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Objective: The purpose of this study was to predict the four cold–heat patterns in
patients who have the subjective symptoms of the cold–heat pattern described in
the International Classification of Diseases Traditional Medicine
Conditions – Module 1 by applying a machine learning algorithm.

Methods: Subjects were first-visit Kampo outpatients at six institutions who
agreed to participate in this multicenter prospective observational study. The
cold pattern model and the heat pattern model were created separately with
148 symptoms, body mass index, blood pressure (systolic and diastolic), age, and
sex. Along with a single cold or heat pattern, the tangled heat/cold pattern is
defined as being predicted by both cold and heat patterns, while the moderate
(heat/cold) pattern is defined as being predicted by neither the cold pattern nor
the heat pattern.

Results: We included 622 participants (mean age ±standard deviation, 54.4 ±
16.9; with female 501). The accuracy, macro-recall, precision, and F1-score of a
combination of the two prediction models were 96.7%, 93.2%, 85.6%, and 88.5%
respectively. The important items were compatible with the definitions of the
cold–heat pattern.
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Conclusion: We developed a prediction model on cold–heat patterns with data
from patients whose subjective cold/heat-related symptoms matched the
cold–heat pattern diagnosis by the physician.
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Kampo medicine, the International Classification of Diseases, tangled heat/cold pattern,
moderate (heat/cold) pattern, prediction model

1 Introduction

The 11th revision of the International Classification of Diseases
(ICD-11), effective January 2022 (World Health Organization, 2023),
includes for the first time a chapter on traditional medicine
conditions— Module 1 (ICD-11TM1)—including traditional East
Asian medicine practiced mainly in China, Korea, and Japan.
Kampo diagnosis is based on a synthesis of findings obtained
through inspection, listening and smell, inquiring, and palpation,
and relies heavily on the physician’s five senses, experience, and tacit
knowledge. The selection of an appropriate Kampo medicine is based
on traditional Kampo diagnosis. Even for a single conventional
biomedicine diagnosis, such as perimenopausal symptoms or atopic
dermatitis, Kampo specialists use various treatment options based on
pattern diagnosis such as a heat–cold pattern. With the inclusion of
Kampo diagnosis in ICD-11, it is necessary to visualize and quantify
subjective information on the Kampo specialist involved in the
diagnosis, which has rarely been done, as reproducible information.

In Japan, a single medical license allows physicians to prescribe
both conventional biomedicines and Kampo medicines, and over
90% of physicians have experience prescribing Kampo medicines
(Moschik et al., 2012). However, most physicians are not specialists
in Kampomedicine and lack detailed knowledge of it. Therefore, it is
crucial for non-specialists in Kampo medicine to easily grasp the
patient’s traditional pattern diagnosis when choosing an appropriate
Kampo medicine.

We have developed a model to predict a deficiency–excess and
cold–heat pattern from patient questionnaires and have identified
important items to predict the deficiency–excess and cold–heat
pattern (Katayama et al., 2014; Maeda-Minami et al., 2019;
Maeda-Minami et al., 2020). We have also identified the
important items for the predicting deficiency–excess and
cold–heat pattern (Katayama et al., 2014; Maeda-Minami et al.,
2019; Maeda-Minami et al., 2020). In addition to our previous study,
there have been previous reports on prediction models for the
cold–heat pattern (Lee B. J. et al., 2018; Lee J. et al., 2018).

In Japan, there is a moderate (heat/cold) pattern in addition to
the cold pattern, heat pattern, and tangled heat/cold pattern in the
cold–heat pattern (Yakubo et al., 2014; Maeda-Minami et al., 2021).
A moderate (heat/cold) pattern is defined in ICD-11TM1 as “a
pattern characterized by the absence of findings that indicate the
heat pattern (TM), such as heat intolerance, red complexion, and hot
limbs, or cold pattern (TM), such as cold intolerance, pale
complexion, and cold limbs. It may be explained by the average
level of metabolic activity” (World Health Organization, 2023).
However, the cold–heat pattern prediction models in previous
studies have been able to predict only the cold and heat patterns
among the four cold–heat patterns (Katayama et al., 2014; Maeda-
Minami et al., 2020; Lee BJ et al., 2018; Lee J et al., 2018). No model

predicts the tangled heat/cold pattern and moderate (heat/cold)
pattern as well.

In addition, in constructing the cold–heat pattern prediction
model, we investigated our data carefully and found that the ICD-
11TM1 definition of the cold–heat pattern includes many
complaints about patients’ cold–heat pattern, but the patients’
cold–heat pattern complaints did not match the physician’s
diagnosis of the cold–heat pattern. The physician’s diagnosis of
the cold–heat pattern and the patient’s symptoms of the cold–heat
pattern were consistent in only 33.6% of all patients. We have also
reported that using training data with smaller deviations from the
definition leads to models that are more realistic and have a higher
accuracy rather than using pragmatic data that include a wider
variety of patients (Maeda-Minami et al., 2022).

The purpose of this study was to predict the four cold–heat
patterns in patients who have the subjective symptoms of the
cold–heat pattern described in ICD-11TM1 by applying a
machine learning algorithm.

2 Methods

This is a multicenter prospective observational study.

2.1 Participants

Subjects were first-visit Kampo outpatients at six institutions, Chiba
University, Iizuka Hospital, Keio University, University of Toyama,
Kameda General Hospital, and Jichi Medical University, who agreed to
participate in the study. The data collection periods for each institution
were as follows: Chiba University from March 2012 to January 2015,
Iizuka Hospital from January 2012 to February 2015, Keio University
from June 2012 to March 2013, University of Toyama from June
2012 to February 2015, Kameda General Hospital from January 2012 to
March 2013, and Jichi Medical University was from January 2012 to
March 2012. From previous studies, we found no remarkable
differences among the six institutions in terms of participants’
demographic characteristics, including mean age, female-to-male
ratio, mean body mass index (BMI), mean blood pressure,
physician-diagnosed patterns, and important items in the prediction
models in previous studies using the same dataset. Therefore, data from
all institutions were combined for this present analysis (Maeda-Minami
et al., 2019; Maeda-Minami et al., 2020).

Exclusion criteria were various data deficits (blood pressure, height,
weight, etc.), age less than 20 years, fewer than 20 questionnaire items
answered, and discrepancy in the cold–heat pattern between the
physician’s diagnosis and the patient’s symptom. We have already
reported that it was difficult to predict the pattern from the
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questionnaire items alone in patients with fewer than 20 items
(Katayama et al., 2014; Maeda-Minami et al., 2019; Maeda-Minami
et al., 2020).

The patients were selected based on their responses to the
cold–heat pattern questionnaire, referring to the definition in
ICD-11TM1 (World Health Organization, 2023). A part of the
questionnaire was administered to patients using the visual
analog scale (VAS, 0–100 mm). A VAS value of 0 was
considered to indicate that the patient responded that he/she did
not have the symptom, and a VAS value greater than 0 was
considered to indicate that the patient responded that he/she had
the symptom. The cold–heat pattern was determined from the
patient’s symptoms, according to the classification in Table 1.

Only those patients were selected for whom the pattern
determined from the patient’s symptoms regarding ICD-11TM1
matched the pattern diagnosed by the physician. We used the
traditional pattern diagnosis diagnosed by specialists in Kampo
medicine as the ground truth. The specialists in Kampo medicine
employed in this study had held active biomedical licenses,
completed residencies such as internal medicine or obstetrics and
gynecology, and were board-certified by the Japan Society for
Oriental Medicine with 3 or more years of clinical fellowship
training. We ensured consistency by also restricting patients
whose responses to interview items met the ICD-11TM1 definition.

2.2 Patient medical information items

A total of 154 medical information items were obtained from
patients, 148 interview items (including 29 binary items and
119 VAS items), vital data [height, weight, and blood pressure
(systolic and diastolic)], and attribute data (age and sex). Since
BMI was the most important item in the prediction model for the
deficiency–excess pattern in previous studies (Katayama et al., 2014;
Maeda-Minami et al., 2019; Maeda-Minami et al., 2020), height(m)
and weight (kg) were converted to BMI instead of using them as they
were when creating the prediction model. Therefore, the
independent variables used in the prediction models were 153 items.

2.3 Construction of a cold–heat pattern
prediction model using machine learning

2.3.1 Training algorithm
For the construction of the cold pattern prediction model and the

heat pattern prediction model, the algorithm used a random forest
classification derived by Breiman (1996), Breiman (2001), and Breiman
et al. (2008). Random forest generatesmultiple sample datasets from the

training data using the bootstrap method and constructs decision trees
for each dataset (Breiman, 2001). Each decision tree is independently
trained, using a random subset of features to determine the branching
points (Breiman, 2001). This ensemble learning method combines
multiple decision trees for prediction (Breiman, 2001). The
classification algorithm used in this study makes predictions on
unknown data by taking the majority vote of each decision tree’s
classification result (Breiman, 2001). Results are expressed as vote values
ranging from 0 to 1. We have previously reported that random forests
had the best accuracy for predicting deficiency–excess and cold–heat
patterns (Katayama et al., 2014; Maeda-Minami et al., 2019; Maeda-
Minami et al., 2020). The parameters for random forest include the
number of decision trees, the number of features used for each tree, and
the number of samples in the end nodes, which were set to 500, 12, and
1, respectively.

By creating a random forest model, we can determine the
importance of each item in the prediction, which is calculated
based on the decrease in the Gini coefficient when the variable is
excluded from the model (mean decrease Gini). Higher values
indicate that the item significantly contributes to the prediction.

2.3.2 Explanatory variables
The explanatory variables for the prediction models were

148 symptoms (including 29 binary items and 119 VAS items),
BMI, blood pressure (systolic and diastolic), age, and sex, for a total
of 153 items. VAS values were normalized by dividing each VAS
value by the maximum VAS value for each patient, as in previous
studies (Katayama et al., 2011; Katayama et al., 2014; Maeda-
Minami et al., 2019; Maeda-Minami et al., 2020).

2.3.3 Training data sampling
We have already reported the confounding relationship between the

deficiency–excess and cold–heat patterns (Maeda-Minami et al., 2020).
In our data, there were approximately nine times as many patients with
deficiency and cold patterns as patients with deficiency and heat patterns
and approximately twice as many patients with excess and heat patterns
as patients with excess and cold patterns. Our data had both high-
frequency and low-frequency classes, which influenced this
relationship. When creating prediction models using imbalanced
data, it is generally suggested to sample the training data according
to either the high-frequency or low-frequency class (Fujiwara et al., 2020;
He and Garcia, 2009). Our previous study found that random
undersampling to match the low-frequency class, rather than
extracting based on the overall data ratio, led to better prediction
models with key items closely aligning with the ICD-11TM1
definition (Maeda-Minami et al., 2020).

Following the method of previous research, the training data
were randomly sampled from the following 12 pattern patients with

TABLE 1 Pattern determined from the patient’s symptom.

Pattern of
judgment

Cold pattern Moderate (heat/cold)
pattern

Heat pattern Tangled heat/cold
pattern

VAS of cold pattern’s items At least one item’s VAS was
greater than 0

All items’ VAS were 0 All items’ VAS were 0 At least one item’s VAS was
greater than 0

VAS of heat pattern’s items All items’ VAS were 0 All items’ VAS were 0 At least one item’s VAS was
greater than 0

At least one item’s VAS was
greater than 0

VAS, visual analog scale.
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a balance of 10 cases each; deficiency-cold pattern, deficiency-
moderate (heat/cold) pattern, deficiency-heat pattern, deficiency-
tangled heat/cold pattern, medium-cold pattern, medium-moderate
(heat/cold) pattern, medium-heat pattern, medium-tangled heat/
cold pattern, excess-cold pattern, excess-moderate (heat/cold)
pattern, excess-heat pattern, and excess-tangled heat/cold pattern
(Table 2). The number of patients in the excess-moderate (heat/
cold) pattern was less than 10, so bootstrap resampling was
performed. We sampled a total of 120 cases from 12 patterns
and divided them into 60 cases each to train classification models
for the cold pattern or not and heat pattern or not. Based on our

previous results, this was considered sufficient for training data. The
remaining data other than the training data were used as test data.

2.3.4 Combining two models to predict the
cold–heat pattern

The cold pattern and heat pattern models were created separately
for this study to predict the four cold–heat patterns (Figure 1). In ICD-
11, the tangled heat/cold pattern is described as having both cold and
heat patterns, while the moderate (heat/cold) pattern is described as
having neither a cold pattern nor a heat pattern (World Health
Organization, 2023). The cold pattern prediction model and the heat
pattern prediction model were constructed by the random forest
classification algorithm using the training data.

2.3.5 Objective variables
At the stage of creating the cold pattern prediction model, data

diagnosed by Kampo specialists as the cold pattern or tangled heat/
cold pattern were used as 1/true, while data diagnosed as the heat
pattern or moderate (heat/cold) pattern were used as 0/false for
training. Similarly, data diagnosed by Kampo specialists as the heat
pattern or tangled heat/cold pattern were used as 1/true, while data
diagnosed as the cold pattern or moderate (heat/cold) pattern were
used as 0/false for the heat pattern prediction model.

2.3.6 Evaluating prediction performance
Both prediction models are used to calculate a vote value in the

range of 0–1 for each test data (Figure 1). In the cold pattern
prediction model, the calculated vote value of 0.5 or more was
judged as a cold pattern or tangled heat/cold pattern and that of less
than 0.5 as a heat pattern or moderate (heat/cold) pattern. In the
heat pattern prediction model, a calculated vote value of 0.5 or
higher was considered a heat pattern or tangled heat/cold pattern,
and a calculated vote value of less than 0.5 was considered a cold
pattern or moderate (heat/cold) pattern.

TABLE 2 Training and test data.

Total data Cold pattern Moderate (heat/cold) pattern Heat pattern Tangled heat/cold pattern Total

Deficiency pattern 169 17 16 82 284

Medium pattern 82 27 30 95 234

Excess pattern 16 4 34 50 104

Total 267 48 80 227 622

Training data

Deficiency pattern 10 10 10 10 40

Medium pattern 10 10 10 10 40

Excess pattern 10 10 10 10 40

Total 30 30 30 30 120

Test data

Deficiency pattern 159 7 6 72 244

Medium pattern 72 17 20 85 194

Excess pattern 6 0 24 40 70

Total 237 24 50 197 508

FIGURE 1
Relationship between the pattern and vote of the cold–heat
pattern prediction model.
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Based on the results of the cold pattern prediction model and
the heat pattern prediction model, we determined the four
cold–heat patterns as the cold pattern, moderate (heat/cold)
pattern, heat pattern, and tangled heat/cold pattern for each of
the test data. We calculated the accuracy (percent agreement)
between the ground truth and the patterns predicted by the
prediction models. We also calculated specific metrics used
in multi-class classification, macro-recall, precision, and
F1-score.

The 30 most important items for the cold pattern prediction
model and the heat pattern prediction model were selected.
Moreover, before finalizing the random forest, we repeated
random samplings to create the models multiple times and
confirmed that it generally resulted in similar accuracy and
important explanatory items each time.

2.4 Software

All analyses were performed using R4.2.2 (R Foundation for
Statistical Computing, Vienna, Austria). R’s random forests package
was used (Breiman et al., 2008).

3 Results

3.1 Participants

The number of patients registered at the six institutions was 925 at
Chiba University, 791 at Iizuka Hospital, 781 at Keio University, 501 at
University of Toyama, 424 at Kameda General Hospital, and 59 at Jichi
Medical University (Figure 2). The number of eligible patients was
133 at Chiba University, 151 at Iizuka Hospital, 224 at Keio University,
65 at University of Toyama, 46 at Kameda General Hospital, and 3 at
Jichi Medical University. The patient backgrounds used in the
prediction model are shown in Table 3. The cross table on the
deficiency–excess pattern and cold–heat pattern diagnosed by the
physicians is shown in Table 2.

3.2 Cold–heat pattern prediction including
the tangled heat/cold and moderate (heat/
cold) patterns

The accuracy of the cold pattern prediction model was 96.7%,
and the accuracy of the heat pattern prediction model was 96.7%.

FIGURE 2
Flow chart for inclusion/exclusion and model construction/evaluation.
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The accuracy, macro-recall, precision, and F1-score by the
combination of the two prediction models were 96.7%, 93.2%,
85.6%, and 88.5%, respectively (Table 4).

The important items in the cold pattern prediction model
include cold hypersensitivity in legs, cold intolerance, cold
hypersensitivity in hands, general cold hypersensitivity, and blood
pressure. The important items in the heat pattern prediction model
include heat hypersensitivity in face, easy to sweat, heat intolerance,
night sweats, and hot flashes. These items are included in the
definitions of the cold–heat pattern in the ICD-11TM1 (Table 5).

4 Discussions

We developed prediction models on four cold–heat patterns
including the tangled heat/cold andmoderate (heat/cold) patterns at
six institutions specializing in Kampo in Japan. First, we constructed
a cold pattern prediction model and a heat pattern prediction model
and then combined them to predict the four cold–heat patterns.
Even though the model was validated by the selected patients’ data,
the accuracy was over 90%, showing high concordance with the
physician’s diagnosis. The high accuracy suggests that the
combination of two prediction models is likely to be a successful
method for predicting the cold–heat pattern.

In the present study, we combined the two prediction models to
predict a physician’s cold–heat pattern diagnosis, meaning both
models have to predict the diagnosis correctly to reach a correct
conclusion. There was no case of both models predicting the wrong
diagnosis (i.e., predicted as a moderate (heat/cold) pattern for cases
with a tangled heat/cold pattern by specialist physicians). Most of
the misclassified cases occurred because one of the prediction
models failed to identify a cold or heat pattern in patients

diagnosed by physicians as having such patterns. In only two
cases, one of the two prediction models incorrectly identified a
cold or heat pattern in patients who were diagnosed by physicians as
having no such pattern. In both cases, our model concluded a
tangled heat/cold pattern, while the specialists diagnosed them as
cold or heat.

The prediction model was constructed based on the results of
the patient questionnaires, but we also found that the accuracy of
the prediction model for the deficiency–excess pattern increased
when the results of abdominal strength diagnosed by the
physician were added as an explanatory variable (Maeda-
Minami et al., 2019; Maeda-Minami et al., 2020). By adding
the results of the physician’s examination, for example,
complexion and limb temperature, according to the ICD-
11TM1 definition of cold/heat patterns, as an explanatory
variable may enable the construction of a model with high
accuracy even when using patients whose patterns did not
match the patterns diagnosed by the physician based on the
patient’s symptoms. However, since one of the purposes of our
study is to create a diagnostic aid tool that will allow physicians
who do not specialize in Kampo to easily make an appropriate
diagnosis and select a Kampo medicine, we did not incorporate
the results of the physician’s examination into our study.

This study has several limitations. The prediction models
were constructed excluding patients whose patterns diagnosed by
the physician did not agree with subjective symptoms, and the
accuracy was approximately 10% to these patients (data not
shown). Further research is needed to use predictive models in
daily clinical practice. To improve the predictive model that can
also be applied to the patients excluded in this study, we plan to
apply the current model in real clinical settings, examine which
types of patients it misclassifies, and incorporate explanatory
variables that can be measured even by non-specialists in Kampo
medicine. These results cannot be applied to those under 20 years
of age because those under 20 years of age were excluded from
this study. Similarly, patients with 19 or fewer symptoms are
excluded from the present study due to the difficulty of predicting
their pattern diagnosis with our data according to our prior
studies for the deficiency–excess pattern. In our previous study,
the most important items that contributed to the prediction of
the cold–heat pattern in the prediction model was patients’
symptoms, so it was difficult to predict it accurately for
patients with few symptoms. Since this study was limited to

TABLE 3 Background of model participants.

Characteristics numbers

Age (year) (mean ± SD) 54.4 ± 16.9

Male: female 121 : 501

BMI, kg/m2 (Mean ± SD) 21.7 ± 3.7

BMI, body mass index; SD, standard deviation

TABLE 4 Prediction results for four cold–heat patterns.

Physician’s diagnosis

Cold
pattern

Moderate (heat/cold)
pattern

Heat
pattern

Tangled heat/cold
pattern

Total

Prediction Cold pattern 230 0 0 10 240

Moderate (heat/cold)
pattern

6 24 6 0 36

Heat pattern 0 0 43 10 53

Tangled heat/cold pattern 1 0 1 177 179

Total 237 24 50 197 508
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institutions in Japan that specialize in Kampo, it is unclear
whether the results can be applied to other traditional East
Asian medicine. Additionally, external validation was not
conducted in this study even though we used the data from
multiple facilities in various regions of Japan for model
construction.

5 Conclusion

We developed a prediction model on cold–heat patterns with
high accuracy, macro-recall, precision, and F1-score with data from
patients whose subjective cold/heat-related symptoms matched the
cold–heat pattern diagnosis by the physician.

TABLE 5 Important items for the cold pattern prediction model and heat pattern prediction model.

Order Cold pattern Heat pattern

Item Importance Item Importance

1 Cold hypersensitivity in legs 8.86 Heat hypersensitivity in face 7.32

2 Cold intolerance 8.48 Easy to sweat 6.54

3 Cold hypersensitivity in hands 2.92 Heat intolerance 6.21

4 General cold hypersensitivity 1.66 Night sweats 2.55

5 Diastolic blood pressure 1.11 Hot flashes 2.14

6 Neck stiffness 0.98 Age 1.19

7 Systolic blood pressure 0.88 Depressed mood 1.12

8 BMI 0.86 Systolic blood pressure 0.93

9 Difficulty falling asleep 0.78 Menstrual pain 0.88

10 Chest pain 0.78 Blot 0.87

11 Stomach fullness 0.78 Diastolic blood pressure 0.81

12 Back stiffness 0.73 Dry skin 0.70

13 Eyestrain 0.73 Feeling sluggish 0.63

14 Shoulder stiffness 0.73 Knee pain 0.61

15 Age 0.71 Irritated 0.61

16 Thirsty 0.64 BMI 0.60

17 Easily fatigued 0.64 Facial edema 0.60

18 Drink water often 0.62 Bleary eyes 0.59

19 Flatulence 0.58 Palpitations 0.57

20 Hand numbness 0.58 Neck stiffness 0.52

21 Depressed mood 0.58 Lower back stiffness 0.51

22 Arousal during sleep 0.54 Headache 0.50

23 Cold hypersensitivity in lower back 0.54 Easily fatigued 0.48

24 Throat pain 0.51 Itchy skin 0.48

25 Legs spasms 0.50 Heat hypersensitivity in hands 0.48

26 Short attention span 0.47 Shoulder stiffness 0.45

27 Dry mouth 0.46 Drink water often 0.44

28 Burping 0.44 Sneezing 0.44

29 Heat hypersensitivity in face 0.43 Stuffy nose 0.44

30 Light headedness 0.42 Forgetfulness 0.42

BMI, body mass index.
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