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Background: Neuropsychopharmacological compounds may exert complex
brain-wide effects due to an anatomically and genetically broad expression of
their molecular targets and indirect effects via interconnected brain circuits.
Electrophysiological measurements in multiple brain regions using
electroencephalography (EEG) or local field potential (LFP) depth-electrodes
may record fingerprints of such pharmacologically-induced changes in local
activity and interregional connectivity (pEEG/pLFP). However, in order to reveal
such patterns comprehensively and potentially derivemechanisms of therapeutic
pharmacological effects, both activity and connectivity have to be estimated for
many brain regions. This entails the problem that hundreds of
electrophysiological parameters are derived from a typically small number of
subjects, making frequentist statistics ill-suited for their analysis.

Methods: We here present an optimized interpretable machine-learning (ML)
approach which relies on predictive power in individual recording sequences to
extract and quantify the robustness of compound-induced neural changes from
multi-site recordings using Shapley additive explanations (SHAP) values. To
evaluate this approach, we recorded LFPs in mediodorsal thalamus (MD),
prefrontal cortex (PFC), dorsal hippocampus (CA1 and CA3), and ventral
hippocampus (vHC) of mice after application of amphetamine or of the
dopaminergic antagonists clozapine, raclopride, or SCH23390, for which
effects on directed neural communication between those brain structures
were so far unknown.

Results: Our approach identified complex patterns of neurophysiological
changes induced by each of these compounds, which were reproducible
across time intervals, doses (where tested), and ML algorithms. We found, for
example, that the action of clozapine in the analysed cortico-thalamo-
hippocampal network entails a larger share of D1—as opposed to D2-receptor
induced effects, and that the D2-antagonist raclopride reconfigures connectivity
in the delta-frequency band. Furthermore, the effects of amphetamine and
clozapine were surprisingly similar in terms of decreasing thalamic input to
PFC and vHC, and vHC activity, whereas an increase of dorsal-hippocampal
communication and of thalamic activity distinguished amphetamine from all
tested anti-dopaminergic drugs.

Conclusion: Our study suggests that communication from the dorsal
hippocampus scales proportionally with dopamine receptor activation and
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demonstrates, more generally, the high complexity of neuropharmacological
effects on the circuit level. We envision that the presented approach can aid in
the standardization and improved data extraction in pEEG/pLFP-studies.

KEYWORDS

antipsychotics, neural connectivity, granger causality, power spectral density,
electrophysiology, pharmaco-EEG, prediction-powered inference, interpretable
machine learning

1 Introduction

Symptoms of mental disorders are thought to often result from
maladaptive activity in particular brain regions or from
pathological communication between multiple brain areas
(Millan et al., 2012; Deisseroth, 2014). Whereas the effects of
neuropsychopharmacological compounds are usually well
understood at the molecular level, their impact on circuit
mechanisms that mediate psychological functions remains
largely elusive. Electroencephalography (EEG) or local field
potential (LFP) recordings during compound
administration—termed pharmaco-EEG (pEEG) or pharmaco-
LFP (pLFP)—may reveal neurophysiological effects at the
circuit level whose patterns are specific to a given compound or
are specifically shared by a representative psychopharmacological
class of compounds (Itil, 1983; Dimpfel et al., 1986; Dimpfel et al.,
1992; Dimpfel, 2009; Drinkenburg et al., 2016; Grotell et al., 2021).
Despite their great contribution to describe certain patterns of
neurophysiological effects of a large number of compounds in both
humans and rodents, their translation into a mechanistic
understanding regarding therapeutic action remains a challenge
(Gener et al., 2019; Delgado-Sallent et al., 2022). In contrast to
investigations of cognitive functions, a majority of pEEG studies
still limit analysis to activity rather than including connectivity
[with many notable exceptions, e.g., (Ahnaou et al., 2014; Rangel-
Barajas et al., 2017; Gener et al., 2019)], despite the importance of
neural communication for psychological functions and their
psychiatric aberrations (Drinkenburg et al., 2016; Hultman
et al., 2018; Strahnen et al., 2021b; Delgado-Sallent et al., 2022).
Furthermore, it was shown in a pioneering application of
unsupervised machine-learning that the inclusion of
connectivity-data aids in discriminating different
neuropharmacological compounds (Ahnaou et al., 2014).
Additionally, just like electrophysiological investigations of
psychological functions, mechanistic conclusions in pEEG are
hampered by the streetlight effect (Cunniff et al., 2020), i.e., by
the problem that a large proportion of drug-induced neural effects
go unnoticed because they are simply not recorded or not revealed
by the applied analysis. To reduce the streetlight effect in pEEG/
LFP studies, more recording sites and depth electrodes (Dimpfel,
2007) (to improve spatial and temporal resolution compared to
surface electrodes) may be used and multiple activity and
connectivity metrics be analysed (Hultman et al., 2018;
Strahnen et al., 2021a; Strahnen et al., 2021b; Delgado-Sallent
et al., 2022) with a fine-grained separation of potentially
independent frequency bands (Dimpfel, 2009). However, this
approach vastly expands the number of neurophysiological
variables to be analyzed in each pharmacological condition
[combinatorial explosion (Ahnaou et al., 2014; Strahnen et al.,

2021b; Delgado-Sallent et al., 2022)], which may be further
amplified by the inclusion of factors such as temporal
segmentation of post-injection analysis time and number of
doses (Dimpfel, 2007; Dimpfel, 2009), whereas subject numbers
remain typically low (on the order of 10). Such datasets are not
suited for analysis with frequentist statistics, i.e., the inference
based on p-values derived from t-tests, ANOVAs or similar
pairwise comparisons. This is because p-values would need to
be adjusted for multiple comparisons by division by the large
number of analysed parameters, whereas statistical power remains
relatively weak due to the typically small number of animals that
can be tested in logistically demanding electrophysiological
experiments - the combination of these two factors decreases
the detectability of actual effects. Also, such statistical analysis
neglects the possibility that several of the extracted
parameters—e.g., power in adjacent frequency bands or
connectivity involving the same brain region—may not be
independent from each other (Bzdok et al., 2018).

To tackle this problem, we here suggest an interpretable
machine-learning (ML) based approach to extract the most
robust drug-induced changes in neurophysiological activity
and connectivity obtained from multiple brain sites. In this
approach, binary classifiers are trained to discriminate data
recorded in distinct pharmacological conditions, e.g., drug vs.
vehicle, and the predictive power of a given activity or
connectivity parameter, estimated on individual short
sequences of electrophysiological recordings, is used as a
measure for its compound-induced modulation. Its principal
logic of prediction-powered inference implies that drug-
induced changes that are pronounced and robust will allow an
ML algorithm to predict, if a short sequence of data was recorded
from an animal receiving a given compound or its vehicle. This
approach also effectively harnesses the vast amount of time-series
data provided by every animal and session to quantify drug-
induced changes, instead of relying on statistics on animal-
based averages.

We demonstrate the feasibility of this method by extracting
activity and connectivity alterations induced in a cortico-
thalamo-hippocampal network by three pharmacologically
distinct dopaminergic antagonists—clozapine (at two doses),
raclopride, and SCH23390—and the indirect dopaminergic
agonist amphetamine. Although clinically and
pharmacologically important, the changes of directed
communication between brain areas caused by such
compounds remained unknown to date. Our data and analysis
reveal and quantify complex, but reproducible changes across
20 directed neural connections and six frequency bands which
represent finger-prints of every analysed compound and point to
their mechanistic circuit effects.
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2 Materials and methods

2.1 Animals and surgery

All experiments were performed in accordance with the German
Animal Rights Law (Tierschutzgesetz) 2013 and were approved by
the Federal Ethical Review Committee (Regierungsprädsidium
Tübingen) of Baden-Württemberg, Germany (licence number
TV1399). In total, two male and eight female adult (age:
4–7 months) C57BL/6N wildtype mice, which were littermates
obtained from cross-breeding of heterozygous Gria1-knockout
mice [Gria1tm1Rsp; MGI:2178057 (Zamanillo et al., 1999)], were
used for this study. Sample sizes were chosen to be around
10 based on our prior analysis of connectivity data (Strahnen
et al., 2021a). Mice were operated as described previously
(Strahnen et al., 2021a) and in Supplementary Methods,
implanting chronic PTFE-insulated Tungsten electrodes of 50 μm
diameter into five sites (Figure 1A): prelimibic cortex (PrL),
mediodorsal thalamus (MD), the fissure of the dorsal
hippocampus (dCA1), the CA3-subfield of the dorsal
hippocampus (dCA3), the fissure of the ventral hippocampus

(vHC). A scull screw above the contralateral cerebellum served as
ground and reference electrode. Accurate electrode placements in
the target region were verified post-mortem by electrolytic lesions
made immediately after death, and misplaced electrodes were
excluded from analysis.

2.2 Pharmacology and recordings

Pharmaco-LFP experiments were conducted approximately
every third day in a within-subject design with a latin-square,
randomized drug-assignment across the cohort. Applications
included: saline (Sal; vehicle 1), 0.1% TWEEN80/saline (T/Sal;
vehicle 2), 1 and 3 mg/kg clozapine (CLZ1 and CLZ3; clozapine
dihydrochloride, HB6129, HelloBio, GB), 0.5 mg/kg raclopride
(Raclo; S (−)raclopride (+)-tartrate, R121 Sigma, DE), 0.1 mg/kg
SCH23390 (SCH; SCH23390 hydrochloride, 0925 Tocris, GB), and
2 mg/kg amphetamine (Amph; d-amphetamine sulfate, A-5880,
Sigma); vehicle 2 was used for raclopride, all other compounds
were applied in saline. Mice were recorded in Type-III open-field
cages (Tecniplast, IT) with fresh saw-dust for a 10 min baseline

FIGURE 1
Experimental approach and drug-induced changes of behaviour and neurophysiology (A) LFPs were recorded from prefrontal cortex (PFC), dorsal/
ventral hippocampus (dCA1, dCA3, vHC) and mediodorsal thalamus (MD) of awake mice receiving a certain compound or vehicle. Directed connectivity
between these sites was calculated in 20s episodes and a Light Gradient Boosting Machine (LGBM) learning model was trained to predict which drug a
mouse has received based on connectivity patterns of such episodes. SHAP-values were used to quantify the predictive power of each frequency
and connection, which measures the magnitude and robustness of its compound-induced change (B) Locomotor activity across time in 10 min intervals
around the time of injection of compound (colour, dose inmg/kg indicated at the top) or vehicle (grey); thin lines represent individualmice; thick lines and
error bars represent mean ± s. e.m. (C) Same data as in (B) but total distancemoved after injection summed up; asterisks indicate significant difference to
corresponding vehicle (p < 0.05, one-sided t-test).
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period, after which the compound was applied i. p., followed by a
further recording for 50 min (see Supplementary Methods;
Figure 1A). Novelty-induced locomotion was used deliberately to
induce a brain state with high dopamine release (and resulting
exploratory motivation) to improve the detectability of behavioural
and electrophysiological effects of dopamine-enhancing and
-antagonizing compounds. Data was recorded with a 32-channel
RHD2132 headstage for amplification and digitization (Intan
Technologies, CA, United States) and an Open-Ephys (Siegle
et al., 2017) acquisition system (20 kHz sampling rate). A
custom-made motorized Open-MAC commutator (Kapanaiah
and Kätzel, 2023) served to neutralize the torque created by the
animal’s rotations.

2.3 Data analysis

Key design considerations for the recording and analysis
approach are stated in Table 1.

2.3.1 Pre-processing
The data was preprocessed in MatLab® (MathWorks, Inc., MA

United States) using custom written scripts. Electrophysiological
data was decimated to 1 kHz, the locdetrend function (1 s moving
window with 0.5 s step size) of the Chronux toolbox (Bokil et al.,
2010) was applied to remove slow drift oscillations, and the

CleanLine noise function from EEGLAB (Delorme and Makeig,
2004) was applied to remove potential 50 Hz noise and its
corresponding harmonics (100, 150, 200, 250 Hz).

2.3.2 Activity and connectivity estimation
Activity and connectivity were estimated for non-overlapping

intervals of 20 s. To improve comparability of estimated parameters
across animals, all computed values were normalized to the average
values from the 10 min baseline-recording before drug application
to control for absolute differences in signal strength between
animals, sessions, and electrodes. Power-spectral density (PSD) as
a measure for activity was estimated in the frequency range of
1–200 Hz with a resolution of 0.05 Hz using the multi-taper method
provided by the mtspecgramc function of the Chronux toolbox.
Vector auto-regressive (VAR)-based connectivity was calculated in
the frequency range of 1–200 Hz with a resolution of 1 Hz using the
source information functional connectivity toolbox (SIFT) of
EEGLAB (Delorme and Makeig, 2004; Mullen, 2010; Delorme
et al., 2011). Here, we calculated coherence (Coh) and imaginary
coherence (iCoh) as metrics of non-directed connectivity, Geweke-
Granger causality (GGC) (Geweke, 1982; Bressler et al., 2007) to
represent bivariate directed connectivity, as well as generalized
partial directed coherence [GPDC (Baccala et al., 2007)] and
short-time direct directed transfer function [SdDTF or dDTF08
(Korzeniewska et al., 2008)] representing multivariate directed
connectivity with normalization to the total outflow of each

TABLE 1 Design considerations for the analysis approach.

Analysis parameter Problems, constraints, trade-offs Design solution

N and subject-design Effort for implantation and experimentation, loss of electrodes 8–10, within-subject

Mouse exclusion Loss of data vs. low accuracy due to outlier reaction to drugs Exclusion of extreme outliers (non-moving or hyperactive)

Electrode exclusion Loss of data vs. low accuracy with misplaced electrodes Electrode exclusion based on lesion sites and outlier power
values

Brain regions Cognition-related, difficulty of implantation PFC, hippocampus, thalamus

LFP analysis toolbox Reliability, validity, high prediction accuracy, robustness (few
outlier values), broad range of metrics

EEGLAB, SIFT

Metrics Partial lack of redundancy between metrics; mathematical and
empirical validity; biological relevance and information; high
accuracy

Multi-metric initial assessment and accuracy-based selection of
optimal metric

Frequency bands (Hz) Arbitrariness of borders, loss vs. redundancy of information δ (1–4), θ (5–12), β (15–29), low-γ (30–49), mid-γ (51–99),
high-γ (101–149)

Interval/episodes Maximize training data, robustness and similarity of samples vs.
pharmaco-kinetics/-dynamics

10 min intervals/20 s episodes

Train/test data split Maximize training data, minimize outlier effects of test data 80/20 (~8 mice/2 mice)

Cross-validation High accuracy (trial-wise) vs. low over-fitting (mouse-wise) Mouse-wise (emphasize over-fitting problem)

Hyper-parameters Compute requirement and logistical effort vs. high accuracy
Robustness of result

OPTUNA toolbox: max (test-accuracy)
Use top-5 classifiers and average results

Classifier High speed, high-accuracy, handling of outlier and missing
values (electrodes), availability of efficient SHAP-calculation, low
over-fitting

Light-GBM (also possible: XGB)

Normalization Loss of information vs. over-fitting, data variability Division by value from 10 min baseline

Feature extraction Usage of optimized state-of-the art method, reproducibility,
comparability

Shapley additive explanations (SHAP), max-normalized
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sending node or total inflow to each receiving node, respectively.
Exact formulae and theoretical descriptions of these metrics can be
found in (Mullen, 2010). A model-order of 30 and a sampling rate of
1 kHz were used for GGC calculation implying estimates in 30 ms
segments. To generate activity and connectivity values as features for
machine-learning, the values obtained with 0.5 Hz frequency
resolution for each metric were averaged across common
frequency bands: delta (δ, 1–4 Hz), theta (θ, 5–12 Hz), beta (β,
15–29 Hz), low gamma (low γ, 30–49 Hz), mid gamma (mid γ,
51–99 Hz), high gamma (high γ, 101–149 Hz). We spared 50,
100 and 150 Hz to avoid any potentially remaining
contamination from grid noise and its harmonics.

To quantify the magnitude and direction of drug-induced
changes (Figures 5B, E) the difference of the z-scored log2-
transformed baseline-normalized amplitudes for each metric
recorded under compound and vehicle was calculated:

z−score[log2(AC/ABL C) − log2(AV/ABL V)]

Whereby Ac is the amplitude of a metric recorded after
compound; ABL_C is the amplitude of that metric in the
corresponding baseline before drug application (first 10 min); AV

is the amplitude of a metric recorded after vehicle; ABL_V is the
amplitude of that metric in the corresponding baseline before
vehicle application. The log2-transformation has been applied to
every individual baseline-normalized value (i.e., for every 20 s
interval) to remove the distortion introduced by the baseline-
normalization (ratio) that increases are numerically larger than
equally-sized decreases, which would confound the difference
metric. The z-score, calculated after pooling all data from across
mice and the one compound and its vehicle, has been applied to
adjust for different variability across connections and frequency
bands (i.e., metrics). These values have been averaged across the last
four intervals (minute 11–51) for Figure 5B and further analysis.

2.3.3 Machine learning and SHAP-estimation
2.3.3.1 Feature vectors

Feature vectors for every 20 s interval contained activity or
connectivity parameters for each region or connection,
respectively, in six frequency bands. In total, this amounted to
30 activity features (6 frequency bands * five regions; PSD) and
120 connectivity features per directed metric (6 frequency bands *
20 connections for GGC, dDTF08, GPDC) or 60 connectivity
features (6 frequency bands * 10 connections) per non-directed
metric (coherence, iCoh). In a first set of classifiers (main Figures
3A, B) all features were combined across metrics (510 features in
total); in a second set of classifiers, decoding was done based on
individual metrics at a time (feature numbers as stated above;
Figures 3C, 6, 8A), and in a third set of classifiers (Figures 3D, 4,
5; only used for PSD and GGC), decoding was done based on
features of one metric and one frequency band only (feature
numbers equating to 1/6 of what is stated above) in order to
avoid that more predictive frequency bands partially obscure the
detection of features in other frequency bands with somewhat
smaller predictive power; we term this set of classifiers and
analysis “frequency-subspace” throughout and it is supposed to
improve the detection of drug-induced changes across all
frequency bands. The rationale for the latter is that frequency
bands that are less reliably affected than others would not be

highlighted by the classifiers as containing predictive information
if more robustly changed features are available for the decoding; by
forcing the algorithm to only use features from one frequency band
at a time, the information that is available in that frequency band
gets detected. To subsequently allow to compare across both
frequency bands and compounds, the obtained and max-
normalized SHAP values in these analyses were then scaled by
the actually achieved accuracy of that classifier by multiplication
with the term (accuracy-0.5); this ensures that even high SHAP-
values get scaled down towards 0 if the accuracy of the classifier they
derive from is approaching chance level (0.5).

2.3.3.2 Temporal segmentation
Binary classification discriminating two pharmacological

conditions, i.e., a compound against its vehicle or against another
compound, based on feature vectors containing activity or
connectivity parameters with balanced datasets was done using
custom-written scripts in Python (Figure 1A). To accommodate
for potentially distinct changes induced in early vs. late (steady-
state) phases after a compound application—due to pharmaco-
kinetic or -dynamic time-dependent processes—we separated the
60 min recording time in ten time-bins, which were treated as
independent datasets during classification. Within each 10 min
episode, the intervals of 20 s were used to calculate individual
feature parameters; the 20 s lengths was chosen as it appeared to
deliver marginally higher accuracy values compared to shorter or
longer intervals in a pilot analyses. Therefore, for each classifier (for
a 10 min episode), every mouse provided 30 20 s intervals,
i.e., instances. Note, however, that a post hoc analysis using the
final decoding approach with hyperparameter optimization revealed
that there is no consistent difference in accuracy, between time bins
of 10, 20 or 40 s, and only marginal decreases at shorter (5 s) and
longer (75 s) periods in some cases (Supplementary Figure S1).
Generally, interval length should be chosen as an optimal
compromise between improving robustness of estimated
parameters (provided by longer intervals) and increasing the
amount of training data (enabled by shorter intervals). In
alignment with a relative stability of accuracy values across the
last four episodes (minute 11–50) after drug application, the
accuracy and SHAP-values (see below) obtained from these
intervals were averaged to obtain the final results. I.e., in the
determination of drug-induced neurophysiological changes, the
first 10 min after the injection were excluded from the final
analysis given that both accuracy and SHAP-values largely
deviated from the values obtained in the remaining 40 min.

2.3.3.3 Choice of ML algorithm and determination of
feature importance

Given the logistic and ethical limitations of pharmaco-
electrophysiological experiments in animals, their output is
usually bound to produce a relatively small number of instances,
typically on the order of a few hundred. This limits the application of
deep-learning algorithms—which typically rely on larger
datasets—and favors the use of efficient classical approaches of
classification, which include tree-based classifiers but also support
vector machines (SVM), linear discriminant analysis (LDA), or
general linear regression models (GLM). From a theoretical
perspective, advanced tree-based classifiers appear superior for
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classification of electrophysiological data given that they are not only
poised to deliver high accuracy, and provide many more parameters
for hyper-parameter optimization (see below), but also because they
can efficiently handle feature vectors with missing features (NaN
values); given that some electrodes usually need to be excluded due
to misplacement or corruption of the signal in electrophysiological
datasets, the ability to deal with incomplete feature vectors is critical
in order to avoid exclusion of whole subjects just because individual
electrodes are unusable (this is also an important ethical
consideration as the maximum exploitation of the data
obtainable from each experimental subject is imperative).
Furthermore, for the determination of the predictive power of
each parameter of neural activity or connectivity (i.e., of each
feature)—as a quantitative compound measure of the trial-to-trial
reliability and amplitude of the drug-induced effect on that
parameter—the Shapley additive explanations (SHAP)-method
has been used, since it has been argued that it is the currently
most advanced approach of interpretable ML (Lundberg and Lee,
2017; Lundberg et al., 2019; Lundberg et al., 2020; Molnar et al.,
2024). SHAP-value extraction, however, is currently only
implemented efficiently for tree-based classifiers using the
TreeExplainer in Python (Lundberg et al., 2020;
shap. TreeExplainer—SHAP latest documentation, n. d.).
Although an alternative tool exists for other types of classifiers,
the computing time is significantly longer. Finally, in pilot analyses,
we compared SVM and several advanced tree-based approaches
(Random-Forest; bagging, Dtree, AdaBoost, CatBoost, XG-Boost
(XGB) (Chen and Guestrin, 2016) and Light Gradient Boosting
Machine (LGBM) (Ke et al., 2017) finding, qualitatively, that
XGB and LGBM mostly produced superior accuracies (not
shown). All of the considerations above let us to focus on XGB
and LGBM for the final analysis. Among these two algorithms,
LGBM is several times (approximately 5–10x) faster than XGB in the
case of our data, and did not appear inferior in accuracy (see
Figure 6). At the level of SHAP-based extraction of predictive
features, LGBM and XGB delivered highly correlated results (see
Figure 6), suggesting that the additional use of XGB—although
advertised for smaller datasets, compared to LGBM—is obsolete,
and we conducted all our main analysis solely with LGBM. It is
important to note, that the superior speed (without loss of accuracy)
afforded by LGBM and the TreeExplainer is crucial to enable a
multiplexing of analysis at several other levels that all help to
improve the reliability of the outcome: a) An extensive hyper-
parameter optimization - in our case, requiring to compute
50,000 classifiers per individual analysis (i.e., per metric, drug
and potentially frequency band; see below). b) The calculation of
multiple classifiers (500 in our case) from more than one set of
hyperparameters to improve robustness of results by later averaging
of accuracy and SHAP-values. c) The application of the frequency-
subspace method described above—requiring a sixfold increase in
the number of classifiers to be calculated at the level of both hyper-
parameter optimization (6 * 50,000) and final analysis (6 * 500) to
detect drug-induced changes in frequency bands which are affected
as well, albeit with lower reliability. d) Assessment of multiple
metrics of connectivity (Strahnen et al., 2021a). e) Further
desired validation, e.g., by comparing mouse-wise with trial-wise
cross-validation or by cross-validation across time intervals (both
not performed here). Therefore, in real-world applications of

interpretable ML to extract drug-induced neurophysiological
changes, computational efficiency—as provided by LGBM and
the TreeExplainer—appears essential to enable high analytical
quality and reliability of results.

2.3.3.4 Cross-validation, hyperparameter optimization, and
final ML analysis

Decoding (prediction) accuracy was estimated for each
individual classifier from prediction attempts on data from two
pseudo-randomly chosen mice that have not contributed to the
training data (out-of-the-sample or mouse-wise cross-validation),
which ensured that the final result is biologically robust and
reliable. This choice corresponded to an 80:20 split between
training and testing data; i.e., for almost all drugs (except
amphetamine) individual classifiers were trained on the data
from eight mice (8 * 30 = 240 instances per 10 min episode) and
prediction accuracy was tested on a further 2 * 30 = 60 instances. For
amphetamine, two mice did not respond to the compound (no
locomotor increase after drug application) and were excluded from
the analysis to avoid contamination of the results with non-typical
data; here training data was contributed by six mice. For each
classifier a new split between training and test data was done,
ensuring that every mouse contributed sometimes to the training
and sometimes to the test data, with an equal distribution
across mice.

Hyperparameter optimization was used to ensure high accuracy
and low levels of overfitting—the former ensures that the algorithm
captures the predictive features (i.e., drug-induced changes)
optimally (high compliance), the latter implies that accuracy is
not based on the learning of regularities that are not due to the
effect of the compound but due to other extrinsic factors. The use of
mouse-wise cross validation with multiple repetitions across which
the identity of mice contributing to the training vs. the test dataset
was pseudo-randomized ensured that high accuracy could not be
attained by over-fitting. Therefore, maximum test accuracy has been
set as the sole optimization goal. Hyperparameters were optimized
in the OPTUNA toolbox (Akiba et al., 2019) (Preferred Networks,
Inc.), which performs an intelligent search through a non-
discretized hyper-parameter space, requiring a considerably
smaller number of assessed hyper-parameter combinations while
allowing the exploration of a wider range of hyperparameter-values
compared to classical grid-search approaches with complete
permutations of all hyperparameter-combinations with a fixed
range and discrete step-size of each hyperparameter. This
efficiency is crucial to enable hyper-parameter optimization for
every new set of classifiers, e.g., when multi-plexing the analysis
approach with the frequency-subspace method (see above). As for
the final analysis, cross-subject prediction with mouse-wise cross-
validation was performed during hyper-parameter optimization
with 10 classifiers being calculated for each combination of
hyperparameters (but with a different split of mice across
training and test data, see above). 5,000 hyperparameter sets were
allowed to be explored for every optimization (requiring
50,000 classifiers to be calculated in total) and the top 5,
according to test accuracy, were used for the final analysis.

In that final analysis, from which actual accuracy and SHAP-
values were determined, 100 iterations were calculated for each of
the top 5 hyperparameter sets - again, each with mice being pseudo-
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randomly assigned to training and test data. The accuracy values
were averaged across these five sets for every iteration, yielding a
population of 100 accuracy values—each derived as an average of
five classifiers calculated from the same underlying training/test-
data split with different hyperparameter sets—across which
statistical analysis (as shown in Figure 3) was performed. That
use of the top 5 hyperparameter sets (as opposed to just the best one)
and high number of 100 iterations for each set, in addition to the
separate calculation and averaging across four 10 min intervals of
expected steady-state pharmacological activity served to ensure the
best possible reliability and robustness of the final result. The
absolute values from the resulting SHAP-values from each of
these 5 * 100 classifiers were max-normalized between 0–1,
weighted by the accuracy of the individual classifier they were
derived from applying a multiplication by (accuracy-0.5), and
averaged across the 500 classifiers and, for the ultimate analysis
of steady-state changes (Figures 5A, 7), across the four last time
intervals of the recording.

Subsequent statistical analysis was done in SPSS (IBM, NY,
United States) as described in Results. All custom-written analysis
scripts for MATLAB and Python can be found on GitHub (https://
github.com/KaetzelLab/DA-Pharmacology-ephys-analysis-2024.git), all
raw data (down-sampled to 1 kHz) on https://doi.org/10.12751/g-
node.w7s6wv.

3 Results

3.1 Dopaminergic compounds induce
distinct behavioural and
physiological activity

To assess drug-induced connectivity, mice were injected with a
dopaminergic compound after 10 min of habituation and baseline
recording in a novel open field, followed by 50 min of further open-
field habituation and recording. Behaviourally, compared to trials
with vehicle application, an increase of locomotor activity was seen
after injection of amphetamine, whereas activity decreased when mice
were injected with clozapine, raclopride, or SCH23390 (Figures 1B,C).

In order to evaluate potential neurophysiological effects of each
compound qualitatively, we calculated difference-spectrograms, whereby
the average log-transformed and baseline-normalized directed
connectivity (measured with GGC) and activity (PSD) before and
after injection of each compound was plotted after subtraction of the
same values for the corresponding vehicle sessions. After compound
applications, multiple changes were observed in average activity and
directed GGC connectivity between the recorded brain regions (Figures
2A–C). For example, qualitatively, amphetamine increased the
communication from all recorded regions to the MD-thalamus in
the β-γ frequency range while decreasing the connectivity from
the MD in the high-γ and δ frequency bands. Amphetamine also
enhanced local activity in the low-γ range, but decreased it in
most lower frequency bands, as described previously for its
derivative DOI (Rangel-Barajas et al., 2017). Generally—and
as expected—a majority of connections and frequency bands
appeared to be affected by the applied compounds (Figures
2A–C), raising the necessity of an approach to extract the
most pronounced and robust compound-induced changes.

3.2 Decoding of compound identity from
activity and connectivity

Therefore, we deployed interpretable machine-learning (ML)
(Strahnen et al., 2021b; Molnar et al., 2024) using predictive power
in single-trial data to extract those changes by binary classifications
between data recorded after injection of each compound from data
recorded under vehicle (Figure 1A). Cross-validated decoding
accuracies above chance level (50%, given that the datasets were
always balanced) indicated that a compound induced consistent
neurophysiological alterations, whereby higher accuracies scale with
the robustness of such changes. Usage of single-trial (as opposed to
average) data andmouse-wise cross-validation—whereby data that is
used to measure the decoding accuracy of the algorithm is taken
from mice that contributed no data to the training
dataset—constitute high and conservative demands for the
decoder ensuring that only robust changes, occurring stably
across time and subjects are detected. In a first set of classifiers,
we combined five different metrics of local activity (PSD) and
directed (GGC, SdDTF, GPDC) and non-directed (Coh, iCoh)
connectivity in six frequency bands (see Methods) as a single
predictive vector to provide the maximum available information
obtainable from LFP data. Classifiers were trained on 20 s data
snippets from 10 min intervals. Whereas decoding accuracies
remained around chance level (0.5) in the baseline interval before
injection, they rose for all compounds in the intervals following
injection (Figure 3A). As a negative control, decoders attempting to
discriminate the two vehicle types remained around chance-level
throughout (Figure 3A). Average prediction accuracies after the
wash-in phase (20–50 min post-injection) reached just below 90%
for amphetamine and the higher dose of clozapine, and around 65%
for raclopride, SCH23390 and the lower dose of clozapine,
indicating effective decoding of robust neurophysiological
alterations induced by every drug (Figures 3A, B).

To assess, if changes affected rather activity within regions or
connectivity between regions, we computed a second set of classifiers
for which predictors derived only from one metric. Somewhat
surprisingly, predictors trained with the information on local
activity (power) had marginally, but significantly, higher
decoding accuracies compared to classifiers trained on any of the
connectivity metrics, for all tested compounds (Figure 3C),
suggesting that local activity is affected more robustly by the
drugs than connectivity. Among the connectivity metrics, GGC
appeared marginally more informative than the other metrics as
it allowed for significantly higher decoding accuracy in the
discrimination of amphetamine and 3 mg/kg clozapine vs. vehicle
(Figure 3C). This suggests that GGC is the most suitable of the tested
connectivity metrics for these datasets, and it was used for all
subsequent analysis.

Next, we investigated if communication was affected by a given
compound only in particular frequency bands by calculating a third
set of classifiers based on GGC parameters from single frequency
bands at a time (frequency-subspace classifiers). Astonishingly, all
frequency bands carried information about the presence of almost
every one of the tested compounds, to some degree. Mostly however,
communication was affected more robustly in certain frequency
bands compared to others; e.g., the high-γ (100–150 Hz) band
provided a higher decoding accuracy than any other frequency
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for amphetamine and the 3 mg/kg clozapine, whereas raclopride
affected δ and θ more robustly than any other frequency band
(Figure 3D). A similar pattern of frequency-specificity was observed
for local activity (Supplementary Figure S2).

Given the rich information contained in all frequency bands
and the partly very focused effect of compounds in small

frequency ranges observable in some spectrograms (Figure 2),
we investigated whether a more fine-grained slicing of the
frequency-space would yield higher accuracy as information
contained in different sub-regions of classical frequency bands
becomes more detectable for the classifier. Notably, for example,
the dopaminergic agonist apomorphine was shown to shift the

FIGURE 2
Connectivity and activity spectrograms of dopaminergic compounds (A–C) Spectrograms showing average numeric difference between log2-
transformed baseline-normalized GGC-spectrograms recorded under 2 mg/kg amphetamine (A), 1 [(B), left] or 3 [(B), right] mg/kg clozapine, 0.1 mg/kg
SCH23390 [(C), left], or 0.5 mg/kg raclopride [(C), right], and those recorded under vehicle (rainbow-scale). Panels along the diagonal lines represent
corresponding power-spectral density (PSD) difference spectrograms (blue-red-scale). Vertical black lines indicate time of injection. Horizontal
white lines indicate 30 Hz and break the plot along the y-axis to improve visibility of changes in lower frequencies. Note the similarity between the two
doses of clozapine.
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peak of striatal gamma-frequency oscillations from 50 to 80 Hz
(Valencia et al., 2012), which would go possibly undetected with
our current frequency-bands. Therefore, we calculated classifiers
akin to those shown in Figure 3C for PSD and GGC albeit with
frequency-intervals of 2 Hz from 1 to 30 Hz and intervals of
10 Hz from 31 to 150 Hz, leading to 28 instead of six frequency
bands. In line with the broader pharmacological effects in the
frequency space of connectivity, this alteration did either not lead
to higher accuracy or even mildly decreased drug decoding
accuracy (Supplementary Figure S3); for local activity (PSD),
slight increases of accuracy were observed for amphetamine and

CLZ1, but not in the remainder. This suggests that a different
choice of frequency bands is unlikely to reveal prominent
pharmacological effects that go beyond those captured by the
six frequency bands analysed in this study.

3.3 Compound-induced changes of neural
activity and connectivity

Whereas the frequency-subspace analysis revealed that
dopaminergic compounds affect distinct frequency bands more

FIGURE 3
Decoding of drug identity from neural activity and connectivity (A) Decoding accuracies of LGBM algorithms trained to predict the compound a
mouse has received (vs. vehicle) based on five connectivity and one activity metric combined plotted in 10 min intervals. Note that classifiers trained to
discriminate vehicle-types perform at chance level (50%) (B) Same data as (A) but averaged across the last four intervals (steady-state action of
compounds) (C) Same analysis as in (B) but using classifiers that were trained on features from only one metric, indicated by colour (D) Similar
analysis as in (A) for amphetamine vs. saline, but classifiers were trained on features from only one metric (GGC) and frequency band (indicated by colour
according to legend in (E)) (E) Similar analysis as in (C) just for classifiers that were trained on features from only onemetric (GGC) and frequency band (as
shown in (D). See Supplementary Figure S2 for the equivalent analysis based on PSD. Error bars represents s. e.m. in time series data (A, D) and S.D. in
aggregate data (B, C, E). Asterisks indicate pairwise (B) or paired (C, E) Sidak post hoc tests conducted after significant main effects in one-way (B) or
repeated-measures (C, E) ANOVA; in (B, C) the number of asterisks represents the lowest significance level of all indicated comparisons; in (C) only
metrics that differ from all other metrics are indicated by asterisks without additional comparison lines. *p < 0.05, **p < 0.01, ***p < 0.001; in (E) only
frequency bands that are distinct from all other at p < 0.05 (or higher significance level) are indicated, for clarity. No statistics was applied in (A) and (D).
Horizontal red dashed lines represent chance level.
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than others, a more fine-grained extraction of predictive power of
individual connectivity and activity parameters is necessary to map
anatomically specific alterations. We used the SHAP method
(Lundberg and Lee, 2017; Lundberg et al., 2019; Lundberg et al.,
2020), which combines several advantages of older techniques of
interpretable ML (Molnar et al., 2024) to extract the most robust
drug-induced physiological changes. In order to improve the
reliability of the obtained results, we extracted SHAP-values from
500 classifiers per compound, metric and frequency-subspace, and
averaged them after max-normalization and weighting with the
classifiers’ cross-validated accuracy (see Methods).

We found that strong SHAP-values were often repeatedly
detected for the same predictive connectivity or activity
parameters in distinct datasets representing consecutive time
intervals (Figures 4A, B), which underlines the validity of this
approach to detect real compound-induced physiological
changes that persist across time. Qualitatively, deviations from
reoccurring patterns affected mostly the first interval, which
likely reflects differences in the early effects a compound
exerts during wash-in compared to stable effects in the steady
state, or simply the absence of the latter during the first minutes
after application (see, e.g., connectivity changes in δ and θ-bands

FIGURE 4
SHAP-based feature importance obtained with frequency-subspace decoding displayed over time (A, B) Accuracy-weighted average max-
normalized SHAP-values obtained with the frequency-subspace method for binary classifications of 2 mg/kg amphetamine [(A), left] and 3 mg/kg
clozapine [(A), right], 0.1 mg/kg SCH23390 (B, left) and 0.5 mg/kg raclopride [(B), right], each against vehicle, displayed in 10 min intervals post-injection
for each frequency band (x-axis) and connection or region (y-axis). Note that–although shown together–classifiers were calculated separately for
GGC-based connectivity (top) and PSD-based activity (bottom). Features with normalized average SHAP-values <0.01 are shown as white.
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FIGURE 5
Compound-induced changes of neural activity and connectivity (A) Same analysis as in Figure 4, but SHAP-values have been averaged across the last
four time-intervals (covering effects occurring 11–50 min post-injection) for all five tested compounds and six frequency bands (x-axis). See
Supplementary Figure S4 for SHAP-results obtained without the frequency-subspace method, for comparison (B) Average numeric difference of the
z-score of log2-transformed amplitudes of a given parameter under compound and vehicle, as a measure of the size of the changes; averaged
across the last four time-intervals. The z-score was calculated across all mice and all sessions from one compound and its vehicle pooled to adjust for
different variability between connections and frequency bands (i.e., metrics). Blue and red colours indicate decreases and increases, respectively,
compared to vehicle, for metrics of connectivity (top) or activity (bottom). In panels (A, B), parameters for which the accuracy-weighted average
normalized SHAP values was <0.01 are shown as white (C) For the average over the last four intervals (representing minutes 11–50 post-injection), the
primary measure of robustness of compound-induced changes [accuracy-weighted normalized SHAP-value from frequency-subspace classifiers; as
shown in (A)] was correlated to the absolute value of the primary measure of the size of the compound-induced changes (the difference of the z-scored
log2-transformed baseline-normalized amplitudes for each metric recorded under compound and vehicle; as shown in (B)); both without thresholding.
The information whether the alteration was an increase or decrease of activity compared to vehicle is, hence, not considered for the correlation. Pearson
correlations have been computed to take into account the actual size of SHAP- and differencemeasures, Spearman correlations have been computed to
only regard relative sizes (order number). Correlations have been done for vectors which contained all GGC- and PSD-metrics of all frequency bands in a
linearized order, for every compound (x-axis) (D) Similar to (C), but correlations between SHAP-values (as shown in (A), but without thresholding) and
absolute values of log-transformed p-values (as shown in (E), but without thresholding) (E) p-values for paired t-tests comparing within-subject averages
of z-scored log2-transformed and baseline-normalized connectivity or activity values [as used for the difference calculation in (B)] with averaging done

(Continued )
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induced by either compound only at later time points;
Figures 4A, B).

To aggregate the robust steady-state changes, we averaged the
SHAP-values across the last four time-intervals for all tested
compounds, representing the essential analysis outcome of our

approach detecting robust drug-induced neurophysiological
changes with interpretable ML (Figure 5A). Due to the accuracy-
based weighting of SHAP-values obtained in frequency-subspace
classifiers, the displayed values can be compared across
compounds—with amphetamine and 3 mg/kg clozapine showing

FIGURE 6
Validation of LGBM results using the XGBoost (XGB) algorithm (A)Decoding accuracy for binary drug-vs-vehicle discrimination calculated in 10 min
intervals from GGC directed connectivity. Error bars, s. e.m. (B) Average decoding accuracy in last four intervals (minute 11–50 post-injection) for LGBM
and XGB algorithms based on GGC. Asterisk indicates significant difference (p < 0.05; one-way ANOVA). Error bars, S.D. (C, D) Average normalized SHAP
values from last four intervals from XGB (C) and LGBM (D) classifiers trained with GGC connectivity from all frequencies combined. Note that
classifiers have not been calculated with the frequency-subspace method due to the slower computation time of XGB, and are hence, not accuracy-
weighted). In both cases, SHAP values are derived as averages from 100 classifiers each from the top 5 hyperparameter sets (E) Spearman’s rho from
correlations of the linearized SHAP-value vectors (as shown in C-D) obtained with XGB and LGBM, calculated within each of the compounds. ***p < 10−52

for all correlations. Features with normalized average SHAP-values <0.01 are shown as white.

FIGURE 5 (Continued)

across all 20s-intervals fromminute 11–50 post-injection. Uncorrected p-values <0.1 are shown in colour, white indicates p ≥ 0.1; singular asterisks
indicate significance after Bonferroni-adjustment for multiple comparisons (p < 0.05/150). ***p < 10−10 for all correlations.
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the most pronounced changes. Notably, particularly robust changes
were sometimes not very frequency-specific; for example, both doses
of clozapine affected MD→PFC connectivity and PFC activity
robustly across virtually all frequency bands (Figure 5A).

In order to determine the numeric size and direction of the
detected neurophysiological alterations induced by a given
compound compared to vehicle, we plotted the arithmetic
difference between the average z-scored and log-transformed
normalized value of every neurophysiological parameter obtained
after injection of drug and that measured after vehicle (Figure 5B).
The linearized vectors of the absolute values of these difference
metrics correlated significantly with the linearized vectors of SHAP-
values for every compound (p < 10−12 for both Spearman and
Pearson correlations; Figure 5C), validating that our interpretable
ML-approach detects changes that are not only robust but also
strong in actual amplitude. All anti-dopaminergic drugs had in
common that they reduced local activity in all measured regions in
almost all frequency bands (except for δ), similar to what was
observed with olanzapine (but not some other second generation
antipsychotics) before (Dimpfel, 2007). Likewise, most connectivity
- with some notable exceptions in hippocampal connections - was
decreased by anti-dopaminergic compounds (Figure 5B).

For methodical comparison, we also followed the classical
statistical approach of calculating paired t-tests across within-
animal averages for all metrics. The resulting patterns of p-values
correlated with the SHAP-value patterns obtained by the ML-
approach (p < 10−10; Figure 5D), but the individual p-values
mostly did not survive Bonferroni correction for multiple
comparisons (p < 0.05/150 metrics; Figure 5E). This suggests that
the ML-approach is largely able to identify effects that would also be
obtained by frequentist statistics but is superior in terms of
sensitivity to and quantification of drug-induced effects.

To further validate these results, we repeated the same GGC-
based ML analysis with the XGB algorithm (Chen and Guestrin,
2016) and detected very similar patterns of changes that were
significantly correlated to those revealed with LGBM-classifiers
for all compounds (Spearman’s rho > 0.92, p < 10−52; Figures 6A–E).

3.4 Compound-specific alterations are
prominent in specific connections

In order to obtain a clearer view on the drug-specific
neurophysiological changes, we generated graphs depicting the
top 20 connectivity and top 10 activity parameters as ranked by
the accuracy-weighted normalized SHAP-value (Figure 5A). Among
those most prominent changes, almost all effects induced by anti-
dopaminergic drugs were decreases of connectivity and activity
(Figure 7A). A notable exception to this, was a re-configuration
in the δ-band communication induced by raclopride which entailed
increases (MD/PFC→vHC; dCA3→dCA1) as well as decreases
(vHC/dCA1→dCA3; dCA1↔MD). Generally, multiple
compound-specific dominant alterations emerged. For example,
amphetamine disproportionately impacted especially MD-
thalamic connectivity and activity, whereas clozapine affected
mainly prefrontal activity and thalamic connectivity. Hence, the
majority of the most prominent alterations caused by amphetamine
were not opposing, but, in fact, often surprisingly similar to those

induced by anti psychotics—clozapine in particular—entailing,
especially, strong decreases in MD→PFC/vHC connectivity
across most frequency bands. In fact, all tested compounds
prominently decreased MD→PFC γ-band communication. In
contrast to antipsychotics, however, amphetamine strongly
increased dCA1/dCA3→MD connectivity and local MD activity
across multiple frequency bands, which—among the most robust
alterations in the sampled circuit—appeared to be the main
distinction between the pro- and anti-dopaminergic compounds.
All anti-dopaminergic compounds, in turn, had in common that
they decreased dCA3 and PFC γ-power. To quantify similarities and
differences, we calculated bivariate Spearman correlations between
the SHAP-value patterns of the 150 electrophysiological parameters
(Figure 7A). Reassuring the validity of our approach, the two doses
of clozapine showed the highest correlation of their
neurophysiological alterations (rho = 0.52; p < 10−11) and shared
21 (70%) of the 30 parameters that were changed most robustly (out
of 150). Surprisingly, they also correlated strongly with SCH23390
(rho > 0.28; p < 10−3), but hardly with raclopride (rho < 0; p > 0.5).
This suggests that—in the cortico-thalamo-hippocampal network
we surveyed—D1-antagonism creates a larger share of the
connectivity changes observed under clozapine compared to its
D2-antagonism, in line with a relatively broader expression of
the corresponding gene Drd1 compared to Drd2 in murine
neocortex and hippocampus (Supplementary Figure S5) (Hodge
et al., 2019). At the level of frequency bands, clozapine and
SCH23390 mainly influenced the θ−β−γ range, whereas effects in
the δ- and, specifically, mid-γ-band dominated the effects of
raclopride.

3.5 Discrimination between compounds
confirms specific circuit alterations

To further evaluate the differences and similarities of the drug-
induced connectivity patterns, we trained binary classifiers to
discriminate within all possible pairs of applied compounds
based on GGC and PSD parameters of all frequencies combined.
Highest decoding accuracies were achieved when discriminating
amphetamine or the high dose of clozapine against other drugs
(Figure 8A). When plotting such accuracies (indicating how
discriminable two compounds are) against correlation coefficients
of compound-vs.-saline SHAP-value patterns (indicating how
similar drug-induced changes are in terms of robustness) an
expected inverse relationship became apparent for all instances
that involved amphetamine or 3 mg/kg clozapine (Figure 8B),
i.e., the two compounds with the strongest changes (Figure 3):
among those pairs, the two doses of clozapine showed the lowest
discriminability and the highest similarity, followed by clozapine vs.
SCH with a higher degree of difference, whereas the remainder
showed low positive or even negative correlations but could be
discriminated with high average accuracies above 80% (Figure 8B).
However, combinations that involved only compounds with weaker
effects (raclopride, SCH, 1 mg/kg clozapine) broke that pattern and
average discriminability remained low, irrespective of the
correlation. This also led to the counter-intuitive result that the
two doses of clozapine were easier to discriminate than the low dose
of clozapine from raclopride and SCH23390. These effects are likely
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due to the overall weaker robustness of the alterations they induced
and a certain similarity between effects of dopaminergic
antagonists (Figure 8B).

To identify the most prominent differences between drug
classes, we extracted SHAP-value patterns from the binary
classifiers (analogous to Figure 5A). These analyses confirmed
our previous results (Figures 5A, 7A); indicating, for example,
that amphetamine distinguished itself from all anti-dopaminergic
drugs by an increase in output from dorsal hippocampus to
thalamus and in thalamic activity which both occurred broadly
in frequency-space (Figure 8C). It also revealed that the high dose of
clozapine was most distinguishable from the other anti-
dopaminergic compounds by a broad change in MD→PFC

connectivity and PFC activity as well as in hippocampal β−γ-
power (Figure 8C). We further confirmed such prominent
differences using multi-class classification between all four
compounds (Supplementary Figure S6). Overall, these analyses
confirm that every dopaminergic compound induces a unique
and complex pattern of neurophysiological changes.

3.6 Drug-induced connectivity patterns are
not driven by changes in locomotion

An important caveat of all analyses of physiological effects of
neuropharmacological compounds that alter exploratory locomotor

FIGURE 7
Compound-specificity of changes to neural activity and connectivity (A) Depiction of the top 20 (out of 120) connectivity (arrows, GGC) and top 10
(out of 30) activity (circles, PSD) parameters as ranked by the accuracy-weighted SHAP-values (Figure 5A). Frequency-bands are colour-coded; dashed
and solid lines represent decreases and increases (determined from amplitude difference values shown in Figure 5B), respectively, induced by a given
compound relative to its vehicle. Line thickness represents 10 * SHAP-value [pt]. Spearman-correlations between the pattern of all
150 neurophysiological variables are indicated in rectangular boxes. Non-indicated Spearman’s rho for amphetamine x 1 mg/kg clozapine equals 0.065
(n.s.), and for raclopride x 3 mg/kg clozapine equals −0.125 (n.s.), p > 0.1). *p < 0.05, **p < 0.01, ***p < 0.001.
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activity - as is the case for dopaminergic drugs (Figures 1B, C) - is the
unresolved causal relation between such behavioural activity and neural
oscillations. It is well established that dorsal hippocampal theta
oscillations correlate with locomotor speed; in this case,
however—using optogenetic modulation of oscillations—it has been
determined that neurophysiological activity controls that behaviour
(Bender et al., 2015), not the reverse. In such cases, locomotor behaviour
is not a confounding factor because the causal chain goes from
compound to physiology to behaviour. In contrast, a confound can
be assumed in the opposite case, i.e., if locomotor speed causally changes
a neurophysiological variable which in itself is not affected in the same
way directly by the drug. Given that we find surprisingly different
changes to connectivity induced by the anti-dopaminergic compounds
that all depress locomotor activity to a similar degree (Raclo, SCH,
CLZ1; Figure 1C), it is unlikely that our results are largely determined by
the same factor of decreased locomotor activity. Nevertheless, we

explored this option further and, firstly, correlated baseline-
normalized locomotor activity in 20 s episodes from minute
11–50 post-injection of the two vehicle sessions (N = 3,960) to the
baseline-normalized value of every metric in such episodes as it was
used for the ML-analysis. We found that the correlation between
locomotor speed and neurophysiological metrics extended far
beyond theta oscillations in dHC; in fact, 90 of the 120 GGC
connectivity parameters (−0.38 < rho < 0.42) and 26 out of
30 activity parameters (−0.08 < rho < 0.78) correlated significantly
with spontaneous locomotor activity fluctuations in untreated animals
(Spearman’s rho; corrected p< 0.05/150; Figure 9A).We next correlated
the resulting patterns of correlation coefficients with SHAP-value
patterns of binary drug-vs-vehicle and drug-vs-drug classifications
(Figures 5A, 8C) to estimate what the maximal potential confound
by locomotion would be. Generally, correlations were low and mostly
non-significant, with some exceptions of discriminations of

FIGURE 8
Binary classification between distinct compounds (A) LGBM decoding accuracies for pairwise discrimination of two compounds based on GGC and
PSD combined over time in 10 min intervals. No statistics applied (B) Average decoding accuracy in the last four intervals (as shown in (A)) plotted against
Spearman’s rho coefficients of bivariate correlations between the average normalized SHAP-value patterns of the same pair of compounds. Asterisks
indicate significance level of rho. Error bars represent s. e.m. in (A) and s.d. in (B). **p < 0.01, ***p < 0.001 (C) Same analysis as in Figure 5A, just for
binary classifications between two compounds (as shown in panel (A)); SHAP-values have been averaged across the last four time-intervals (covering
effects occurring 11–50 min post-injection) for all 10 possible comparisons between tested compounds and six frequency bands (x-axis).

Frontiers in Pharmacology frontiersin.org15

Kapanaiah et al. 10.3389/fphar.2024.1412725

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1412725


amphetamine against dopaminergic antagonists (Figure 9B). This
suggests that—at least for the results obtained for drug-vs-vehicle
classification—the identified connectivity changes are not caused
simply by changes in locomotor speed.

4 Discussion

We here presented an approach combining multi-site LFP
recordings and state-of-the-art interpretable machine learning to
extract neurophysiological effects of psychoactive compounds. The
recording of multiple sites, initial assessment of multiple connectivity
metrics, and the reliance on single-trial predictive power to extract
robust effects aids in reducing the street-light effect in pharmaco-
electrophysiological studies. We applied multiple measures to ensure
the robustness of the obtained result, including cross-subject
prediction, subject-wise cross-validation, efficient hyperparameter
optimization and the use of multiple high-scoring hyperparameter
sets, each contributing 100 classifiers with altered train:test-data splits,
the frequency-subspace method to detect changes also in less affected
frequency bands, and the use of an advanced yet computationally
highly effective, tree-based algorithm (LGBM) in combination with
the TreeExplainer for advanced, SHAP-based extraction of predictive
feature-weights. The identification of similar changes across two types
of tree-based classifiers (LGBM and XGB, Figure 6), across two doses

of the same drug (clozapine; Figures 5A, 7A), and across time-
intervals within each of the compounds (Figures 4A, B) served as
positive controls of the robustness of the approach, whereas the
chance-level accuracy when discriminating against saline (Figures
3A, B) served as negative control. The accuracy-weighted normalized
SHAP-value measuring the predictive power or robustness of drug-
induced changes (Figures 5A, 7A, 8C) is suggested as a more reliable
indicator for pharmacologically induced neurophysiological
alterations than p-values (Figure 5E) for high-dimensional, low-N
electrophysiological datasets; it correlated strongly with the
(compound-vehicle) difference of the actual amplitudes of each
baseline-normalized metric indicating the size of the induced
changes and with patterns of p-values of t-test-based analysis of
the same data (Figures 5C, D), which further confirmed the
validity of the interpretable ML approach to extract drug-induced
differences between physiological states. We expect that the approach
presented here could help to bring previously requested
standardization to the field of preclinical
neuropsychopharmacology (Drinkenburg et al., 2016) and to
extractmore information from existing and future datasets in the field.

With respect to the specifically investigated dopaminergic
compounds, we revealed patterns of changes of connectivity and
activity induced by every compound, that exceeded previously
reported changes in individual frequency bands of averaged local
activity obtained with depth LFP- or scull EEG-electrodes in terms

FIGURE 9
Correlations between neurophysiological parameters and locomotor activity (A) Spearman correlations (rho, left; p-value, right) between
connectivity (GGC) or activity (PSD) parameters (y-axis) across frequency bands (x-axis) and locomotion speed. p-values <0.1 are shown in colour in the
right panel, and asterisks indicate significance with Bonferroni-adjustment (p < 0.05/150) (B) Coefficients of bivariate correlations between SHAP-value
patterns for drug-discriminations as shown in Figures 5A, 8C and patterns of associations between neurophysiology and locomotor speed [absolute
value of the correlation coefficient shown in (A)], shown for GGC-connectivity (top) and PSD-activity (bottom) for the binary discriminations indicated on
the x-axis.
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of complexity (Dimpfel, 2009). For example, it was shown before
that the antipsychotics risperidone and clozapine decrease
neocortical and hippocampal power across most frequencies, but
especially in the γ-range (Jones et al., 2012; Ahnaou et al., 2016;
Drinkenburg et al., 2016; Hudson et al., 2016; Ahnaou et al., 2017;
Gener et al., 2019; Sun et al., 2021), which we confirm here for all
dopaminergic antagonists, but particularly for clozapine [Figures 2B,
5A, B; note, however, that different patterns have been found with
different antipsychotics, that further depend on time point and dose
(Dimpfel et al., 1992; Sebban et al., 1999; Dimpfel, 2007; Dimpfel,
2009)]. Importantly though, our approach, reveals many further
fine-grained details such as particularly strong and spectrally broad
decreases of MD→PFC and bidirectional MD↔vHC
communication by clozapine, of dCA1→MD→PFC and
vHC→PFC communication by D1R-antagonism, and a complex
re-configuration of δ-band connectivity by raclopride (Figure 7A),
to just name a few. When comparing these changes to those induced
by the pro-dopaminergic compound amphetamine, we found that
some alterations—in particular a broad-band reduction of
MD→PFC/vHC communication—were unexpectedly similar to
those induced by clozapine, but that the key difference was a
prominent enhancement of β−γ communication originating from
the dorsal hippocampus and an increase of MD-thalamic local activity
by amphetamine, which could be central to its opposing psychological
effects. Whereas we cannot offer a mechanistic explanation for the
partial similarities between amphetamine and anti-dopaminergic
drugs or for the partial differences within the latter class, it is
worthwhile noting that similar findings of differences between
drugs of the same pharmacological class as well as strong
similarities between drugs of distinct classes, have been described
before (Dimpfel, 2007; Dimpfel, 2009; Ahnaou et al., 2014) and
underline the complexity of neurophysiological actions of
individual neuropsychiatric compounds. Despite the complexity,
certain patterns emerged that were largely reproducible across time
points and, in the case of clozapine, across drug-doses which
overlapped by 70% in the most robustly changed frequency-
specific neurophysiological parameters.

Despite this advancement, several limitations of both our
analytical pipeline and our specific conclusions remain. With
respect to the latter, given the low number of males in the
dataset (2/10), we could not draw conclusions regarding sex-
related similarities or differences of these pharmacological effects.
Secondly, whereas our correlation analysis in Figure 9 renders it very
unlikely that most of our SHAP-based results reflect
neurophysiological changes induced by altered perceived
locomotor speed, a confound by this factor cannot be completely
ruled out. While this is a principal problem when analyzing neural
effects of locomotion-altering compounds (not specific to our study
or approach), the introduced ML-based analysis—in contrast to
frequentist analysis using multivariate ANOVA or
ANCOVA—cannot easily include locomotor speed as covariate
to somewhat control for its influence. Thirdly, the analysis
approach presented here for local activity could be further
improved by including aperiodic components of the
electrophysiological signal, such as baseline shifts which can
confound the measurement of amplitudes in frequency space
(Valencia et al., 2012; Redondo et al., 2014; Donoghue et al.,
2020). Fourth, in the light of previous studies, it needs to be

noted that further complexity is expected to arise with an
extension of dose range and recording time, given that local
activity has been reported to change - partly very profoundly -
across these dimensions after application of pro- and anti-
dopaminergic drugs (Dimpfel, 2007; 2009). Furthermore, our
chosen six frequency bands may not capture all oscillatory
processes or may be too broad to detect shifts in the peak-
frequency of oscillations [as seen with dopaminergic modulation
before (Valencia et al., 2012)] and may therefore miss some
neuropharmacological effects. Indeed, our spectrograms show
that especially local activity displays more fine-grained frequency-
specificity like a sharp decrease of the alpha-band power by
amphetamine (Figure 1D) that was also observed with the
dopaminergic agonist L-DOPA previously (Dimpfel, 2009).
Therefore, our approach could be further advanced by introducing
even more frequency bands, such as α or low- and high-β bands
(Dimpfel, 2009). However, given the focus of our study on
connectivity, where changes appeared less fine-grained along the
frequency axis and difficult to subdivide by classical frequency-
boundaries (Figures 2A–C), we did not follow this approach here.
In line with this observation, our exploratory analysis with fine-
grained frequency bands (Supplementary Figure S3) did not yield
higher decoding accuracy for connectivity-based classification, but
showed some minor improvement for activity-based decoding in the
case of two compounds. A data-driven—rather than a
priori—subdivision of frequency bands may be considered in
future to optimize accuracy and the extraction of mechanistically
interpretable neurophysiological changes.

Overall, this study showed that the application of interpretable
ML to large sets of activity and connectivity data obtained by multi-
site depth recordings may reveal distinct effects of psychoactive
compounds, which mostly occur preferentially—but not
exclusively—in certain frequency bands, regions, and connections.
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