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We have reported that D,L-thiol esters, including D-cysteine ethyl ester
(D-CYSee), are effective at overcoming opioid-induced respiratory depression
(OIRD) in rats. Our on-going studies reveal that co-injections of D-CYSee with
multi-day morphine injections markedly diminish spontaneous withdrawal that
usually occurs after cessation of multiple injections of morphine in rats.
Chronically administered opioids are known (1) to alter cellular redox status,
thus inducing an oxidative state, and (2) for an overall decrease in DNA
methylation, therefore resulting in the transcriptional activation of previously
silenced long interspersed elements (LINE-1) retrotransposon genes. The first
objective of the present study was to determine whether D-CYSee and the one
carbonmetabolismwith themethyl donor, betaine, wouldmaintain redox control
and normal DNA methylation levels in human neuroblastoma cell cultures (SH-
SY5Y) under overnight challenge with morphine (100 nM). The second objective
was to determine whether D-CYSee and/or betaine could diminish the degree of
physical dependence tomorphine inmale Sprague Dawley rats. Our data showed
that overnight treatment with morphine reduced cellular GSH levels, induced
mitochondrial damage, decreased global DNAmethylation, and increased LINE-1
mRNA expression. These adverse effects by morphine, which diminished the
reducing capacity and compromised the maintenance of the membrane
potential of SH-SY5Y cells, was prevented by concurrent application of
D-CYSee (100 µM) or betaine (300 µM). Furthermore, our data demonstrated
that co-injections of D-CYSee (250 μmol/kg, IV) and to a lesser extent, betaine
(250 μmol/kg, IV), markedly diminished the development of physical dependence
induced by multi-day morphine injections (escalating daily doses of
10–30 mg/kg, IV), as assessed by the lesser number of withdrawal
phenomena elicited by the injection of the opioid receptor antagonist,
naloxone (1.5 mg/kg, IV). These findings provide evidence that D-CYSee and
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betaine prevent the appearance of redox alterations and epigenetic signatures
commonly seen in neural cells involved in opioid physical dependence/addiction,
and lessen development of physical dependence to morphine.

KEYWORDS

morphine, addiction, dependence, D-cysteine ethyl ester, betaine, human SH-SY5Y
cells, rats

Introduction

Opioids alter DNA and histone methylation patterns, and gene
expression, which contributes to their physiological action and the
underlying addictive nature of these drugs (Trivedi et al., 2014a;
Trivedi et al., 2014b; Trivedi and Deth, 2015; De Sa Nogueira et al.,
2018). Methylation of DNA and histones can cause heritable

epigenetic changes in chromatin structure that activate or silence
gene transcription. While some epigenetic marks are stable, others
are more dynamic allowing cells to respond rapidly to changing
metabolic or environmental signals (Suzuki and Bird, 2008; Ma
et al., 2009; Ito et al., 2010; Gut and Verdin, 2013; Smith and
Meissner, 2013; Salminen et al., 2014). The mechanisms associated
with opioid-induced epigenetic changes involve inhibition of activity

FIGURE 1
Methionine cycle metabolites and pathways linked to opioid signaling. Neurons depend on transport of L-cysteine by EAAT3 to synthesize the
antioxidant glutathione (GSH) since conversion of cystathionine to L-cysteine is limited in neurons. Opioids inhibit EAAT3 causing depletion of L-cysteine
and reduced GSH synthesis leading to oxidative stress (decreased GSH/GSSG ratio) and inhibition of MTR. This leads to decreases in SAM levels and a
build-up of SAH and homocysteine. The SAM/SAH ratio is decreased, which inhibits activity of DNA DNMTs). This impairs the maintenance of 5-mC
status on DNA and alters gene expression programs and cell responses. D-CYSee readily crosses the cell membrane without the EAAT3 transporter and
reverses the effects of opioids on DNA methylation. We have evidence that betaine reverses opioid effects on methylation. BHMT bypasses the MTR
reaction and drives remethylation of homocysteine tomethionine. This process eliminates toxic build-up of homocysteine and SAH in oxidative states so
that the SAM/SAH ratio is maintained. Methionine metabolism is linked to neurotransmitter synthesis. The essential cofactor, BH4, is synthesized during
the methionine synthase reaction, which re-methylates homocysteine to methionine. During this reaction conversion of 5-MTHF to THF creates BH4

required for dopamine andNE synthesis. Depletion of cysteine by opioids leads to increased ROS andMTR inhibition, which can reduce BH4 availability for
synthesis of neurotransmitters dopamine and NE. Abbreviations: MAT, methionine adenosyltransferase (S-Adenosylmethionine synthetase); SAM,
S-adenosylmethionine; SAH, S-adenosyl-homocysteine; DNMT, DNA methyl-transferases; HMT, histone methyltransferases; BHMT, betaine
homocysteine methyl-transferase; MTR, methionine synthase; B12, Vitamin B12; CBS, cystathione β synthase; AHCY, S-adenosylhomocysteine
hydrolase; 5-MTHF, L-methyl-folate; BH4, tetrahydrobipterin; GSH, glutathione; 5-mC, 5-methylcytosine; GSSG, glutathione dipeptide (oxidized); NE,
norepinephrine; EEAT3, excitatory amino acid transporter-3; D-CYSee, D-cysteine ethyl ester.
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and ultimate degradation of the excitatory amino acid transporter 3
(EAAT3), which is required for uptake of the amino acid, L-cysteine,
into neurons (Trivedi et al., 2014a; Trivedi et al., 2014b; Trivedi and
Deth, 2015; De Sa Nogueira et al., 2018). L-cysteine exerts a variety
of effects in cells, including conversion to the antioxidant tripeptide,
glutathione (GSH, γ-glutamyl-cysteinyl-glycine), which maintains
redox homeostasis in cells (Lu, 2013; Jenkins et al., 2021). Neurons
are particularly sensitive to L-cysteine deficiency because flux, via
transulfuration pathways, which convert L-homocysteine to GSH,
are extremely limited due to low conversion of L-cystathionine to
L-cysteine. Neurons rely on L-cysteine transport from astrocytes via
the EAAT3 transporter (Trivedi and Deth, 2015; Trivedi et al.,
2015). As a direct consequence of opioid exposure (Figure 1),
neurons become deficient in L-cysteine and GSH, which results
in an inability to maintain redox control (Trivedi et al., 2014a;
Trivedi et al., 2014b; Trivedi and Deth, 2015; Trivedi et al., 2015).

Impaired redox control in cells plays an important role in the
expression of opioid withdrawal signs (Xu et al., 2006), thus
therapeutics that maintain redox homeostasis (e.g., GSH levels)
may be beneficial for treating opioid use disorder (OUD). Redox
control and DNA/histone methylation reactions are closely linked to
intracellular methionine metabolism (Figure 1). In the methionine
cycle, methionine is converted to S-adenosyl-methionine (SAM),
which is the methyl donor for most methylation reactions (e.g.,
DNA and histone methylation) within cells (Bottiglieri, 2013; Froese
et al., 2019). The B12-dependent methionine synthase (MTR in
Figure 1) is sensitive to inhibition by reactive oxygen species
(ROS) via the oxidation of B12 (cobalamin) (Nicolaou et al.,
1994; Nicolaou et al., 1996; Mukherjee and Brasch (2011). With
opioid exposure, the oxidation of MTR contributes to decreased
levels of the methyl donor SAM for the epigenetic regulation of
chromatin (Trivedi and Deth, 2015; Trivedi et al., 2015). SAM is
converted to S-adenosyl-homocysteine (SAH) after donating a
methyl group. Under oxidative-stress states, the build-up SAH
and homocysteine, inhibits the activities of methyltransferase
enzymes (Cantoni, 1975; Xu et al., 2015). The perturbation of
redox control and SAM/SAH ratio (i.e., methylation potential),
could readily explain the reduction in DNA and histone
methylation by opioids (Sun et al., 2012; Trivedi et al., 2014a;
Trivedi et al., 2014b). Changes in the SAM/SAH ratio lead to
changes in the methylation status of downstream substrates,

including DNA and histones, and results in aberrant gene
expression (Mentch et al., 2015). Morphine treatment of human
neuroblastoma cells causes overall decreases in DNA methylation,
which results in the transcriptional activation of previously silenced
long interspersed elements (LINE-1) retrotransposon genes (Trivedi
et al., 2014a; Trivedi et al., 2014b). It should be noted that opioids
also alter the expression of genes involved in neurotransmission,
synaptic plasticity, and GSH metabolism (McClung et al., 2005;
Tapocik et al., 2013).

We have reported that L-cysteine ethyl ester (L-CYSee), and
related L,D-thiolesters (Mendoza et al., 2013; Gaston et al., 2021;
Jenkins et al., 2021; Getsy et al., 2022a; Getsy et al., 2022b; Lewis
et al., 2022) and L-S-nitrosthiols (Getsy et al., 2022c; Getsy et al.,
2022d), overcome the deletrious actions of fentanyl and morphine
on breathing, arterial blood-chemistry and alveolar gas exchange in
rats, while not markedly affecting the analgesic/sedative actions of
the opioids. We have also demonstrated that D-cysteine ethyl ester
(D-CYSee) mimics the effects of L-CYSee and chose to use this
compound because it is likley to have less off-target effects than
L-CYSee (Getsy et al., 2022c; Getsy et al., 2022d). Although we have
not determined the mechanisms by which D-CYSee or other D,L-
thiolesters reverse opioid-induced respiratory depression (OIRD),
we reported that the free radical and superoxide anion scavenger,
Tempol, also blunted fentanyl- and morphine-induced OIRD (Baby
et al., 2021a; Baby et al., 2021b). As such, it is possible that
preventing/reversing opioid-induced changes in oxidation-
reduction status of neurons may be of benefit in overcoming
OIRD and physical dependence to opioids. In this study, our first
objective was to test whether enhancing redox control with D-CYSee
and the one-carbon metabolite with a methyl donor, betaine
(Ueland et al., 2005; Chen and Murata, 2008; Lever and Slow,
2010; Ueland, 2011; Aramburu et al., 2014; Kumar et al., 2016;
Knight et al., 2017; Zhao et al., 2010; Ohnishi et al., 2019; Arumugam
et al., 2021) (Figure 2 for chemical structures), wouldmaintain redox
control and DNA methylation levels in human SH-SH5Y
neuroblastoma cells (Singhal et al., 2015; Brown et al., 2016) that
were challenged overnight with morphine (see Figure 3 for potential
steps). We chose to study human SH-SH5Y neuroblastoma cells to
allow comparisons to the extensive findings about redox-dependent
pathways in these cells (Núñez et al., 2004; Tirmenstein et al., 2005;
Aguirre et al., 2007; Dias et al., 2014; Wang et al., 2019; Mistry et al.,

FIGURE 2
Chemical structures and names of D-cysteine, D-cysteine ethyl ester (D-CYSee) and betaine.
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2020), and the mechanisms of action of agents that modify the cell
signaling effects of opioids in these cells (Trivedi et al., 2014a;
Trivedi et al., 2014b; Trivedi et al., 2015; Trivedi and Deth, 2015).

The second objective was to determine whether intravenous co-
injections of D-CYSee or betaine modified the development of
physical dependence to morphine in male Sprague Dawley rats as
assessed by the strength of the withdrawal responses elicited by the
injection of the opioid receptor antagonist, naloxone HCl (NLX).
The behavioral phenomena included the occurrence of jumping (all
four paws off the floor), wet dog-like shakes (WDS), rearing on hind
legs (rears), episodes of fore-paw licking (FPL), circling (full 360°

rotation), writhing (fully body contortion) and sneezing (abrupt
expulsion of air). The other recorded parameters were drops in body
temperature and body weight. All responses are classic signs of NLX-
induced responses in morphine-dependent rats (Laska and
Fennessy, 1976; Hutchinson et al., 2007; Morgan and Christie,
2011; Nielsen and Kreek, 2012).

Materials and methods

Permissions, rats, and surgical procedures

All studies were carried out in strict accordance with the NIH
Guide for Care and Use of Laboratory Animals (NIH Publication No.
80-23) revised in 1996, and in strict compliance with the ARRIVE
(Animal Research: Reporting of In Vivo Experiments) guidelines
(http://www.nc3rs.org.uk/page. asp? id = 1,357). All protocols
involving the use of rats were approved by Animal Care and Use
Committees of Kent State University and Case Western Reserve
University. Adult male Sprague Dawley rats were purchased from
ENVIGO (Madison,WI, USA). They were given 5 days to recover from
transportation before surgery. All rats received an indwelling jugular

vein catheter (PE-10 connected to PE-50) under 2%–3% isoflurane
anesthesia as described previously (Gaston et al., 2021; Getsy et al.,
2022f). The catheter was then exteriorized at the back of the neck and all
wounds were closed. The rats were given 3 days to recover from the
surgeries. The venous catheters were flushed with 0.3 mL of phosphate-
buffered saline (0.1 M, pH 7.4) 3–4 h before commencement of each of
the studies. All studies were done in a quiet roomwith relative humidity
of 50% ± 2% and temperature of 21.3°C ± 0.2°C. (+)-Morphine sulfate
was obtained from Baxter Healthcare (Deerfield, IL, USA). D-CYSee
HCl powder was obtained from ChemImpex (Wood Dale, IL).
D-cysteine, betaine, and naloxone HCl were obtained from Sigma-
Aldrich (St. Louis, MO, USA). Full step by step instructions with
detailed diagrams for the above surgeries and vascular catherizations
can be found at https://www.criver.com/products-services/research-
models-services/preconditioning-services/rodent-surgery/vascular-
catheterizations?region=3601.

Injection protocols

All co-injections started at 8 a.m. and 8 p.m. except for the final
injection which was given at 2 p.m. Each group consisted of nine adult
male Sprague Dawley rats. Day 1: two injections of morphine
(10 mg/kg, IV). Day 2: two injections of morphine (15 mg/kg,IV).
Day 3: two injections of morphine (20 mg/kg, IV). Day 4: two
injections of morphine (25 mg/kg,IV). Day 5: two injections of
morphine (30 mg/kg, IV). One group of rats received injection of
vehicle (saline) either 15 min (n = 5) or 5 min (n = 4) prior to the
injection of morphine. Other groups of rats (n = 9 rats per group)
received co-injections of a 250 μmol/kg dose of (a) betaine
(29.3 mg/kg, IV), (b) D-cysteine (30.3 mg/kg, IV), or (c) D-CYSee
(46.5 mg/kg, IV) with morphine. Rats were placed in clear plastic
boxes immediately after the last set of co-injections and allowed

FIGURE 3
Steps bywhich betaine andD-CYSeemay contribute to the alteration ofmethionine andGSH status. (A)Betaine-homocysteine S-methyltransferase
(BHMT)-dependent conversion of homocysteine to methionine. (B) D-CYSee-induced reduction of oxidized glutathione (GSSG) to GSH.
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60 min to acclimatize. At 60 min, all rats received an injection of NLX
(1.5 mg/kg, IV) and the NLX-precipitated withdrawal phenomena
were recorded over a 90min period by three observers who were blind
to the drug-administration protocols.

Tissue culture and redox levels

Human SH-SH5Y neuroblastoma cell lines were maintained in
DMEM/F12 (Sigma-Aldrich, St Louis, MO) supplemented with 10%
fetal bovine serum (Atlanta Biologicals, Atlanta, GA), 50 μg/mL
penicillin, and 50 μg/mL streptomycin (Corning, Corning, NY) at
37°C in a humidified CO2 incubator. Cells were grown in 10 cm Petri
dishes in confluence up to 90%. Cells were treated overnight with
morphine (100 nM), D-CYSee (100 µM), betaine (300 µM), morphine
(100 nM) + D-CYSee (100 µM) or morphine (100 nM) + betaine
(300 µM). GSH levels (ng/mL) were measured with a GSH kit
(Abcam, Cambridge, United Kingdom) according to manufacturer’s
instructions from 4 separate experiments. A standard curve was
constructed to determine actual GSH levels with absorbance units
at each concentration being 0 (0 ng/mL), 0.242 (200 ng/mL), 0.549
(400 ng/mL), 1.207 (600 ng/mL), 1.666 (800 ng/mL) and 1.837
(1,000 ng/mL). Mitochondrial membrane potential was measured
in human SH-SY5Y neuroblastoma cells by measuring JC-1
(5,50,6,60-tetra-chloro-1,10,3,30-
tetraethylbenzimidazolylcarbocyanine iodide) fluorescence as
described by Chen et al. (2019). In the normal cells, JC-1 exists as
a monomer in the cytosol (green) and also accumulates as aggregates
(red) in mitochondria induced by higher mitochondrial membrane
potential. In apoptotic and necrotic cells, JC-1 exists in monomeric
form and stains the cytosol green. As such, the red fluorescence
denotes healthy mitochondria with intact membrane potential,
whereas the green fluorescence denotes damaged mitochondria
with altered membrane potential. Quantitation of red and green
fluorescence and red/green fluorescence ratio denoting healthy/
damaged mitochondria was measured in at least 3 separate
treatments using a Tecan Safire5 microplate reader.

DNA methylation studies

Human SH-SY5Y neuroblastoma cells were treated overnight
(20 h) with morphine (100 nM), D-CYSee (100 μM), betaine
(300 μM), morphine (100 nM) + D-CYSee (100 μM) or
morphine (100 nM) + betaine (300 μM). Global DNA
methylation levels were measured (5-methylcytosine (5-mC)/
100 ng DNA) with MethylFlash Methylated DNA Quantification
Kits (Epigentek, Farmingdale, NY) from at least 3 separate
treatments.

Real-time quantitative reverse transcription
polymerase chain reaction (qRT-PCR)

Levels of LINE-1 RNA were measured by qRT-PCR with gene
specific primers as described by Trivedi et al. (2014a, 2014b). Total
RNA was isolated from SH-SY5Y cells treated overnight (20 h) with
morphine (100 nM), D-CYSee (100 μM, betaine (300 μM),

morphine (100 nM) + D-CYSee (100 μM) or morphine
(100 nM) + betaine (300 μM) using the TRIzol reagent (Thermo
Fischer Scientific, Waltham, MA). The samples were t purified on
Quick-RNAMiniPrep Plus kit columns (Zymo Research, Irvine, CA).
qRT-PCR was performed in triplicate with Brilliant III Ultra-Fast
SYBR-Green (Agilent Technologies, Santa Clara, CA) and a
MaxPro3000 Real Time PCR system (Agilent Technologies, Santa
Clara, CA). Data was collected from 3 separate cell preparations.
Relative gene expression was calculated with the 2−ΔΔCt method after
normalization to β-actin levels.

Data analyses

All data were analyzed using one-way and two-way ANOVA
followed by Bonferroni corrections for multiple comparisons
between means using the error mean square terms from each
ANOVA analysis (Wallenstein et al., 1980; Ludbrook, 1998;
McHugh, 2011) as detailed previously (Getsy et al., 2023a; Getsy
et al., 2023b). A p < 0.05 value denoted the initial level of statistical
significance that was modified according to the number of
comparisons between means as described by Wallenstein et al.
(1980). The modified t-statistic is t = (mean group 1 - mean
group 2)/[s x (1/n1 + 1/n2)

1/2] where s2 = the mean square within

FIGURE 4
D-CYSee reverses morphine effects on cellular antioxidant
capacity. GSH concentrations were measured in human SH-SY5Y
human neuroblastoma cells. Treatment groups: CON, control;
betaine (300 μM); D-cysteine ethyl ester (D-CYSee, 100 μM);
morphine (100 nM); morphine (100 nM) + betaine (300 μM); Morphine
(100 nM) + D-CYSee (100 μM); There were four cell preparations in
each group. Data are presented asmean ± SEM. *p < 0.05, significantly
different to control. †p < 0.05, morphine + betaine or D-CYSee versus
morphine alone.
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FIGURE 5
Morphine damage to mitochondria is rescued by D-CYSee or betaine. (Panel A) JC-1 staining of mitochondria (red). Damaged mitochondria lose
membrane potential, indicated by reduced red and increased green fluorescence. (Panel B) Quantitation is shown for overall red, green and red/green
fluorescence. CON, control. MOR, morphine; M + D, morphine + D-CYSee; M + B, morphine + betaine. *p < 0.05, significant difference from control
levels. †p < 0.05, morphine + treatment versus morphine alone.

Frontiers in Pharmacology frontiersin.org06

McDonough et al. 10.3389/fphar.2024.1416701

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1416701


groups term from the ANOVA (the square root of this value is used
in the modified t-statistic formula) and n1 and n2 are the number of
rats in each group under comparison. Based on an elementary
inequality called Bonferroni’s inequality, a conservative critical
value for modified t-statistics obtained from tables of
t-distribution using a significance level of P/m, where m is the
number of comparisons between groups to be performed (Winer,
1971). The degrees of freedom are those for the mean square for
within group variation from the ANOVA table. The critical
Bonferroni value is not found in conventional tables of the
t-distribution, but can be approximated from tables of the
normal curve by t = z + (z + z3)/4n, with n being the degrees of
freedom and z being the critical normal curve value for P/m. The
Bonferroni procedure provides critical values that are lower than
those of other procedures when the number of comparisons can be
limited, and will be slightly larger than those of other procedures if

many comparisons are made (Wallenstein et al., 1980). Statistical
analyses were performed with the aid of GraphPad Prism software
(GraphPad Software, Inc., La Jolla, CA). All summary data are
presented as mean ± SEM.

Results

Effects of D-CYSee and betaine on GSH
levels and mitochondria after
opioid exposure

Opioids decrease L-cysteine uptake, resulting in decreased levels of
reduced glutathione (GSH) that leave neurons vulnerable to oxidative
insults. As summarized in Figure 4, overnight incubation with betaine
(300 μM) or D-CYSee (100 μM) did not alter GSH levels in human SH-
SY5Y cells, whereas morphine (100 nM) produced a substantial
decrease in GSH levels. Co-incubation with betaine (300 μM)
prevented morphine (100 nM) from decreasing GSH levels.
D-CYSee (100 μM) also overcame the ability of morphine (100 nM)
to depress GSH levels. In fact, GSH levels were actually higher than
control levels in cells co-incubated with morphine and D-CYSee. We
also tested the effects of D-CYSee and betaine on mitochondrial
membrane potential in human SH-SY5Y neuroblastoma cells by
measuring JC-1 fluorescence. Morphine reduced membrane
potential by 30% in neuroblastoma cells. D-CYSee and betaine were
equally effective in restoring mitochondrial membrane potential during
morphine treatment (Figure 5). As such, it is evident that D-CYSee and
betaine maintain redox homeostasis and protect mitochondria from
opioid-induced toxicity.

D-CYSee and betaine reverse opioid
mediated reductions in global levels of DNA
methylation and restore appropriate
gene silencing

We demonstrate that D-CYSee and betaine reverse morphine-
induced changes in global DNA methylation. Human SH-SY5Y
neuroblastoma cells were treated with 100 nM morphine overnight
and, as seen in Figure 6A, morphine reduced global DNAmethylation.
Methylation levels were restored in cells co-treated overnight with
D-CYSee (100 μM) or betaine (300 μM). We then determined the
effects of D-CYSee and betaine onmorphine-induced changes in LINE-
1 RNA expression. To determine whether the reductions in 5-mC
shown in Figure 6A, which silences transcription, effected the
expression of the LINE-1 gene, we measured levels of LINE-1 RNA
by qRT-PCR. As seen in Figure 6B, LINE-1 RNA levels were increased
by over 2-fold with morphine treatment and these RNA levels were
restored to control levels with D-CYSee or betaine.

D-CYSee and betaine diminish the
development of physical dependence
to morphine

NLX elicited a pronounced series of behaviors (Figure 7A) and
falls in body weight (Figure 7B) and body temperature (Figure 7C)

FIGURE 6
D-CYSee or betaine reverses the effects of morphine on global
DNA methylation (Panel A) and LINE-1 RNA expression (Panel B) in
human SH-SY5Y neuroblastoma cells. The cells were treated
overnight (16 h) with morphine (0.1 μM) in the absence or
presence of D-CYSee (100 μM) or betaine (300 μM). Abbreviations:
MOR, morphine. M + D, morphine + D-CYSee. M + B, morphine +
betaine. There were 3 separate samples in each group. *p < 0.05,
significantly different from control. †p < 0.05, morphine + treatment
versus morphine alone.
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in rats that received co-injections of morphine + vehicle. These
NLX-induced responses were reduced in rats that received co-
injections of betaine and markedly reduced in rats co-injected
with D-CYSee, but not D-cysteine. As seen in Table 1, body
temperature was equally elevated 60 min after the last set of co-
injections of morphine + vehicle or morphine + D-cysteine (Pre-
NLX). This hyperthermia was less in rats co-injected with
morphine + betaine and markedly reduced in those co-injected
with morphine + D-CYSee. As also seen in Table 1, body weight
was equally reduced 60 min after the last set of co-injections of
morphine + vehicle or morphine + D-cysteine (Pre-NLX). There
was no reduction in the body weights of rats co-injected with
morphine + betaine and morphine + D-CYSee, instead an increase
in body weight was observed at this timepoint (Pre-NLX)
compared to their starting weights (Pre values). NLX elicited
pronounced falls in body weights in the morphine + vehicle
and morphine + D-cysteine treatment groups. The NLX-
induced falls in body weight were less in the rats that received
morphine + betaine, and markedly less in the rats that received
morphine + D-CYSee.

Discussion

Trivedi et al. (2014a, 2014b) provided compelling evidence that
morphine induced dependence/addiction involves redox-based
changes in global DNA methylation and retrotransposon
transcription via the inhibition of excitatory amino acid
transporter type 3 (EAA3)-mediated uptake of cysteine into brain
neurons. Some steps arising from studies of Trivedi et al. (2014a),
Trivedi et al. (2014b) and others (Lin et al., 2001; Ikemoto et al., 2002;
Mao et al., 2002; Xu et al., 2003; 2006; Christie, 2008; Yang et al., 2008;
Wang et al., 2009; Daijo et al., 2011 Gutowicz et al., 2011; Liu et al.,
2011; Maze and Nestler, 2011; Lim et al., 2012; Sun et al., 2012;
Browne et al., 2020) appear to involve (1) morphine attenuation of
L-cysteine uptake into neurons by G-protein-dependent decrease in
EAA3 expression and function, (2) reductions in intracellular levels of
L-cysteine, L-glutathione and methylation index (SAM/SAH ratio,
S-adenosyl-methionine/S-adenosyl-homocysteine), (3) reduced
methylation of global CpG (regions of DNA in which a cytosine
nucleotide is followed by a guanine nucleotide in linear base sequence
along the 5′→ 3′direction), and decreased CpG methylation of long

FIGURE 7
Panel (A)Withdrawal phenomena elicited by a bolus injection of naloxone HCl (1.5 mg/kg, IV) in rats that received co-injections of morphine (doses
escalating from 10mg/kg to 30mg/kg, IV) + vehicle (saline), D-cysteine (250 μmol/kg, IV), betaine (250 μmol/kg, IV) or D-cysteine ethyl ester (D-CYSee,
250 μmol/kg, IV). Withdrawal Signs: Jumps, all four paws off the floor; WDS, wet-dog shakes; Rears, rearing on hind legs; FPL, episodes of fore-paw
licking; Circles, a 360° rotation; Writhes, fully body contortion; Sneezes, abrupt expulsion of air. Panel (B) Changes in body weight elicited by
injection of naloxone HCl (1.5 mg/kg, IV) in the above groups of rats. Panel (C) Changes in body temperature elicited by injection of naloxone HCl
(1.5 mg/kg, IV) in the above groups of rats. The data are mean ± SEM. There were nine rats in each group. *p < 0.05, significant response from Pre-values.
†p < 0.05, D-cysteine, D-CYSee or betaine versus vehicle. ‡p < 0.05, D-CYSee versus betaine.
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interspersed nuclear element - 1 (LINE-1) retrotransposon regulatory
regions, (4) activation of transcription of previously silenced LINE-1
gene [see Figure 5 of Trivedi et al. (2014a)]. It occurred to us that co-
administration of cell-penetrant L,D-thiolesters, such as L- or
D-CYSee or the methyl donor, betaine, may be able to prevent the
redox changes associated with a perturbation of DNA methylation
and gene expression in neurons.

The present study found that overnight exposure to morphine
greatly reduced intracellular levels of GSH in human SH-SY5Y
neuroblastoma cells. These findings are consistant with substantial
evidence that opioids/opioid peptides decrease the levels of GSH in
neuronal, non-neuronal cells and organelles by a number of
mechanisms (Moussa and el-Beih, 1972; Eklöw-Låstbom et al.,
1986; Skoulis et al., 1989; Goudas et al., 1999; Guzmán et al., 2009;
Deb and Das, 2011; Abdel-Zaher et al., 2013a; Abdel-Zaher et al.,
2013b; Trivedi et al., 2014a; Trivedi et al., 2014b, Trivedi et al., 2015;
Trivedi et al., 2016; Trivedi and Deth, 2015; Samikkannu et al., 2015;
Yun et al., 2015; Yun et al., 2017; Chen et al., 2019; Shibani et al., 2019;
Osmanlıoğlu et al., 2020; Mozafari et al., 2022), including decreased
glutathione synthase activity (Samikkannu et al., 2015), increased
glutathione peroxidase activity (Mozafari et al., 2022), and formation
of glutathione conjugates, such as formyl glutathione (Eklöw-Låstbom
et al., 1986). GSH is present in all mammalian cells and is vital to cell
health (Townsend et al., 2003; Dwivedi et al., 2020). The presence of a
sulfhydryl (SH) group confers potent antioxidant efficacy to GSH by,
for example, its interactions with reactive oxygen and nitrogen species
(Keszler et al., 2010; Mailloux et al., 2013) in which two molecules of
GSH dimerize via disulfide linkage to form GSSG (glutathione
disulfide) Mailloux et al., 2013. The reduced (GSH) and oxidized
disulfide form (GSSG) are readily inter-convertible, with reduced
GSH being the predominant form in healthy cells (Lu, 2013). GSH
acts in coordination with other redox-active agents, such as α-lipoic

acid and nicotinamide adenosine diphosphate (NADPH), to regulate
intra-cellular redox status (Shen et al., 2005). GSH is converted to
GSSG by glutathione peroxidase, whereas GSSG is converted to GSH
by glutathione reductase (Knollema et al., 1996; Lubos et al., 2011).
The GSH-GSSG cycle is involved in intracellular processses including
(1) conversion of hydrogen peroxide (H2O2) to water and oxygen,
(2) maintaining cell redox/antioxidant status, (3) detoxification of
xenobiotic agents, (4) maintaining bioavailable pools of L-cysteine,
(5) production of iron-sulfur (Fe–S) cluster proteins, and (6) synthesis
and storage of preformed pools of S-nitrosothiols (Dringen et al.,
2000; Ghezzi, 2005; Franco et al., 2007; Seth and Stamler, 2011;
Ghezzi and Chan, 2017; Seckler et al., 2017; Seckler et al., 2020;
Seckler et al., 2022). Depleted levels of GSH trigger ROS generation
implicated in cell death causing neurological diseases like Alzheimer’s
disease, Parkinson’s disease and multiple sclerosis (Lovell et al., 1995;
Pearce et al., 1997; Choi et al., 2011; Saharan andMandal, 2014). A key
finding of the present study is that D-CYSee normalized the levels of
GSH and GSH/GSSG ratio in SH-SY5Y cells. Whether D-CYSee
enhances GSH levels by directly interfering with morphine/opioid-
receptor-initiated changes in the activity of enzymes regulating
intracellular levels of GSH (e.g., glutathione peroxidase and
glutathione reductase) remains to be determined. Although we
have established that D-CYSee and related L,D-thiolesters do not
directly antagonize opioid-receptors in rats (Gaston et al., 2021;
Jenkins et al., 2021; Getsy et al., 2022a; Getsy et al., 2022b; Getsy
et al., 2022c; Getsy et al., 2022d; Lewis et al., 2022), it is possible that
the application of D-CYSee under the present experimental
conditions (overnight incubation) causes a downregulation of
plasma membrane opioid receptors in the SH-SY5Y cells per se
rather than overcoming opioid-receptor signaling events.

The present study also found that overnight incubation with
morphine caused substantial damage to the SH-SY5Y cells as

TABLE 1 Changes in body temperature and body weight elicited by the injection of naloxone HCl in the four treatment groups.

Body temperature (°C) Actual values ΔChange (°C)

Emulsion Infusion Injection Pre Pre-NLX Post-NLX Pre-NLX vs. pre NLX response

Morphine Vehicle NLX 37.4 ± 0.1 38.4 ± 0.1 36.8 ± 0.2 +0.96 ± 0.10* −1.63 ± 0.15*

Morphine D-cysteine NLX 37.5 ± 0.1 38.5 ± 0.2 36.8 ± 0.3 +1.04 ± 0.08* −1.77 ± 0.16*

Morphine D-CYSee NLX 37.5 ± 0.1 37.8 ± 0.1 37.4 ± 0.2 +0.26 ± 0.06*,† −0.39 ± 0.04*,†

Morphine Betaine NLX 37.5 ± 0.1 38.1 ± 0.1 37.2 ± 0.1 +0.58 ± 0.06*,†,‡ −0.93 ± 0.11*,†,‡

Body Weight (grams) Actual Values ΔChange (grams)

Emulsion Infusion Injection Pre Pre-NLX Post-NLX Pre-NLX vs. Pre NLX response

Morphine Vehicle NLX 331 ± 2.1 320 ± 2.0 307 ± 1.8 −10.8 ± 1.1* −13.4 ± 0.9*

Morphine D-Cysteine NLX 334 ± 1.6 323 ± 1.3 308 ± 2.1 −11.1 ± 0.7* −14.4 ± 1.4*

Morphine D-CYSee NLX 333 ± 1.7 342 ± 2.0 338 ± 2.0 +9.2 ± 1.0*,† −4.0 ± 0.7*,†

Morphine Betaine NLX 334 ± 1.4 336 ± 1.7 327 ± 2.3 +2.1 ± 0.8†,‡ −8.3 ± 1.1*,†,‡

Responses elicited by the acute injection of naloxone HCl (NLX, 1.5 mg/kg, IP) in rats that received co-injections of morphine plus vehicle (300 μL/kg, IV), D-cysteine, D-cysteine ethyl ester

(D-CYSee), or betaine (250 μmol/kg, IV). There were nine rats in each group. The data are presented as mean ± SEM.

*p < 0.05, significant response from Pre-values.
†p < 0.05, D-cysteine, D-CYSee, or betaine versus vehicle.
‡p < 0.05, betaine versus D-CYSee.
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evidenced by the deleterious changes in mitochondrial membrane
potential. The mechanisms by which morphine causes injury to
mitochondria are multi-factorial and involve, oxidative stress (e.g.,
increased levels of reactive oxygen species); lipid peroxidation;
upregulation of activity of caspase-3 and caspase-9, Drp1 and
Mfn2; generation of neuroinflammatory cytokines (e.g., IL-1β,
TNF-α, IL-6); raising intracellular Ca2+ to neurotoxic levels (Feng
et al., 2013; MacVicar et al., 2015; Kasala et al., 2020; Osmanlıoğlu
et al., 2020); and generation of the powerful oxidant/nitrating agent,
peroxynitrite (Muscoli et al., 2007). The morphine-induced damage
to SH-SY5Y cells may represent early stages of cell death, since
morphine induces Beclin 1- and ATG5-dependent autophagy in
these cells (Zhao et al., 2010). An exciting finding of the present
study was that D-CYSee prevented morphine-induced damage to
mitochondria in human SH-SY5Y cells. It is likely that the
antioxidant ability of D-CYSee (Getsy et al., 2022e; Getsy et al.,
2022f) is involved in this effect since other antioxidants, including
curcumin (Motaghinejad et al., 2015), recombinant human growth
hormone (Nylander et al., 2016), and the mitochondrial-targeted
antioxidant, melatonin (Feng et al., 2013), protect cells from
morphine-induced damage. It should be noted that the kappa
opioid receptor agonist Salvinorin A reduced the levels of
reactive oxygen species, thereby protecting membrane potential
and morphology of mitochondria by upregulating the
phosphorylation levels of AMPK, and increasing Mfn2 expression
(Dong et al., 2019). Moreover, Luo et al. (2013) reported that
morphine induced cell damage via the mitochondria-mediated
apoptosis pathway by processes involving the activation of
caspases-3 and caspases-9, were attenuated by pre-treatment with
geranylgeranylacetone, a pharmacological inducer of Trx-1 and
Hsp70. All of the above findings are consistent with evidence
that the opioid receptor agonist, Tramadol, causes (a) oxidative
damage to proteins in mitochondria of SH-SY5Y cells (Faria et al.,
2016), and (b) oxidative damage (ROS overproduction) in
mitochondria, and via deleterious changes in activity of Complex
II (succinate dehydrogenase), in addition to membrane
permeability, transition pore disorder, collapse of mitochondrial
membrane potential and mitochondria swelling (Mohammadnejad
et al., 2021). Furthermore, Samadi et al. (2021) found that caffeine, a
nonselective antagonist of adenosine receptors, markedly
diminished the ability of Tramadol to increase oxidative stress
biomarkers, such as reactive oxygen species, protein carbonyl
content, and lipid peroxidation, and to decrease GSH content in
brain mitochondria. We found that D-CYSee prevented morphine-
induced decreases in global DNA methylation in human SH-SY5Y
cells perhaps by enhancing S-adenosylmethionine (SAM)-
dependent changes in DNA methyltransferase (DNMT)- and
histone methyltransferase (HMT)-dependent processes that drive
the methylation status of DNA and histones (Figure 1). Our study
also confirms the findings of Trivedi et al. (2014) that morphine
decreased 5-mC levels in the LINE-1 gene and increased LINE-1
RNA in SH-SY5Y cells. The LINE-1 gene is a retrotransposon. These
genes are relics of viral like sequences that infect the genome and
become stably inserted and inherited (McClung et al., 2005).
Regulatory sequences surrounding retrotransposons are typically
hyper-methylated and so these genes, while they have been
evolutionarily maintained in the genome, are silenced. The
significance of opioid-induced changes in expression of these

genes, and their potential contribution to opioid-induced changes
in physiological status, is not clear at present, but it is evident that
D-CYSee prevents these morphine-induced changes from
happening. As such, it is evident that D-CYSee can maintain
redox homeostasis and protect mitochondria from opioid-
induced toxicity by mechanisms that may involve the generation
of GSH from GSSG (Figure 3). That presence of D-cysteine, and the
parallel presence of the enzyme, serine racemase, which
interconverts D-cysteine and L-cysteine, as well as D- and
L-serine (hence the name serine racemase), implies that another
possible mechanistic pathway is D-CYSee - > D-cysteine - >
L-cysteine (Semenza et al., 2021).

Betaine is synthesized in mitochondria from choline via choline
dehydrogenase (Wang et al., 2006; Ohnishi et al., 2019; Arumugam
et al., 2021) and ingested in the diet (He et al., 2012). Betaine is
actively transported into cells by organic osmolyte transporter
betaine/γ-aminobutyric acid (GABA) transporter BGT1
(SLC6A12) (Lehre et al., 2011; Munoz et al., 2012; Zhou and
Danbolt, 2013) that is a member of the Na+- and Cl−-dependent
neurotransmitter transporter gene family (solute carrier family 6,
neurotransmitter, sodium symporter transporter family) with a
homology to GABA transporters GAT1 (SLC6A1), GAT2
(SLC6A13) and GAT3 (SLC6A11) (Gerile et al., 2012; Lie et al.,
2020; Bhatt et al., 2023). BGT1 activity and expression is regulated
by AMP-activated kinase (Munoz et al., 2012), and plays a role in
controlling brain excitability (Kempson et al., 2014). Betaine has
several biological activities, including (a) anti-oxidative and anti-
inflammatory activity (Zhao et al., 2010); (b) provision of the methyl
donor, S-adenosylmethionine (Lever and Slow, 2010); (c) key
regulator of cellular osmotic status (Chen and Murata, 2008;
Knight et al., 2017); and (d) mitigation of the pathologies
associated with elevated homocysteine levels (Kumar et al., 2016)
(see Supplementary Figure S1 fromOhnishi et al., 2019). The actions
of betaine involve the accelerated turnover of the methionine-
homocysteine cycle (i.e., one-carbon metabolism/folate cycle),
where betaine is a substrate in the betaine-homocysteine
S-methyltransferase (BHMT) reaction, which converts
homocysteine to the essential reducing compound, methionine
(Ueland et al., 2005; Ueland, 2011). Deficits in brain betaine
levels may contribute to cellular osmotic perturbation (Knight
et al., 2017; Chen and Murata, 2008; Kempson and Montrose,
2004), which is reported to inhibit methionine uptake, inhibit
protein synthesis, and affect mRNA translation, by dysregulation
of phosphorylation andmTOR signaling cascades (Uesono and Toh,
2002; Patel et al., 2002). Betaine readily penetrates the blood-brain
barrier and is well tolerated with few adverse effects (Aramburu
et al., 2014). Our pivotal findings in SH-SY5Y cells were that betaine
prevented morphine-induced decreases in GSH concentrations
(although somewhat less effectively than D-CYSee), restored
mitochondrial membrane potential during morphine treatment,
prevented morphine-induced decreases in global DNA
methylation, and increased expression of LINE-1 RNA. These
key effects of betaine are possibly driven by betaine
homocysteine methyl-transferase (BHMT)- and methionine
adenosyltransferase (MAT)-driven production of SAM-dependent
methylation of DNA and histones (Figure 1) (García-Giménez et al.,
2017; Wang et al., 1997). As such, it is evident that betaine, like
D-CYSee, is able to maintain redox homeostasis and protect
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mitochondria from opioid-induced toxicity via potential
mechanisms that include the generation of methionine from
homocysteine (Figure 3).

The present study also demonstrates that the bolus injection of
NLX elicited a pronounced withdrawal syndrome in rats that
received the escalating morphine injection dose regime plus co-
injections of vehicle. The behavioral phenomena consistant with the
rats having become dependent on morphine consisted of jumping,
wet dog-like shakes, rearing, fore-paw licking (FPL), circling, full
body writhing, and sneezing. These, and the recorded falls in body
temperature and body weight, are common features of the NLX-
induced withdrawal syndrome in morphine-dependent rats (Laska
and Fennessy, 1976; Hutchinson et al., 2007; Morgan and Christie,
2011; Nielsen and Kreek, 2012). The withdrawal responses elicited
by the injection of NLX in rats that had received co-injections of
morphine plus vehicle were qualitatively and quantitatively similar
in the rats that had received co-injections of morphine plus
D-cysteine. D-cysteine is a naturally occurring amino acid
(Kiriyama and Nochi, 2016; Seckler and Lewis, 2020) that can
readily be detected in mouse brain (Semenza et al., 2021),
although it cannot be readily detected in the brains of other
species (Mangas et al., 2007; Seckler and Lewis, 2020).
Nonetheless, there is a variety of uptake processes for
exogenously administered D-cysteine (Glazenburg et al., 1984;
Pisoni et al., 1990; Huang et al., 1998; Simmons-Willis et al.,
2002; Erdogan et al., 2021), which has a multiplicity of
neurological actions (Seckler and Lewis, 2020). In addition to
expected redox effects (Hobbs et al., 1998; Homma et al., 2022),
D-cysteine generates intracellular hydrogen sulfide via the D-amino
acid oxidase/3-mercaptopyruvate sulfurtransferase pathway
(Kimura, 2013; Souza et al., 2017). Accordingly, the lack of effect
of the dose of D-cysteine used in this study (250 μmol/kg, =
30.3 mg/kg per each injection) may be because it does not enter
brain cells involved in establishing physical dependence to
morphine in sufficient quantities to exert meaningful cell-
signaling events that can countermand the processes underlying
the development of dependence. A major finding of the present
study was that the injection of NLX elicited a relatively minor
withdrawal syndrome in rats that had received co-injections of
morphine and D-CYSee. This finding that the D-thiol ester
prevents the development of physical dependence to morphine, is
consistent with our novel evidence described above that D-CYSee
prevents redox and epigenetic signatures of opioid dependence in
human SH-SH5Y neuroblastoma cells treated overnight with
morphine and D-CYSee. These findings are supported strongly
by another recent finding that D-CYSee prevents fentanyl-
induced reward seeking in male and female rats (Knauss et al., 2023).

Chronic opioid administration causes impairment of
mitochondrial function (e.g., Bcl-2, Bcl-xL, Bad, and Bax
apoptotic pathways) within the brain (Tapia-Arizmendi et al.,
1987; García-Estrada et al., 1988; Tramullas et al., 2007; Bekheet
et al., 2010) by mechanisms involving the production of reactive
oxygen-nitrogen species, such as peroxynitrite (Muscoli et al., 2007;
Doyle et al., 2009), which directly contributes to impairment of
spatial learning and memory (Tramullas et al., 2008). In addition,
Luo et al. (2022) reported that heroin addiction in rats markedly
diminishes expression of mitochondrial enzymes, such as
cytochrome c oxidase IV and ATP synthase subunit beta.

Moreover, Gowen et al. (2023) recently reported that neonatal
opioid exposure causes neuroinflammation, and adversely affects
the synaptic proteome, mitochondrial function, and behavior in
juvenile rats. With respect to the therapeutic efficacy of D-CYSee, we
do not have full understanding of the mechanisms by which this
D-thiol ester ameliorates the development of physical dependence to
morphine in vivo. On the basis of our findings that D-CYSee reverses
the effects of morphine on GSH/GSSG ratio in SH-SY5Y cells, it is
likely that the antioxidant/reducing properties of D-CYSee allows
direct modulation of intracellular redox status (e.g., reduction of
L-cystine to L-cysteine and conversion of Fe3+ to Fe2+ in heme
proteins), and activity of membrane proteins, such as Kv1.2 K+-
channels (Baronas et al., 2017) and functional intracellular proteins
(Bogeski et al., 2011; Bogeski and Niemeyer, 2014; O-Uchi et al.,
2014; Gamper and Ooi, 2015; Gao et al., 2017; García et al., 2018).
Indeed, antioxidants, such as L-NAC, can diminish the development
of tolerance and physical dependence to morphine (Abdel-Zaher
et al., 2013a; Abdel-Zaher et al., 2013b; Yun et al., 2015; Yun et al.,
2017; Yayeh et al., 2016), whereas co-administration of the
antioxidants ascorbic acid, uric acid, glutathione, quercetin, and
resveratrol, diminish development of oxidative stress and NLX-
precipitated withdrawal syndrome in heroin-treated mice (Pan et al.,
2005; Xu et al., 2006). Other mechanisms may involve (1) formation
of thiol adducts, such as D-glucose:D-cysteine (Wróbel et al., 1997;
Szwergold, 2006; Li et al., 2015) and mixed disulfides Wilcken and
Gupta, 1979; Lash and Jones, 1985; Turell L et al., 2013) in blood, (2)
conversion of D-CYSee to D-cysteine by membrane associated
esterases (Butterworth et al., 1993; Nishida et al., 1996), which
enter into intracellular signaling pathways, such as those
generating hydrogen sulfide, by sequential actions of
D-aminoacid oxidase and 3-mercaptopyruvate sulfurtransferase
(Kimura, 2014; Kimura, 2014; Kimura, 2017; Beltowski, 2019),
and (3) nitric oxide synthase-dependent generation of S-nitroso-
D-cysteine ethyl ester and S-nitroso-D-cysteine that may behave like
the endogenous S-nitrosothiol, S-nitroso-L-cysteine (Myers et al.,
1990; Bates et al., 1991; Seckler et al., 2017; Seckler et al., 2020),
which regulates intracellular signaling pathways (Lipton et al., 1993;
Stamler, 1995; Foster et al., 2009; Seth and Stamler, 2011; Gaston
et al., 2020), including those controlling cardiovascular and
ventilatory functions (Davisson et al., 1996; Davisson et al., 1997;
Ohta et al., 1997; Lipton et al., 2001; Gaston et al., 2006; Lewis et al.,
2006; Gaston et al., 2020) and those that reverse OIRD (Getsy et al.,
2022a; Getsy et al., 2022b).

These and other mechanisms may interact with brain signaling
pathways involved in the acquisition of physical dependence to
opioids and expression of NLX-precipitated withdrawal, including
pathways involving N-methyl D-aspartate (NMDA) glutamatergic
receptors (Buccafusco et al., 1995; Herman et al., 1995; Rasmussen,
1995; Noda and Nabeshima, 2004; Glass, 2011; Fluyau et al., 2020),
muscarinic receptors (Marshall and Buccafusco, 1985; Holland et al.,
1993), corticotropin releasing factor (CRF) receptor CRF1 (García-
Carmona et al., 2015), tachykinin receptors (Michaud and Couture,
2003), voltage-gated Ca2+-channels (Tokuyama et al., 1995; Dogrul
et al., 2002; Esmaeili-Mahani et al., 2008; Alboghobeish et al., 2019),
adenylyl cyclase super-activation and phosphorylation of opioid
receptor (Avidor-Reiss et al., 1996; Avidor-Reiss et al., 1997; Wang
et al., 1999; Eckhardt et al., 2000), oxidative stress (Mori et al., 2007;
Abdel-Zaher et al., 2013a; Abdel-Zaher et al., 2013b; Mansouri et al.,
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2020; Ward et al., 2020; Houshmand et al., 2021), and the nitric
oxide-cGMP signaling pathway (Adams et al., 1993; Cappendijk
et al., 1993; Majeed et al., 1994; Leza et al., 1995; Leza et al., 1996;
London et al., 1995; Vaupel et al., 1995a; Vaupel et al., 1995b;
Dambisya and Lee, 1996; Bhatt and Kumar, 2015; Tsakova et al.,
2015; Sackner et al., 2019; Gledhill and Babey, 2021). Since D-CYSee
markedly attenuated all NLX-precipitated behavioral (except for
sneezes) and physical (hypothermia and body weight loss)
phenomena, it is possible that D-CYSee modulates fundamental
intracellular processes that are critical to the development of
physical dependence to morphine in male Sprague Dawley rats.
The above discussion is directly relevant to potential mechanisms by
which betaine diminished the development of dependence to
morphine. An outstanding difference between the effects of
betaine and D-CYSee was that unlike D-CYSee, betaine also
diminished the occurrence of NLX-precipitated sneezing.
Sneezing is a common feature of opioid withdrawal in humans
(Ostrea et al., 1975; Specker et al., 1998; Gaalema et al., 2012; Lofwall
et al., 2013) and experimental animals (Hendrie, 1985; Liu et al.,
2007; Singh et al., 2015). There is considerable information about the
neural mechanisms driving sneezing (Batsel and Lines, 1975;
Undem et al., 2000; Li et al., 2021; Ramirez et al., 2022), and it is
now evident that the cellular events initiated by betaine can be added
to these potential mechanisms.

Study limitations

There are several limitations that need to be described. With
regards to the studies in the human SH-SH5Y neuroblastoma
cells, it is vital to perform studies with longer-term application
of morphine, and establish fuller dose-response curves to D-CYSee
and betaine. Despite the strength of findings in SH-SH5Y cells, it
is imperative to determine how D-CYSee and betaine affect
chronic morphine-induced changes in redox (e.g., GSH, GSSG)
and epigenetic signatures of physical dependence in brain regions
involved in development of physical dependence to opioids,
such as medial prefrontal cortex (MPFC), striatum and
hippocampus (Deslandes et al., 2002; Gardner, 2011; Koob and
Volkow, 2016; Volkow et al., 2019; Koob, 2020; Sakloth et al.,
2020). In addition, future studies must establish whether D-CYSee
and betaine can overcome physical dependence to fentanyl, since
this synthetic opioid has an ever-increasing role in the current
opioid crisis (Arendt, 2021; Deo et al., 2021). Another important
limitation of our studies is the lack of data about the efficacy of
D-CYSee and betaine in preventing the adverse biochemical
actions of morphine in female cells, and reversing physical
dependence in female rats. This is essential since (a) there are
numerous sex-specific differences in opioid receptor signaling
(Bryant et al., 2006; Hosseini et al., 2011), (b) opioids have
often different responses (e.g., ventilation, analgesia) in females
compared to males (Dahan et al., 1998; Sarton et al., 1998; Bodnar
and Kest, 2010), (c) there are major sex-dependent differences
in development of opioid tolerance/hyperalgesia, and expression
of withdrawal responses (Bodnar and Kest, 2010) and (d) there
are several major sex differences in the efficacy of treatments
for OUD (Huhn et al., 2019; Davis et al., 2021; Knouse and
Briand, 2021).

Conclusion

This study provides evidence that application of D-CYSee or
betaine prevents the expression of the epigenetic signatures
associated with morphine physical dependence/addiction in
human SH-SH5Y neuroblastoma cells, and lessens the
development of physical dependence to morphine. Our previous
studies have demonstrated that the sulfur atom of D-CYSee is vital
to the activity of the D-thiol ester (Getsy et al., 2022e; Getsy et al.,
2022f), and defining thiol/S-nitrosothiol-dependent signaling
pathways (Belcastro et al., 2017; Stomberski et al., 2019) will add
greatly to our understanding of how opioids induce dependence, and
the mechanisms by which D-thiol esters and D-cysteine (Bonifácio
et al., 2021) exert their effects. Trivedi et al. (2014a, 2014b) provided
compelling evidence that morphine may cause dependence/
addiction by blocking the entry of L-cysteine into neurons by
inhibition of the EAA3/EAAC1 transporter, thereby reducing
L-cysteine-dependent cell signaling pathways (Yamaguchi and
Hosokawa, 1987; Rossi et al., 2009; Stipanuk et al., 2009;
Stipanuk et al., 2011). The findings that betaine and D-CYSee
markedly reduced the majority of NLX-precipitated withdrawal
phenomena suggests that the loss of L-cysteine entry into cells
plays a key role in establishing physical dependence to morphine.
Additionally, our findings show that betaine and D-CYSee somehow
overcome the loss of endogenous L-cysteine in intracellular
signaling processes that allow for the development of morphine
dependence and addiction. The present findings add to our
increasing knowledge about the efficacy of L,D-thiolesters,
Tempol, and S-nitroso-L-cysteine in overcoming the adverse
action of opioids (Baby et al., 2021a; Baby et al., 2021b; Gaston
et al., 2021 Getsy et al., 2022a; Getsy et al., 2022b; Getsy et al., 2022c;
Getsy et al., 2022d; Getsy et al., 2022e; Getsy et al., 2022f; Lewis
et al., 2022).
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