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Dementia is a devastating disorder characterized by progressive and persistent
cognitive decline, imposing a heavy public health burden on the individual and
society. Despite numerous efforts by researchers in the field of dementia,
pharmacological treatments are limited to relieving symptoms and fail to
prevent disease progression. Therefore, studies exploring novel therapeutics
or repurposing classical drugs indicated for other diseases are urgently
needed. Metformin, a first-line antihyperglycemic drug used to treat type
2 diabetes, has been shown to be beneficial in neurodegenerative diseases
including dementia. This review discusses and evaluates the neuroprotective
role of metformin in dementia, from the perspective of basic and clinical studies.
Mechanistically, metformin has been shown to improve insulin resistance, reduce
neuronal apoptosis, and decrease oxidative stress and neuroinflammation in the
brain. Collectively, the current data presented here support the future potential of
metformin as a potential therapeutic strategy for dementia. This study also
inspires a new field for future translational studies and clinical research to
discover novel therapeutic targets for dementia.
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1 Introduction

Dementia is a clinical syndrome characterized by progressive cognitive deterioration
accompanied by behavioral, social and emotional function disability, imposing a heavy
burden on society (van der Steen et al., 2018). Approximately 50 million people had
dementia worldwide in 2018; (Alzheimers Dement, 2023); is estimated to triple worldwide
in 2050 and is higher in low- and middle-income countries than in high-income countries
(Prince et al., 2016; Scheltens et al., 2021). Although progress in treating neuropsychiatric
symptoms is being reported, the benefit is limited and temporary (Moran et al., 2019). In
addition, many disease-modifying therapies for dementia are discontinued due to toxicity
or futility (Cummings et al., 2020). Improving insights into the biological processes,
abundant biomarkers and clinical features of dementia contribute to the discovery of
new therapeutic targets or reuse of classical drugs (Scheltens et al., 2021).

The molecular pathways underlying different types of dementia primarily involve oxidative
stress, mitochondrial bioenergetics, neuroinflammation, neurodegeneration, and insulin
resistance (Jurcău et al., 2022; Gaikwad et al., 2024). Oxidative stress is a classic molecular
mechanism (Yang et al., 2016; Yang et al., 2017; Tang et al., 2021; Zhang et al., 2023). In recent
years, emerging evidence has revealed the close relationship between diabetes, cognitive
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dysfunction and dementia (Little et al., 2022). People with type 2 diabetes
(T2D) have a 1.5- to 2-fold higher risk of dementia than those without
diabetes (Gregg et al., 2000; Cukierman et al., 2005; Roriz-Filho J et al.,
2009). Diabetes and prediabetes have been shown to accelerate the
progression from mild cognitive impairment to dementia (Xu et al.,
2010; Xing et al., 2020; Li et al., 2022). T2D and dementia share the same
risk factors, such as older age, obesity, and insulin resistance
(Pugazhenthi et al., 2017; Arnold et al., 2018). At the cellular level,
T2D has been implicated in oxidative stress, mitochondrial dysfunction,
and inflammation that are also present in individuals with dementia
(Pugazhenthi et al., 2017). Considering the common risk factors and
pathological mechanisms prevailing in T2D and dementia, antidiabetic
drugs may exert promising protective effects on brain metabolism and
dementia. Antidiabetic drugs encompass metformin, sulfonylurea,
thiazolidinediones (TZD), dipeptidyl peptidase-4, GLP-1 receptor
agonists, sodium-glucose cotransporter 2 inhibitors, meglitinides, and
alpha-glucosidase inhibitors (Slouha et al., 2023). Metformin is the first-
line drug treatment for T2D, and exerts antidiabetic effects mainly by
inhibiting hepatic glucose production (Duca et al., 2015; Li et al., 2020; Li
and Ma, 2020; Li et al., 2021; Li et al., 2022; Du et al., 2022). Moreover,
metformin activates 5′AMP-activated protein kinase (AMPK) (Ma et al.,
2016; Li et al., 2017; Rena et al., 2017; Hu et al., 2021), improves insulin
resistance (Ford et al., 2015), decreases neuronal apoptosis (Li et al.,
2019), and reduces oxidative stress and the inflammatory response in the
brain (Obafemi et al., 2020). In recent clinical studies, the use of

metformin in elderly patients with T2DM is significantly linked to a
substantial decrease in the risk of dementia (Sun et al., 2024; Tang et al.,
2024). In light of the important roles of metformin in peripheral and
central metabolism, the present review discusses recent breakthroughs in
metformin treatment of dementia.

Based on currently published data, we speculate that metformin
is a potential alternative drug candidate for the treatment of
dementia. This review will first introduce the general background
on dementia, mainly including Alzheimer’s disease (AD)-related
dementia and T2D-related dementia, as well as the common
pathways in T2D and dementia. Second, we describe the
mechanisms by which metformin regulates peripheral and central
metabolism in cell and animal models. Then, we summarize the
clinical evidence that metformin is able to treat dementia. Finally, we
propose potential research directions and provide insights into the
treatment of dementia with metformin (Figure 1).

2 General background on dementia

2.1 AD and dementia

AD is the most common type of dementia in the elderly, and
with the advent of the aging era, AD imposes a heavy economic and
social burden worldwide (Diniz Pereira et al., 2021; Liao et al., 2021;

FIGURE 1
Novel target and therapies of metformin in dementia.
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Ning et al., 2022). According to a European memory clinic cohort,
the median survival time depends on the type of dementia, and the
survival time of individuals with AD-related dementia is 6.2
(6.0–6.5) years (Rhodius-Meester et al., 2019). The characteristic
pathological changes of AD are neuronal fibers and axonal tangles in
the brain, and the formation of large amounts of senile plaques; these
changes drive neuronal dysfunction and cell death (Scheltens et al.,
2021). Biomarkers for the diagnosis of AD were defined as the
presence of amyloid β (Aβ) and phosphorylated tau (Jack et al.,
2018). Strong evidence from a community-based cohort study
suggests that advanced age and at least one APOE ε4 allele are
the most powerful risk factors for AD (van der Lee et al., 2018). The
risk of disease onset is doubled every 5 years after the age of 65 years,
and approximately 50% of patients with AD carry the
apolipoprotein E (APOE) ε4 allele (Pierce et al., 2017). Moreover,
diabetes/metabolic syndrome, cardiovascular disorders and stroke
are also established risk factors for AD (Tosto et al., 2016; Campos-
Peña et al., 2017). In addition, stress and glucocorticoids have also
recently been identified as potential factors that increase the risk of
developing AD (Caruso et al., 2018). The latest perspectives noted
that glucose metabolism moved to center stage in AD research
(Kuehn, 2020; Park et al., 2023).

The treatment principles of AD include early diagnosis, timely
treatment, and lifelong management. Although existing anti-AD
drugs do not reverse the disease, they prevent cognitive decline and
dementia, and patients should adhere to long-term treatment as
much as possible. Currently approved drugs for the standard
treatment of patients with AD include cholinesterase inhibitors
and the N-methyl-D-aspartate receptor antagonist memantine
(Scheltens et al., 2016). The first choice for the psychobehavioral
symptoms of dementia is the nonpharmacological intervention, and
psychotropic drugs can be used when necessary, but the efficacy and
side effects should be assessed regularly and long-term use should be
avoided. Agitation and aggression are common neuropsychiatric
problems associated with AD, and brexpiprazole (an atypical
antipsychotic), citalopram (a selective serotonin reuptake
inhibitor) and nabilone (a cannabinoid) represent relatively safe
treatment options for agitation and aggression (Liu et al., 2016).
Other disease-modifying therapies for AD have also been developed.
For example, aducanumab, BAN2401, and gantenerumab reduce the
amyloid β plaques burden (van Dyck, 2018). Health education,
psychological support and practical help can improve the quality of
life of patients with AD. The future of personalized treatment for AD
should include multimodal interventions, which are based on the
individually customized incorporation of lifestyle changes
and drugs.

2.2 T2D and dementia

Due to the growing elderly population, the incidence of both
diabetes and neurodegenerative diseases is increasing worldwide.
The relationship between diabetes and dementia is likely to be
complex and multifactorial. The Rotterdam Study is the first to
identify a remarkably increased risk of dementia in patients with
T2D, including vascular dementia and AD (Ott et al., 1996; Ott et al.,
1999). Compared with the general population, patients with T2D
have a 1.5–2-fold higher risk of dementia (Gregg et al., 2000;

Cukierman et al., 2005). One in every 10 to 15 cases of dementia
is attributable to type 2 diabetes (Biessels et al., 2006). The
mechanism of T2D-related dementia includes hyalinization of the
basal membrane of cerebral arterioles due to diabetes, causing
endothelial cell damage; meanwhile, the hemodynamics, vascular
reactivity and autoregulation function are also affected, resulting in
reduced cerebral blood flow and thereby increasing the occurrence
of clinically silent cerebral infarction (Kalaria, 2002). Moreover, the
metabolism of glucose, lipids and amino acids in the brains of
patients with T2D may be disturbed due to factors such as poor
blood glucose control, increased glycosylated hemoglobin levels,
central and peripheral insulin resistance, oxidative stress and the
inflammatory response, which affects the transmission of
neurotransmitters and changes the homeostasis of the local
microenvironment, coupled with long-term ischemia and hypoxia
of the brain tissue, ultimately causing neuronal necrosis and
apoptosis as well as cognitive decline (Berlanga-Acosta et al.,
2020; Zhou et al., 2020; Abosharaf et al., 2024). Indeed, T2D and
dementia share the same risk factors, such as older age, obesity,
insulin resistance and physical inactivity. Thus, theoretically, drugs
used to treat T2D could modify these risk factors and pathogenesis
(Areosa Sastre et al., 2017).

2.3 Principal mechanisms linking T2D
and AD

Although T2D appears to be primarily a peripheral organ
disease and AD is a central nervous system disorder, evidence
from experimental and clinical studies has indicated a close link
between T2D and AD (Craft, 2009; Kuehn, 2020). A meta-analysis
of diabetes and the risk of dementia included 28 prospective studies
examining 89708 patients with diabetes and revealed that the
relative risks of developing all types of dementia and AD were
1.73 and 1.56 in patients with diabetes, respectively (Gudala et al.,
2013). First, accumulating evidence shows that glucose
hypometabolism may play a key role in AD pathology (Kuehn,
2020). Insulin resistance in the brain may cause AD pathology,
which has led some scientists to propose that AD may be a brain-
specific “type 3 diabetes”. Insulin exerts neurotrophic effects at
moderate concentrations, but excessive insulin in the brain leads
to decreased Aβ clearance due to competition for the common and
main clearance enzyme, insulin-degrading enzyme (IDE).
Therefore, the accumulation of large amounts of Aβ in the brain
due to pathological insulin levels contributes to the pathological
features associated with AD (J et al., 2009). In addition, insulin may
rapidly increase tau phosphorylation, which causes the
accumulation of neurofibrillary tangles (NFTs) and senile plaques
(Lesort and Johnson, 2000). Mechanistically, the mitogen-activated
protein kinase (MAPK) pathway is activated in response to insulin
receptor signaling and plays an important role in AD pathogenesis.
The activation of MAPK regulates cell proliferation, is associated
with Aβ plaques and NFTs and is also involved in tau
phosphorylation, neuroinflammation, and synaptic plasticity
(Munoz and Ammit, 2010). On the other hand, impaired glucose
metabolism is considered a risk factor for AD, as evidenced by a
decrease in glucose metabolism in the regions related to memory
processing and learning (Mosconi et al., 2008). Chronic
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hyperglycemia might damage the brain through the accumulation of
advanced glycation end products (AGEs) and increased oxidative
stress (Vlassara and Uribarri, 2014). AGEs also accelerate the
progression of AD through increases in Aβ levels, senile plaques
and intracellular NFTs (Iannuzzi et al., 2014).

Second, decreases in the hippocampal volume and cortical
thickness have been observed in patients with T2D, changes that
are closely associated with cognitive decline (Ben Assayag et al.,
2017). These harmful phenomena are potentially attributed to
increased neuronal apoptosis and decreased neurogenesis.
Impaired neurogenesis is associated with elevated levels of
glucocorticoids and decreased expression of brain derived
neurotrophic factor (BDNF), both of have been observed in
patients with T2D and AD (Marosi and Mattson, 2014; Dey
et al., 2017). Activation of the cyclic adenosine monophosphate
(cAMP)/protein kinase (PKA) signaling pathway has been
documented in AD and T2D mice and causes neuronal apoptosis
(Li et al., 2018). Third, oxidative stress and neuroinflammation are
two important pathological processes in T2D and AD. The brain is
susceptible to an oxidative imbalance because of the attributes of a
high energy demand and oxygen consumption, leading to a large
number of oxidized polyunsaturated fatty acids (Mecocci et al.,
2018). Oxidative stress causes peroxidation of mitochondrial
membranes and enzymatic proteins, whose accumulation has
been detected in the hippocampus and frontal and temporal
lobes of patients with mild cognitive impairment (Zabel et al.,
2018). Increased ROS generation and oxidative stress are also
common in T2D (Dos Santos et al., 2018). Meanwhile, ROS-
mediated oxidative stress is associated with an inflammatory
phenotype (Sindhu et al., 2018). An excessive inflammatory
response may lead to Aβ accumulation, Tau phosphorylation,
and changes in synaptic plasticity, which lead to AD pathology
(Carret-Rebillat et al., 2015; Falcicchia et al., 2020). Additionally,
unresolved inflammation contributes to insulin resistant pathology,
cell death, and excessive ceramide production, which subsequently
aggravate inflammation (Keane et al., 2015). A meta-analysis of
170 studies revealed that peripheral inflammation is associated with
AD (Shen et al., 2019). Other common mechanisms, such as blood-
brain barrier (BBB) disruption (Kaminari et al., 2018),
acetylcholinesterase (AChE) metabolism (Rao et al., 2007), and
senescence (Palmer et al., 2015), likewise link AD and T2D
closely. Pereira and his colleagues reported that 17 common
biomarkers were differentially expressed in patients with AD or
T2D compared with healthy controls. These biomarkers provide a
strong reference for detecting patients with T2D at risk of
developing AD (Diniz Pereira et al., 2021). Altogether, most of
the current evidence indicates that T2D may hasten the progression
of AD, and there are numerous shared mechanisms between
AD and T2D.

3 Metformin acts as a potential
protective agent against dementia

Considering the multifaceted links between T2D and dementia,
researchers have good reasons to believe that antidiabetic drugs can
treat dementia. Metformin, a biguanide derivative, is now widely
used and a first-line therapeutic option for the treatment of T2D

(Nathan et al., 2009). Metformin lowers hyperglycemia by inhibiting
hepatic glucose production, improving insulin sensitivity, and
increasing peripheral glucose uptake in muscle (Duca et al.,
2015). In addition, metformin exerts positive effects by
improving cell metabolism, decreasing neuronal apoptosis, and
reducing oxidative stress and the inflammatory response in the
brain. Hundreds of clinical studies have examined the protective
effects of metformin on dementia, suggesting that metformin shows
therapeutic potential as a treatment for dementia. Next, we will
delineate the role of metformin in dementia at the basic and
clinical levels.

3.1 Cell and animal experiments

The results of current preclinical and mechanistic studies have
provided some insights into the effects of metformin on dementia.
Metformin has the potential to activate the AMPK pathway, which
plays a crucial role in the pathogenesis of dementia (Nikbakhtzadeh
et al., 2021). There is increasing evidence suggesting that the
activation of AMPK may have extensive neuroprotective effects
for dementia, such as promoting autophagy, maintaining
mitochondrial quality control, reducing insulin resistance, and
alleviating oxidative stress (Yang et al., 2020). Some studies have
provided evidence that metformin ameliorates cognitive
impairment and memory loss. Allard et al. (Allard et al., 2016)
found that prolonged metformin treatment prevents the high-fat
diet-induced impairment in spatial reference memory in mice.
Similarly, Chen et al. (2016) showed that chronic treatment of
db/db mice with metformin ameliorates memory impairment, as
confirmed by improved performance on behavioral tests. The
generation of amyloid peptides and aggregation of abnormally
folded proteins are important shared pathological characteristics
of T2D and AD (Knowles et al., 2014). According to one study,
metformin decreases hippocampal β-amyloid (Aβ) levels, inhibits
neuronal apoptosis, and ameliorates the memory impairment in db/
db mice (Chen et al., 2016). Metformin significantly decreases beta-
secretase 1 (BACE1) protein expression and activity both in cell
culture models and in vivo; this enzyme is involved in the production
of Aβ(Hettich et al., 2014; Markowicz-Piasecka et al., 2017). As
shown in another study by Gupta et al. (2011), metformin
ameliorates neuronal insulin resistance and AD-like changes
including markedly increased Aβ levels. Chakravarty and Nielsen
(1986) also showed that the brains of db/db mice have multiple AD-
like properties including impaired cognitive functions, increased
phospho-tau and Aβ levels and decreased levels of synaptic proteins,
changes that were attenuated by metformin (Li et al., 2012). In
contrast to the abovementioned articles, Chen et al. (2009) found
that metformin treatment of a transgenic mouse model of AD
contributed to the increased expression of BACE1 in an AMPK-
dependent manner, which led to an increase in Aβ production. This
finding suggests a potential harmful effect on accelerating AD
pathogenesis, and metformin should be used with caution in
elderly patients with diabetic.

Metformin has also been shown to decrease the activity of
acetylcholine esterase (AChE) and subsequently improves
memory in diabetic rats. AChE is responsible for degrading
acetylcholine, the main neurotransmitter involved in learning and
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memory processes (Bhutada et al., 2011). A recent study found that
metformin might preserve hippocampal synaptic plasticity, inhibit
AChE activity, and normalize acetylcholine clearance (Pilipenko
et al., 2020). These data indicate a promising protective effect of
metformin on severe cognitive decline. Many studies have revealed a
pivotal role for oxidative stress in the pathological process of
dementia, which subsequently increases the levels of its markers,
such as oxidized lipids and proteins (Butterfield et al., 2006). The
oxidation of proteins contributes to impaired cerebral glucose
metabolism in AD, which in turn results in neuronal
degeneration and cognitive deficits (Chen and Zhong, 2013). In
addition, oxidative stress promotes Tau hyperphosphorylation
(Sultana et al., 2006). Obafemi et al. (2020) found that
metformin significantly reduces the levels of malondialdehyde
and increases the activities of SOD, GPx and catalase. Moreover,
the levels of ER stress markers are attenuated in the hippocampus.
These results indicate the inhibitory effect of metformin on diabetes-
induced oxidative stress. In addition to oxidative stress, the
inflammatory response also plays a major role in the
development and progression of T2DM and AD (Mushtaq et al.,
2015). Lu et al. (2020) showed that metformin decreases
neuroinflammation (IL-1 and IL-6) and oxidative stress (MDA
and SOD) in APP/PS1 transgenic mice, thereby improving
learning and memory abilities. Mitochondrial dysfunction has
been proposed as an important process in the etiology of
dementia and is closely associated with oxidative stress and the
inflammatory response (Feng et al., 2024). Ruegsegger et al. (2019)
observed high-fat diet-induced brain insulin resistance in mice with
decreased oxidative enzyme activities, resulting in the accumulation
of oxidatively damaged mitochondrial proteins and increased
mitochondrial fission, which were counteracted by metformin
treatment. These results suggest that metformin might restore
brain mitochondrial function in the pathological insulin-
resistant state.

Findings from other mechanistic studies showed that metformin
treatment is closely associated with neuronal survival. Li et al. (2019)
found that metformin inhibits apoptosis and decreases intracellular
Ca and ROS signaling by reducing the neurotoxicity of excitatory
amino acids in Aβ -treated SH-SY5Y cells. Moreover, Chen et al.
(2016) reported that metformin alleviates Aβ-induced apoptosis in
cultured hippocampal neurons in a JNK-dependent manner. In an
in vivo study, metformin decreased neuronal loss in the
hippocampus, enhanced neurogenesis, and attenuated spatial
memory deficits in APP/PS1 mice (Ou et al., 2018). Another
similar study also showed that metformin enhances neuronal
survival and improves spatial memory in a mouse model of
neurodegeneration (Ahmed et al., 2017). Metformin also has
shown the promise in slowing age-related cognitive impairment
by alleviating microglial activation and enhancing autophagy in the
hippocampus. However, metformin treatment does not change
neurogenesis or neosynaptogenesis in the hippocampus,
suggesting that metformin does not improve cognitive function
(Kodali et al., 2021). BBB permeability was seen in AD patients
in clinical studies using dynamic contrast-enhanced magnetic
resonance imaging (MRI) (Starr et al., 2009). Metformin has
been shown to protect endothelial cell tight junction, prevent
damage to the BBB through the activation of AMPK and
inhibition of NF-κB (Zhao et al., 2016). In another study, Takata

et al. (Ismail Hassan et al., 2020) also found that metformin
upregulates the expression of ZO-1, occludin, and claudin-5 in
brain microvascular endothelial cells via AMPK activation.

3.2 Human studies

The results from human studies have provided evidence that
metformin prevents cognitive decline or dementia (Barbera et al.,
2024; Doran et al., 2024). A cohort study utilizing UK primary
healthcare records, involving 211,396 individuals, revealed that the
use of metformin was linked to a reduced risk of dementia (adjusted
HR = 0.86) and mild cognitive impairment (adjusted HR = 0.92)
(Doran et al., 2024). In a cohort study of 12,220 metformin users,
including 12,220 early terminators and 29,126 routine users,
discontinuation of metformin treatment was found to be
associated with an increased incidence of dementia. This
association was largely independent of changes in HbA1c levels
and insulin usage (Zimmerman et al., 2023). A longitudinal
observational study involving 1393 participants found that the
use of metformin was significantly associated with a reduced risk
of dementia in individuals with type 2 diabetes, particularly those
without neuropsychiatric disorders and non-steroidal anti-
inflammatory drug use (Tang et al., 2024). Another large
epidemiological clinical study from the Taiwan Health Insurance
database, patients with T2D who took the antidiabetic drug
metformin exhibited a remarkably decreased the risk of dementia
compared with patients treated without medication after adjustment
for cerebrovascular disease (Hsu et al., 2011). In the population-
based Singapore Longitudinal Aging Study, older people with
diabetes receiving metformin (n = 204) had a lower risk of
cognitive decline (OR 0.49, 95% CI 0.25–0.60) than those not
receiving metformin (n = 161). At the same time, individuals
receiving metformin for more than 6 years experienced a lower
level of cognitive decline than those receiving metformin for less
than 6 years, suggesting that long-term metformin treatment may
decrease the risk of cognitive impairment (Ng et al., 2014). A large
retrospective cohort study of US veterans over 65 years of age with
T2D found that metformin treatment was associated with a lower
subsequent dementia risk than sulfonylurea treatment in
veterans <75 years of age (HR 0.67, 95% CI 0.61–0.73) (Orkaby
et al., 2017). Similarly, 8276 patients with diabetes presenting with
dementia and 8276 matched patients with diabetes but without
dementia were included in a large population study from German.
Metformin prescribed as a monotherapy (OR 0.71, 95% CI
0.66–0.76) or as dual therapy with sulfonylureas (OR 0.90, 95%
CI 0.89–0.92) was associated with a decrease in the risk of
subsequent dementia (Bohlken et al., 2018). More recently, a
large prospective observational study, the Sydney Memory and
Ageing Study, found that older people with diabetes receiving
metformin experienced slower cognitive decline and lower
dementia risk. Incident dementia was significantly higher in the
nonmetformin group than in the group receiving metformin (OR
5.29, 95% CI 1.17–23.88) (Samaras et al., 2020).

Pilot data from a randomized placebo-controlled crossover
study showed that metformin penetrates the blood-brain barrier
and improves learning, memory and attentional abilities in
nondiabetic patients with mild cognitive impairment or mild
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dementia due to AD, although it did not exert a measurable effect on
CSF AD biomarkers (Koenig et al., 2017). However, this exploratory
study has some limitations including the limited sample size
(20 subjects) and relatively short length of the trial (16 weeks).
These positive findings are promising, especially in subjects with AD
but without T2D, and warrant further exploration with larger
sample sizes and longer time spans.

A comparison the efficacy (pro-cognitive effects) different
antidiabetic agents for dementia and mild cognitive impairment
is interesting. A network meta-analysis including nineteen eligible
studies (n = 4855) was conducted to evaluate the effects of 6 different
antidiabetic drugs (intranasal insulin, pioglitazone, rosiglitazone,
metformin, sitagliptin and liraglutide) on dementia (Cao et al.,
2018). Cao and others showed that the greatest pro-cognitive
efficacy for 15–30 mg of pioglitazone compared to the placebo.
However, the included studies have a high risk of bias, and the
current analysis did not investigate moderating factors such as age,
sex, and the ApoE ε4 allele, which weakens the reliability of the
conclusion to some extent. A recent nationwide real-world
longitudinal study (n = 701193) found that compared with
metformin + sulfonylurea, metformin + dipeptidyl peptidase-4
inhibitor and metformin + thiazolidinediones were associated
with a significantly lower risk of AD (HR = 0.922 and 0.812),
suggesting that adding thiazolidinediones or dipeptidyl peptidase-
4 inhibitor instead of sulfonylurea as second-line antidiabetic
treatment contributed to delaying or preventing dementia (Kim
et al., 2021).

In a cross-sectional study of 350 late middle-aged adults without
dementia, the use of diabetes medication (with metformin being the
most commonly used) was associated with reduced brain Aβ burden
as determined by Positron Emission Tomography imaging
(Luchsinger et al., 2020). In an analysis of investigating
relationships among T2D treatment and AD biomarkers,
McIntosh and others found that T2D treatment was related to
lower CSF levels of p-tau, t-tau, and p-tau/Aβ1-42 when
compared to untreated persons with T2D (McIntosh and Nation,
2019). Due to the limited sample size, the aforementioned studies
did not individually investigate a specific therapeutic drug; however,
it is worth noting that metformin is the most frequently utilized
diabetes medication in these studies. Subsequent research endeavors
should focus on examining the impact of metformin treatment on
dementia-related markers in order to gain further insights into
its effects.

Notably, however, other clinical evidence has shown that
metformin treatment might increase the risk of dementia. For
example, in the well-established UK General Practice Research
Database (GPRD), long-term use of metformin was associated
with a higher risk of developing AD-related dementia compared
with no metformin use (OR 1.71, 95% CI 1.12–2.60) (Imfeld et al.,
2012). Nevertheless, long-term use of sulfonylureas,
thiazolidinediones, or insulin was not associated with an
increased risk of developing AD. Another cross-sectional
observational study showed that individuals with self-reported
T2D who were taking metformin had worse cognitive
performance than those who were not taking the drug (OR 2.23,
95% CI 1.05–4.75) (Moore et al., 2013). One explanation for this
finding may be the lack of vitamin B12 due to the use of metformin.
However, the small size of the sample, insufficient information

regarding the duration of metformin use and the duration and
severity of diabetes raised doubts about the validity of the findings.
Thus, prospective and controlled trials are needed to explore the
association between diabetes, dementia, and the effect of metformin
therapy, as well the possible improvements in cognitive performance
mediated by vitamin B12 supplementation. More recently, findings
pooled from 5 population-based cohorts showed no significant
association between metformin use and cognitive function,
dementia prevalence, or brain structure (Weinstein et al., 2019).
Overall, currently published data suggest a protective effect of
metformin treatment on the brain, but further clinical trials are
needed to support this conclusion.

4 Potential directions

Based on the current studies, we speculate that metformin exerts
multidirectional effects on dementia (Feng et al., 2016; Zhang et al., 2017;
Xin et al., 2019; Li et al., 2021; Zhang et al., 2021). However, manymixed
conclusions have been reported, showing that metformin does not
protect against dementia or even enhances the development of
dementia. Well-designed, multicenter randomized and controlled
clinical studies must be conducted to explore the effects of
metformin on dementia. In addition, a high-quality Cochrane
systematic review and meta-analysis is needed to provide a high level
of evidence. As mentioned above, vitamin B12 deficiency may be an
important reason why metformin promotes the development of
dementia. Therefore, future clinical trials are needed to observe the
effect of metformin on dementia in the presence of vitamin
B12 supplementation. Next, metformin quickly crosses the blood-
brain barrier and reaches various regions of the brain. In view of this
biological property, metformin is a relatively good and appropriate drug
candidate for neurodegenerative diseases such as dementia. However,
little is known about what concentration of metformin reaches various
regions of the brain and what is the most appropriate concentration
needed. The safety and efficacy of the use of metformin in patients with
different types of dementia must be developed. On the other hand, the
biological activity of metformin is reduced after oral administration, and
its structure should be modified to improve the absorption rate. It is
essential to conduct further research on the impact of metformin on
brain metabolism, cell signaling, inflammation, and autophagy,
particularly in relation to its potential impact on insulin signaling
regulation in brain. Considering the use of metformin in
combination with other drugs or treatments, we should determine
whether the combination of drugs can improve the management of
dementia. Moreover, although the use of metformin alone does not
induce hypoglycemia under normal circumstances, the potential side
effect of hypoglycemia cannot be overlooked when considering
hypoglycemic drugs for conditions such as dementia. In elderly
individuals, falls resulting from hypoglycemia can have severe
consequences, and patients should be advised to use these
medications only when there is strong evidence of benefit for
dementia. Future studies in the design of such drugs should consider
the mechanism of such drugs, such as regulating the insulin pathway,
having minimal effect on blood glucose (or stabilizing blood glucose
within a reasonable range) (Huang et al., 2023).

Current research on dementia focuses mainly on elderly
individuals because dementia mainly occurs in this population.
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Research data on the younger patients with dementia are lacking.
Evidence for the efficacy of metformin in the treatment of dementia
in younger people is also lacking. The mechanism of dementia is
age-related; for example, intraneuronal amyloid levels increase
30–50-fold from young to old ages (Brewer et al., 2020).
Extensive studies have been performed to ensure that people with
dementia receive an accurate diagnosis and treatment of their
condition. Future research studies should also focus on the
prevalence of dementia in younger age groups and whether
metformin exerts a protective effect on younger people
with dementia.

Finally, the potential influence of metformin on aging mechanisms
may be the basis for its overall protective effects against age-related
neurodegenerative diseases. Human observational data supports the role
of metformin in preventing age-related decline, and molecular analyses
of septuagenarians treated with metformin indicate that it modulates
multiple biological pathways in aging (Kulkarni et al., 2018). The
properties of metformin will garner significant attention from the
research and industry for the development of indications for
metformin as an anti-aging therapeutic in humans. Aging is a
complex process, and individuals within the same population may
exhibit varying responses to metformin. Therefore, it is necessary to
conduct large-scale, multicenter, randomized, placebo-controlled trials
in order to further investigate the anti-aging effects of metformin.

5 Conclusion

Metformin, the most frequently used first-line antidiabetic drug,
exerts a strong protective effect on cognitive impairment. These
beneficial properties of metformin might stem from its molecular
mechanism, including improved insulin resistance, decreased
neuronal apoptosis, and reduced oxidative stress and inflammatory
responses in the brain. Here, we proposed that metformin is a
potential drug candidate for dementia. Based on the current studies,
we 1) introduced the general background of dementia, including AD-
related dementia and T2D-related dementia; 2) summarized the
common principal mechanisms linking AD and T2D; 3) described
the effects of metformin on dementia in cells, animals, and humans; and
4) provided potential research directions. Overall, metformin, with its
rich properties that modulate multiple pathways, is a possible and
attractive candidate for the prevention of neurodegenerative diseases

such as dementia; however, further large-scale clinical randomized
controlled studies are warranted to ensure its success.
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