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Introduction: Basal cell carcinoma (BCC) is the most common skin cancer,
lacking reliable biomarkers or therapeutic targets for effective treatment.
Genome-wide association studies (GWAS) can aid in identifying drug targets,
repurposing existing drugs, predicting clinical trial side effects, and reclassifying
patients in clinical utility. Hence, the present study investigates the association
between plasma proteins and skin cancer to identify effective biomarkers and
therapeutic targets for BCC.

Methods: Proteome-wide mendelian randomization was performed using
inverse-variance-weight and Wald Ratio methods, leveraging 1 Mb cis
protein quantitative trait loci (cis-pQTLs) in the UK Biobank Pharma
Proteomics Project (UKB-PPP) and the deCODE Health Study, to determine
the causal relationship between plasma proteins and skin cancer and its
subtypes in the FinnGen R10 study and the SAIGE database of Lee lab.
Significant association with skin cancer and its subtypes was defined as a
false discovery rate (FDR) < 0.05. pQTL to GWAS colocalization analysis was
executed using a Bayesianmodel to evaluate five exclusive hypotheses. Strong
colocalization evidence was defined as a posterior probability for shared
causal variants (PP.H4) of ≥0.85. Mendelian randomization-Phenome-wide
association studies (MR-PheWAS) were used to evaluate potential biomarkers
and therapeutic targets for skin cancer and its subtypes within a phenome-
wide human disease category.

Results: PTGES2, RNASET2, SF3B4, STX8, ENO2, and HS3ST3B1 (besides
RNASET2, five other plasma proteins were previously unknown in expression
quantitative trait loci (eQTL) and methylation quantitative trait loci (mQTL)) were
significantly associated with BCC after FDR correction in the UKB-PPP and
deCODE studies. Reverse MR showed no association between BCC and these
proteins. PTGES2 and RNASET2 exhibited strong evidence of colocalization with
BCC based on a posterior probability PP.H4 >0.92. Furthermore, MR-PheWAS
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analysis showed that BCC was the most significant phenotype associated with
PTGES2 and RNASET2 among 2,408 phenotypes in the FinnGen R10 study.
Therefore, PTGES2 and RNASET2 are highlighted as effective biomarkers and
therapeutic targets for BCC within the phenome-wide human disease category.

Conclusion: The study identifies PTGES2 and RNASET2 plasma proteins as novel,
reliable biomarkers and therapeutic targets for BCC, suggesting more effective
clinical application strategies for patients.

KEYWORDS

biomarkers, basal cell carcinoma, proteome-wide mendelian randomization,
colocalization analysis, MR-pheWAS, drug targets, plasma proteins, single nucleotide
polymorphisms

Introduction

The skin, our largest organ, is directly exposed to various
external factors, leading to the emergence of skin cancer among
humans (Byrd et al., 2018). In recent years, skin cancer has become
one of the most prevalent malignancies (Notarstefano et al., 2019;
Ashraf et al., 2020; Siegel et al., 2023), globally representing the
majority of malignant tumors (Perez et al., 2022). Surveys show a
consistent rise in its incidence compared to other cancers (Kong
et al., 2018), categorizing it broadly into melanoma and non-
melanoma skin cancer (NMSC) (Balasubramanian et al., 2019).
Melanoma, a rare and highly dangerous variant, accounts for
only 1.7% of skin cancers, according to statistics from the
American Cancer Society (Saginala et al., 2021). NMSC includes
Merkel cell carcinoma, adnexal carcinoma, and
dermatofibrosarcoma protuberans but predominantly comprises
basal cell carcinoma (BCC) and squamous cell carcinoma (SCC),
collectively known as keratinocyte carcinomas (Lomas et al., 2012;
Nehal and Bichakjian, 2018). BCC represents over 80% of NMSC
cases (Rubin et al., 2005). Current treatments for BCC include
surgical intervention with radiotherapy, cryotherapy, and
photodynamic therapy (Kuflik and Gage, 1991; Silverman et al.,
1992; Wong et al., 2003). However, there are no established
biomarkers or therapeutic targets for guiding effective treatment.

The development of BCC is influenced by various factors,
including levels of hair and skin pigmentation, sun exposure,
immunosuppression, and exposure to harmful chemicals or
ionizing radiation (Situm et al., 2008; Collins et al., 2019; Kim
et al., 2019). Genetic variants in pigmentation genes (RALY, IRF4,
MC1R, OCA2, SLC45A2, and TYR), as well as immune genes (HLA
and LPP), have been implicated in the susceptibility to BBC
development (Chahal et al., 2016). Prolonged exposure to
ultraviolet radiation leads to the secretion of inflammatory
cytokine (TNF-α, IL-1β, IL-6, IL-10) that cause erythema,
photoaging, immunosuppression, and DNA damage, ultimately
contributing to BCC formation (Wong et al., 2003; Matsumura
and Ananthaswamy, 2004; Ikehata and Ono, 2011). Survivors of
nuclear disasters, radiation-exposed workers, and patients
undergoing long-term radiation therapy exhibit a higher
incidence rate of BCC compared to other malignant neoplasms.
DNA damage and Shh signaling are identified as crucial
mechanisms underlying the development of radiation-induced
BCC (Li and Athar, 2016). These facts highlight that genetic
variations and protein interactions play a crucial role in the

pathogenesis of BCC serving as potential diagnostic markers or
therapeutic targets for this disease.

Genome-wide association studies (GWAS) aim to identify
genetic variants associated with disease outcomes or traits by
analyzing entire genomes of large populations (Loos, 2020;
Uffelmann et al., 2021). Variants influencing gene expression
are called expression quantitative trait loci (eQTLs), while those
affecting DNA methylation are known as methylation
quantitative trait loci (mQTLs) (Lin et al., 2020). GWAS has
uncovered over 70,000 associations (Buniello et al., 2019), aiding
in drug target identification (Schmidt et al., 2020), drug
repurposing (Reay and Cairns, 2021), predicting clinical trial
side effects (Nguyen et al., 2019), and patient reclassification
(Christiansen et al., 2021). The human proteome offers potential
therapeutic targets, with the plasma proteome containing
proteins actively secreted, shed, or leaked into circulation for
executing their functions or inter-tissue communication
(Gudjonsson et al., 2022). Integrating human genetics with
population-scale proteomics can bridge the gap between the
genome and diseases, providing insights into health and the
impact of lifestyle and environment on disease (Sun et al.,
2023). The associations between protein levels and disease are
often insufficient to distinguish causality. However, combining
protein quantitative trait loci (pQTLs) and disease variants’
associations and colocalization can differentiate cause and
effect, elucidate pathogenesis, and identify drug targets
(Eldjarn et al., 2023).

Large-scale GWASs have been conducted to understand the
genetic basis of skin cancers, revealing over 140 eQTLs and mQTLs
(Flint, 2013; Adolphe et al., 2021; Seviiri et al., 2022). However,
potential biomarkers and therapeutic targets from plasma proteins
(pQTLs) in BBC remain unclear. By leveraging overlapping genetics,
multivariate GWAS approaches, including efficient colocalization
algorithms, can identify novel risk regions (GWAS to the people,
2018; Turley et al., 2018). Recently, an agnostic strategy integrating
phenome-wide association study (PheWAS) and Mendelian
randomization (MR) (termed MR-PheWAS) has been proposed
to establish causal relationships with previously unconsidered traits.
In this study, to deepen our understanding of potential biomarkers
and therapeutic targets of BCC, we used MR-PheWAS based on
inverse-variance-weight (IVW) and Wald Ratio (Kuflik and Gage,
1991) to minimize reverse bias and residual confounding bias, as it
does not affect results through pathways other than exposure
(GWAS to the people, 2018; Turley et al., 2018; Eldjarn et al.,
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2023). Ultimately, PTGES2 and RNASET2 were identified as
potential biomarkers and therapeutic targets for BCC through
integrating proteome-wide MR, colocalization, and MR-
PheWAS analyses.

Materials and methods

Experimental process

The study design overview is shown in Figure 1, with all analyses
based on summary-level data detailed in Supplementary Table S1.
Initially, we analyzed the associations of genetically predicted
plasma proteins in the UK Biobank Pharma Proteomics Project
(UKB-PPP) and deCODE studies with skin cancer in the FinnGen
R10 study. Subsequently, we investigated the associations of these
proteins with four subtypes of skin cancer (NMSC, BCC, SCC, and
melanoma) to understand their roles in disease development. To
confirm a causal relationship, colocalization analyses were
performed using GWAS-to-GWAS comparisons. Furthermore,
the efficacy of skin cancer-associated proteins was assessed across
various human diseases through MR-PheWAS on 2,408 phenotypes
from the FinnGen R10 study dataset. Finally, we validated key
findings within specific subtypes of skin cancer using data from
the UK Biobank database.

Data sources of plasma proteins

We utilized data from two large-scale GWAS studies on plasma
protein levels, including the UK Biobank Pharma Proteomics
Project (UKB-PPP) and the deCODE Health Study. The UKB-
PPP provided 2,940 protein GWAS from 54,219 participants
(Sun et al., 2023), which were measured with the antibody-based
Olink Explore 3072 platform. While deCODE generated
4,907 protein GWAS from 35,559 Icelanders (Ferkingstad et al.,
2021a), measured by the SomaScan v4 platform. Instrumental
variables were selected as 1 Mb cis-SNPs of plasma proteins with
p < 5 × 10−8, with linkage disequilibrium estimated based on the
1000 Genomes European panel. For the two-sample MR analysis, we
obtained cis-genetic instruments for 1,986 and 1,764 proteins from
the UKB-PPP and deCODE studies, respectively. Overlapping
proteins with genetic instruments from both studies were
examined to ensure consistency across different proteomic
profiling platforms.

Data sources of skin cancer and its subtypes

Data on plasma protein-associated SNPs with skin cancer and
its subtypes were obtained from the FinnGen study and UKB
database. The FinnGen R10 study provided the latest release data

FIGURE 1
Overview of the study design.

Frontiers in Pharmacology frontiersin.org03

Han et al. 10.3389/fphar.2024.1418560

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1418560


on skin cancer and its subtypes, including cases of skin cancer
(22,271), NMSC (19,077), BCC (20,506), SCC (3,531), and
melanoma of the skin (3,194), accompanied by identical
controls, totaling 314,193 individuals. Replication datasets for
skin cancer included melanomas (2,691 cases, 395,071 controls)
and non-epithelial skin cancer (11,149 cases, 395,071 controls)
from the Lee lab in the UKB database. As both the replication
data for skin cancer and plasma proteins of UKB-PPP belong to
the UKB database, there may be sample overlap between them,
with the protein sample size ranging from 9,216 to 34,090 and the
replication data size ranging from 39,7762 to 40,6220. Based on
these data, the max repetitive rate was 8.6%, with the validity
exceeding 90%, to ensure effective MR (Pierce and Burgess, 2013;
Burgess et al., 2016). However, no sample overlaps were observed
between other plasma proteins and skin cancer datasets in this
study. For the reverse MR analysis, genetic variants associated
with skin cancer and its subtypes at p < 5 × 10−8 and with low
linkage disequilibrium (R2 < 0.001) were selected as instrument
variables for skin cancer.

Mendelian randomization analysis

After excluding SNPs with p < 5 × 105 and plasma proteins
lacking genetic instrumental variables in the skin cancer data, we
conducted a batch analysis of two-sample MR. The strength of
the instrumental variables was assessed using the F statistic.
Associations between plasma proteins and the studied
outcomes were estimated using the Wald ratio and IVW fixed-
effect model or IVWmultiplicative random effects (Burgess et al.,
2015), along with their corresponding odds ratios (ORs) and
confidence intervals (CIs). To correct for multiple testing in skin
cancer analysis, the false discovery rate (FDR) method with a
significance threshold of <0.05 was applied (Glickman et al.,
2014). In addition, reverse MR analysis estimated the
associations of skin cancer liability with identified protein
levels to explore potential reverse causation. MR analyses were
performed using TwoSampleMR and MendelianRandomization
packages in R software (4.3.1). Causal directionality was ensured
through Steiger tests at a significance level of p < 0.05,
heterogeneity was checked using Cochran’s Q test with a
criterion of p > 0.05 (Burgess et al., 2013), and pleiotropy was
evaluated using Egger intercept test with a criterion of p > 0.05
(Bowden et al., 2015). Outlier SNPs were identified using MR-
Presso based on p > 0.05 as a criterion (Verbanck et al., 2018).

Colocalization analysis

A colocalization analysis was conducted to assess whether the
associations between proteins and skin cancer, including its
subtypes, were influenced by linkage disequilibrium. This
analysis utilized a Bayesian model that considered five
exclusive hypotheses: 1) no association with either trait; 2)
association with trait 1 alone; 3) association with trait 2 alone;
4) association with both traits, but distinct causal variants exist
for each trait; and 5) association with both traits, sharing the
same causal variant (Yuan et al., 2023). Each hypothesis (H0, H1,

H2, H3, and H4) was assigned a posterior probability. We set the
prior probabilities for the SNP being associated with trait 1 alone
at 1 × 10−4, for the SNP being associated with trait 2 alone at 1 ×
10−4, and for the SNP being associated with both traits at 1 × 10−5.
Strong colocalization was defined as a posterior probability for
shared causal variants (PP.H4) ≥ 0.85, and medium
colocalization indication was indicated by 0.5 < PP.H4 < 0.85.
The coloc package in R software (version 4.3.1) was used for
this analysis.

Mendelian randomization-phenome-wide
association studies (MR-PheWAS)

The FinnGen provided genetic association results for
2,405 binary endpoints and 3 quantitative endpoints
(HEIGHT_IRN, WEIGHT_IRN, and BMI_IRN) from freeze
10 (December 2023) (Kurki et al., 2023), involving
41,2181 individuals. Skin cancer-associated SNPs were selected
as instrumental variables for batch MR analysis with these
2,408 phenotypes in the FinnGen R10 study. MR-PheWAS
utilized the Wald ratio and IVW methods, with parameters
and criteria consistent with those in the initial MR analysis.
Newly identified phenotypes associated with skin cancer-
associated proteins underwent colocalization analysis to verify
causal relationships.

Results

Associations between plasma proteins and
skin cancer

To discover potential biomarkers or therapeutic targets for
skin cancers, we first investigated the causal relationship between
plasma proteins and total skin cancers. After excluding plasma
proteins without genetic instruments in skin cancer data, MR
analysis included 1,919 proteins in the UKB-PPP and skin cancer,
as well as 1,672 proteins in the deCODE and skin cancer in the
FinnGen R10 study, with an intersection of 837 proteins in
subsequent analyses. These findings obtained from analyzing
plasma proteins and skin cancer are presented in Figure 2. In
the intersected analysis of two plasma proteins data, genetically
predicted levels of 22 proteins were significantly associated with
skin cancer risk (p < 0.05, Figure 2A). Notably, these associations
were consistently observed in both the UKB-PPP and deCODE
studies for all identified proteins (Supplementary Tables S2, S3).
Per standard deviation increase in genetically predicted levels of
protein, the OR of skin cancer ranged from 0.44 (95% CI =
0.28–0.69) for splicing factor 3B subunit 4 (SF3B4) to 1.50 (95%
CI = 1.18–1.91) for Syntaxin-8 (STX8) (Supplementary Figure S1;
Supplementary Table S2). Furthermore, prostaglandin E
synthase 2 (PTGES2), ribonuclease T2 (RNASET2), SF3B4,
and STX8 were significantly associated with skin cancer risk
after FDR correction for multiple testing (FDR <0.05,
Supplementary Figure S1). Genetically predicted levels of the
other studied proteins were not associated with skin cancer risk
(Supplementary Tables S2, S3).
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Associations between plasma proteins and
the subtypes of skin cancer

To further understand the role of plasma proteins in specific
skin cancers, we investigated the causal relationship between
these proteins and NMSC, BCC, SCC, and melanoma. We
identified 23 intersected proteins with a p-value <0.05 in both
the UKB-PPP and deCODE studies for NMSC (predominantly
including BCC and SCC), along with 23, 14, and 15 intersected
proteins for BCC, SCC, and melanoma of the skin, respectively
(Figure 2B; Supplementary Table S4). However, FDR correction
for multiple testing revealed no significant associations for SCC
and melanoma of the skin (Supplementary Table S5).
Interestingly, PTGES2, RNASET2, SF3B4, and STX8,

associated with skin cancer risk, were also significantly
associated with NMSC and BCC risks (Figures 2B,C). These
findings suggest that these four proteins are specifically
associated with BCC but not with SCC and melanoma of the
skin. PTGES2 and SF3B4 exhibited a protective effect against
BCC (OR < 1), while RNASET2 and STX8 were identified as risk
factors for BCC (OR < 1) in both the UKB-PPP and deCODE
studies. Furthermore, FDR-corrected p-value <0.05 was observed
for gamma-enolase (ENO2) and heparan sulfate glucosamine 3-
O-sulfotransferase 3B1 (HS3ST3B1) with BCC, with OR
values <1 indicating a protective effect against BCC
(Figure 2D; Supplementary Table S6). In addition, reverse MR
results indicated that genetic liability to skin cancer and its
subtypes were not associated with levels of six blood proteins,

FIGURE 2
Association between plasma proteins and skin cancer and its subtypes usingMR analysis. (A). Volcano plot displaying the association of proteins with
skin cancer based on odds ratio (OR) in MR analysis. Twenty-two intersected proteins significantly associated with skin cancer in the UKB-PPP and
deCODE studies (p < 0.05). Blue denotes a protective effect, purple indicates a risk factor, and gray represents neutrality. (B). Venn diagram illustrating the
proteins associated with skin cancer and its subtypes through MR analysis (p < 0.05). (C). Odds ratios (ORs), 95% confidence intervals (CIs), and false
discovery rate (FDR) for the effect of plasma proteins on skin cancer and its subtypes estimated using the IVW or Wald ratio approaches of MR. (D).
Volcano plot showing the association of proteins with BCC based on odds ratio (OR) in MR analysis (p < 0.05). Twelve intersected proteins in skin cancer,
non-melanoma skin cancer, and BCC were highlighted. The red fonts represent significantly associated proteins (FDR <0.05).
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including PTGES2, RNASET2, SF3B4, STX8, ENO2, and
HS3ST3B1, after FDR correction. These associations were
consistent in a series of analyses (Supplementary Table S7).

Collectively, these results demonstrate that PTGES2,
RNASET2, SF3B4, STX8, ENO2, and HS3ST3B1 are
significantly associated with BCC.

FIGURE 3
Colocalization analysis on the associations between plasma proteins and skin cancer and its subtypes. (A,B). PP.H4 values of colocalization analysis
for PTGES2, RNASET2, SF3B4, STX8, ENO2, and HS3ST3B1 in the UKB-PPP (A) or deCODE (B) studies with skin cancer and its subtypes. (C,D).
LocusCompare plot for colocalization of pQTL (PTGES2) and BCC susceptibility in the UKB-PPP (C) and deCODE (D) studies. (E,F). LocusCompare plot
for colocalization of pQTL (RNASET2) and BCC susceptibility in the deCODE (E) and UKB-PPP (F) studies.
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PTGES2 and RNASET2 as potential
biomarkers and therapeutic targets of BCC

To further determine the associations between plasma
proteins and skin cancer and its subtypes, a colocalization
analysis of GWAS-to-GWAS was conducted. In our study,
strong colocalization was defined as a posterior probability
(PP.H4) value ≥ 0.85. Among the six proteins identified
through MR analysis about BCC, PTGES2 and
RNASET2 showed strong evidence of colocalization (PP.H4 ≥

0.85), which was also observed for skin cancer and NMSC
(Figures 3A,B; Supplementary Tables S8, S9).
HS3ST3B1 exhibited moderate support for colocalization in
the deCODE study (0.85 > PP.H4 ≥ 0.5) (Figure 3B;
Supplementary Table S9). However, SF3B4, STX8, and
ENO2 did not show significant colocalization (PP.H4 < 0.5)
(Figures 3A,B; Supplementary Tables S8, S9). LocusCompare
plots further indicated that the BCC GWAS and PTGES2 or
RNASET2 pQTL associations probably represent a true
colocalization event (Figures 3C–F).

FIGURE 4
MR-PheWAS analysis for identified biomarkers and therapeutic targets. (A). MR-PheWAS analysis between PTGES2, RNASET2, SF3B4, and STX8 in
the UKB-PPP study and 2,408 phenotypes in the FinnGen R10 study. (B). MR-PheWAS analysis between PTGES2, RNASET2, SF3B4, and STX8 in the
deCODE study and 2,408 phenotypes in the FinnGen R10 study.
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Verification analysis of BCC liability with
levels of six proteins

To validate our findings, we conducted two-sample MR,
colocalization, and reverse MR analyses involving six proteins
associated with skin cancer subtypes according to the
ICD10 classification in the UKB database of Lee lab. The two sample
MR results revealed that RNASET2, SF3B4, and HS3ST3B1 were
significantly associated with non-epithelial skin cancer (Supplementary
Table S10). Colocalization results found that RNASET2 was highly
colocalized with non-epithelial skin cancer in both the UKB-PPP
(PP.H4 = 0.973) and deCODE (PP.H4 = 0.939) studies but not with
melanoma (Supplementary Figure S2; Supplementary Tables S11, S12).
However, PTGES2, SF3B4, STX8, ENO2, and HS3ST3B1 did not show
any significant colocalization (PP.H4 < 0.5) (Supplementary Tables S11,
S12). ReverseMR results indicated that the skin cancer subtypes were not
associated with levels of six plasma proteins after FDR correction
(FDR >0.05) (Supplementary Table S7).

PTGES2 and RNASET2 as effective
biomarkers and therapeutic targets for BCC
in phenome-wide

To determine the efficacy of PTGES2 and RNASET2 for BCC across
a broad spectrum of human diseases, we conducted MR-PheWAS
analysis on 2,408 phenotypes from the FinnGen R10 study. Among
the top 30 phenotypes shown in Figure 4, the primary diseases were BCC
or included BCC phenotypes rather than SCC and melanoma. BCC,
malignant neoplasms of the skin, and gastrointestinal endpoints (KELA_
REIMBURSEMENT_202) emerged as the three most significant
phenotypes out of 9,621 protein-phenotype pairs, which were
significantly associated with RNASET2 in the UKB-PPP study
(Figure 4A; Supplementary Table S13). Similarly, BCC, malignant
neoplasms of skin, and body-mass index (BMI, a quantitative
endpoint) showed significant associations with PTGES2 as the top
three most significant phenotypes in the UKB-PPP (9,621 protein-
phenotype pairs) and deCODE (9,620 protein-phenotype pairs)
studies (Figures 4A,B; Supplementary Tables S13, S14). Colocalization
analysis revealed no colocalization relationship between quantitative
endpoint BMI or gastrointestinal endpoints and either RNASET2 or
PTGES2 (Supplementary Figures S3A,B; Supplementary Table S15).
Overall, these results demonstrate that PTGES2 and RNASET2 serve as
effective biomarkers and therapeutic targets for BCC within the
phenome-wide human disease category.

Given the high PH3 values of SF3B4 and STX8 with some
phenotypes associated with BCC (PH3 > 0.975), we further analyzed
these phenome-wide maps to explore possible causality. For SF3B4, the
top three most significant phenotypes were BCC, including outpatient
registration cases, systemic connective tissue disorders, and BCC,
excluding outpatient registration cases. Meanwhile, for STX8, the
most significant phenotypes were malignant neoplasm of the
nasopharynx, other embolism and thrombosis, and BCC, including
outpatient registration cases in both theUKB-PPP and deCODE studies
(Figures 4A,B; Supplementary Tables S13, S14). Furthermore, STX8was
colocalized with other embolisms and thrombosis (PP.H4 > 0.80),
suggesting a possible mechanism for the association between STX8 and
BCC (Supplementary Figure S4; Supplementary Table S16).

Discussion

Molecular quantitative trait locus mapping is crucial for
understanding the functional implications of human genetic variants
(Aguet et al., 2023). pQTL analysis provides insights into the impact of
systemic genetic variations on physiological and disease states, aiding
biomarker discovery and disease relevance studies (Ferkingstad et al.,
2021b). Integrating pQTL analysis with cancer research enhances
strategies for diagnosis, prevention, and treatment across various
diseases (Suhre et al., 2021). In this study, we investigated
associations between plasma proteins and skin cancer using
1,986 cis-pQTLs of UKB-PPP and 1,764 cis-pQTLs of deCODE.
PTGES2, RNASET2, SF3B4, and STX8 showed significant
associations with skin cancer after FDR correction. Further MR
analysis revealed that these proteins were specifically associated with
NMSC (predominantly including BCC and SCC), but not melanoma.
To identify associations with BCC and SCC specifically, we conducted
MR analysis, finding PTGES2, RNASET2, SF3B4, STX8, ENO2, and
HS3ST3B1 significantly associated with BCC at FDR <0.05. Among
these six proteins, only RNASET2 had been previously reported as a
BCC susceptibility gene in eQTL studies (Chahal et al., 2016; Liyanage
et al., 2019; Seviiri et al., 2022). Bayesian colocalization analysis
demonstrated that PTGES2 and RNASET2 can collocate with BCC.
Furthermore, MR-PheWAS highlighted PTGES2 and RNASET2 as
effective biomarkers and therapeutic targets for BCC.

Our study identified PTGES2 as a robust protective factor for BCC,
with OR of 0.497 (deCODE) and 0.494 (UKB-PPP), demonstrating
significant association and colocalization with BCC in both studies.
PTGES2, also known as microsomal prostaglandin E synthase 2, is a
crucial terminal enzyme in the synthesis pathway of prostaglandin E2
(PGE2) (Tsuge et al., 2019). It converts cyclooxygenase (COX)-
synthesized prostaglandin H2 to PGE2 (Kudo and Murakami, 2005;
Park et al., 2006; Chaudhry et al., 2010), regulating inflammation,
immune responses, and tumor development (Kalinski, 2012; Karpisheh
et al., 2019; Finetti et al., 2020). Tumor-derived PGE2 can induce
dysfunction in intratumoral cDC1s, impairing their local capacity to
coordinate anti-cancer CD8+ T cell responses (Bayerl et al., 2023).
PGE2 also promotes Th1 differentiation and Th17 cell expansion,
exacerbating immune-related inflammation (Yao et al., 2009). While
blocking PGE2 signaling for cancer-associated fibroblasts inhibits breast
cancer growth but promotes metastasis (Elwakeel et al., 2022). Despite
this, the effects of PTGES2 on BCC have not been previously
investigated. Previous studies have shown that COX-2 contributes to
NMSC development in mouse skin models (Rundhaug et al., 2011).
Interestingly, our research found that plasma proteins containing
PTGES2 were favorable for NMSC development, with OR of 0.476
(deCODE) and 0.472 (UKB-PPP). The population of NMSC mainly
consisted of BCC and SCC; however, we did not observe an association
between PTGES2 and SCC in our study. These results suggest distinct
functional roles for PTGES2 in plasma proteins during BCC
development.

RNASET2 belongs to the Rh/T2/S-glycoprotein family and
possesses ribonuclease function (Trubia et al., 1997). It is
localized on chromosome 6q27, a region associated with human
malignancies and chromosomal rearrangement (Liu et al., 2023).
RNASET2 has been implicated in various pathophysiological
processes, exhibiting pleiotropic roles. In clear cell renal cell
carcinoma, high RNASET2 expression is linked to poor
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prognosis, with its silencing inhibiting the migration capacity and
pro-angiogenesis of renal cancer cells (Liu et al., 2023). Conversely,
in ovarian cancer, RNASET2 is a tumor suppressor by recruiting
M1 macrophages to tumoral tissues (Ji et al., 2021; Bruno et al.,
2022). RNASET2 also is vital for ROS propagation during oxidative
stress-induced cell death (Caputa et al., 2016). Its expression could
be induced by hydrogen peroxide, UV irradiation, and inflammatory
triggers. To curb RNASET2 overexpression, avoiding oxidative
stressors like UV radiation and supplementing with antioxidants
are effective strategies. Our findings indicate that
RNASET2 colocalizes with BCC and may serve as a novel risk
factor for this disease. However, no direct relationship between
RNASET2 and BCC has been previously established. Interestingly, a
GWAS study conducted on the Chinese Han population suggested a
hazardous association between vitiligo and RNASET2 (Quan et al.,
2010). This suggests that understanding the role of RNASET2 could
offer valuable insights into the pathogenesis of BCC and potentially
contribute to the development of therapeutic strategies.

The pQTL-to-GWAS colocalization analysis is a valuable tool for
determining whether proteins and phenotypes share the same causal
variation locus in the same region, thereby strengthening the evidence
supporting their association (Pietzner et al., 2021). In our study,
PTGES2 showed robust colocalization with BCC, supported by a
high posterior probability in both the UKB-PPP and deCODE
studies. Conversely, RNASET2 exhibited strong colocalization with
BCC only in the deCODE study, with moderate support for
colocalization with NMSC in the UKB-PPP study. SNP
rs13283456 and SNP rs3756838 were identified as top SNPs for
PTGES2 and RNASET2, respectively. This novel finding has not
been previously reported and may stem from differences in
detection methods, population structures, and genetic backgrounds
between the two cohorts. Notably, SNP rs13283456 is a coding non-
synonymous variant within PTGES2 that has shown significant
association with primary graft dysfunction in a previous study
(Diamond et al., 2014). In the replication test of ICD10 classified
skin cancer subtypes, SNPs rs11575078 and rs2247315 emerged as top
SNPs for analyzing colocalizaton between RNASET2 and non-epithelial
skin cancer types in both UKB-PPP and deCODE studies. These
analyses contribute to uncovering potential disease mechanisms and
advancing personalized medicine (van der Wijst et al., 2018).

MR-PheWAS plays a crucial role in establishing causal links
between genes and the phenome, aiding in the assessment of
potential pleiotropy and side effects of potential drug targets (Cao
et al., 2023). In our study, which analyzed 2,408 phenotypes in the
FinnGen R10 study (Francis et al., 2022), BCC emerged as the most
significant phenotype associated with PTGES2 and RNASET2,
affirming their reliability as biomarkers and therapeutic targets for
BCC. In addition, BMI and gastrointestinal endpoints were among the
top three most significant phenotypes linked to PTGES2 and
RNASET2. Despite these associations, colocalization analysis
revealed no evidence of a colocalization relationship between BMI
and gastrointestinal endpoints with either RNASET2 or PTGES2. This
suggests that potential side effects resulting from drugs targeting these
genes are likely to be minimal. These findings from MR-PheWAS
provide crucial insights for the development of more effective treatment
strategies in disease research and clinical practice.

The study has five limitations. First, it may be subject to potential
bias due to focusing on a single population of European descent.

Including individuals from diverse ethnic backgrounds could
enhance the generalizability of the research findings. Second, a
similar alternative data was chosen due to the unavailability of
suitable BCC datasets in the replication study, which may affect the
reliability of the study results. Future studies should aim for more
appropriate dataset validation. Third, heterogeneity might be
introduced using two different protein analyzing platforms, even
though an intersection protein approach was adopted to mitigate
this issue. Fourth, the study used cis-pQTLs to investigate the causal
relationship, potentially overlooking the impact of other regulatory
elements and environmental factors on the disease. Incorporating
trans-pQTLs could provide a comprehensive understanding of the
disease. Lastly, despite implementing rigorous measures to mitigate
bias, the MR, colocalization, and PheWas analyses remain
susceptible to unmeasured confounding or pleiotropy, which
could bias the findings. Future studies should aim to integrate
multi-omics data to gain a comprehensive understanding of BCC
pathogenesis. Furthermore, future investigations should aim to
elucidate the in vitro and in vivo functions of RNASET2 or
PTGES2, as these associations were established through rigorous
in silico analyses.

Conclusion

In our study, we identified six plasma proteins, including
PTGES2, RNASET2, SF3B4, STX8, ENO2, and HS3ST3B1
(previously unknown in eQTL and mQTL, except for
RNASET2), that were significantly associated with BCC after
FDR correction in the UKB-PPP and deCODE studies
(FDR<0.05). Among these proteins, PTGES2 showed a protective
effect against BCC (OR<1), while RNASET2 was identified as a risk
factor for BCC (OR<1). Furthermore, colocalization analysis
provided strong evidence of PTGES2 and RNASET2 being
associated with BCC (PP.H4 ≥ 0.85). MR-PheWAS analysis
confirmed that PTGES2 and RNASET2 were significantly
associated with BCC in phenome-wide. These findings highlight
the potential of PTGES2 and RNASET2 as reliable biomarkers and
therapeutic targets for BCC within the phenome-wide human
disease category.
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