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Introduction: An abundance of experimental evidence indicates that icariin (ICA)
could potentially exert an anti-tumor effect on ovarian cancer (OC). Nevertheless,
the reliability of this evidence remains ambiguous. This study aimed to explore the
impact of ICA on OC and the underlying mechanisms.

Methods: Bioinformatics analysis was employed to pinpoint ICA-targeted genes
and signaling pathways implicated in OC, utilizing network pharmacology.
Subsequently, PubMed, EMBASE, and Web of Science databases were
systematically searched from 2001 through June 2023 for in vitro trials
evaluating the anti-tumor efficacy of conventional ICA versus placebo in OC.
The pathways and genes identified in the literature were recorded, and the
therapeutic targets were statistically analyzed and compared with the
predicted targets from network pharmacology to confirm the precision of
the targets.

Results and Discussion: Fourteen target genes were validated with success.
The pathways corresponding to the remaining genes—excluding these
14—were analyzed and found to be primarily associated with cell apoptosis,
anti-tumor, and other related pathways. Out of the 76 studies retrieved, eight
fulfilled the inclusion criteria. The subsequent meta-analysis suggested that
ICA treatment was significantly correlated with reduced cell growth and
induced apoptosis. This study demonstrated a certain efficacy of ICA
compared to placebo in enhancing anti-tumor outcomes, characterized by
increased abilities in reducing cell growth and inducing apoptosis. The
pathways involved in the therapeutic effect may be linked to cell apoptosis
and anti-tumor mechanisms.
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1 Introduction

Ovarian cancer (OC) ranks as the third most prevalent form of gynecological tumor (Zheng
et al., 2021). The majority of OC cases arise from epithelial cells. Research has indicated that
exposure to estrogen and progesterone may elevate the risk of OC, particularly among
postmenopausal women (Zhang Y. F. et al., 2022). This malignancy can lead to reduced
fertility in women (Zhang et al., 2021). In clinical settings, numerous medications that stimulate
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follicular development are hormone-based (Zhang et al., 2024),
However, for individuals with OC, drugs that neither encourage
cancer cell proliferation nor follicular development are preferable for
those seeking to maintain fertility while managing the disease (Yu et al.,
2023). Consequently, identifying such medications is a
pressing necessity.

Over recent years, the advancement of clinical research and the
comprehensive adoption of standardized diagnostic and treatment
protocols have led to the widespread adoption of gene detection
technologies, including BRCA and HRD (Morand et al., 2021).
Moreover, the utilization of targeted therapeutic agents has
ushered OC into an era of precision medicine. The full-course
management treatment model, which encompasses surgery,
chemotherapy, and maintenance therapy, has also seen continuous
progress, offering increasing benefits to a growing number of patients
and their families (Munoz-Zuluaga et al., 2020). In the realm of
pharmaceuticals, ongoing research is being conducted, with medical
researchers dedicated to discovering improved drug treatment options
for patients (Moubarak et al., 2022).

Protecting the fertility in cancer patients has become an increasingly
important issue. It is particularly difficult to protect fertility without
stimulating cancer cell proliferation. Traditional Chinese medicine has
played a unique role in this regard, becoming the first choice for many
cross-disease patients due to its wide range of target areas and
bidirectional regulatory function (Lu et al., 2023). The relatively
minor side effects, high-quality and affordable nature of traditional
Chinese medicine promote its clinical use. Many effective traditional
Chinese medicines have been discovered. The discovery of Chinese
medicines has been made. Further development of traditional Chinese
medicines or herbal extracts would be an effective strategy for
optimizing treatment plans for ovarian cancer patients seeking
fertility (Chelliah and van der Graaf, 2022).

Although traditional chemotherapy drugs have strong anti-cancer
effects, they also have significant side effects. Many patients cannot
tolerate these side effects and often give up treatment after a few cycles
of chemotherapy, choosing targeted drug therapy instead. Although
some targeted drugs are effective and have fewer side effects compared
to traditional chemotherapy drugs, they are more expensive and have a
single target; thus, they cannot have a common effect on other diseases,
such as monoclonal antibody drugs like Olaparib (Gao et al., 2022).
Traditional Chinese classical prescriptions for the treatment of OC have
multiple targets and relatively few side effects but their components are
complex and difficult to separate and extract, such asGuizi-FullingWan
(Wang X. et al., 2022). Extracts from Chinese medicine have significant
therapeutic effects but many side effects, such as Paclitaxel (Lau et al.,
2020), Bufalin (Dou et al., 2021), etc. Some drugs are still in the research
stage, including synthetic drugs and traditional Chinese medicine
extracts, which only have anti-tumour effects. These include
Agrimonolide (Liu et al., 2022), Momordica charantia (Chan et al.,
2020), Curcumin (Sun and Fang, 2021), FBP1 (Li et al., 2021), etc., and
these do not have a strong promotional effect on female fertility.
However, ICA not only has anti-tumour effects but also has
protective effects on fertility via improving oocyte quality (Szabó
et al., 2022). Therefore, ICA is the best choice for OC patients who
are seeking fertility.

An extensive literature search revealed that the traditional
Chinese medicine extract icariin (ICA) promotes the proliferation
of ovarian granulosa cells and inhibits the proliferation of OC cells,

and has a bidirectional regulatory effect on both normal and OC
cells (Wang et al., 2019). ICA is the main effective component of the
natural drug Epimedii herba, has a well-defined chemical structure,
which has an active therapeutic effect on endocrine disorders,
infertility and other reproductive diseases (Niu et al., 2022). ICA
has a clear positive effect on the nervous system (Lifeng et al., 2023),
reproductive system (Tao et al., 2017), circulatory system (Xie et al.,
2015), digestive system (Zhang et al., 2008), respiratory system (Li
et al., 2023), motor system (Liu and Fang, 2022), urinary system
(Chen et al., 2022), endocrine andmetabolic diseases (Su et al., 2023)
and reproductive system diseases. It can also improve the quality of
oocytes (Ye et al., 2017), has a clear anti-inflammatory (Jiao et al.,
2018) and anti-oxidant (Park et al., 2022) effect, and can regulate
endocrine metabolism (Wang et al., 2017), immune function (Zhao
et al., 2019) and exert an anti-tumour effect (Xie et al., 2019).

However, the effect of this ICA on OC cells is still in the cell
research stage and there is limited literature data to support its
efficacy. Therefore, to accurately evaluate its effect on OC cells, a
systematic evaluation of eight key literature reports was undertaken
to analyse the pathways identified in the literature, gain a deep
understanding of the molecular mechanism of ICA on OC and
ascertain future research directions.

2 Materials and methods

We employed network pharmacology to pinpoint the
efficacious compounds in Epimedium, and subsequently,
through a review of the literature, we ascertained the principal
components. We then performed a cross-analysis with ovarian
cancer-related pathways to identify those pertinent to both. The
validation of these pathways was executed through an
examination of published literature, utilizing meta-analysis to
ascertain the studies with the highest reference value. The
detailed methodology is as follows:

In this investigation, bioinformatics was employed to
pinpoint genes and signaling pathways targeted by ICA in the
context of OC. Through gene enrichment analysis, the study
identified the KEGG pathways associated with both ICA-targeted
genes and OC, along with the hub genes (Zhou et al., 2022).
Employing a simulated approach, this research innovatively
applied network pharmacology to forecast the therapeutic
targets of ICA for OC treatment. Subsequently, a systematic
evaluation of existing animal studies on ICA’s efficacy in
treating OC was conducted. The therapeutic targets reported
in the literature were statistically analyzed and compared with the
predicted targets from network pharmacology to validate the
latter’s precision. A common gene was identified between the two
sets of targets, confirming the accuracy of the network
pharmacology predictions.

2.1 Compound database building

The Chinese Medicine System Pharmacology (TCMSP)
database was used to identify the main active compounds of
Epimedii herba (Zhong et al., 2022), including ICA. The
parameters used to select the active ingredients were an oral
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bioavailability (OB) of 30% and a drug-likeness (DL) of 0.18.
PubChem (https://pubchem.ncbi.nlm.nih.gov) was used to extract
the chemical structure of each active compound using SMILES. The
predicted targets were found using the SMILES string in
SwissTargetPrediction (www.swisstargetprediction.ch) (Zhao Y.
et al., 2022). A probability of 0.1 was the screening condition for
the target protein to predict the components (Zhao M. et al., 2023).
The targets acquired were standardized to gene names by querying
the UniProt Database (http://www.uniprot.org) using the “Homo
sapiens” species as a filter (Zhao H. et al., 2023).

2.2 Acquisition of potential OC targets

The DisGeNET (www.disgenet.org) and GeneCards (www.
genecards.org) databases were used to identify the genes and
mutation sites associated with human diseases (Zhang Y. et al., 2022).
The VennDiagramTool v2.1.0 from the Bioinformatics platform (www.
bioinformatics.com.cn) was used to identify the shared targets between
the composition and the target (Zhang Q. et al., 2022).

2.3 Constructing a protein–protein
interaction (PPI) network

The STRING (https://string-db.org/) database and Cytoscape v3.7.
2 software were used to construct the PPI network (Zhang et al.
, 2023).

2.4 Gene Ontology (GO) annotation and
Kyoto Encylopaedia of Genes and Genomes
(KEGG) enrichment analysis

The Database for Annotation, Visualization and Integrated
Discovery (DAVID) was used for comprehensive gene
annotation and resource analysis (https://david.ncifcrf.gov/
home.jsp) (Zhang D. Y. et al., 2022). The preanalysis species
was set to “Homo sapiens”. The Gene Ontology (GO) analysis
encompassed three principal categories: biological processes
(BP), cellular components (CC), and molecular functions
(MF). Subsequently, the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis was
conducted. The enriched GO terms and the enrichment dot
plots were derived from data analysis executed on the
Bioinformatics online platform (Zeng et al., 2023).

2.5 Ingredient–target–pathway network
construction

The ingredient-target-pathway network was constructed
using Cytoscape software, incorporating intersection targets
and pathways, and selecting six active ingredients. In this
network, nodes of various colors signify different clusters,
while the edges depict the interrelationships between these
nodes (Yue et al., 2022).

2.6 Meta-analyses

The meta-analysis was conducted utilizing Review Manager 5.3,
a tool provided by the Cochrane Collaboration, and adhered to the
guidelines set forth in the Cochrane Handbook for Systematic
Reviews of Interventions.

2.7 Article selection

The PubMed, EMBASE and Web of Science databases were
searched. Only English-language articles published from 2001 to
June 2023 were included. The databases were searched using the
following search terms in titles and abstracts (also in
combination with MESH terms): (“Icariin” OR “ICA”) AND
(“cancer” OR “ovarian cancer” OR “cancer cell” OR “tumour”
OR “malignancy” OR “cancer cell line” OR “neoplasm cell line”)
AND (“apoptosis” OR “cancer apoptosis” OR “apoptotic cancer
cell” OR “apoptosis in vitro” OR “caspase-3”). The electronic
search was complemented by manual searching of the references
in the included publications. A study was included if it met
specific inclusion and exclusion criteria (Table 1). No restrictions
in terms of the year of publication were applied.

2.8 Study selection and data extraction

From the pool of eligible publications, the subsequent
data—encompassing the first author, publication year, cell
species, intervention duration and dosage, and outcome
measures (including cell growth reduction capability,
apoptosis induction capability, and pathways involved in
OC)—were meticulously extracted by two independent authors
(CB and SC). Discrepancies were reconciled through discussion,
culminating in a consensus on all extracted data. Any
disagreements among reviewers regarding data extraction were
resolved via consultation with a third reviewer.

2.9 Statistical analysis

All the outcome measures were continuous data (e.g., cell
growth reduction ability and apoptosis induction ability), so
random-effects meta-analyses of these data with standardised
mean differences (SMD) and 95% confidence intervals (95% CI)
were performed. A p-value of < 0.05 was considered statistically
significant. The analysis method can be found in previous articles
(Cao et al., 2022). Sensitivity analysis was conducted to evaluate
whether a single study affected the overall effect size by removing
one study at each stage. This was conducted when an
experimental study had a Stata value of greater than 5.
Additionally, publication bias was evaluated quantitatively
using Begg’s and Egger’s tests, which were conducted using
Stata. A significant publication bias was indicated if the
p-value was <0.05. Review Manager 5.3 (the Cochrane
Collaboration) and STATA 16.0 (Stata Corporation) were used
for the analysis.
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TABLE 1 Inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

1. All ovarian cancer cells model 1. Animals with co-morbidity, clinical trials, and in vivo models

2. ICA with all dosage and duration 2. ICA without batch number, other preparation of ICA

3. Cell growth reduction and apoptosis induction ability were the primary outcomes, the pathway
involved were the secondary outcomes

3. Case studies, cross over studies, and studies without a separate
Control group

4. Language: English 4. Not an original full research paper; duplicate publication; studies
without full text

FIGURE 1
The Venn diagram. The intersection genes of ICA and OC.
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3 Results

3.1 Acquisition of potential OC targets by
network pharmacology analyses

OC-related targets were identified using DisGeNET and
GeneCards. Genes with a relevance score above 1 were selected
in the Genecard database and genes with an nSNPs number above
1 were selected in the DisGeNET database. After removing
duplicates, 1,389 genes were obtained.

3.2 Acquisition of ICA-targeted genes

Based on the findings from the TCMSP, the UniProt, and the
SwissTargetPrediction database, 1,075 targets associated with ICA
and 187 targets related to OC therapy were identified. Figure 1
illustrates the Venn diagram representing these two sets of targets,

with the overlapping targets considered to encompass potential OC
treatment targets.

3.3 Protein-protein interaction (PPI) network
analysis and interaction networks

The intersection targets were imported into the STRING
database to generate a PPI functional network. The PPI map
contained 187 intersection targets (refer to Figure 2). Targets that
were not connected to the network were subsequently removed, and
the interactions of drug-targeted genes were constructed using
Cytoscape version 3.7.2 (refer to Figure 3). Hub gene values were
evaluated based on degree, betweenness, and closeness centrality.
Genes colored yellow represented hub genes, which were most
closely related to ICA, whereas genes colored green were
ordinary genes, indicating secondary relevance to ICA. The roles
of these targets in various diseases are discussed in detail below.

FIGURE 2
PPI Interaction network.
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3.4 Gene Ontology (GO) analysis

Employing the Database for Annotation, Visualization and
Integrated Discovery (DAVID), a metascape enrichment analysis
was conducted on the intersecting genes to explore biological
processes (BP), cellular components (CC), and molecular
functions (MF) under Gene Ontology (GO) terms for ICA (refer
to Supplementary Figures S1-S3). The p-value established the
outcomes of the correlation test. The leading 20 terms within
each category were organized by their logP values, ranging from
smallest to largest, and a histogram was subsequently generated. The
prominent terms identified included response to ethanol, positive
regulation of smooth muscle cell proliferation, response to
L-ascorbic acid, and response to hypoxia within BPs; extracellular

region, extracellular exosome, mitochondrion, and extracellular
space within CCs; and haem binding, identical protein binding,
and insulin receptor substrate binding within MFs.

3.5 Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis

The top 20 shared KEGG pathways associated with ICA-
targeted genes and osteosarcoma (OS) were identified using a
bubble chart (Figure 4) and categorized based on the logP value,
ranging from the smallest to the largest. The concentrations and
p-values denote the highly correlated manner in which the active
ingredients manifest their therapeutic effects on OS.

FIGURE 3
Construction of the ingredient-target-pathway network.
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3.6 The pathways and molecules mentioned
in the published articles

The mechanisms and pathways through which ICA
influences OC were elucidated in eight articles. The genes
coding for the proteins were pinpointed using the STRING
database and subsequently contrasted with the genes derived
from network pharmacology analysis conducted in the preceding
phase. A significant overlap was observed between the two gene
sets, with 14 genes that were both implicated in the literature and
anticipated by network pharmacology: BIRC5, MMP9, CDK2,
PIK3CA, ERBB2, MTOR, IL2, KDR, PTGS2, AKT1, TNF, PTEN,
BCL2, and RELA (refer to Supplementary Figure S4). The
pathways associated with the remaining genes from the
187 intersection targets—excluding these 14 genes—were
scrutinized using the DAVID database, as depicted in
Supplementary Tables S1–S3 and Supplementary Figure S5.
The top 20 shared KEGG pathways corresponding to ICA and
OC intersection genes that had not been previously validated
were identified using a bubble chart (Supplementary Figure S6)
and ranked based on their logP values from smallest to largest.

3.7 Study inclusion by meta-analysis

The process of selecting studies is illustrated in Figure 5. An
electronic search along with the examination of supplementary
sources resulted in the identification of 76 publications. After
removing duplicates, 68 studies were kept. Upon reviewing the
titles and abstracts, 34 studies were excluded. As a result, eight
full-text articles were considered suitable for assessment.

3.8 Study characteristics

The eight chosen in vitro studies were published between
2001 and 2023. The cell species encompassed SKOV3, SKVCR,
A2780, and OVCAR3. The concentration of ICA varied from 6.5 µM
to 80 µg·mL–1, and the duration of drug exposure ranged from 24 to
72 h. The primary characteristics and outcomes of the included
studies are summarized in Table 2.

3.9 Effect of ICA on proliferation
inhibition ability

The publications assessed the capacity to diminish cancer cell
proliferation using two distinct metrics. The first metric was the rate
of OC cell growth reduction, while the second was the IC50 (μM)
value for the OC cells. Due to the differing calculation methods and
units of these two metrics, they were analyzed independently. The
IC50 for the ICA-treated group compared to the control group was as
follows: n = 7, SMD = −8.28, 95% CI (−13.33, −3.23), p = 0.001;
heterogeneity: X2 = 1.33, p = 0.25; I2 = 25%. The proliferation
inhibition rate for the ICA-treated group compared to the control
group was as follows: n = 13, SMD = −7.56, 95% CI (−11.06, −4.06),
p < 0.0001; heterogeneity: X2 = 1.52, p = 0.68; I2 = 0%.

The test for subgroup differences result was P = 0.82, which was
greater than the 0.05 threshold. The combined results indicated that
ICA could significantly suppress cancer cell growth compared with
the control group [n = 20, SMD = −7.80, 95% CI (−10.67, −4.92), p <
0.00001; heterogeneity: X2 = 2.90, p = 0.71; I2= 0%, Figure 6]. Funnel
plots were constructed to show the asymmetry of the effects of ICA
on cell growth reduction (Figure 8). Begg’s test revealed no statistical

FIGURE 4
KEGG bubble chart. The top 20 KEGG category for ICA and OC intersection genes.
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significance (p = 0.060), whereas Egger’s test revealed statistical
significance [95% CI (−2.62, −0.72); p = 0.008].

3.10 Effect of ICA on apoptosis
promotion ability

The capacity to trigger apoptosis in cancer cells was assessed
using two distinct methodologies as detailed in the publications. The
first method involved the use of Annexin V/PI Flow Cytometry
(FCM), while the second method utilized Western blot analysis to
detect caspase-3 protein levels. Given that the calculation methods
and units of measurement for these two techniques are different, two

subgroups were established based on the varying units. The results
for the apoptosis rate in the ICA-treated group compared to the
control group, as determined by FCM, the results were as follows:
n = 17, SMD = 5.10, 95% CI (3.02, 7.19), p < 0.00001; heterogeneity:
X2 = 2.54, p = 0.64; I2 = 0%. For the Western blot of caspase3 protein
in the ICA-treated group compared to that in the control group, the
results were as follows: n = 6, SMD = −2.56, 95% CI (−4.43, −0.69),
p < 0.00001; heterogeneity: X2 = 0.15, p = 0.70; I2 = 0%.

The test for subgroup differences yielded a result of P = 0.10 >
0.05, indicating that there was no significant difference between the
groups and that the comparison between them was statistically
significant. The combined results suggested that ICA could
significantly enhance the induction of cancer cell apoptosis

FIGURE 5
Flow diagram of the study selection process for this review.
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compared with the control group [n = 23, SMD = 5.51, 95% CI (3.47,
7.54), p < 0.00001; heterogeneity: X2 = 5.43, p = 0.49; I2 = 0%,
Figure 7]. The funnel plots indicated asymmetry in the effects of ICA
on apoptosis induction ability (Figures 8, 9). Begg’s test revealed
statistical significance (p = 0.003), as did Egger’s test [95% CI (1.35,
2.32); p = 0.000].

3.11 Sensitivity analysis

The sensitivity analyses of cell growth reduction and apoptosis
induction ability were conducted by removing one study at each
stage. The results indicated that no individual study significantly
affected the pooled effect sizes. The sensitivity analysis of cell growth
reduction ability results [Estimate = −7.80, 95% CI (−10.67, −4.92),
Figure 10] indicated that there was significantly greater cell growth

reduction in the experimental group compared to the control
group. The sensitivity analysis of apoptosis induction
[Estimate = 5.35, 95% CI (3.25, 7.46), Figure 11] indicated
that there was significantly greater apoptosis induction in the
experimental group compared to the control group.

4 Discussion

Network pharmacology is a new field in drug research (Yu
et al., 2024). Conducting a network pharmacology analysis before
conducting experiments on traditional Chinese medicine or
natural drugs can more accurately determine the pathways
that are involved in the mechanism of drug treatment of
diseases (Xiong et al., 2024). A considerable volume of
literature has confirmed the efficacy of ICA, which involves

TABLE 2 Characteristics of the included studies.

Study
year

N
(runs)

Cell
species

Concentration
of ICA

Duration
(h)

Method of
apoptosis measure

Pathways

Wang 2020 3 SKOV3 100 µM 48 Annexin V/PI Flow cytometry TNF, MMP9, STAT3, PIK3CA, ERBB2,
MTOR, IL2,PTGS2, KDR, F2

Fu 2022 3 SKOV3 50 µM 48 Annexin V/PI Flow cytometry miR-1-3p, TNKS2, Wnt, b-catenin,
cyclinD1, Survivin

JIANG 2019 4 SKVCR 20 μg/mL 24 Annexin V/PI Flow cytometry LC3B, Beclin-1, ATG5, p62

Jiang 2018 3 SKVCR 80 μg/mL 72 Western blot (caspase3) Beclin-1, LC3I/LC3II, ATG3, AMBRA1,
mTOR.

Li 2015 3 A2780 50 µM 48 Annexin V/PI Flow cytometry PTEN, RECK, Bcl-2, miR-21

Fahmy 2020 4 SKOV3 10 µM 24 Annexin V/PI Flow cytometry TNF-a

Alhakamy
2020

3 OVCAR3 6.5 µM 24 Annexin V/PI Flow cytometry

GAO 2022 3 SKOV3 50 µM 48 Western blot (caspase3) AKT, NF-κB, p65

FIGURE 6
Pooled estimate of cell growth reduction ability in OC cells with ICA.
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multiple pathways (Liu et al., 2021). Therefore, the pathways or
genes identified in the literature should originate from genes and
pathways that have been analysed in network pharmacology, so
there should be an intersection of genes between the two gene sets
(Wang Y. X. et al., 2022). To verify this hypothesis, the gene set
obtained from network pharmacology was compared with the
genes identified via experiments. The hypothesis was confirmed
to be valid and it was concluded that the mechanism by which
ICA acted in OC treatment involved these intersection genes
and pathways.

Immunotherapy using T lymphocytes is an attractive strategy
for treating various malignant tumors. However, due to the side
effects and off-target effects of T cell immunotherapy, it is necessary
to find a safe switch mechanism based on engineered T cells (Zhao
et al., 2021). Adoptive cell therapy (ACT) using genetically
engineered T cells has demonstrated high sensitivity, but some
serious adverse events have been observed in several clinical
studies (Jin et al., 2019). Optimal T-cell receptor (TCR) affinity
in engineered T cells is crucial, and thus, the affinity of the receptor
can determine the safety/efficacy of T-cell therapies (Xiang et al.,

FIGURE 7
Pooled estimate of apoptosis induction ability in OC cells with ICA.

FIGURE 8
Funnel plot for the effects of ICA on OC cells in IC50.
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2021). Affinity is a major obstacle to the clinical success of adoptive
cell therapy (ACT) due to the existence of targeted tumor extrinsic
toxicity. When using antigen-specific receptors, affinity should be
sufficiently high for proper T-cell activation in terms of efficacy
(Yang et al., 2021). Conversely, interactions with low-affinity T-cell
receptors are adequate to stimulate T cells, yet necessitate a higher

affinity to sustain their proliferation. During phase I/II clinical trials
of Adoptive Cell Transfer, T cells engineered with low affinity
demonstrated safer profiles, albeit with diminished anti-tumor
responses. Thus, the optimal affinity level is a pivotal
determinant for balancing the safety and efficacy of Adoptive
Cell Transfer (Wang F. et al., 2022).

FIGURE 9
Funnel plot for the effects of ICA on OC cells in FC-apoptosis.

FIGURE 10
Sensitivity analysis plot for the effects of cell growth reduction on OC cells with ICA.
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Recent studies have expanded our understanding of ICA’s
effects beyond ovarian cancer, highlighting its broad-spectrum
anti-tumor potential: ICA has been shown to inhibit the
proliferation of breast cancer cells by inducing apoptosis and cell
cycle arrest. It downregulates the expression of Bcl-2 and
upregulates Bax and caspase-3, promoting apoptotic pathways
(Cheng et al., 2019). In non-small cell lung cancer (NSCLC), ICA
suppresses tumor growth by inhibiting the PI3K/Akt/mTOR
pathway. This inhibition leads to reduced cell proliferation and
enhanced apoptosis, demonstrating ICA’s potential as a therapeutic
agent in lung cancer treatment (Zhu and Ren, 2022). ICA has
demonstrated anti-proliferative effects on prostate cancer cells by
modulating the androgen receptor signaling pathway. It inhibits cell
growth and induces apoptosis through the downregulation of AR
and PSA expressions (Chen et al., 2023). Studies have shown that
ICA can inhibit the growth and metastasis of colorectal cancer cells
by modulating the Wnt/β-catenin signaling pathway. This pathway
is crucial for cell proliferation and migration, and its inhibition by
ICA leads to significant tumor suppression (Zhang et al., 2019). ICA
has been found to induce apoptosis in leukemia cells by activating
the intrinsic apoptotic pathway. It increases the expression of pro-
apoptotic proteins like Bax and decreases anti-apoptotic proteins
such as Bcl-2, thereby promoting cell death (Liu et al., 2023).

These studies offer a more comprehensive context for the
application of ICA in ovarian cancer, illustrating its versatile anti-
tumor properties across various cancer types. The mechanisms of
action in these cancers frequently involve the modulation of key
signaling pathways, including PI3K/Akt,Wnt/β-catenin, and intrinsic
apoptotic pathways, akin to those observed in ovarian cancer.

The mechanism of action of ICA in treating ovarian cancer
primarily involves multiple key signaling pathways. ICA activates
the PI3K-Akt signaling pathway, which promotes cell survival and
proliferation, and also enhances the sensitivity of cells to external

signals, thereby inhibiting the spontaneous apoptosis of cancer cells
to a certain extent. The regulation of the TNF signaling pathway by
ICA is equally significant. It can increase the sensitivity of cells to
apoptotic signals by affecting key proteins in this pathway, such as
NF-κB. This dual regulatory effect allows ICA to demonstrate potent
anti-tumor potential in the treatment of ovarian cancer. Through
these mechanisms, ICA can not only inhibit the proliferation of
ovarian cancer cells but also effectively promote programmed cell
death, showcasing its potential as an adjunctive therapy. In contrast,
the side effects of ICA are relatively mild, mainly manifested as mild
gastrointestinal reactions and temporary blood pressure reduction,
which makes ICA more acceptable to patients during long-term
treatment. The anti-inflammatory and antioxidant properties of
ICA provide additional protective effects in the treatment of
ovarian cancer, helping to alleviate other complications caused by
inflammation or oxidative stress. Therefore, ICA not only has
potential in anti-tumor efficacy but its safety and pleiotropic
effects also make it particularly important in modern ovarian
cancer treatment.

The meta-analysis performed in this study aimed to ascertain
the therapeutic efficacy of ICA on OC cells, revealing that treatment
with ICA was significantly correlated with a reduction in cell growth
[SMD = −7.80, 95% CI (−10.67, −4.92)] and apoptosis induction
[SMD = 5.51, 95% CI (3.47, 7.54)]. The 14 overlapping genes
identified from the literature and predicted by network
pharmacology to be involved in the mechanisms through which
ICA affects OC were primarily associated with the following
pathways: pathways in cancer, PI3K-Akt signaling pathway,
EGFR tyrosine kinase inhibitor resistance, hepatitis B, fluid shear
stress and atherosclerosis, human papillomavirus infection,
endocrine resistance, C-type lectin receptor signaling pathway,
insulin resistance, HIF-1 signaling pathway, human T-cell
leukemia virus 1 infection, TNF signaling pathway, measles,

FIGURE 11
Sensitivity analysis plot for the effects of apoptosis induction on OC cells with ICA.
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apoptosis, cellular senescence, and the sphingolipid signaling
pathway. After excluding the 14 overlapping genes, the pathways
corresponding to the remaining genes related to ICA’s impact on
OC were also examined and encompassed: pathways in cancer,
PI3K-Akt signaling pathway, endocrine resistance, hepatitis B,
EGFR tyrosine kinase inhibitor resistance, melanoma,
hepatocellular carcinoma, lipid and atherosclerosis, human
cytomegalovirus infection, Kaposi sarcoma-associated herpesvirus
infection, AGE-RAGE signaling pathway in diabetic complications,
chronic myeloid leukemia, glioma, hepatitis C, cellular senescence,
as well as other pathways pertinent to cell apoptosis and anti-tumor
effects. This study offers a direction for future research in this area.

This study was subject to several limitations. Firstly, the meta-
analysis encompassed only in vitro experiments, and due to the
absence of a robust quality assessment framework for cellular
studies, the conclusions drawn are inherently constrained.
Secondly, the sensitivity analysis and asymmetry observed in the
funnel plots indicated the presence of publication bias, which might
have inflated the reported therapeutic effects of ICA. Thirdly, there
is a paucity of research on the 187 intersection genes, which could
introduce bias into the current findings. Incorporating additional
data in the future may enhance our comprehension of this subject.

5 Conclusion

The study revealed that ICA exhibited a specific impact on anti-
tumor function outcomes in comparison to placebo, characterized
by enhanced cell growth reduction and the induction of apoptosis.
Consequently, the pathways implicated in the therapeutic effects
may be associated with cellular apoptosis and anti-tumor efficacy.
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