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COVID-19 causes more severe and frequently fatal disease in patients with pre-
existing comorbidities such as hypertension and heart disease. SARS-CoV-2 virus
enters host cells through the angiotensin-converting enzyme 2 (ACE2), which is
fundamental in maintaining arterial pressure through the renin-angiotensin
system (RAS). Hypertensive patients commonly use medications such as
angiotensin-converting enzyme inhibitors (ACEi), which can modulate the
expression of ACE2 and, therefore, potentially impact the susceptibility and
severity of SARS-CoV-2 infection. Here we assessed whether treatment of
ACE2-humanized (K18-hACE2) mice with the ACEi Lisinopril affects lung
ACE2 levels and the outcome of experimental COVID-19. K18-hACE2 mice
were treated for 21 days with Lisinopril 10 mg/kg and were then infected with
105 PFU of SARS-CoV-2 (Wuhan strain). Body weight, clinical score, respiratory
function, survival, lung ACE2 levels, viral load, lung histology, and cytokine (IL-6,
IL-33, and TNF-α) levels were assessed. Mice treated with Lisinopril for 21 days
showed increased levels of ACE2 in the lungs. Infection with SARS-CoV-2 led to
massive decrease in lung ACE2 levels at 3 days post-infection (dpi) in treated and
untreated animals, but Lisinopril-treated mice showed a fast recovery (5dpi) of
ACE2 levels. Higher ACE2 levels in Lisinopril-treated mice led to remarkably
higher lung viral loads at 3 and 6/7dpi. Lisinopril-treated mice showed decreased
levels of the pro-inflammatory cytokines IL-6 and TNF-α in the serum and lungs
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at 6/7dpi. Marginal improvements in body weight, clinical score and survival were
observed in Lisinopril-treated mice. No differences between treated and untreated
infected mice were observed in respiratory function and lung histology. Lisinopril
treatment showed both deleterious (higher viral loads) and beneficial (anti-
inflammatory and probably anti-constrictory and anti-coagulant) effects in
experimental COVID-19. These effects seem to compensate each other,
resulting in marginal beneficial effects in terms of outcome for Lisinopril-
treated animals.

KEYWORDS

SARS-CoV-2, COVID-19, K18-hACE2, angiotensin-converting enzyme inhibitors, ACEi,
lisinopril

1 Introduction

COVID-19, discovered in December 2019 in Hubei province
(China), is responsible for more than 6 million deaths worldwide
(Zhu et al., 2020; Medicine, 2023). It is caused by SARS-CoV-2, a
coronavirus (CoV) like SARS-CoV responsible for outbreaks of
acute respiratory syndrome in Guangdong (China) in 2002–2004
(Ksiazek et al., 2003; Cui et al., 2019) and MERS-CoV discovered in
the Middle East in 2012 (Zaki et al., 2012; De Wit et al., 2016; Su
et al., 2016).

SARS-CoV-2 has a simple RNA structure surrounded by an
envelope, nucleocapsid, membrane and spike protein. The latter
plays a fundamental role in viral entry into the host cell (Bhalla
et al., 2021), and is responsible for the viral binding to the
angiotensin-converting enzyme 2 (ACE2). The spike protein is
cleaved and activated by transmembrane serine protease 2
(TMPRSS2), completing adsorption, membrane fusion and
genetic material release. On the other hand, ACE2 plays an
essential role in regulating blood pressure through the renin-
angiotensin system (RAS) (Hoffmann et al., 2020; Wang et al.,
2020). RAS has several factors that make up a cascade of events to
regulate blood pressure through the balance of products obtained
by the degradation of angiotensinogen by renin, an enzyme
produced in the kidneys, giving rise to the decapeptide
angiotensin I (AngI). In the classical RAS pathway, AngI is
cleaved by the angiotensin-converting enzyme (ACE) generating
the octapeptide angiotensinogen II (AngII) as its product, AngII
binds to the AT1R receptor, increasing blood pressure, producing a
vasoconstrictive, apoptotic, pro-thrombotic effect and stimulating
pro-inflammatory factors (Choi et al., 2020; Vaduganathan et al.,
2020). In addition to the classical pathway, RAS presents an
alternative pathway, in which the nonapeptide Angiotensin 1–9
(Ang 1–9) is produced by the cleavage of AngI by ACE2 and, again,
cleaved into Angiotensin 1–7 (Ang 1–7) by ACE. Ang1-7 binds to
the MAS receptor, reducing blood pressure and inflammation and
producing a vasodilatory effect (Bhalla et al., 2021). Since
ACE2 plays a key role in the homeostasis of the vascular
system, regulating blood pressure and other functions, its
binding to SARS-CoV-2 may have deleterious effects on the
vasculature.

The balance in the RAS can be decisive in the development
of severe forms of COVID-19, especially for risk groups such as
hypertensive patients and those with cardiovascular diseases
(Fang et al., 2020; Sommerstein et al., 2020). ACE2 is a

molecule expressed in various body tissues, such as the
epithelium of the lungs, including in the alveoli where it is
abundant, in endothelial cells, in the heart, intestine, kidneys,
brain and other organs (Uhlén et al., 2015).

The high expression of ACE2 in the upper airways and lung
alveoli causes the virus to proliferate preferentially in these
tissues, leading to an intense inflammatory response, diffuse
alveolar destruction, loss of respiratory capacity, fibrosis and,
frequently, the patient’s death (Li et al., 2015a; Wu, 2020). The
damage caused by SARS-CoV-2 infection, resulting from
apoptotic/necrotic events, induces hypoxia, vascular congestion
and obstruction of the vasculature resulting from thrombotic
events characterized by fibrin deposition. The mechanism
responsible for the outcome of the disease may be related to
the binding of the ACE2 receptor by SARS-CoV-2 and the
invasion of target cells.

SARS-CoV-2 promotes a substantial decrease in the expression
of ACE2 itself, fundamental for vascular function, increasing the
levels of AngII (vasoconstrictor, pro-inflammatory, pro-thrombotic)
and decreasing the levels of Ang1-7 (vasodilator, anti-inflammatory,
anti-thrombotic). Decreased ACE2 expression can lead the body
towards a constrictive and thrombotic bias, reducing blood
perfusion and leading to an ischemic process, contributing to
tissue damage in several organs (DIAZ, 2020; Li et al., 2003;
Wu, 2020).

This situation causes ACE2 to have a dual behavior in COVID-
19: it is the gateway for SARS-CoV-2 into cells, causing infection
and, on the other hand, it causes a decrease in its expression and
profoundly impacts the regulation of vascular function, generating
systemic damage, which can worsen the disease (Diaz, 2020;
Tignanelli et al., 2020; Liu et al., 2021).

Medications capable of modulating ACE2 expression, such as
angiotensin-converting enzyme inhibitors (ACEi) or angiotensin
receptor blockers (ARB) could produce deleterious effects by
increasing ACE2 expression and therefore increasing viral load in
the lungs. On the other hand, they could help preventing or
decreasing the vascular consequences of ACE2 depletion by
positively regulating ACE2 expression (Li et al., 2015a; Snyder
and Johnson, 2020).

Initially, the use of ACEi or ARB was associated with worsening
clinical outcomes in patients, as well as interruption of treatment
after confirmation of the diagnosis of COVID-19 (Fang et al., 2020;
Guo et al., 2020; Sommerstein et al., 2020; Soria Arcos et al., 2020;
Vallejo Ardila et al., 2020; Vieira, 2021). Furthermore, it has been
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described that the treatment exposes patients to a high risk of
developing moderate to severe forms of COVID-19 (Najafi et al.,
2023; Walia, 2023).

On the other hand, Lopes and colleagues tested the impact of
discontinuation versus maintenance of chronic ACEi/ARB therapy
in patients with COVID-19, and no differences were found between
the continued and discontinued therapy groups (Lopes et al., 2021).
The risk of mortality was lower in hypertensive patients hospitalized
with COVID-19 who used ACEi or ARB (Zhang et al., 2020;
Dambha-Miller et al., 2023) and clinical manifestations were
reduced in patients who used ACEi and no increase in severity
was observed in patients hospitalized in intensive care unit
(Hippisley-Cox et al., 2020; Armstrong et al., 2021).

Few studies in experimental models have been conducted to
understand the mechanisms that may affect the RAS during
COVID-19 infection. Evidence indicates that monotherapy with
ACEi and/or ARB can increase ACE2 levels in the lung, small
intestine, kidney and brain (Ferrario et al., 2005; Li et al., 2015b;
Brooks et al., 2022). Therefore, this study aimed to determine
whether the ACEi Lisinopril alters the quantification of
ACE2 and whether they affect lung damage and the outcome of
experimental COVID-19. We used the murine experimental model
for COVID-19 treated with Lisinopril to address this question. This
medication is used in patients with hypertension, congestive heart
failure, acute myocardial infarction, kidney complications and
Diabetes mellitus (Warner and Rush, 1988; Alderman, 1996;
Pylypchuk, 1998; Brilla et al., 2000; Bezalel et al., 2015).

2 Methods

2.1 Transgenic mouse model for studying
SARS-CoV-2 infection

The B6.Cg-Tg (K18-ACE-2)2Prlmn/J-strain 034860 animal
model was used, which has a C57BL/6 background and expresses
human ACE2 (hACE2) through a cytokeratin 18 (K18) promoter,
mainly in respiratory airway epithelial cells (McCray et al., 2007;
Yang et al., 2007; Moreau et al., 2020; Yinda et al., 2021). Animals
were kindly provided by the Institute of Science and Technology in
Health of the Fundação Oswaldo Cruz (ICTB-Fiocruz), Rio de
Janeiro, Brazil.

2.2 Ethics

Ethics Committees for the Use of Laboratory Animals of the
Faculty of Pharmaceutical Sciences/University of São Paulo (FCF/
USP) and the Institute of Biomedical Sciences/USP (ICB/USP)
approved this study with the license numbers 622 and
3858020621, respectively. All protocols followed the ethical
principles of animal experimentation, recommended by Federal
Law 11.794/2008 and the National Council for Animal
Experimentation (CONCEA). The Internal Biosafety Committee
(CIBIO-0092021/FCF) approved this study. Activities involving
viral manipulation, animal infection and sample collection were
carried out in a Biosafety Level 3 Laboratory (BSL3).

2.3 Treatment

Lisinopril (Medley 10 mg–Brazil registration 101810399008-7)
was administered for 21 consecutive days to simulate continuous
treatment (Brooks et al., 2022) and up to 7 days post infection. The
mice were divided into four groups: Untreated Uninfected (UU),
Lisinopril-treated Uninfected (LU), Untreated Infected (UI) and
Lisinopril-treated infected (LI). Lisinopril was added to flavoured
gelatin, which made the product palatable for voluntary ingestion.
Daily, animals in the Lisinopril-treated infected and Lisinopril-
treated Uninfected groups were treated with 10 mg/kg/day of
Lisinopril, while animals in the Untreated Uninfected and
Untreated Infected groups received gelatin without medication.
The animals used in this study received treatment when they
were 8/9 weeks old and were infected with SARS-CoV-2 when
they were 11/12 weeks old. A preliminary experiment with
18 mice was performed to determine how the Lisinopril
treatment affected lung ACE2 levels in healthy, uninfected
animals. In the survival experiments, 38 mice were used. And a
total of 30 mice per group (Untreated Uninfected, Untreated
Infected and Lisinopril-treated infected) were used in the
experiments to assess clinical scores, lung function, ACE2 levels,
viral load, cytokine levels and histopathology. Not all animals were
used in all measurements in all three timepoints, so specific
information on sample size is provided in the figure legends. In
all experiments, an equal number of male and female animals was
used per group.

2.4 Virus and infection

After 21 days of treatment, mice were infected according to a
previously described protocol (da Silva Santos et al., 2023). Professor
Edison Durigon’s team from the Department of Microbiology at
ICB/USP expanded and provided the virus according to the protocol
established by Araújo and collaborators (Araujo et al., 2020). Mice
were lightly sedated with isoflurane and infected intranasally with
105 PFU of SARS-CoV-2 (original Wuhan strain: SARS.CoV2/
SP02.2020.HIAE.Br).

2.5 Euthanasia and sample collection

Animals were euthanized with an anesthetic combination of
Ketamine (150 mg/kg) and Xylazine (15 mg/kg) intraperitoneally,
followed by exsanguination by cardiac puncture and blood
collection. Subsequently, cardiac perfusion was performed (PBS
1x) following the protocol previously described (Gage et al.,
2012). Three time points (3, 5, and 6/7 days post-infection) were
defined to monitor viral load, lung capacity and
ACE2 quantification.

Samples collected for viral quantification by qRT-PCR were
subsequently maintained in RNA later (Invitrogen/cat.7021). For
ELISA analysis, samples were maintained in
radioimmunoprecipitation assay buffer (Thermo Fisher/89900)
and protease inhibitors (Sigma/cat.S8830-20TAB). All these
samples were quickly stored and kept at −80°C. For
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histopathology, fragments of the same tissues were collected in 10%
formaldehyde and kept in 70% alcohol until processing.

2.6 Protein extraction

The tissues were macerated and subsequently inserted into
Radioimmunoprecipitation assay buffer (Thermo Fisher/cat.
89900) and protease inhibitor cocktail (Sigma-Aldrich Cat.
58830) and homogenized using a pipette and tip. The samples
were centrifuged for 5 min at 2,000 revolutions per minute (rpm)
at 4°C, and the supernatants were transferred to other 1.5 mL
microtubes, followed by new centrifugation for 20 min at
12,000 rpm. The supernatants were transferred again to new
microtubes and stored at −80°C until processing. Pierce BCA
protein assay kit (Thermo Fisher—Cat. 23225) was used to
quantify the total protein of each sample, following the
manufacturer’s instructions, and quantified on a Multiskan™ FC
Microplate Photometer (Thermo Fisher—Cat. 51119000).

2.7 Quantification of ACE2 in tissue samples

Detection and quantification of ACE2 protein in tissues by
ELISA (Enzyme-Linked Immunosorbent Assay) were performed
using the Human ACE2 DuoSet ELISA kit (R&D Systems- Cat.
DY933-05), following the manufacturer’s recommendations.
ELISA plates were coated with 100 µL anti-ACE2 antibody
(2 μg/mL diluted in PBS pH 7.4) overnight at room temperature
(RT). The plates were washed 3 times with 300 µL of washing
buffer (PBS + 0.05% Tween20) and blocked with 300 µL of
blocking buffer (1% BSA in PBS, pH 7.4) for 1 h at RT. After
blocking, plates were washed three times, and 100 µL of standards
or samples containing 100 μg/mL of total protein were inserted
into each well. In some cases, samples were diluted in dilution
reagent (and assigned their respective correction factors in the
result analysis) provided by the kit and incubated for 1 h at RT.
Then, the plates were washed, and 100 µL of the detection antibody
(100 ng/mL diluted in 1% BSA in PBS, pH 7.4) was added for
another hour. After a new washing step, 100 µL of secondary
antibody (HRP) conjugate were added for 1 hour at RT.
Subsequently, the plates were washed and 100 µL of substrate
(TMB) were added to the wells. Colorimetric reaction was
stopped by adding 50 µL of 1 M sulfuric acid and subsequently
analyzed using the filter at 450 nm.

2.8 RNA extraction

For SARS-CoV-2 viral load quantification, the inferior lobe of
the right lung (weighting −50 mg) was used. Samples were
macerated with the MagNA Lyser equipment (Roche Diagnostics,
Mannheim, Germany) and centrifuged at maximum speed for
15 min. A 150 μL aliquot of the supernatant was mixed with
200 μL of Lysis Buffer (BioMerieux, Lyon, France). Then, total
nucleic acid extraction was performed according to the protocol
established by the equipment manufacturer Nuclisens MagMax
(BioMerieux, Lyon, France).

2.9 Virus detection

The genetic material extracted was subjected to RT-qPCR
diagnostics to detect SARS-CoV-2 and mammalian
Ribonucleoprotein (RNP), used as an extraction control. For this,
the AgPath-ID™ One-Step RT-PCR kit (Applied Biosystems/Life
Technologies, Austin, Texas, United States) and the 7500 Real-Time
Systems equipment (Applied Biosystems/Life Technologies, California,
United States) were used, with protocols adapted from Corman et al.
(2020). Both forward, reverse, and probe primers detecting the SARS-
CoV-2 spike and RNP were used in equal proportions and
concentration of 10 µM. As negative and positive controls, Nuclease
FreeWater and a clinical isolate in Vero-E6 cell culture, duly tested and
standardized, were used in all reactions (Corman et al., 2020). Finally,
the cycles were: 45°C for 15 min, once; 95°C for 10 min, once; 95°C for
15 s and 57°C for 1 min, 45 times. In diagnosing, samples with Ct
values < 37.99 were classified as positive, and the number of copies per
mL determined in relation to the standard curve of the positive control,
whereas those with Ct values > 42 were categorized as negative.
Samples with values falling between 38 and 41.99 were deemed
inconclusive and underwent repeated testing starting from the total
nucleic acid extraction stage. After virus detection via RT-qPCR, the
viral load in the samples was quantified in copies/mL. The results
showed a range between 4.65 × 102 and 4.41 × 109 copies/mL (da Silva
Santos et al., 2023).

2.10 Assessment of lung capacity

To evaluate the respiratory pattern, mice were placed in
plethysmographic chambers (BUXCO Electronics, United States)
on days 3, 5, and 6/7 after infection. Whole-body plethysmography
(WBP) evaluated the respiratory capacity of non-anesthetized
animals by recording pressure changes reflected in waves
proportional to respiratory flow for 10 min without movement
restrictions. The equipment measured several parameters,
including respiratory frequency (RF), tidal volume, enhanced
pause (Penh), and expiratory flow curve (Rpef).

RF is the number of complete breaths per minute, Penh is the
wave product of the expired respiratory peak (PEP) in relation to the
inspiratory peak (PIP), obtained from the respiratory pause
calculated from the expiratory time (Te) under the expiration
time of 65% of the air volume, minus 1 (Pause = Te/Rt−1). This
result is multiplied by the PEP below the inspiratory peak PIP
(Penh = pause×PEP/PIP). The tidal volume assesses adequate lung
ventilation and is measured by the proportion of inspired and
exhaled air (in mL) in each respiratory cycle. Rpef is the ratio
between PEP/Te. Like Penh, Rpef is an indicator of constriction
(Lomask, 2006; Malhotra, 2007; Menachery et al., 2015; Hallett S
et al., 2021).

2.11 Clinical evaluation

Mice were monitored daily, behavioral changes were observed
(lethargy, difficulty breathing, hunched posture, piloerection,
tremors, exudate around the eyes/nose, eye closure, and death)
and recorded in an individual score table, according to the
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intensity of symptoms (scores, with values from 0 to 4, with 0 being
absence of clinical signs, 1 reported for mild signs and 4 for severe
signs). Table and score were prepared following the
recommendations of the Guide for implementing the
Humanitarian End point of the Federal University of São Paulo
(UNIFESP, 2020). Signs of pain were also monitored according to
the Grimace Scale for mice (Langford et al., 2010). A humane
endpoint was established with criteria such as weight loss
(>20%), animal inactivity and no response to external stimuli.

2.12 Cytokine quantification in serum

IL-6 (Thermo Fisher—cat.88-7064-88), TNF-α (Thermo
Fisher—cat.88-7324-88) and IL-33 (Thermo Fisher—cat.88-7333-

88) were quantified in serum and lung at the last time point,
according to the manufacturer’s instructions (Thermo
Fisher—cat.88-7064-88). ELISA plates were coated with each
cytokine (100 µL) overnight. Plates were washed 3 times with
300 µL of washing buffer and block (1% BSA in PBS, pH 7.4) for
1 h at RT. Standard or sample (100 µL) were inserted into each well.
In some cases, samples were diluted in dilution reagent (and
assigned their respective correction factors in the result analysis)
provided by the kit and incubated for 1 h at RT. Then, the plates
were washed, and 100 µL of the detection antibody was added for
1 hour. After a new washing step, 100 µL secondary antibody (HRP)
conjugate was added for 1 hour at RT. Subsequently, the plates were
washed, and 100 µL of substrate (TMB) was added to the wells. The
colorimetric reaction was stopped by adding 100 µL of 1 M sulfuric
acid and subsequently analyzed using the filter at 450 nm.

FIGURE 1
Quantification of lung ACE2 by ELISA and lung viral load by RT-PCR. (A) Lung ACE2 in Uninfected mice treated or not with Lisinopril for 21 days:
Untreated Uninfected (UU ) (n = 10), Lisinopril-treated Uninfected (LU ) (n = 8). (B) Lung ACE2 in mice treated or not for 21 days with Lisinopril and
then infected with SARS-CoV-2: Lisinopril-treated Infected ( ) (n = 10/timepoint), Untreated Infected ( ) (n = 10/timepoint); the mean value for
Untreated Uninfected controls (UU) is shown as a dashed line (-- -). (C) Viral load and (D) correlation (linear regression) between viral load and
ACE2 levels in Lisinopril-treated Infected mice (6/7 dpi): Lisinopril-treated Infected ( ) (n = 10/timepoint), Untreated Infected ( ) (n = 10/timepoint).
Data presented as mean ± SEM. Asterisks indicate significance; *p < 0.05, **p < 0.005 and ***p < 0.0005 by ANOVA 2 way with Bonferroni’s multiple
comparisons and t-test.
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2.13 Survival

Mice received treatment with Lisinopril for 21 days with
flavored gelatin, as described in Section 2.3, and were
subsequently infected with 105 PFU of SARS-CoV-2. Treatment
continued for more 15 days by gavage. Untreated Infected and
Untreated Uninfected received flavored gelatin without the
addition of medication and, post-infection, PBS 1x by gavage.
Weight loss and clinical manifestations were observed, respecting
the humanitarian end, described in Section 2.11, in which case mice
were subjected to euthanasia.

2.14 Histopathological analysis

On the 6/7 dpi, lungs were harvested and placed in 10%
formaldehyde for 24 h and transferred to 70% alcohol, embedded
in paraffin, and cut at 5 µm thickness. The deparaffination was made
in an oven at 45°C for 40 min followed by xylol for 10 min. Samples
were hydrated using alcohol (100%, 80%, and 70%) for 5 min each,
then washed in running water and stained with hematoxylin for
3 min. The slides were rewashed, and then the eosin was inserted for
7 min. Subsequently, the dehydration step was carried out using
ethyl alcohol (70%, 80%, and 100%), followed by the fixation step. A
descriptive table was created with an intensity scale (score from 0 to
4) for histopathological findings.

2.15 Statistical analysis

The results were entered into a database in Excel software and
analyzed individually using statistical methods appropriate for each
type of experiment. Normality was checked using
Kolmogorov–Smirnov, D’Agostino–Pearson, and Shapiro–Wilk
tests. Student’s T/Multiple t-test and ANOVA with Bonferroni
multiple comparisons test were used for parametric variables.
Mann Whitney and Kruskal Wallis tests were performed for
non-parametric data followed by Dunn’s analysis of variance.
The Log-rank (Mantel–Cox) test was applied for the survival
curves. Differences between groups were considered significant
when the p-value was <0.05. Graph Prism software
version 8.0 was used.

3 Results

3.1 Lisinopril-treated mice show increased
ACE2 levels and higher SARS-CoV-2 viral
loads in the lungs

The lungs of uninfected mice were analyzed to understand the
influence of ACEi treatment on ACE2 levels in humanized
transgenic mice treated or not with Lisinopril. As expected,
treatment with Lisinopril led to a marked increase in

FIGURE 2
Assessment of lung capacity through the parameters of respiratory frequency (A), Enhanced pause (Penh) (B), tidal volume (C) and expiratory flow
curve (Rpef) (D) in K18 hACE2 mice observed on days 3 (n = 30), 5 (n = 20) and 6/7 (n = 10) post-infection (dpi). Data presented as mean ± SEM. Asterisks
indicate significance: *p < 0.05, **p < 0.005, ***p < 0.0005 and ****p < 0.0001 by 2-way ANOVA with multiple comparisons by Bonferroni.
Representative results from three independent experiments. Untreated Uninfected ( ), Lisinopril-treated Infected ( ), Untreated Infected ( ).
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ACE2 levels in the lungs after 21 days of daily drug administration
(Figure 1A). The effect was stronger in female than in male mice
(Supplementary Figure S1A).

Infection with SARS-CoV-2 led to a sudden reduction in
ACE2 levels in the lungs of both Untreated Infected and
Lisinopril-treated Infected mice on 3 dpi (Figure 1B).
ACE2 levels remained low in the Untreated Infected mice at
5 dpi, but strikingly ACE2 levels recovered to pre-infection
levels at 5 dpi in Lisinopril-treated Infected mice. At the last
time point (6-7 dpi), ACE2 levels were also recovered in the
Untreated Infected mice (Figure 1B), but interestingly female
mice showed much higher levels than male mice
(Supplementary Figure S1C). No differences were observed
between sexes in the Lisinopril-Treated Infected group
(Supplementary Figures S1B, S1C).

The higher levels of ACE2 in the lungs of Lisinopril-treated
mice seem to have influenced the viral load in these animals.
Lisinopril-treated Infected mice showed much higher SARS-
CoV-2 copy numbers at 3 and 6/7 dpi than Untreated
Infected mice (Figure 1C). No differences were observed
between the sexes in the Lisinopril-Treated Infected group
and the Untreated Infected group (Supplementary
Figures S1D, S1E).

The higher viral load recorded on 3 dpi was not proportional
to ACE2 levels; however, at the last time point, we observed a
positive correlation between viral load and the quantification of
ACE2 in the lung (R2 = 0.7716; p = 0.0041 (Figure 1D)). There
seems to be a correlation between lung ACE2 levels at a given
time point and viral load at the subsequent time point. Mice
treated with Lisinopril for 21 days showed higher ACE2 levels
than untreated mice just before infection. Consequently, the viral
load at 3 dpi for Lisinopril-treated Infected mice was much
higher than for Untreated Infected mice. At 3 dpi,
ACE2 levels plummeted in both groups, treated and untreated,
to similar low levels, and viral titers at 5 dpi were also similar in
the two groups. At 5 dpi, ACE2 levels remained very low in
Untreated Infected mice, leading to a steep decrease in viral load
at 6/7 dpi, whereas ACE2 levels soared in Lisinopril-treated
Infected mice at 5 dpi, leading to sustained high viral titers at

6/7 dpi, which were 1,000 times higher than those observed in
Untreated Infected mice.

3.2 Lisinopril does not alter respiratory
capacity in experimental COVID-19

Lung capacity was measured on days 3, 5, and 6/7 post-infection.
Irrespective of whether mice were treated or not with Lisinopril,
infection with SARS-CoV-2 led to worsened respiratory capacity.
There was a reduction in Respiratory frequency (RF) at 3, 5, and 6/
7 dpi, and in tidal volume and expiratory flow curve (Rpef) at 5 and
6/7 dpi between the Untreated Infected and Lisinopril-treated
Infected groups compared to the Untreated Uninfected (Figures
2A,C,D). Concerning enhanced pause (Penh), an increase was
observed at 6/7 dpi in both infected groups compared to
Untreated Uninfected (Figure 2B). All respiratory capacity
indicators were much worse at 6/7 dpi than in the previous
time points.

These data indicate that SARS-CoV-2-infected mice show
increasingly deteriorated lung capacity during infection.
However, Lisinopril treatment does not seem to impact on the
respiratory capacity outcome. Respiratory parameters were also
analyzed separately for males and females. In general, the results
indicated no significant differences in the respiratory pattern
between sexes, except for a few measurements at specific time
points in the Untreated Infected group (e.g., respiratory
frequency at 3 dpi and tidal volume at 3 and 6/7 dpi)
(Supplementary Figure S2).

3.3 Treatment with lisinopril has a transient
impact on the clinical manifestations of
experimental COVID-19

Untreated Infected mice showed progressive weight loss
reaching out 20% by day 6 of infection, and Lisinopril-treated
Infected mice showed a similar outcome (Figure 3A). Significant
weight loss in both infected groups in relation to Untreated

FIGURE 3
(A) Body weight loss (%) and (B) clinical score (daily sum) of K18 hACE2 Untreated ( ; n = 30) and Lisinopril-treated ( ; n = 30) mice during SARS-
CoV-2 infection, compared to the Untreated Uninfected ( ; n = 30) mice. The Untreated Uninfected group did not present clinical signs or weight loss.
Representative results from three independent experiments. Asterisks indicate significance: *p < 0.05, **p < 0.005, ***p < 0.0005 and ****p < 0.0001 by
2-way ANOVA followed by multiple comparisons by Bonferroni.
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Uninfected was observed from day 2 of infection. Untreated Infected
mice also showed worsening of the clinical score, which deteriorated
from day 3 (Figure 3B). Overall, weight loss and deteriorating
clinical scores were similar between Untreated Infected and
Lisinopril-treated Infected mice. Post-hoc analysis showed that
Lisinopril-treated Infected mice presented slightly improved
weight at 5 dpi and better clinical scores at 3, 4, and 5 dpi;
however, in the end results (6 and 7 dpi), the clinical scores were
not different between the two groups. No differences in weight loss
and clinical score were observed between male and female mice
(Supplementary Figure S3).

3.4 Lisinopril treatment decreases the levels
of pro-inflammatory cytokines in
experimental COVID-19

The levels of interleukin-6 (IL-6), tumor necrosis factor alpha
(TNF-α) and IL-33 were measured in the serum and lungs at 6/
7 dpi. As expected, Untreated Infected mice showed high levels of
the three pro-inflammatory cytokines in the serum and the lungs
(Figure 4). Treatment with Lisinopril led to a marked reduction in
the levels of IL-6 and TNF-α both in the serum and lungs (Figures

4A,B,D,E). Despite overall lower levels, a significant reduction in
IL-33 was not observed (Figures 4C,F). No differences were
observed in serum and lung cytokine levels between the sexes
(Supplementary Figure S4).

3.5 Lisinopril does not affect lung
histopathological changes and outcome of
SARS-CoV-2 infection

Survival and lung histopathological changes were verified to
analyze the effect of treatment with Lisinopril on the outcome of
SARS-CoV-2 infection. Infection with SARS-CoV-2 in untreated
mice led to a 50% mortality rate, with deaths occurring between
days 5–9, whereas treatment with Lisinopril resulted in a lower
(39%) and delayed (days 6–11) mortality (Figure 5A), but these
outcomes were not statistically different. The outcomes among
female and male mice are shown in Supplementary
Figures S5A, S5B.

Lung histopathology was analyzed at 6/7 dpi and classified
according to the sum of the degrees of intensity and frequency
(%) of histopathological changes. As expected, lung injuries in
SARS-CoV-2-infected mice were severe and determined the cause

FIGURE 4
Analysis of IL-6 (A andD), TNF-α (B and E) and IL-33 (C and F) in serum and lung of Lisinopril-treated Infected (LI; n = 10) and Untreated Infected (UI,
n = 10) mice on 6/7 dpi. Untreated Uninfected controls showed values below 0.5 ng/mL for the three cytokines. Data presented asmean ± SEM. Asterisks
indicate significance: *p < 0.05 and ***p < 0.0005 by t-test or Mann-Whitney test.
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of death. Lisinopril treatment had no apparent impact on this
outcome. According to the analysis of the intensity of
histopathological findings in lung tissue (0–4), no differences
were observed in the Untreated Infected and Lisinopril-treated
Infected groups (Figure 5B). Inflammatory infiltrate was the most
frequent finding in both the Untreated Infected and Lisinopril-
treated Infected groups (90%), followed by alveolar emphysema and
the presence of fibrin (80%). Edema and reactive alveolar
macrophages were present in 70% of the tissues analyzed in both
groups. Furthermore, hemorrhage and thickening of the alveolar
septa were observed in 70% of the lungs, and congestion in 60% was
more frequent in the Lisinopril-treated Infected group (50%).

Hemosiderin was more frequent in Untreated Infected mice
(80%). These results are represented in Figures 5C,D.

4 Discussion

The discussion about the effects of treatment on patients
revolves around the possible protective or deleterious effects on
RAS imbalance. Due to the urgency of information during a
pandemic, many clinical trials and prospective studies were
conducted to fill information gaps. However, more exploratory
studies under controlled conditions allowed by animal

FIGURE 5
(A) Survival curve of Untreated ( ; n = 18) and Lisinopril-treated ( ; n = 20) K18-hACE2 mice after infection with SARS-CoV-2; the Untreated
Uninfected ( ; n = 6) did not showmortality. The survival Log-rank (Mantel–Cox) test was applied. (B–D)Histopathological analysis of lungs on 6/7 dpi.
(B) histological scores of Lisinopril-treated Infected ( ; n = 10) and Untreated Infected ( ; n = 18) K18-hACE2mice. Results obtained from the sum of the
degrees of intensity. Data presented as mean ± SEM. Analysis performed by t-Test. (C) Representative histopathological images from lungs.
Magnification = ×100. (D) Frequency of histopathological findings at 6/7 dpi in Lisinopril-treated Infected ( ; n = 10) and Untreated Infected ( ; n = 10)
mice.
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experimental models of COVID-19 under ACEi interference can
bring precious information regarding mechanisms of
physiopathogenesis involved in the process (Liu et al., 2020; Patel
and Verma, 2020; Baral et al., 2021). The present study used a
transgenic humanized animal model widely applied for studies of
the pathogenesis of COVID-19, simulating continuous treatment
with Lisinopril for 21 days before infection with 105 PFU of SARS-
CoV-2, maintaining treatment for up to 7 days post-infection.

The key, novel findings of this study are the demonstration that
Lisinopril treatment leads to increased expression of ACE2 in the
lungs, the main target organ of SARS-CoV-2, and this effect seems to
be a key element making these animals susceptible to higher viral
loads at the earlier and later stages of the infection. On the other
hand, Lisinopril treatment largely prevented the occurrence of high
levels of the pro-inflammatory cytokines IL-6 and TNF-α. These two
opposite effects, deleterious in terms of viral load and beneficial in
terms of limited inflammation, may help to explain the lack of major
differences of outcome, whether considering clinical evolution,
respiratory capacity, lung damage or survival, between Lisinopril-
treated and Untreated animals (Zhang et al., 2020; Meng
et al., 2020).

Quantification of ACE2 in healthy mice (Untreated Uninfected)
compared to animals that received Lisinopril (Lisinopril-treated
Uninfected) was essential to understanding the scenario under
virus interference. Our results demonstrated that ACE2 in the
lungs increase after 21 days of treatment, similar to the findings
described by Brooks and colleagues in C57BL/6 mice (Brooks et al.,
2022). Interestingly, this effect was stronger in female than in male
mice, but did not seem to influence post-infection outcomes
(Lisinopril-treated female mice showed patterns of lung
ACE2 levels and viral load similar to male mice after infection).
The lung is the most important organ for the development of
COVID-19. A high viral load in this tissue was expected, as
observed in the Untreated Infected group, with viral replication
peaking at the 5 dpi. However, the Lisinopril-treated Infected mice
showed a progressive increase in viral load over time correlated with
the quantification of ACE2, confirming the initial hypothesis about
the duality of events caused by the interference of an ACEi in the
RAS of these animals. In this case, Lisinopril upregulated ACE2,
increasing viral replication.

The high viral load recorded at 3 dpi was not correlated with the
quantification of ACE2; however, at the last time point, we observed
that the variables are strongly correlated (R2 = 0.7716; p = 0.0041).
This result suggests that the Lisinopril-treated Infected group
increases in viral load due to the continuous use of Lisinopril by
favoring the alternative RAS pathway.

Replication of the virus is the triggering event in COVID-19
pathogenesis, and therefore an increased and persistent viral load
points to a more severe outcome. However, the results of weight loss,
clinical score, and lung capacity do not indicate that this increase in
viral load interfered with the outcome of infection compared to the
untreated infected group. The nature and potency of the host
response, particularly in terms of inflammation and coagulation,
have been well-established as critical elements of COVID-19 severity
(Brandão et al., 2020; Velavan et al., 2021; Veiga and Cavalcanti,
2023). Indeed, in COVID-19, high levels of IL-6 and TNF-α were
associated with a greater chance of developing respiratory failure
and contributed to the formation of fibrinogen and other factors in

the coagulation cascade (Lipworth et al., 2020; Vultaggio et al., 2020;
Lazzaroni et al., 2021), and IL-33 has been shown to be upregulated
in COVID-19 patients and strongly associated with poor outcomes
(Gao et al., 2022). Our results showed that SARS-CoV-2-infected
hACE2 mice had increased serum and lung levels of the three
cytokines, and Lisinopril treatment reduced serum IL-6 and
TNF-α but not IL-33 levels. A limited inflammatory response has
been shown to be important for improved prognosis and for
preventing the development of long/severe COVID-19, as
demonstrated in patients (Li et al., 2020; Liu et al., 2020; 2023;
Meng et al., 2020; Naicker et al., 2020; Yonas et al., 2020;
Giannitrapani et al., 2023; Yin et al., 2023). In addition, IL-6
analysis indicated a decrease in inflammatory action, resulting
from the blockade of the AT1R receptor by the drug’s action,
favoring the Ang (1–9) axis to the Mas receptor (Vaduganathan
et al., 2020; Shekhawat et al., 2021). Also, ACEi alters the production
of cytokines and has effects on the recruitment of monocytes and
macrophages to the site of inflammation (Felkle et al., 2022), with
protective effects on heart and kidney diseases (Krysiak and
Okopień, 2012; Abdel-Wahab et al., 2014; Haas et al., 2019;
Tesch et al., 2019; Tan et al., 2024). Therefore, despite boosting
viral replication, the anti-inflammatory action of the Lisinopril
treatment probably acted as a compensatory mechanism,
resulting in no major differences in terms of outcome compared
to the untreated animals.

As any animal model of human disease, the K18-hACE2 mice
has a number of limitations. Being under the control of cytokeratin
K18 promoter, hACE2 expression is limited to epithelial cells and,
therefore, does not reflect the complexity of the
hACE2 expression—and hence of SARS-CoV-2 propagation—in
a number of different tissues in humans. But, since in these mice the
hACE2 is expressed in sites that are critical for both virus replication
and pathology in human COVID-19, such as upper respiratory
airways, lungs, kidneys and intestines, it replicates
consistently—though not perfectly—the human disease. It also
needs to be emphasized that ACE2 plays major roles in COVID-
19 not only as the receptor for the virus but also because its
downregulation during infection probably has marked impacts
on cardiovascular and coagulation functions, aggravating the
disease. In this regard, ACE inhibitors upregulate not only the
hACE2 in the transgenic mice, but also the native mouse ACE2
(Brooks et al., 2022).

As such, increased ACE2 expression induced by lisinopril may
help to explain a compensatory effect against increased viral load. As
mentioned, the sharp decrease in ACE2 expression in the lungs and
other tissues by SARS-CoV-2 infection is highly detrimental to
vascular health, generating a pro-constrictory and pro-coagulation
environment, which plays a central role in COVID-19 pathogenesis
(Ye et al., 2020; Li et al., 2021). Lisinopril-treated animals showed
not only higher ACE2 levels before infection but also showed a fast
recovery (5 dpi) of ACE2 levels after initial (3 dpi) ACE2 exhaustion.
This normalization of ACE2 expression earlier in the infection may
have contributed to prevent or diminish systemic deleterious events
such as widespread coagulation as well as local tissue damage in face
of higher viral load.

Indeed, the Lisinopril-treated Infected group showed no worse
performance in terms of clinical condition, respiratory capacity,
lung damage and mortality compared to the Untreated Infected
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group. A retrospective study (Yang et al., 2020) found a lower
proportion of critically ill patients and a lower mortality rate, while
systematic reviews/meta-analyses did not provide evidence of a
significant association between ACEi/ARB treatment and
COVID-19 mortality. Additionally, another study (Huang et al.,
2021) showed a reduction in the inflammatory profile in patients
treated with ACEI/ARB and Zhang et al. found no association with a
higher risk of severe infection (Zhang et al., 2020).

A few differences between male and female mice were observed
in this study. Infection by SARS-CoV-2 in untreated mice led to
slightly worse performance in female compared to male mice for
some respiratory function parameters (e.g., respiratory frequency,
Penh and tidal volume at 3 dpi and tidal volume at 6/7 dpi).
Untreated infected female mice had also much higher levels of
lung ACE2 at 6/7 dpi. In the treated group, Lisinopril led to higher
levels of lung ACE2 in female than in male mice, but this effect did
not result in marked differences in outcomes between male and
female mice. Overall, lung ACE2 levels were markedly affected by
sex, but otherwise sex differences seemed to be small and studies
with bigger sample sizes and additional endpoints may be necessary
to unveil significant sex-related factors influencing SARS-CoV-
2 infection outcomes in these scenarios.

It is important to emphasize that, in this study, SARS-CoV-
2 infection was carried out in health, young adult mice. ACEi such as
Lisinopril are used by patients with chronic vascular diseases such as
hypertension, which are associated with severe outcomes in
COVID-19 (Khashkhusha et al., 2020; Rashedi et al., 2020). Fear
that ACEi might increase the probability of severe outcomes of
SARS-CoV-2 infection due to increased ACE2 expression led to
considerations of interrupting ACEi use in COVID-19. However,
clinical data suggest that continuing treatment is the best alternative
(de Abajo et al., 2021; Macedo et al., 2022). In addition, our findings
show that continued treatment during SARS-CoV-2 infection may
be protective against the development of severe forms of COVID-19.
Studies using similar approaches in models of hypertension with
hACE2 mice should provide more definitive indication that, in a
chronic disease scenario, the benefits of ACEi treatment during
COVID-19 may be far more evident.

In summary, the present study brings evidence that ACEi
(Lisinopril) shows both deleterious (higher viral loads) and
beneficial (anti-inflammatory and probably anti-constrictory and
anti-coagulant) effects in experimental COVID-19. These effects
seem to compensate each other, resulting in marginal beneficial
effects in terms of outcome for Lisinopril-treated animals.
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SUPPLEMENTARY FIGURE S1
Quantification of ACE2 levels by sex in lungs of uninfected mice treated with
Lisinopril for 21 days compared to Untreated Uninfected group. n = 4 males

and 4 females per group (A). Quantification of ACE2 levels (B and C) and
viral load (D and E) by sex in Lisinopril-treated (n= 5males and 5 females) and
Untreated Infected (n = 5 males and 5 females) mice on 6/7 dpi. Data
presented as mean ± SEM. Asterisks indicate significance; *p < 0.05, ***p <
0.0005 and ****p < 0.0001, by ANOVA two way with Bonferroni’s multiple
comparisons, respectively.

SUPPLEMENTARY FIGURE S2
Assessment of lung capacity through the parameters of Respiratory
frequency (A, B and C), Enhanced pause (Penh) (D, E and F), Tidal volume
(G, H and I) and expiratory flow curve (Rpef) (J, K and L) in male and female
K18 hACE2 mice observed on days 3, 5, and 6/7 post-infection. Data
presented as mean ± SEM. Asterisks indicate significance; *p < 0.05, **p <
0.005, and ***p < 0.0005 by 2-way ANOVA with multiple Bonferroni
comparisons. 3 dpi n = 15, 5 dpi n = 10 and 6/7 n = 5 animals per
group. Representative results from three independent experiments.
Untreated Uninfected (C), Lisinopril-treated Infected (▲), Untreated
Infected (■).

SUPPLEMENTARY FIGURE S3
The graphics represent weight loss and clinical score (daily sum) between
males and females of K18 hACE2 mice infected with SARS-CoV-2 by
group Lisinopril-treated infected (A and C) and Untreated Infected
(B and D). Data presented as mean ± standard error of the mean (SEM), by
Multiples T test.

SUPPLEMENTARY FIGURE S4
Analysis of IL-6, TNF-α and IL-33 in serum and lung of Lisinopril-treated
Infected group (A and C) and Untreated Infected group (B and D) on 6/7 dpi.
n = 5 mice per group. Performed by T test or Mann Whitney test.

SUPPLEMENTARY FIGURE S5
Survival curve of Lisinopril-treated Infected (A) and Untreated Infected
groups (B). The survival Log-rank (Mantel–Cox) test was applied and no
differences were observed between the sexes. Lisinopril-treated Infected
n = 18 (9 males and 9 females) and Untreated Infected n = 20 (10 males
and 10 females).
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