specificity 93.3%. When α and β were set to 10 and 0.15,
sensitivity and specificity achieved best balance, and thus α � 10 and
β � 0.15 were chose to predict drug combination.

4 Discussion

The proximity measure of the target network used in this study
is an algorithm based on the network topology, which
simultaneously considers the dispersion within the two target sets
of the two drugs and the shortest distance between the target sets. In
the PPI network, edges represent direct interactions between targets,
so the proximity measure indicates the average path length required
for drug targets to interact. Obviously, the smaller the proximity
measure, the easier it is for drug combinations to produce synergistic
effects. On the other hand, whether two drugs can produce a
combined effect in the treatment of a specific disease also
depends on the function of the targets. If the drug targets are not
disease-related and no shortest path can be found between the

TABLE 2 Comparison of predicted and experimental combination drugs.

Drug A Drug B SAB Community overlap Prediction Ground truth

Pancreatic cancer

Sorafenib Dihydroartemisinin −0.142 1 True True

Non-small cell lung cancer

Triptolide Curcumin 0.230 0 False False

Gemcitabine Triptolide 0.205 0 False False

Gemcitabine Tanshinone IIA 0.716 0 False False

Osimertinib Tanshinone IIA 0.743 0 False False

Metformin Gemcitabine −0.077 0 False False

Metformin Tanshinone IIA 0.713 1 False False

Gemcitabine Osimertinib 0.042 1 False False

Dihydroartemisinin Metformin 0.063 0 False False

Breast cancer

Bortezomib Curcumin −0.071 0 False False

Curcumin Gemcitabine −0.202 1 True False

Bortezomib Dihydroartemisinin −0.334 1 True False

Gemcitabine Palbociclib 0.281 1 False False

Palbociclib Curcumin 0.287 0 False True

Curcumin Sorafenib −0.376 1 True False

Colorectal Cancer

Curcumin Bortezomib −0.071 1 True True

Acute myeloid leukemia

Bortezomib Dihydroartemisinin −0.334 2 True True

Decitabine Palbociclib 0.598 0 False False

Bortezomib Palbociclib 0.164 1 False False
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targets of the two drugs, it is difficult for the two drugs to have a joint
effect on the treatment of a specific disease. Therefore, we use the
cancer stratified target network and its community division to
ensure the disease specificity of drug combination effect. The
community size threshold (|C_i|≥3) helped to reduce the
occurrence of false positive results, which provided promising
predictive ability for drug combination. The result was validated
by our cellular experiments involving multiple cancers.

In addition, we used our prediction strategy to identify
61,754 combinations for NSCLC. To validate the prediction, we
randomly selected four paris of drugs. However, we did not observe
any drug pairs that showed a synergistic effect on NSCLC in the
cellular experiment. It was worth noticing that Dihydroartemisinin
was the only drug that hit multiple hot cancer genes on the NSCLC
cancer stratification network, showing its potential to non-
specifically interact with other NSCLC chemotherapeutic drugs.
We believe that Dihydroartemisinin is worth further research to
verify if it can produce drug synergy effects with other specific
anticancer drugs, to improve the prognosis of NSCLC patients or
relieve their drug resistance.

In future studies, we intend to explore a more accurate and efficient
strategy for drug combination prediction. To determine the specific
effects of drug combinations, such as synergistic, antagonistic, or toxic
effects, we plan to model the direction of drug-target interactions by
building directed graphs on existing networks, incorporating drug-
target isoform networks, or introducing new node attributes.
Furthermore, we will incorporate the validated hypothesis from this
study into more advanced algorithms, including various deep learning
techniques, to enhance predictive ability for practical applications.
Additionally, the availability of reliable experimental or clinically
derived drug interaction datasets remains limited. Therefore,
constructing a comprehensive drug interaction database is necessary
to facilitate benchmarking between different algorithms and advance
research in drug combination discovery.

There are still some limitations to this study. Although we made
efforts to obtain a comprehensive literature set and used text mining
techniques for information extraction, there may still be missed
information due to the limitations of text mining algorithms, leading
to false negatives. To ensure result reliability, we supplemented the
drug-target relationships with data from Drugbank. While our
prediction method demonstrates high specificity and low
probability of producing false negatives, there is still a wide
confidence interval for the performance indicators. We
conducted experiments on multiple cancers and drug
combinations to validate the predicted results; however, further
validation on a larger scale or a well-designed benchmark dataset
is necessary for practical application of this method, as
mentioned earlier.

In conclusion, this study developed a drug combination
prediction strategy based on complex biological networks and
demonstrated its effectiveness through experimental research.
The results also provide insights for future directions in
anticancer drug combination research. This prediction strategy
holds potential for widespread application in discovering drug

combinations for cancer and other diseases to improve patient
prognosis, overcome drug resistance, and mitigate adverse
drug reactions.
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