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Caveolin-1 (Cav-1), a structural and functional component in the caveolae, plays a
critical role in transcytosis, endocytosis, and signal transduction. Cav-1 has been
implicated in the mediation of cellular processes by interacting with a variety of
signaling molecules. Cav-1 is widely expressed in the endothelial cells, smooth
muscle cells, and fibroblasts in the various organs, including the lungs. The Cav-1-
mediated internalization and regulation of signaling molecules participate in the
physiological and pathological processes. Particularly, the MAPK, NF-κB, TGFβ/
Smad, and eNOS/NO signaling pathways have been involved in the regulatory
effects of Cav-1 in lung diseases. The important effects of Cav-1 on the lungs
indicate that Cav-1 can be a potential target for the treatment of lung diseases. A
Cav-1 scaffolding domain peptide CSP7 targeting Cav-1 has been developed. In
this article, we mainly discuss the structure of Cav-1 and its critical roles in lung
diseases, such as pneumonia, acute lung injury (ALI), asthma, chronic obstructive
pulmonary disease (COPD), pulmonary hypertension, pulmonary fibrosis, and
lung cancer.
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1 Introduction

Caveolae, a subset of lipid rafts with 50–100 nm in diameter, are the flask-shaped
invaginations in the cell plasma membrane. There are three caveolin proteins, including
caveolin-1 (Cav-1), Cav-2, and Cav-3. The genes Cav-1 and Cav-2 are located at
chromosome 7q31.1, and Cav-3 is located at 3q25. The three caveolins share significant
homology. The amino acid sequence of Cav-2 has approximately 38% of identity and 58% of
similarity to that of Cav-1. Cav-3 has a higher homology with approximately 65% of identity
and 85% of similarity (Williams and Lisanti, 2004). Cav-1 and Cav-2 are ubiquitously co-
expressed in many mammalian cells, whereas Cav-3 can be found in cardiac and skeletal
muscle cells. Cav-2 is generally found associated with Cav-1 and serves as an accessory
protein for correct caveola formation. Caveolins are the structural and functional
components in the caveolae and play an important role in physiological and
pathological events. Caveolins have been associated with transcytosis, endocytosis, and
signal transduction (Anderson, 1998). Cavins are caveolae-associated proteins that include
cavins 1–4 (Hill et al., 2008; McMahon et al., 2009).

Caveolae formation requires caveolins, cavins, EH-domain containing protein 2
(EHD2), pacsin2 (syndapin II), and lipids (cholesterol and sphingolipids). Cavin-1 is
essential for the generation of the flask-shaped structure in caveolae. Caveolae are enriched
in cholesterol, which is bound by the Cav-1 scaffolding domain (Hubert et al., 2020). The
specific binding of cavins to lipids may drive the membrane curvature (Lundmark et al.,
2024). Cav-1 and cavin-1 are believed to form the caveolae coat machinery required to bend
the membrane into the flask-shaped structure (Liu et al., 2008). Cavin-1 stabilizes Cav-1 by
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inhibiting its internalization and lysosomal degradation, indicating
the critical role of cavin-1 in mediating Cav-1 expression and
caveolae formation (Meng et al., 2015). The interaction between
Cav-1 and cavin-3 is not required for caveolae biogenesis but for
caveolae surface stability (Mohan et al., 2015). Caveolae emerge as
the critical sensors at the plasma membrane, and the
compartmentalization of certain signaling molecules within
caveolae may significantly improve the efficiency of signaling
transduction. The importance of caveolae has been highlighted
by the association between caveolae dysfunction and human
diseases (Parton and del Pozo, 2013). One study shows that Cav-
1 regulates lipid transport, inflammatory responses, and has
atherogenic effects, indicating the critical role of Cav-1 in
atherosclerosis development (Shu and Jin, 2023). Cav-1 has been
involved in the initiation and progression of cognitive decline (Tang
et al., 2021). The roles of Cav-1 in the development of cancer,
neurodegeneration, glaucoma, cardiovascular diseases, and
infectious diseases have been discussed (Gokani and Bhatt, 2022).

The localization of Cav-1 can be caveolae-dependent and
-independent (Bhowmick et al., 2023). The intracellular
membranes for Cav-1 localization include the endoplasmic
reticulum (ER) and late endosomal/lysosomal membranes.
Therefore, Cav-1 might exhibit multiple biological activities
independent of caveolae (Enyong et al., 2022). Caveolae are
crucial factors for sensing and transducing mechanical forces.
However, it is reported that Cav-1 exhibits deformability and
mechanoprotection independent of caveolae by stabilizing non-
caveolar invaginations-dolines, which are capable of responding
to low-medium mechanical forces and impacting downstream
mechanotransduction (Lolo et al., 2023). Non-caveolar Cav-1 has
been associated with increased expression of VEGFA in lymphatic
endothelial cells (Nassar et al., 2015). The expression of cavin-1 is
absent in PC3 and LNCaP cells but abundant in DU145 cells. Cavin-
1 deficiency leads to the abundance of Cav-1 and the absence of
caveolae. Non-caveolar Cav-1 can be detected on the flat plasma
membrane (Nassar et al., 2015). Cav-1 has been shown to mediate
cellular processes, such as cell proliferation, differentiation,
migration, and survival (Dalton et al., 2023). It is suggested that
lipid rafts/caveolae play a role in maintaining the self-renewal of
embryonic stem (ES) cells. Treatment with Cav-1 siRNA and
methyl-β-cyclodextrin induces the downregulation of octamer-
binding protein 4 (Oct4), SRY-box transcription factor 2 (Sox2),
Forkhead box D3 (FoxD3), RNA exonuclease 1 homolog (Rex1),
G1/S-specific cyclin-D1 (cyclin D1), and cyclin E and the reduction
of the proliferation index in ES cells (Lee et al., 2010). Dysregulation
of Cav-1 may result in the occurrence of pathophysiological
processes and the development of diseases. Enhanced expression
of Cav-1 has been associated with high levels of glycolysis and
metastasis in melanoma and breast cancer cells (Díaz-Valdivia et al.,
2022). Decreased expression of Cav-1 is observed in
postmenopausal osteoporosis. Irisin, a myokine, has been
reported to protect against osteoporosis development by up-
regulating the expression of Cav-1 (Tao et al., 2024).

The incidence of lung diseases has increased in recent years due
to altered lifestyles and environmental pollution, and lung diseases
have become a major cause of death and disability worldwide (GBD
Chronic Respiratory Disease Collaborators, 2020). The most
common lung diseases include pneumonia, asthma, chronic

obstructive pulmonary disease (COPD), acute lung injury (ALI),
pulmonary hypertension, pulmonary fibrosis (PF), and lung cancer.
Notably, COPD, asthma, and lung cancer rank among the top
10 causes of death (Levine and Marciniuk, 2022). Pneumonia,
due to its high incidence and susceptibility to complications,
poses a significant health concern. Particularly, the global
pandemic of coronavirus pneumonia (COVID-19) has had a
profound impact on human life and health since 2019 (Ocampo
et al., 2024). Accumulating evidence suggests that precise and
targeted medical interventions are important, necessitating a
thorough understanding of the pathogenesis of lung diseases.
Caveolae and Cav-1 are widely distributed in alveolar epithelium,
airway, pulmonary artery smooth muscle, and fibroblasts, indicating
their potential role in the pathophysiological alterations associated
with lung diseases. For instance, caveolae and Cav-1 have been
involved in the mediation of agonist-induced [Ca2+]i signaling and
the hyperresponsiveness of airway smooth muscle (ASM) (Sathish
et al., 2011). In this article, we primarily focus on discussing the
critical roles of Cav-1 in lung diseases.

2 Methods of literature research

The related articles published up to April 2024 were collected
from the databases, such as PubmedWeb of Science, Google Scholar,
ScienceDirect, and SpringerLink. The searched keywords included
caveolin-1, inflammation, pneumonia, asthma, COPD, ALI,
pulmonary hypertension, PF, and lung cancer.

3 Cav-1: structure and its roles in
inflammation

3.1 The structure of Cav-1

Cav-1, a 178-amino acid protein, has three distinctive regions: a
hydrophilic N-terminal domain (NTD, residues 1–101), a
membrane-spanning region (residues 102–134), and a
hydrophilic C-terminal domain (CTD, residues 135–178) (Ohi
and Kenworthy, 2022) (Figure 1). In the NTD, there is an
invariant structure FEDVIAEP stretch, which has been known as
the caveolin signature motif (residues 68–75) (Scherer et al., 1996).
There are only three cysteine (Cys) residues (Cys133, Cys143, and
Cys156) that are located at the CTD, and the three Cys residues can
be palmitoylated (S-acylation) (Figure 1), indicating that the CTD is
linking to the membrane (Dietzen et al., 1995). Cav-1 has a caveolin
scaffolding domain (CSD, residue 82–101), which may interact with
andmediate the activity of various signaling molecules. For example,
Cav-1 can interact with cholesterol due to the recognition consensus
VTKYWFYR (residues 94–101) andmediate the cholesterol levels in
mitochondria. It is reported that Cav-1 has two isoforms: Cav-1α
(24 kDa) and Cav-1β (21 kDa). Both isoforms have a complete CTD,
indicating that both can be localized within the caveolae. However,
Cav-1β lacks an N-terminal-specific protein sequences (residues
1–21). This might be explained by the two alternate translational
start sites (Met1 and Met32) (Scherer et al., 1995).

Cav-1 is synthesized in the ER. Cav-1 has been reported to
interact with itself to form a high-order oligomeric complex
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(approximately 350 kDa–400 kDa) comprised of 14–16 monomers.
The presence of an ER export signal in the NTD promotes the
release of Cav-1, which can be assembled into 8S complexes that
accumulate in the ER exit sites. Next, Cav-1 can be further assembled
into aggregates with higher molecular weight of 130–150 monomers
in the Golgi (Hayer et al., 2010a). The accumulation of Cav-1 in the
Golgi may lead to the loss of diffusional mobility, the occurrence of
conformational changes, the association with cholesterol, and finally
the assembly of 70S complexes (Hayer et al., 2010a). It is important
to note that the oligomerization of caveolin might be the driving
force for the assembly of caveolae (Fra et al., 1995). The NTD has
been associated with the homooligomerization activity, which is
independent of disulfide bond formation. Mutations in residues
1–21, 1–61, 71–101, 76–101, or 81–101 block the formation of high-
order oligomers. However, it is interesting to find that GST-Cav-1α
fusion and GST-Cav-1β fusion can co-migrate as high molecular
mass oligomers in velocity gradients (Sargiacomo et al., 1995).
Consistently, it is reported that the juxtamembrane region of
Cav-1 is associated with the oligomerization activity (Couet
et al., 1997a).

In addition, two phosphorylation sites Tyr14 and Ser80
(Figure 1) locate at the regulatory amino-terminal tail. Src-
mediated phosphorylation of Cav-1 Tyr14 is associated with
the spatial organization of Cav-1 within the oligomer,
mediating the internalization (Zimnicka et al., 2016). Cav-1
Ser80 phosphorylation may affect its cellular localization
within the ER, stimulate its secretory pathway, and contribute
to its tumor-suppressive activity (Schlegel et al., 2001; Díaz et al.,
2020). One study reports that binding of caveolin with
heterotrimeric G-proteins and Src may lead to the suppression
of their enzymatic activity and inhibition of signaling
transduction. It has been shown that the interaction between
CSD and caveolin-binding molecules (CBMs) may induce the
inactivation of the signaling molecules. For example, Cav-1 may
act as an inhibitor of kinases, such as epidermal growth factor
receptor (EGFR) and protein kinase C (PKC) (Couet et al.,
1997b). However, the binding activity of Cav-1 may be
independent of CSD-CBM interactions. Some molecules, such
as steroid hormone receptors, tyrosine kinase receptors,
G-protein-couple receptors, and G-proteins, do not have the
CBMs and can interact with Cav-1 (Bhowmick et al., 2023).
When the levels of Cav-1 are abnormally enhanced, the
accumulated Cav-1 can be ubiquitinated and subsequently
degraded within endolysosomes (Hayer et al., 2010b). One

study reports that LPS treatment promotes the binding of
E3 ubiquitin ligase ZNRF1 to Cav-1 and induces its
degradation. Interestingly, activation of the ZNRF1/Cav-
1 signaling may lead to increased production of pro-
inflammatory cytokines (Lee et al., 2017).

Cav-1 can physically interact with various proteins via CSD and
inhibit their activities (Van Krieken and Krepinsky, 2017). Heme
oxygenase-1 (HO-1) catalyzes the O2-dependent degradation of
heme to carbon monoxide (CO), free ferrous iron, and biliverdin
IXα, playing an essential role in counteracting oxidative stress. HO-1
can bind to Cav-1, which exhibits an inhibitory activity against the
enzymatic activity of HO-1. In addition, the core binding site of Cav-
1 is available for HO-1 (Taira et al., 2011). One study shows that
Cav-1 with deletion of the 101th residue (Δ101CSD peptide) can
interact with HO-1 and disrupt the interaction between HO-1 and
wild-type (WT) Cav-1. However, Δ101CSD peptide cannot enhance
HO-1 activity but increase HO-1 mRNA expression. In addition,
Δ101CSD peptide impairs the inhibitory activity of WT Cav-1
against the MAPK signaling and inflammatory responses (Jin
et al., 2018). Structure-functional study shows that Phe92 is an
essential residue for the inhibitory activity of Cav-1 against
endothelial nitric oxide synthase (eNOS), and residue 90–99 in
Cav-1 is the binding site for eNOS (Trane et al., 2014). It is reported
that F92A-Cav-1 can abrogate the inhibitory effects of Cav-1 against
eNOS and promote NO synthesis by disrupting their interaction
(Bernatchez et al., 2011). Mechanically, F92A-Cav-1 increases the
phosphorylation of AKT, which is one of the most prominent
activators of eNOS. However, F92A-Cav-1 does not affect
endogenous Cav-1 oligomerization and Cav-1 and eNOS
distribution (Trane et al., 2015).

One study reports that CSD (residue 82–101) is split into three
slightly overlapping shorter peptides (82–89, 88–95, and 94–101).
Interestingly, all three peptides exhibit beneficial effects on
bleomycin-treated mice. Both 82–89 and 88–95 peptides show
inhibitory activity against fibrosis and microvascular leakage,
improving ventricular functions. However, the 94–101 peptide
merely decreases Collagen I expression (Reese et al., 2022). It has
been reported that the GC-rich sequences (−372/−222 and −150/
−91) in the mouse Cav-1 promoter are oxidative stress-responsive
elements. Sp1 has been known to interact with the GC-rich boxes.
Under oxidative stress, Sp1 can positively increase the promoter
activity of Cav-1. Hydrogen peroxide treatment activates
p38 MAPK, which upregulates Sp1-mediated Cav-1 expression in
NIH 3T3 cells (Dasari et al., 2006).

FIGURE 1
The protein structure of Cav-1. The Cav-1 protein has three regions: NTD (residues 1–101), membrane spanning region (residues 102–134), and CTD
(residues 135–178). CSD (residue 82–101) is the region for Cav-1 to interact with various signaling molecules. The residues Tyr14 and Ser80 are the two
phosphorylation sites. The residues Cys133, Cys143, and Cys156 can be palmitoylated.
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3.2 The functional roles of Cav-1 in
inflammation

Cav-1 has been associated with multiple cellular processes, such
as immune responses, endocytosis, membrane trafficking, cellular
signaling, and cancer progression (Shi et al., 2020) (Figure 2).
Cholesterol is essential for forming and maintaining caveolae.
Cav-1 can interact with free cholesterol and mediate cholesterol
transport through a lipoprotein chaperone complex, which consists
of Cav-1, cyclophilin A, cyclophilin 40, and HSP56. Cav-1 facilitates
the uptake of cholesterol via this chaperone complex, and Cav-1 has
been implicated in the transport of newly synthesized cholesterol
from the ER to the plasma membrane (Lin et al., 2009). Caveolae
present as a platforms for lipid-based signaling transduction
through compartmentalizing and concentrating signaling
molecules. Interestingly, Cav-1 exhibits a negative mediator of
various cellular signaling pathways (Dessy et al., 2010). Cav-1
may recruit lipids and proteins to caveolae and negatively
mediate the transduction of signaling pathways, which include
tyrosine kinases and receptor tyrosine kinases, Gα subunits,
GTPases, c-Src, H-Ras, eNOS, and components of the MAPK
pathway (Feng et al., 2013). The interaction between Cav-1 and
different lipid bodies (lipid rafts, lipid droplets, cholesterols,
sphingolipids, and fatty acids) has been reviewed (Bhowmick
et al., 2023).

It has been reported that Cav-1 plays a role in inflammatory
responses. Cav-1 can decrease the production and release of various
inflammatory cytokines, such as interleukin 1β (IL-1β), IL-2, IL-4,
IL-12, tumor necrosis factor α (TNFα), granulocyte andmacrophage
colony-stimulating factor (GM-CSF), and regulated upon activation,
normal T-cell expressed and secreted (RANTES) (Qin et al., 2016).
Mechanically, caveolae provide an ideal platform for signaling
transduction. It has been demonstrated that many different types
of receptors or signaling molecules are associating with caveolin
proteins (Pike, 2005; Chidlow and Sessa, 2010). Many receptors,
such as MAPK pathway components, receptor tyrosine kinases

(RTKs), and GTPase have been sequestered within caveolae by
interacting with Cav-1 (Anderson et al., 1992; Schnitzer et al.,
1996). Cav-1 can enhance the phosphorylation of p38 but
suppress that of c-Jun N-terminal kinase (JNK), Akt, and ERK1/
2. SB203580, an inhibitor of p38 MAPK, can abolish the effects of
Cav-1 on lipopolysaccharide (LPS)-induced inflammatory
responses (Wang et al., 2006). Cav-1 silence may block IL-1β-
induced activation of p38 MPAK, reducing tube formation and
migration of endothelial cells (ECs) (Jagielska et al., 2012). COX-2, a
mediator of inflammation, is localized in the ER, nuclear envelope,
cavelae-like structures. The interacting of COX-2 and Cav-1 in the
ER may induce the degradation of COX-2. Knockdown of Cav-1
may enhance the protein levels of COX-2 (Chen S. F. et al., 2010).
The eNOS/NO signaling pathway also plays a critical role in
inflammatory responses. The associating of Cav-1 with eNOS can
inhibit the release of eNOS and the synthesis of NO (Bucci
et al., 2000).

Cav-1 can interact with toll-like receptors (TLRs) to mediate
phagocytosis and cell activation (Sivanantham et al., 2023). LPS can
recognize and activate TLR4, leading to the recruitment of the
adaptor MyD88, IL-1R-associated kinase 1 (IRAK1), IRAK4, and
TRAF6 and the activation of TAK1. Consequently, TAK1 activation
can induce the stimulation of NF-κB and increase the production of
pro-inflammatory cytokines, such as IL-1, IL-6, IL-12, TNFα, and
macrophage inflammatory protein (MIP). It is reported that Cav-1
interacts with TLR4 and inhibits the assembly of TLR4 complex with
MyD88. Interestingly, the binding motif for Cav-1 in murine TLR4
(739FIQSRWCIF747) has been identified. W744A mutation in
TLR4 may abolish the interaction of Cav-1 with TLR4 (Wang
et al., 2009). Another study shows that TLR4-mediated
recruitment of MyD88 may induce Cav-1 Tyr14 phosphorylation,
IκB degradation, and translocation of NF-κB to the nucleus (Jiao
et al., 2013). Recently, it is reported that oxidized low-density
lipoproteins (oxLDLs) may disrupt the eNOS/iNOS balance by
mediating the HGMB1/TLR4/Cav-1 signaling, leading to the
impairment of autophagic/apoptotic responses in vascular and
nonvascular cells (Gliozzi et al., 2019). The discrepancy of the
regulatory effects of Cav-1 on the TLR4 signaling might be
associated with many factors, such as cell lines and micro-
environment. Thus, more efforts are still needed.

Caveolae and caveolins are also expressed in macrophages. In
LPS-treated murine alveolar and peritoneal macrophages, Cav-1 can
decrease the production of TNFα and IL-6 and increase the
generation of IL-10 (Wang et al., 2006). Cav-1 deletion has been
associated with enhanced inflammatory responses, decreased
phagocytic activity of macrophages, and increased superoxide
release (Yuan et al., 2011). Cav-1 expression and intracellular
cholesterol levels are mutually mediated to maintain cholesterol
homeostasis. In the pathological processes of atherosclerosis,
macrophages derived from monocytes are transformed into lipid-
loaded cells via uptake of lipoproteins, especially ox-LDL. It is
reported that Cav-1 interacts with scavenger receptor-BI (SR-BI),
which regulates the transfer of lipid from lipoproteins into cells via
selective cholesterol. Co-expression of Cav-1 and SR-BI can lead to
increased uptake of selective cholesterol in macrophages (Matveev
et al., 1999; Puddu et al., 2023). In the Cav-1-deleted mice, the levels
of free cholesterol in peritoneal macrophages are decreased and the
expression of ABCA1 in macrophages is also decreased. Cav-1

FIGURE 2
Structure and functions of Cav-1. (A) The localization of Cav-1 in
caveolae. The primary actions of Cav-1 include endocytosis, lipid
regulation, and signaling transduction. (B) The monomer of Cav-1 and
the Cav-1 scaffolding domain (CSD) were shown. Cav-1 can
modulate various pathways, such as MAPK, NF-κB, TGFβ/Smad, and
eNOS/NO signaling, via binding to the CSD.
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deficiency decreases the synthesis of free cholesterol (Lin et al., 2007;
Qin et al., 2016). In addition, macrophages derived from Cav-1-
deleted mice show severe LPS-induced inflammatory responses
(Medina et al., 2006). The co-localization of TLR4 with Cav-1 in
caveolae of peritoneal macrophages indicates a connection between
Cav-1-regulated cellular cholesterol efflux and the inflammatory
responses (Wang et al., 2009). PPARγ and RXR may promote the
expression of Cav-1, SR-BI, and ABCA1. Activation of PPARγ and/
or RXR leads to upregulation of Cav-1 expression and
downregulation of NF-κB, STAT, and AP-1 in macrophages (Luo
et al., 2010).

Sterile inflammation is a process that reside cells sense pro-
inflammatory signals, release extracellular mediators, and then
recruit circulating immune cells that trigger and escalate the
inflammatory responses. Various cell types, including mesothelial
cells, endothelial cells, and immune cells (such as macrophages) may
promote the initiation and progression of sterile inflammation.
However, the exact mechanisms are not fully understood (Su
et al., 2024). Endosomal TLRs recognize self-derived nucleic acids
via damage-associated molecular patterns (DAMPs) in cases of
apoptosis or cellular damage, triggering sterile inflammation.
TLR-3, -7, -8, and -9 are located inside endosomes. TLR-3
recognizes double-stranded RNA, TLR-7 and TLR-8 detect
single-stranded RNA, and TLR-9 identifies DNA (Zhou et al.,
2020). However, LPS-induced endocytosis takes TLR4 to early
endosome, where it recognizes endosomal LPS to activate
MyD88-independent inflammatory responses (Kawai and Akira,
2010). Flotillin-1, a marker of membrane rafts, is essential for TLR
signaling. Knockdown of flotillin-1 decreases TLR3-regulated
inflammatory responses. Flotillin-1 and Cav-1 co-localize within
the caveolae. The interaction between flotillin-1 and Cav-1 may
facilitate the transport of TLR3-ligands to its intracellular receptor
and activates inflammatory TLR3 signaling (Fork et al., 2014).
Lumican is an ECM protein associated with collagens. Lumican
can attach to Cav-1 and the TLR co-receptor CD14 and promote
TLR4-but restrict TLR9-mediated inflammatory responses in
macrophages (Maiti et al., 2021). During ischemia-reperfusion
injury, endothelial DAMPs can decrease the expression of Cav-1
and eNOS and aggravate endothelial barrier disruption (Kumphune
et al., 2024).

4 The roles of Cav-1 in lung diseases

4.1 Pneumonia and acute lung injury (ALI)

Pneumonia is a leading cause of global pediatric morbidity and
mortality. Bacterial infections have been associated with activation
of innate and adaptive immunity, regulation of antigen presentation,
pathogen recognition, and phagocytosis. Cav-1 is required for
pathogen invasion of host cells. However, Cav-1 negatively
modulates inflammatory responses (Zaas et al., 2009). During
infection, lung epithelial cells directly recognize the pathogen-
associated molecular patterns via TLRs and trigger the innate
immune responses for pathogen clearance (Grainge and Davies,
2013). ALI, a clinical syndrome of acute respiratory failure, is
associated with acute lung inflammation, damaged alveolar-
capillary barrier, airway edema, and abnormal gas exchange

(Jones and Minshall, 2022). The potential mechanisms of ALI
pathogenesis are still unclear. Cav-1 plays an important role in
the pathogenesis of ALI. A bioinformatics study using GO, KEGG,
and PPI analysis shows that the Cav-1/NF-κB signaling is one of the
most effective targets for ALI prevention (Qu et al., 2022).

In Cav-1 knockout mice, increased lung inflammatory responses
and higher mortality rates are related to the enhanced STAT3/NF-
κB signaling (Yuan et al., 2011) (Table 1) (Figure 3). It has been
reported that Cav-1 can suppress LPS-induced inflammatory
responses, microvascular barrier breakdown, and edema
formation by inhibiting the NF-κB and eNOS signaling pathways
(Garrean et al., 2006). One study shows that plasma albumin
leakage, infiltration of immune cells, and levels of IL-6/IL-6R and
p-TGFβ/p-Smad2/3 in LPS-treated Cav-1 knockout mice are
significantly elevated. In contrast, the expression of BMPRII and
the uncoupling of eNOS are reduced in LPS-treated ECs from Cav-1
knockout mice (Oliveira et al., 2017) (Table 1). TNFα contributes to
various inflammatory conditions, including acute respiratory
distress syndrome and COPD. TNFα plays a critical role in the
activation of the NF-κB signaling, which can be mediated by the
PI3K/AKT and p44/42 MAPK signaling pathways. TNFα acts as a
ligand of TNF receptor (TNFR), which includes TNFR1 and TNFR2.
In TNFR knockout mice, ozone-induced formation of the TNFR
adaptor complex is attenuated, and activation of MAPK and NF-κB
signaling pathways is suppressed (Cho et al., 2007). Ozone
inhalation significantly induces TNFα expression and increases
the PI3K/AKT and p44/42 MAPK signaling pathways, which can
be negatively regulated by Cav-1 in alveolar macrophages (AMs)
(Fakhrzadeh et al., 2008) (Table 1).

Streptococcus pneumonia has become a major cause of
community-acquired pneumonia. Although effective antibiotics
have been advanced, pneumonia-associated morbidity and
mortality have increased worldwide (Nishimoto et al., 2020).
Pneumolysin (PLY), a cholesterol-dependent cytolysin (CDC), is
a bacterial pore-forming toxin and primary virulence factor,
affecting the plasma membrane homeostasis in the endothelial
cells and being involved in all stages of pneumococcal diseases. It
has been reported that Cav-1 and CSD peptide can protect the
endothelial barrier from the disruption induced by PLY by
promoting the endocytosis of damaged membrane (Batori et al.,
2022). Klebsiella pneumoniae is the 3rd most commonly separated
microorganism from patients with bacterial sepsis. In Cav-1
knockout mice, the infection of K. pneumoniae significantly
decreases survival rate and increases pro-inflammatory cytokine
production. Cav-1 exhibits protective effects against K. pneumoniae
infection by mediating the signal transducer and activator of
transcription 5 (STAT5)/GSK-3β/β-catenin/AKT signaling
pathway (Guo et al., 2012) (Table 1).

Pseudomonas aeruginosa (P. aeruginosa) infection increases the
production of pro-inflammatory cytokines in alveolar macrophages.
In Cav-1 knockout mice, the sensitivity to P. aeruginosa increases,
the mortality rate is enhanced, and the inflammatory responses are
elevated. These indicate the important contribution of Cav-1 to the
innate host immunity to P. aeruginosa (Gadjeva et al., 2010). Cav-1,
a common component of extracellular vesicles (EVs), is exclusively
expressed in the miRNA-rich EVs, which are derived from lung
epithelium. The miRNA-rich EVs have been associated with P.
aeruginosa-induced inflammasome activation, neutrophil
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TABLE 1 The critical roles of Cav-1 in lung diseases.

Categories Models Biological actions Ref.

Pneumonia Cav-1−/− mice Cav-1 regulates the secretion of CCN1, which inhibits
inflammatory responses

Moon et al. (2015)

HULEC-5a cells Cav-1 blocks PLY-induced barrier disruption and protects
endothelial barrier integrity by promoting endocytosis of
damaged membrane

Batori et al. (2022)

Cav-1−/− mice Cav-1 protects against K. pneumonia-induced inflammatory
responses and lung injury

Guo et al. (2012)

MLE-12 cells Cav-1 protects against K. pneumonia infection by mediating the
STAT5/GSK-3β/β-catenin/AKT signaling pathway

HCECs Cav-1 deficiency impairs FlgE-induced inflammation and ERK1/
2 activation

Shen et al. (2017)

COVID-19 patients The expression of Cav-1 is decreased, and the expression of
TGFβ1, α-SMA, and MMP-9 is increased

Vaz de Paula et al. (2021)

ALI Cav-1−/− mice Cav-1 protects against ALI by negatively regulating the STAT3/
NF-κB signaling

Yuan et al. (2011)

Cav-1−/− mice Cav-1 suppresses LPS-induced the NF-κB and eNOS signaling
pathways

Garrean et al. (2006)

AMs Cav-1 inhibits ozone-induced PI3K/AKT and p44/42 MAPK
signaling pathways by decreasing the expression of TNFα

Fakhrzadeh et al. (2008)

LPS-treated rats Cav-1 is involved in the inhibitory effects of Sirt1 against ALI by
decreasing the expression of STAT3, TLR4, TNFα, and IL-6

Tong et al. (2023)

Cav-1−/− mice Cav-1 deficiency decreases BMPR2 expression and increases the
TGFβ/Smad2/3 and IL-6/IL-6R signaling pathways

Oliveira et al. (2017)

I/R rats Cav-1 mediates the protective effects of Dexm against I/R-induced
ALI by decreasing the p38 MAPK and NF-κB signaling pathways

Xu et al. (2021)

HLMVECs Cav-1 inhibits LLO-induced ALI by interacting with eNOS. Chen et al. (2014b)

Asthma Mice CSD peptide abrogates hyperoxia-induced airway
hyperresponsiveness and remodeling

Vogel et al. (2019)

ASMCs Cav-1 mediates the inhibitory effects of RXM on VEGF responses Pei et al. (2016)

ASMCs Cav-1 is involved in the regulation of RXM in TGFβ1-induced
proliferation

Dai et al. (2014)

Spry2−/− mice Cav-1 interacts with CSK, decreases CSK/LCK interaction, and
attenuates the expression of Spry2, which promotes T-cell-driven
asthma

Sripada et al. (2021)

PBECs Cav-1 negatively regulates VEGF-mediated MUC5AC. Kim et al. (2020)

OVA-treated mice Cav-1 negatively regulates the expression of GATA-6, which
promotes the TLR2/MyD88 and NF-κB pathway

Fang et al. (2016)

COPD PBMCs Cav-1 contributes to Th17/Treg imbalance by regulating
Hsp70 expression

Zhang et al. (2023a)

AECs CSP7 decreases mucus hypersecretion Das et al. (2023)

16HBE cells Cav-1 promotes the expression of MUC5AC, p-EGFR, and
p-AKT.

Yu et al. (2015)

IL-1β-treated chondrocytes Cav-1 is involved in IL-1β-mediated inflammatory responses and
cell apoptosis by regulating the p38 MAPK signaling pathway

Zhou et al. (2022)

Pulmonary hypertension Cav-1−/− mice Cav-1 deficiency is associated with an increase in artery stiffness Moreno et al. (2021)

Cav-1−/− mice Cav-1 deficiency induces eNOS hyper-activation Zhao et al. (2009)

PMVECs Cav-1 deficiency enforces the protective effects of pravastatin
against LPS-induced inflammatory responses and apoptosis

Ren et al. (2021)

(Continued on following page)
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recruitment, and M1-macrophage polarization (Lee et al., 2019).
Flagellar hook protein E (FlgE) in P. aeruginosa has been reported to
stimulate human corneal epithelial cells (HCECs), enhance the
production of pro-inflammatory cytokines, and promote the
Th2-biased humoral responses to ovalbumin. However, the
knockdown of Cav-1 abrogates FlgE-induced inflammation and
extracellular regulated protein kinase1/2 (ERK1/2) activation
(Shen et al., 2017) (Table 1). Alpha-toxin (Hla), a major
virulence factor of staphylococcus aureus, plays a critical role in
pneumonia. Hla can interact with the cell surface of eukaryotic host
cells and form heptameric transmembrane pores. Cav-1 acts as a
pore-stabilizing factor and facilitates the binding of Hla to its
receptor α5β1 integrin. However, both Cav-1 and α5β1 integrin
are not associated with toxin sensitivity (Möller et al., 2020).

Gram-positive infection-induced ALI is characterized by
impaired endothelial cell (EC) barrier integrity and extensive
permeability, which is associated with the excretion of

cholesterol-dependent cytolysins, such as PLY and listeriolysin
(LLO). It has been reported that LLO treatment can induce Ca2+-
activated PKCα and stimulate the dissociation of Cav-1 and
Hsp90 from eNOS, uncoupling eNOS and promoting NO
synthesis. However, Cav-1 peptide may block the effects of LLO-
induced eNOS signaling in human lung microvascular endothelial
cells (HLMVECs) (Chen et al., 2014b) (Table 1). However, one study
reports that the upregulated expression of Cav-1 in
polymorphonuclear neutrophils (PMNs) is associated with PMN
activation, adhesion, and migration, stimulating lung inflammation
and vascular injury (Hu et al., 2008). This discrepancy might be
associated with the different cell lines and microenvironment.

Cav-1 has been associated with the internalization of some
viruses, such as the BK virus (Moriyama et al., 2007) and Simian
virus-40 (Pelkmans et al., 2001). It has been reported that there are
several caveolin-binding sites in coronavirus (Padhan et al., 2007),
supporting the relationship between SARS-CoV-2 and lung injury.

TABLE 1 (Continued) The critical roles of Cav-1 in lung diseases.

Categories Models Biological actions Ref.

PAECs Cav-1 deficiency induces the JAK/STAT and PI3K/AKT signaling
pathways and activation of type I inflammatory responses

Gairhe et al. (2021)

Cav-1−/− mice Cav-1 deficiency decreases BMPR2 localization at the plasma
membrane and activation of Smad1/5/9 signaling

Tomita et al. (2024)

Hypoxia-treated PASMCs Cav-1 promotes PPARγ activation, decreases the expression of the
proliferative mediators, and increases the expression of the
apoptosis-related factors

Yang et al. (2018)

PF Bleomycin-treated rats Decreased Cav-1 promotes the pathogenesis of PF by increasing
the TGFβ signaling

Xing et al. (2017)

Fibroblasts Cav-1 mediates the anti-fibrosis activity of CRTH2, which
promotes the degradation of collagen

Zuo et al. (2021)

Sftpc-mTORSL1+IT mice Decreased Cav-1 expression is associated with increased activity
of the mTOR/ANGPTL4 signaling induced by bleomycin

Saito et al. (2020)

Bleomycin-treated mice Cav-1 is a target of miR-199a-5p, which is a product of DNM3OS
and promotes the profibrotic effect of TGFβ

Savary et al. (2019)

Cav-1−/− mice Cav-1 inhibits silica-induced infiltration of inflammatory cells
and secretion of inflammatory factors by suppressing the NF-κB
signaling

He et al. (2022)

Lung cancer Cav-1−/− mice Cav-1 deficiency is associated with NOX-derived ROS production
and activation of the NF-κB signaling

Chen et al. (2014a)

Cav-1−/− mice Cav-1 deficiency promotes the ubiquitination and proteasomal
degradation of ATP7A, which regulates the expression of SOD3

Sudhahar et al. (2020)

H460 cells Cav-1 interacts with Oct4, inhibiting NO-induced stemness of
lung cancer cells

Maiuthed et al. (2018)

A549 cells Cav-1 is essential for hnRNPA1-loaded sEV-miRNAs, which
facilitate tumor proliferation and migration

Li et al. (2021)

H23 cells Cav-1 promotes SSH20 uptake and its cytotoxicity Robb et al. (2021)

H292, H460 cells Cav-1 O-glcNAcylation induced by TRPM7 promotes the
metastasis of lung cancer cells

Luanpitpong et al. (2020)

H460 cells Cav-1 inhibits the migration and invasion by suppressing the
Wnt/β-catenin signaling

Song et al. (2012)

H358-IRR and A549-IRR Cav-1 promotes autophagy and enhances IR-resistant cell survival
by increasing IRGM expression

Chen et al. (2021)
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It has been reported that some coronavirus family members can
cause acute alveolar damage by stimulating the Cav-1 signaling.
However, they do not enter the lung cells in a caveolin-dependent
manner (Buckley et al., 1998). During viral infection, the
lung epithelial cell injury induces an accumulation of TGFβ1,
which can be negatively mediated by Cav-1. In the lung
samples from COVID-19-infected patients, the expression of
Cav-1 is downregulated, and the transforming growth factor β1
(TGFβ1) signaling pathway is enhanced (Vaz de Paula et al.,
2021) (Table 1).

During lung injury, pulmonary surfactant protein C (SP-C)
expression is decreased in type II alveolar epithelial cells (AECs).
Decreased expression of SP-C contributes to cell apoptosis by
enhancing the expression of p53 and activating the Src/Cav-
1 signaling in AECs (Puthusseri et al., 2017). Sirt1 exhibits
protective activity against LPS-induced ALI by inhibiting
inflammatory responses. The Sirt1 agonist SRT1720 can
upregulate Cav-1 expression and downregulate STAT3, TLR4,
TNFα, and IL-6 expression in rats (Tong et al., 2023) (Table 1).
Mechanical ventilation can induce ventilator-induced lung injury.
Ropivacaine, an amide-linked local anesthetic, exhibits anti-
inflammatory effects in ALI. It is reported that ropivacaine may
decrease pulmonary edema, leukocyte infiltration, and vascular
hyperpermeability by inhibiting the Src/Cav-1 signaling (Piegeler
et al., 2014). The CpG motif in bacterial DNA has been associated
with pathogen-induced inflammation. It is reported that the
synthetic CpG oligonucleotide (ODN) can promote the secretion
of CCN1, which stimulates host immune responses via mitogen-
activated protein kinase (MAPK) and nuclear factor kappa-B (NF-
κB) signaling pathways in epithelial cells (Dalpke et al., 2002)
(Figure 3). Mechanically, CpG ODN induces ER stress, enhances
the phosphorylation of Src and Cav-1, and increases the secretion of
CCN1 by modulating the interaction of p-Cav-1 and the
CCN1 IGFbp domain (Moon et al., 2015) (Table 1).

Oxidative stress promotes the pathogenesis of sepsis-triggered
ALI. Cav-1 and adiponectin are important modulators of oxidative
stress. In Cav-1 and adiponectin double knockout mice, LPS
dramatically triggers oxidative stress, nitrative stress,
inflammatory responses, lung vascular permeability, and mouse
mortality rate. Treatment with a superoxide scavenger
MnTMPyP may rescue LPS-induced ALI. This indicates the
critical role of Cav-1 and adiponectin in negatively mediating
oxidative/nitrative stress and inflammation (Cai et al., 2014).
Intestinal ischemic reperfusion (I/R) can induce ALI.
Dexmedetomidine (Dexm), a highly selective alpha2-
noradrenergic receptor (α2AR) agonist, can alleviate pulmonary
inflammation after intestinal I/R by up-regulating Cav-1 expression
and inhibiting the p38 MAPK and NF-κB signaling pathways (Xu
et al., 2021) (Table 1). Dexm also exhibits protective effects by
mediating the Cav-1/MAPK/NF-κB signaling pathway in ALI
induced by LPS (Liu et al., 2019) or heatstroke (Geng et al., 2019).

4.2 Asthma

Asthma is associated with paroxysmal/persistent wheezing,
dyspnea, and coughing, and these might be due to inflammation,
hyperresponsiveness, and remodeling in the airway. Airway smooth
muscle cells (ASMCs) are the main effector for airway remodeling,
and the proliferation and hypertrophy of ASMCs may result in
irreversible pathological alterations in the airway (Yuan et al., 2024).
ASMCs contain caveolae that expression constituent protein Cav-1
and Cav-2. It has been reported that the expression of Cav-1 in
endobronchial biopsies of asthmatic patients is decreased (Bains
et al., 2012). Decreased Cav-1 expression has been involved in
airway diseases and contributed to airway hyperresponsiveness
and remodeling. In hyperoxia-exposed animals, downregulated
Cav-1 expression in ASM has been found, and intraperitoneal
injection of CSD peptide can ameliorate hyperoxia-induced
pathophysiological alterations (Vogel et al., 2019) (Table 1). One
study shows that Cav-1-knockout mice have significantly high
proliferation marker expression and airway hyperresponsiveness
and remodeling (Aravamudan et al., 2012).

Cav-1 acts as a negative regulator of cellular signaling, such as
the ERK1/2 signaling (Mao et al., 2022). Activation of the ERK1/
2 signaling mediates the secretion, proliferation, and
hyperresponsiveness of ASMCs. Inhibition of the ERK1/
2 signaling can be the therapeutic strategy for asthma treatment.
Roxithromycin (RXM) has been reported to inhibit vascular
endothelial growth factor (VEGF)-induced SMC proliferation by
up-regulating Cav-1 expression and inhibiting the ERK1/2 signaling
(Pei et al., 2016). TGFβ1 secretion is significantly enhanced in
asthmatic ASMCs, and it is positively correlated with ASMC
proliferation. However, RXM inhibits TGFβ1-induced ASMC
proliferation by up-regulating Cav-1 expression and down-
regulating p-ERK1/2 and p-AKT expression (Dai et al., 2014)
(Table 1) (Figure 3).

Vasoactive intestinal peptide (VIP), a gastrointestinal
hormone, participates in various biological effects, including
smooth muscle relaxation, modulation of immune response,
and immune homeostasis maintenance (Gonzalez-Rey and
Delgado, 2007). VIP suppresses airway remodeling in vivo and

FIGURE 3
The biological functions of Cav-1 in protection against lung
diseases. Cav-1 exhibits protective effects against pneumonia, ALI,
asthma, COPD, pulmonary hypertension, pulmonary fibrosis, and lung
cancers. The potential mechanismsmight be associated with the
inhibitory activity of Cav-1 against MAPK, NF-κB, STATs, eNOS, ERK1/
2, TGFβ1, Th17/Treg disruption, NOXs, AKT, Wnt/β-catenin, and ROS.
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inhibits IL-13-induced ASMC proliferation by up-regulating Cav-1
expression and decreasing the phosphorylation of ERK1/2 (Wang
et al., 2018). Sprouty2 (Spry2) is a well-known mediator of Ras/ERK
signaling and a positive regulator of CD4+ T cell function and type II
immunity. In Spry2-knockout mice, ERK1/2 activation, T-cell
differentiation, and cytokine secretion are abrogated.
Spry2 stimulates T-cell-driven asthma by increasing the levels of
Th2 cytokines. Mechanically, Spry2 promotes ubiquitin
proteasome-mediated degradation of Cav-1, which binds and
enhances CSK activity. Spry2 deficiency increases Cav-1/CSK
association, enhances CSK/LCK interaction, abrogates ERK1/
2 activation, and diminishes TCR-induced responses in CD4+

T cells (Sripada et al., 2021) (Table 1).
MUC5AC, a major mucin glycoprotein, is responsible for the

viscoelastic property of mucus and can be hypersecreted in
asthmatic subjects. VEGF expression is correlated with
inflammation and airway blood vessel remodeling in asthma.
VEGF can enhance the expression of MUC5AC by stimulating
VEGFR2 (Kim et al., 2020). VEGFR2 and Cav-1 are co-localized
on caveolae, and Cav-1 may negatively regulate the
VEGFR2 signaling (Wu et al., 2013). Glucocorticoids (GCs), such
as dexamethasone (Dex), are the first-line drugs for treating airway
inflammation in asthmatic patients. It has been reported that Dex
decreases VEGF-induced MUC5AC expression in PBECs by up-
regulating Cav-1 expression and increasing the interaction between
Cav-1 and VEGFR2 (Kim S. H. et al., 2019; Kim et al., 2020).
Licochalcone A, a chalcone from licorice root, has been shown to
suppress ASM cell proliferation by inhibiting the activation of
VEGF, VEGFR2, and ERK1/2 and blocking the downregulation
of Cav-1 expression (Kim et al., 2017).

However, another study shows that MUC5AC expression is
mediated by NF-κB, which can be stimulated by intracellular Ca2+

signaling. Cav-1-containing lipid raft aggregation is involved in Ca2+

influx, NF-κB activation, and MUC5AC expression in bronchial
epithelial cells (Xia et al., 2017). Cav-1 is an important mediator of
IgE-dependent store-operated Ca2+ entry (SOCE) and promotes
Orai1 expression. MS4A gene family is clustered around 11q12-
13, a region associated with allergy and asthma susceptibility.
MS4A4A has been reported to enhance PLCγ1 phosphorylation,
SOCE, and degranulation by interacting with Cav-1 in human mast
cells (Arthur et al., 2020). The pro-inflammatory cytokine TNFα can
increase agonist-induced [Ca2+]i responses in ASM. Knockdown of
Cav-1 decreases the responses of [Ca2+]i to histamine and blocks
TNFα-triggered [Ca2+]i responses in ASM (Sathish et al., 2014). In
addition, the knockdown of Cav-1 decreases caveolar and
Orai1 expression and blunts SOCE in TNFα-treated ASM
(Sathish et al., 2012). Consistently, Cav-1 siRNA transfection
blocks the amplitude and frequency of arachidonic acid (AA)-
induced [Ca2+]i oscillations in human ASM (Thompson et al.,
2014). One study shows that the expression of Src and p-Cav-
1 Tyr14 in toluene diisocyanate (TDI)-induced asthma mice is
significantly increased. Inhibition of the Src/Cav-1 axis and
RAGE expression can improve the redistribution of β-catenin
from the membrane to cytosolic compartments, attenuating TDI-
induced airway inflammation (Zhao et al., 2018). TDI exposure
upregulates the expression of autotaxin (ATX) and its major product
lysophosphatidic acid (LPA). Interestingly, Cav-1 is essential for the
induction of ATX, but not IL-1β, by TDI (Broström et al., 2018).

It has been reported that Cav-knockout mice develop increased
hyperresponsiveness and thickness of the subepithelial layers
(Gabehart et al., 2013). Increased extracellular matrix (ECM)
deposition contributes to airway remodeling. It is reported that
treatment with CSD peptide may abrogate hyperoxia-induced ECM
alterations by maintaining the balance between matrix
metalloproteinases (MMPs) and their inhibitors (TIMPs) in
human fetal ASMCs (Vogel et al., 2017). Upregulated expression
of GATA-6 promotes airway inflammation and remodeling in a
murine model of chronic asthma. Down-regulation of GATA-6
decreases ovalbumin (OVA)-induced inflammation, infiltration,
mucus production, and MMPs (MMP-2 and MMP-9) and a
disintegrin and metalloproteinase (ADAMTSs). However, the
expression of Cav-1 is inversely related to the abundance of
GATA-6 in mice with asthma (Fang et al., 2016) (Table 1).
Consistently, Roxithromycin can decrease the thickness of the
bronchial wall and bronchial smooth muscle cell layers and the
phosphorylation of p42/p44 MAPK and increase the expression of
Cav-1, suppressing airway remodeling in rats (Wu et al., 2015).

4.3 Chronic obstructive pulmonary
disease (COPD)

Chronic obstructive pulmonary disease (COPD), the third
leading cause of death, is characterized by airflow limitations due
to chronic bronchitis and alveolar emphysema, while no effective
treatments are available to reduce the mortality or inhibit the
pathological progression due to a lack of full understanding the
underlying mechanisms. The 3′-untranslated region single
nucleotide polymorphisms (SNPs) of the Cav-1 gene loci
rs8713 and rs1049337 have been reported to be related to a risk
of pulmonary hypertension in patients with COPD (Li et al., 2019).
Consistently, the expression of Cav-1 in medial smooth muscle cells
of pulmonary arteries in patients with COPD has been reported to
be correlated with pulmonary hypertension (Huber et al., 2009).
Multiple immune cells, such as CD4+ and CD8+ T lymphocytes, and
inflammatory cytokines have been implicated in the
immunopathogenesis of COPD. The roles of T helper 17 (Th17)
cells and regulatory T (Treg) cells in the development of COPD have
been reviewed (Ma et al., 2023). Hsp70 plays a role in inflammation
and innate immunity response and contributes to the conversion of
Treg cells into Th17 cells (Guo et al., 2018). In COPD patients, the
expression of Cav-1 is decreased. Cav-1 disrupts the balance
between Th17 and Treg cells by mediating Hsp70 expression
(Figure 3). In addition, Cav-1 overexpression may lead to an
increase in Hsp70 and Th17 levels in peripheral blood
mononuclear cells (PBMCs) (Zhang et al., 2023a) (Table 1).

Cigarette smoke (CS) exposure has become a risk factor for the
pathogenesis of COPD. In CS-exposed airway epithelial cells (AECs)
and type II alveolar epithelial (AT2) cells, the expression of Cav-1,
p53, and plasminogen activator inhibitor-1 (PAI-1) is significantly
upregulated. Treatment with a seven amino acid CSD peptide
(CSP7) can decrease mucus hypersecretion in CS-exposed AECs
(Das et al., 2023). CS extract (CSE) can enhance MUC5AC
expression and increase EGFR and AKT phosphorylation levels
in 16HBE cells. Cav-1 knockdown can abrogate CSE-induced up-
regulation of MUC5AC, p-EGFR, and p-AKT expression (Yu et al.,
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2015) (Table 1). Autophagy-related factor LC3B has been associated
with CS-induced lung epithelial cell death. Cav-1 deficiency can
cause higher levels of autophagy and apoptosis in CS-treated mouse
lungs (Chen Z. H. et al., 2010). Cav-1 deficiency in lung fibroblasts
can suppress CS-induced premature senescence by inactivating the
ATM/p53/PP2A-C signaling pathway (Volonte and Galbiati, 2009;
Volonte et al., 2009). Treatment of bronchial chondrocytes with IL-
1β can generate a stable COPD-related tracheobronchomalacia
(TBM) cell model. The Tiao-bu-fei-shen (TBFS) formula, a
traditional Chinese medicine, can significantly reduce
inflammatory responses and cell apoptosis by down-regulating
the Cav-1/p38 MAPK signaling pathway (Zhou et al.,
2022) (Table 1).

4.4 Pulmonary hypertension

Pulmonary hypertension is associated with high mean
pulmonary arterial pressure (more than 25 mmHg at rest) and
pulmonary vascular resistance (more than 3 Wood units).
Endothelial dysfunction, pulmonary vasoconstriction, and
vascular remodeling are the main characteristics, and they may
lead to increased pulmonary artery pressure, right ventricular
hypertrophy, right heart failure, and premature death (Zaiman
et al., 2005). Many signaling molecules, such as endothelial NO
synthase (eNOS), VEGF receptor, prostacyclin receptors, bone
morphogenetic proteins (BMPs), and TGFβ, have been
implicated in the pathogenesis of pulmonary hypertension
(Chettimada et al., 2015) (Figure 3). The expression of these
molecules may be mediated by Cav-1. In addition, one study
reports that Cav-1 deficiency is associated with an increase in
collagen content and artery stiffness, promoting the development
of pulmonary hypertension (Moreno et al., 2021) (Table 1). The
critical roles of Cav-1 in the development of pulmonary
hypertension have been comprehensively reviewed in recent years
(Chettimada et al., 2015; Mathew, 2021).

Nitro oxide (NO), synthesized by eNOS, plays an important role
in cardiovascular homeostasis. Genetic deletion of eNOSmay lead to
various cardiovascular phenotypes, such as elevated blood pressure,
impaired angiogenesis, and abnormal vascular remodeling
(Fernández-Hernando et al., 2006). It has been reported that the
interaction between eNOS and caveolin-1 in caveolae leads to
enzyme inhibition of eNOS. Upon stimulation, eNOS is
translocated from the caveolae to the cytoplasm where it
produces NO. Chlamydia pneumoniae, a Gram-negative
bacterium, infects epithelial cells in the respiratory tract. C.
pneumoniae can colocalize with eNOS, interfere with its
trafficking from the Golgi apparatus to the plasma membrane,
and inhibit NO synthesis in AECs (Mueller and Wolf, 2015).
ECs synthesize low levels of NO, which maintains vessel
homeostasis. Inflammation contributes to the dysfunction of ECs
and affects the eNOS/NO signaling. The absence of Cav-1, hyper-
activation of eNOS, and impairment of PKG activity may lead to
vascular damage and remodeling and the development of
pulmonary hypertension (Zhao et al., 2009) (Table 1).

Inflammation can disrupt the alveolar endothelial barrier and
promote pulmonary microvascular permeability, leading to the
development of ALI. Pravastatin, an inhibitor of HMG CoA

reductase, exhibits anti-inflammatory activity. It is reported that
pravastatin suppresses sepsis-induced inflammatory responses and
apoptosis in LPS-treated pulmonary microvascular endothelial cells
(PMVECs) by mediating the Cav-1/eNOS signaling pathway (Ren
et al., 2021). The expression of STAT and PI3K/AKT is
constitutively activated in PAECs. Cav-1 deficiency induces the
JAK/STAT and PI3K/AKT signaling pathways and activation of
type I inflammatory responses. Cav-1 silence also promotes AKT-
induced phosphorylation of NOS3 Ser1177. Knockdown of
NOS3 can abrogate the activation of STAT and AKT in PAECs
(Gairhe et al., 2021) (Table 1).

BMP2 receptor (BMPR2) interacts with Cav-1 in the caveolae, and it
is commonly mutated in pulmonary hypertension. Decreased
BMPR2 signaling contributes to the hyper-activation of the TGFβ
pathway, switching from the protective p-Smad1/5/8 signaling to the
p-Smad2/3 pathway in pulmonary vascular cells (Erewele et al., 2022). In
Cav-1 knockout mice, the localization of BMPR2 at the plasma
membrane is attenuated, the phosphorylation of Smad1/5/9 is
decreased, and the BMP/Smad signaling is inhibited. Cavin-1
competitively attenuates the interaction of Cav-1 with BMPR2 and
inhibits the BMP/Smad signaling (Tomita et al., 2024). Consistently,
Cav-1 depletion in ECs is also associatedwith pulmonary hypertension in
hypoxia-treated rats. Cav-1 depletion reduces BMPR22 expression and
increases the TGFβ/Smad2/3 signaling in the lung (Oliveira et al., 2019).
In BMPR2+/R899X mice, the expression of Cav-1 is decreased, and the
eNOS/NO signaling is increased in the lung. In addition, the pulmonary
TGFβ levels are increased (Erewele et al., 2022). Cav-1 is negatively
associated with the TGFβ/Smad signaling molecules and inhibits the
phosphorylation of TGFβ and Smad2/3. Abnormal expression of Cav-1
may lead to dysregulation of the TGFβ/Smad signaling and alterations of
the extracellular matrix (Le Saux et al., 2008). DJ-1/park7 is a
multifunctional protein implicated in several biological activities. DJ-1
has been reported to ameliorate hypoxia-induced pulmonary
hypertension in vivo and in vitro by up-regulating Cav-1 expression
and inhibiting the TGFβ1/Smad2/3 signaling (Gao et al., 2017).

The influx of Ca2+ is mediated by transient receptor potential
vanilloid 4 (TRPV4) in ECs. It has been reported that the absence of
both TRPV4 and Cav-1 in mice can decrease pulmonary arterial
pressure. Cav-1 is colocalized with NOX1 and iNOS, which induce
the generation of the oxidant molecule peroxynitrite and promote
the pathogenesis of pulmonary hypertension (Daneva et al., 2021).
The activation of PPARγ by the specific agonist GW1929 is Cav-1-
dependent, and the knockdown of Cav-1 abrogates the upregulation
of GW1929 on PPARγ expression. GW1929 significantly decreases
the expression of the proliferative mediators and increases the
apoptosis-related factors in hypoxia-treated pulmonary arterial
smooth muscle cells (PASMCs) (Yang et al., 2018) (Table 1).
However, one study shows that the ubiquitin-proteasome
inhibitor bortezomib (BTZ) can ameliorate hypoxia-induced
pulmonary hypertension by promoting the degradation of Cav-1,
which mediates the SOCE/[Ca2+]i signaling in PASMCs (Wang
et al., 2021).

4.5 Pulmonary fibrosis

Idiopathic Pulmonary Fibrosis (IPF), the most common
interstitial lung disease, is characterized by progressive lung
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scarring due to loss of epithelial regeneration induced by chronic
lung injury, replicative senescence, and type II alveolar epithelial cell
apoptosis. Current anti-fibrotic therapies cannot cure IPF but slow
down its progression. The release of pro-fibrotic mediators, the
activation of fibroblasts and myofibroblasts, and the secretion of
ECM proteins lead to the pathogenesis of IPF (Glassberg, 2019).
TGFβ has been reported to be implicated in the fibrogenic process.
More specifically, TGFβ stimulates the differentiation of fibroblasts
into myofibroblasts and mediates the remodeling of ECM (Vaz de
Paula et al., 2021). The expression of Cav-1 is negatively correlated
with the TGFβ signaling in pulmonary fibrosis (PF) development
(Xing et al., 2017) (Table 1) (Figure 3). Cav-1 has become a
therapeutic target for PF treatment, and Cav-1 scaffolding
domain peptides (CSPs) have been developed. The full-length
CSP (DGIWKASFTTFTVTKYWFYR) can inhibit AEC apoptosis
and suppress fibrotic lung fibroblast activation, attenuating
bleomycin-induced PF. CSP7 (FTTFTVT), a seven-amino acid
fragment of CSP, exhibits anti-fibrotic effects by inhibiting the
TGFβ signaling and restoring the expression of p53 (Nagaraja
et al., 2018; Marudamuthu et al., 2019). The critical roles of
CSP7 in protecting against fibrotic lung diseases have been
comprehensively reviewed (Shetty and Idell, 2023).

Excessive collagen content in ECM may result in fibrosis
development. Chemoattractant receptor homologous molecule
expressed on TH2 cells (CRTH2), a receptor for prostaglandin
D2, has been transported to the ER membrane in a Cav-1-
dependent manner. CRTH2 deficiency promotes collagen
synthesis in fibroblasts and increases the risk of fibrosis (Zuo
et al., 2021) (Table 1). Fyn kinase has been implicated in the
TGFβ signaling, and Cav-1 is colocalized with Fyn in the
caveolae. Dysregulation of the Fyn/TGFβ signaling is involved in
the impairment of alveolar barrier function and the development of
PF (Menzel et al., 2022). Loss of Cav-1 is associated with reduced
alveolar barrier functions and fibrosis-like alterations of the lung
parenchyma. Overexpression of Cav-1 protects against PF by
suppressing the expression of inflammasome NLRP3 and IL-1β
(Lin et al., 2019). The mTOR signaling plays a key role in the
pathogenesis of IPF. In Sftpc-mTORSL1+IT transgenic mice,
bleomycin treatment promotes severe fibrotic alterations. mTOR
activation up-regulates the expression of ANGPTL4, downregulates
the expression of Cav-1, and promotes tight junction vulnerability
and epithelial-mesenchymal transition (EMT) (Saito et al., 2020). A
long non-coding RNA DNM3OS has been verified as a downstream
effector of the TGFβ signaling in promoting myofibroblast
activation and PF development. DNM3OS can be further
processed into three distinct microRNAs, namely, miR-199a-5p,
miR-199a-3p, and miR-214-3p. It has been demonstrated that miR-
199a-5p promotes PF in a Cav-1-dependent manner (Savary et al.,
2019) (Table 1).

Air pollution has been associated with respiratory diseases. It is
reported that PM2.5 exposure is correlated with the development of
PF. Mechanically, PM2.5 exposure decreases Cav-1 expression and
activates the TGFβ1/Smad2/3, ER stress, and autophagy signaling
pathways (Liu et al., 2023). Molybdenum (Mo) and Cadmium (Cd)
are harmful heavy metals in the environment. Exposure of Mo and
Cd may cause significant pathological alterations, oxidative stress,
and iron overload-induced ferroptosis in sheep lungs. Furthermore,
Mo- and Cd-activated ferroptosis promotes the pathogenesis of PF

by activating the Cav-1/Wnt/β-catenin signaling pathway (Zhang
et al., 2023b). CS exposure causes ROS accumulation, interstitial
inflammation, and fibroblast proliferation and fibrosis. Combined
CS and bleomycin exposure is associated with differential Cav-1
expression, heterogeneous parenchymal remodeling, and an
increase in fibrosis (Kulshrestha et al., 2020). In the silicosis
mouse models, the expression of Cav-1 is reduced. In Cav-1
knockout mice, wider alveolar septa, increased collagen content,
and more silicotic nodules are found. The protective activity of Cav-
1 against silica-induced PF might be associated with the suppression
of the NF-κB signaling (He et al., 2022) (Table 1). In silica-inhaled
mouse models, Cav-1 can attenuate PF by decreasing the expression
of YAP1 and suppressing its nuclear translocation for the
transcriptional regulation of GLS1 expression (Li et al., 2022).

4.6 Lung cancers

Lung cancer is characterized by high malignancy, high
morbidity, and high mortality. Early diagnosis and treatment
may achieve effectiveness in minimizing the mortality rate of
lung cancer. Small cell lung cancer (SCLC) and non-small cell
lung cancer (NSCLC) are the two forms of lung cancer. SCLC
accounts for approximately 15% of lung cancer cases and is more
malignant with a 5 year survival rate of 5%. NSCLC can be divided
into squamous cell carcinoma (SCC), adenocarcinoma (AC), and
large cell lung cancer (LCLC). It is interesting to find that lung
cancer preferentially develops in the vicinity of the fibrotic area in
patients with IPF (Kinoshita and Goto, 2019). In addition, the risk of
malignancy in patients with IPF is higher up to approximately
eightfold than that of general individuals (Jang et al., 2021). A
positive correlation of IPF with lung cancer has been demonstrated
(Tzouvelekis et al., 2019). However, the underlying mechanisms in
mediating the initiation and progression of lung cancers are still
unclear. Dysregulation of Cav-1 is associated with cancer
progression, such as cell proliferation, migration, apoptosis, and
drug resistance. The roles of Cav-1 in lung cancer have been
comprehensively reviewed (Blandin Knight et al., 2017). The
potential molecular mechanism in protecting against tumor
development is related to the interaction of Cav-1 with the
molecules in various signaling pathways (Leiser et al., 2021; Yin
et al., 2022; Kamposioras et al., 2023).

Cav-1 is a negative mediator of ROS, which is produced by
NADPH oxidases (NOX1-5). It has been reported that Cav-1
knockout mice have higher expression of hypoxia-induced NOX-
2 and NOX-4 and higher production of superoxide. Treatment of
NOX-expression cells with CSP can significantly reverse the effects
of hypoxia on human lung microvascular endothelial cells by
inhibiting the NF-κB signaling pathway (Chen et al., 2014a)
(Table 1) (Figure 3). The antioxidant defense system includes
superoxide dismutases (SODs), such as the copper (Cu)/Zn SOD
(SOD1) in the cytoplasm, the SOD2 in the mitochondria, and
SOD3 outside the cells. SOD3, a Cu-containing enzyme, is
produced by vascular smooth muscle cells or fibroblasts and
interacts with the endothelial cells. It is reported that Cav-1
deficiency significantly reduces the activity of SOD3, but not
SOD1, by promoting the ubiquitination and proteasomal
degradation of ATP7A, which is a Cu transporter and colocalized
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with Cav-1 in the caveolae (Sudhahar et al., 2020). ROS has been
reported to facilitate the processes of tumorigenesis under the tumor
microenvironment. ROS can disrupt the vessel structure, impair
vascular perfusion, and promote the internalization of secreted
acidic and cysteine-rich protein (SPARC) protein by enhancing
the Tyr14 phosphorylation of Cav-1 (Zhao et al., 2023). Nitric oxide
(NO) is frequently increased in tumors and promotes the stability of
Oct4, which drives the stemness of lung cancer cells. Mechanically,
NO enhances Akt-mediated Tyr14 phosphorylation of Cav-1 and
disrupts the interaction of Cav-1 with Oct4, preventing the
ubiquitination and proteasomal degradation of Oct4 by Cav-1 in
human lung cancer H460 cells (Maiuthed et al., 2018) (Table 1).

MicroRNAs in small extracellular vesicles (sEV-miRNAs) are
prepared by tumor cells for communication. A loading pathway of
batched tumor-promoting sEV-miRNAs in A549 cells has been
designed. Heterogeneous nuclear ribonucleoprotein A1
(hnRNPA1) is selected as a sEV-miRNAs loading protein, and
SUMOylated hnRNPA1 in sEVs is used for evaluating the efficacy
of sEV-miRNA loading. It is reported that Cav-1 is essential for
hnRNPA1-loaded sEV-miRNAs. However, Cav-1 deletion prevents
the encapsulation of SUMOylated hnRNPA1 into sEVs and inhibits
tumor cell proliferation (Li et al., 2021). LINC81507 is associated with
the cell growth, proliferation, migration, and EMT of lung
adenocarcinoma by up-regulating Cav-1 expression through
sponging miR-199b-5p (Peng et al., 2019). Human serum albumin
(HAS) has been identified as a good drug carrier. Cav-1 is reported to
promote HAS uptake, developing a biomarker-directed therapy.
Recently, an effective HAS-SN-38 conjugate (SSH20) has been
developed. Deletion of Cav-1 significantly decreases the uptake and
cytotoxicity of SSH20 (Robb et al., 2021) (Table 1).

O-glcNAcylation, a post-translational modification, is associated
with metabolic dynamics, cell motility, and protein stability and
functions. Cav-1 can be a target of O-glcNAcylation by TRPM7,
which is aberrantly expressed in lung cancers. O-glcNAcylation
prevents the ubiquitination and proteasomal degradation of Cav-1,
leading to the enhanced stability of Cav-1. Inhibition of
TRPM7 suppresses cell migration and invasion by mediating the
O-glcNAcylation of Cav-1 in NCI-H292 cells (Luanpitpong et al.,
2020). PM2.5 exposure increases the production of pro-inflammatory
cytokines and the EMT andmigration of lung cancer cells. Mechanically,
PM2.5 exposure induces upregulation of PVT1 expression, which sponges
miR-199a. Cav-1 is a direct target ofmiR-199a. Thus, the downregulation
of the PVT1/miR-199a/Cav-1 contributes to the inhibition of PM2.5

exposure-induced lung cell development (Qi et al., 2021). Cav-1 can form
a complex with E-cadherin, which is associated with β-catenin (Sun et al.,
2012). However, one study reports that inhibition of Cav-1 enhances the
migration and invasion of human lung cancer cell line NCI-H460 by
decreasing E-cadherin expression and increasing the Wnt/β-catenin
signaling (Song et al., 2012) (Table 1). It has been reported that
approximately 40% of NSCLC patients develop brain metastasis,
resulting in a dismal prognosis. Enhanced Cav-1 expression after
brain metastasis in lung primary tumors has been found. Knockdown
ofCav-1 suppresses themigration and invasion of lung cancer cells due to
the downregulation of SNAIL expression (Kim Y. J. et al., 2019).

A bioinformatics study usingGO, KEGG, and PPI analysis of lung
cancer reveals that Cav-1 can be a prognostic predictor for patients
with lung cancer. It has been demonstrated that Cav-1 acts as a tumor
suppressor, and Cav-1 alterations have been associated with poor

prognosis in patients with lung cancer. Cav-1 has been involved in
radio-resistance and tumor progression in lung cancer (Leiser et al.,
2021). It has been demonstrated that Cav-1 is overexpressed in
NSCLCs irradiation (IR)-resistant cell lines H358-IRR and A549-
IRR. Cav-1 promotes autophagy and enhances IR-resistant cell
survival by increasing the expression of immunity-related GTPase
family M protein (IRGM) (Chen et al., 2021) (Table 1). Molecular
targeted therapy has advanced the management of various diseases.
EGFR-tyrosine kinase inhibitors (TKIs) have been used to treat
NSCLC. However, the acquired resistance to EGFR-TKIs limits
their clinical applications. It is reported that atorvastatin can
effectively suppress tumor growth in EGFR-TKI-resistant NSCLC
cells by inhibiting the interaction of Cav-1 with GLUT3, which
mediates the uptake of glucose (Ali et al., 2019).

5 Clinical perspectives

Human adenovirus type 26 (HAdV26) has been extensively
explored for vaccine development. Recently, HAdV26-based
vaccines against Ebola and COVID-19 in the European Union
have received marketing authorization. The αvβ3 integrin has
been reported to be a receptor for HAdV26 in cell infection
(Nestić et al., 2019). One study shows that αvβ3 integrin-
mediated HAdV26 infection is associated with endocytosis in a
Cav-1-dependent manner in A549 cells (Nestić et al., 2022). Aging
may increase the susceptibility to infections and decrease vaccine
efficacy. It has been reported that the expression of flagellin (FlaB)-
dependent TLR5 is not significantly affected by aging in old
macrophages. The expression of TLR5 is mediated by Cav-1
through their interaction, and Cav-1 is involved in FlaB-
dependent TLR5 signaling. FlaB can be a mucosal adjuvant in
aged mice. In Streptococcus pneumonia-infected mice, FlaB-PspA
fusion exhibits a higher IgG and IgA response and TLR5 enhances
the immune responsiveness (Lim et al., 2015).

Mesenchymal stem cell (MSC)-based therapy has received
increasing recognition due to the high activities in MSC
proliferation and multidirectional differentiation. The Cav-1F92A-
modified rat BMSCs (rBMSC/Cav-1F92A) have been prepared.
Treatment with rBMSC/Cav-1F92A can significantly decrease right
ventricular systolic pressure, vascular stenosis, and oxidative stress in
monocrotaline (MCT)-induced rat pulmonary hypertension.
Mechanically, rBMSC/Cav-1F92A suppresses oxidative stress by
mediating the CA1/kininogen and SelW/14-3-3η signaling pathways
via activating the eNOS/NO/cGMP pathway (YuW. C. et al., 2019). In
addition, rBMSC/Cav-1F92A decreases the expression of TNFα, TGFβ1,
thrombospondin-1, and MGP and increases SM22α and H-caldesmon
expression. Cav-1F92A increases the production of anti-inflammatory
cytokines IL-4 and IL-10 and decreases IL-1α and TNFα (Yu W. et al.,
2019). Consistently, intravenous delivery of rBMSC expressing eNOS/
Cav-1F92A to rats with pulmonary hypertension suppresses PASMC
proliferation and improves vascular remodeling by activating the KLF4/
p53 signaling pathway (Chen et al., 2017). Another study shows that
adipose tissue-derived mesenchymal stem cells (ADMSCs) show
inhibitory effects against bleomycin-induced PF by mediating the
Cav-1/NF-κB signaling pathway (Chen Z. et al., 2022).

In senescent hMSCs, the expression of Cav-1 is upregulated, and the
EGF signaling is attenuated. Overexpression of Cav-1 may lead to
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inhibition of ERK1/2-mediated insulin signaling and PPARγ-induced
adipogenic differentiation in young hMSCs (Park et al., 2005). However,
one study shows that the expression of Cav-1 is downregulated in human
lung adenocarcinoma. Cav-1 expression is correlated with oncogenic
K-Ras-induced premature senescence. Overexpression of Cav-1 can
restore cellular senescence in A549 and H460 lung cancer cells
(Volonte et al., 2018). In Cav-1 knockout mice, the osteogenic
potential of bone marrow-derived mesenchymal stem cells (BMSCs),
bone formation rate, and bone mass have been significantly enhanced.
SiRNA-mediated Cav-1 knockdown can enhance the proliferation and
osteogenic differentiation of human MSCs (Baker et al., 2012). This
differential effect of Cav-1 in stem cells might be associated with the
different contexts and microenvironment.

Consistently, bone marrow (BM) transplantation from healthy
mice to Cav-1 knockout mice exhibits preventive effects against
spontaneous development of PH. However, BM transplantation
does not affect pulmonary endothelial remodeling (Asosingh et al.,
2017). The phase 1a clinical trial (NCT04233814) of LTI-03/CSP7 for
treating IPF by dry powder inhalation has been successfully
completed. It has been demonstrated that aerosolized CSP7 dry
powder is well tolerated without any obvious impact on
respiratory functions. A phase 1b clinical trial testing the efficacy
and safety of CSP7 in patients with IPF will begin soon (Shetty and
Idell, 2023). Several studies have reported that Cav-1 can be a potential
biomarker for therapeutic management and prognosis prediction.
However, one study shows that the monoclonal Cav-1 cannot be used
to distinguish between malignant pleural mesothelioma (MPM)
and pulmonary adenocarcinoma (PA), as shown that 32.35% of
MPM and 6.5% of PA are positive for Cav-1 expression (Bozdag
et al., 2020).

Penehyclidine hydrochloride (PHC) is a novel anticholinergic drug
that exhibits protective activity against LPS-induced ALI by suppressing
the p38 MAPK and NF-κB signaling pathways (Shen et al., 2009). The
protective effects of PHC against LPS-induced ALI might be associated
with the upregulation of Cav-1 expression in J774A.1 cells (Wu et al.,
2019). SZ168 (Podoplanin (PDPN) monoclonal antibody) (Heng et al.,
2023) and Salidroside (Jingyan et al., 2017) show similar protection
against LPS-induced ALI. Glycyrrhizic acid (GA), a bioactive
compound from licorice, has been reported to protect against LPS-
induced ALI by regulating the expression of angiotensin-converting
enzyme 2 (ACE2) and the Cav-1/NF-κB signaling pathway. However,
an ACE2 inhibitorMLN-4760 can abrogate the protective effects of GA
(Chen Y. et al., 2022). The traditional Chinese medicine Qi-Dong-Huo-
Xue-Yin (QDHXY) has been reported to treat ALI by mediating the
expression of Cav-1 and protecting against inflammatory responses in
LPS-treated mice (Xu et al., 2018). Andrographolide pills (AP) is a
labdane diterpene lactone isolated from Andrographis, which is a
traditional Chinese medicine. AP consistently protects against LPS-
induced pulmonary injury and dysfunction by up-regulating the
expression of Cav-1, Src, p47phox, and p67phox (Yang et al., 2014).
YiPingFeng, a traditional Chinese medicine, has been reported to
treat PF by up-regulating Cav-1 expression and inhibiting the
TGFβ1/Smad2 signaling pathway (Chen et al., 2024). Quercetin, a
natural flavonoid distributed widely in plants, exhibits protective effects
against PF by restoring the susceptibility of senescent IPF fibroblasts to
apoptosis via up-regulating Cav-1 and FasL expression and inhibiting
AKT activation (Hohmann et al., 2019). Chrysotobibenzyl, extracted
from Dendrobium pulchellum, has been reported to inhibit cell

proliferation, migration, invasion, and EMT in H460 and H292 cells
by suppressing the expression of Cav-1 (Petpiroon et al., 2019).

6 Conclusion

Cav-1, a vital protein for transcytosis, endocytosis, and signal
transduction, has been involved in regulating the physiological and
pathological processes. The critical roles of Cav-1 in lung diseases,
such as pneumonia, asthma, COPD, ALI, pulmonary hypertension,
PF, and lung cancer, have been demonstrated. Mechanically, Cav-1
interacts with various pathways, such as MAPK, NF-κB, PI3K/AKT,
TGFβ, BMP/Smad, and eNOS/NO signaling, which are associated
with the pathogenesis of lung diseases. Targeting caveolae and Cav-1
can be a therapeutic strategy in the mediation of cell signaling
pathways and the treatment of lung disease. Owing to the versatile
effects of Cav-1 in mediating the signaling pathways, strategies
relating to the functional regulation of Cav-1 might be a more
effective way to treat lung diseases. It is important to elucidate the
underlying mechanisms of Cav-1 in the pathogenesis of lung
diseases. Although a Cav-1 scaffolding domain peptide CSP7 has
been developed, the structural analysis of Cav-1 should be further
deepened. More agents like CSP7 should be developed. Till now, no
small molecules as the ligands targeting Cav-1 have been reported.

However, Cav-1 is a challenging protein due to its ubiquitous
expression in many organ systems, tissue types, and pathological
processes. The interaction of Cav-1 with a variety of signaling
molecules is complex, and the biological effects of Cav-1 can be
positive or negative. The applications of transgenic or gene-
knockout models have been explored for determining the effects
of Cav-1. Understanding how one set of gene-profile mediation is
controlled over the other remains to be elucidated. The systematic
effects of Cav-1 on the physiological and pathological events in vivo
and in vitro need further investigation.
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Glossary

ADAMTSs A disintegrin and metalloproteinase

ALI Acute lung injury

ASM Airway smooth muscle

BMPR2 BMP2 receptor

BMSCs Bone marrow-derived mesenchymal stem cells

BMPs Bone morphogenetic proteins

CTD C-terminal domain

Cav-1 Caveolin-1

CBMs Caveolin-binding molecules

CSD Caveolin scaffolding domain

COPD Chronic obstructive pulmonary disease

CS Cigarette smoke

ES Embryonic stem

ER Endoplasmic reticulum

Enos Endothelial NO synthase

EGFR Epidermal growth factor receptor

EMT Epithelial-mesenchymal transition

ERK1/2 Extracellular regulated protein kinase1/2

HO-1 Heme oxygenase-1

IPF Idiopathic Pulmonary Fibrosis

I/R Ischemic reperfusion

MMPs Matrix metalloproteinases

MAPK Mitogen-activated protein kinase

NTD N-terminal domain

NF-κB Nuclear factor kappa-B

PKC Protein kinase C

PF Pulmonary fibrosis

Treg Regulatory T

STAT3 Signal transducer and activator of transcription 3

SNPs Single nucleotide polymorphisms

SODs Superoxide dismutases

TGFβ1 Transforming growth factor β1

TRPV4 Transient receptor potential vanilloid 4

VEGF Vascular endothelial growth factor
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