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The management of neurological disorders heavily relies on neurotherapeutic
drugs, but notable concerns exist regarding their possible negative effects on
reproductive health. Traditional preclinical models often fail to accurately predict
reprotoxicity, highlighting the need for more physiologically relevant systems.
Organoid models represent a promising approach for concurrently studying
neurotoxicity and reprotoxicity, providing insights into the complex interplay
between neurotherapeutic drugs and reproductive systems. Herein, we have
examined the molecular mechanisms underlying neurotherapeutic drug-
induced reprotoxicity and discussed experimental findings from case studies.
Additionally, we explore the utility of organoid models in elucidating the
reproductive complications of neurodrug exposure. Have discussed the
principles of organoid models, highlighting their ability to recapitulate
neurodevelopmental processes and simulate drug-induced toxicity in a
controlled environment. Challenges and future perspectives in the field have
been addressed with a focus on advancing organoid technologies to improve
reprotoxicity assessment and enhance drug safety screening. This review
underscores the importance of organoid models in unraveling the complex
relationship between neurotherapeutic drugs and reproductive health.
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1 Introduction

Drug-induced toxicity poses a significant challenge in drug research and development,
often leading to failures in clinical trials and subsequent drug withdrawals (Vo et al., 2019).
Reproductive toxicity, encompassing both reproductive and developmental toxicities,
substantially contributes to drug withdrawal, accounting for approximately 3%
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and >10% of drug discontinuations and preclinical toxicology-
related attrition, respectively (Siramshetty et al., 2016). To
mitigate such risks, early assessment of the toxic properties of
chemical compounds is paramount in drug development to
mitigate such risks (Brannen et al., 2017). In reprotoxicity
assessments, the impairment of male and female reproductive
capacities and induction of nongenetic harmful effects on
offspring are evaluated (Piparo, 2010) (Figure 1). However,
traditional experiments for assessing chemical toxicity profiles,
especially in animal models, are costly and time-consuming, with
toxicity tests in animal models accounting for a significant
proportion of compliance-related testing costs. Furthermore, the
results of animal-based reprotoxicity tests may not always accurately
predict human responses, adding complexity to toxicity endpoint
assessments (Höfer et al., 2004). Additionally, discerning whether a
compound directly affects reproduction or causes systemic toxicity
that indirectly impacts reproductive systems further complicates the
interpretation of experimental data. Consequently, the use of animal
experiments alone might not fully reveal human responses to new
drugs or provide reliable risk assessments, necessitating alternative
approaches for toxicity assessment.

This review thoroughly examined neurotherapeutic drug-
induced reprotoxicity in organoid modeling. The review first
focused on stem cell applications for testing, exploring their
potential and limitations. Then, it delved into the complex
relationship between neurotherapeutic drugs and reproductive
health, highlighting reprotoxic adverse effects. The second section
offered a comprehensive analysis of the impact of neurotherapeutic
drugs on reproductive health. Lastly, it showed future directions to
improve technology fidelity and practical applications.

2 A brief history of organoids

Three-dimensional (3D) culture systems are generated using
suspension culture to avoid direct contact with the plastic dish. This
can be achieved through scaffold or scaffold-free methods. Scaffolds
composed of biological or synthetic hydrogels mimic the natural
extracellular matrix (ECM), and Matrigel® is the most prevalent
matrix. Matrigel, a complex protein mixture derived from
Engelbreth–Holm–Swarm (EHS) mouse sarcoma cells, contains
adhesive proteins such as collagen, entactin, laminin, and heparin
sulfate proteoglycans, providing structural support and ECM cues to
cells. In scaffold-free methods, cells are cultured in droplets of
defined medium suspended from a plate by gravity and surface
tension (Unbekandt and Davies, 2010). Alternatively, 3D organoid
structures can be formed using the air–liquid interface method, in
which cells are cultured on a basal layer of fibroblasts or Matrigel
initially submerged in a medium. As the medium evaporates, the
upper cell layers are exposed to air, promoting polarization and
differentiation (Kalabis et al., 2012).

The idea of in vitro regeneration of organisms traces back to 1907,
when Henry Van Peters Wilson demonstrated that dissociated sponge
cells could self-organize and regenerate an entire organism (Wilson,
1907). Subsequently, experiments involving cell dissociation and
reaggregation in the mid-20th century resulted in the generation of
various organs from dissociated amphibian pronephros (Holtfreter,
1943) and chick embryos (Weiss and Taylor, 1960). In 1964, Malcolm
Steinberg proposed the differential adhesion hypothesis, suggesting that
cell sorting and rearrangement could be explained by thermodynamics
mediated by varying surface adhesion (Locke, 2012). After the isolation
and establishment of pluripotent stem cells (PSCs) from mouse

FIGURE 1
Schematic representation of neurotherapeutic agents’ impact on various reproductive health.
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embryos in 1981 (Evans, 1981; Martin, 1981) and human embryonic
stem cells (ESCs) in 1998 (Thomson et al., 1998; Thomson et al., 1998),
significant advancements were noted in stem cell research.
Subsequently, induced pluripotent stem cells (iPSCs) were developed
by reprogramming mouse and human fibroblasts, leading to a
transformative impact on stem cell and organoid studies (Takahashi
and Yamanaka, 2006; Takahashi et al., 2007; Yu et al., 2007).

In 1987, significant efforts were made in enhancing cell culture
conditions to mimic the in vivo microenvironment. A previous
study revealed that breast epithelial cells could generate 3D ducts
and lumina when cultured on EHS ECM extract, enabling the
production and secretion of milk protein; this phenomenon
cannot be achieved in traditional two-dimensional (2D) culture
(Li et al., 1987). Another study demonstrated that alveolar type II
epithelial cells retain their specialized functions when cultured on
ECM matrix, underscoring the crucial role of cell-matrix

interactions in tissue homeostasis and differentiation (Shannon
et al., 1987). The transition from 2D to 3D organoid culture was
exemplified by the creation of cerebral cortex tissue from ESCs using
the 3D aggregation culture technique (Eiraku et al., 2008). A
groundbreaking study in 2009 demonstrated that adult intestinal
stem cells expressing single leucine-rich repeat–containing G
protein-coupled receptor five could form 3D intestinal organoids
in Matrigel, organizing themselves into crypt–villus structures
without requiring a mesenchymal niche (Sato et al., 2009) (Figure 2).

3 Organoid modeling techniques

Despite advancements in organogenesis research, fully
replicating the human body in vitro remains challenging.
Biological models like 2D/3D cell cultures and animal models

FIGURE 2
(A) Chronological evolution of three-dimensional (3D) organoid systems; (B) Increasing adoption of 3D Organoid Cultures in biological research: A
PubMed Analysis till the year 2024.

Frontiers in Pharmacology frontiersin.org03

Abady et al. 10.3389/fphar.2024.1412188

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1412188


have been established to mimic human physiology but face
limitations (Shariati et al., 2021). Conversely, stem cell
technology holds immense promise for unraveling disease
mechanisms and offering potential therapeutic interventions
through human tissue modeling. In 1998, the advent of human
blastocyst-derived ESCs, which can differentiate into all three germ
layers during gastrulation, marked a significant milestone in this
field. These cells have been extensively utilized in laboratories
globally. The groundbreaking establishment of iPSCs from adult
human fibroblasts in 2007, which was achieved through the
expression of four key transcription factors (SOX-2, KLF4,
OCT3/4, and c-MYC), further expanded the repertoire of PSC
sources. This breakthrough enabled the long-term culture of stem
cells and establishment of in vitro 3D structures, laying the
foundation for precision medicine. In addition to ESCs and
iPSCs, mesenchymal stem cells (MSCs) are also crucial in
translational research due to their immune modulation and
regenerative abilities (Thomson et al., 1998; Takahashi et al.,
2007; Ballini et al., 2017).

3D cell culture models offer a more accurate in vitro
environment than 2D cultures. Organoids from primary tissue or
stem cells hold potential in regenerative medicine and personalized
medicine (Hynds and Giangreco, 2013). However, they vary based
on cell type. Pluripotent stem cells mimic fetal tissue but may face
heterogeneity issues. Adult stem cells are well-defined but
challenging to isolate, limiting their potential (Forbes et al., 2018;
Tuveson and Clevers, 2019).

3.1 Organoids for the male
reproductive system

The male reproductive system is intricate, encompassing the
testes, ducts, glands, and penis. The testes are vital for sperm and
testosterone production, while ducts aid in sperm transport and
maturation. Seminal vesicles, prostate, and penis are crucial for
reproduction. Dysfunction can cause issues like infertility and
cancer. Studying in humans is challenging, but in vitro models
like primary cultures and tissue explants are used. 3D organoids
show promise for research (Patrício et al., 2023).

3.1.1 Testicular organoids
Testicular organoids, derived from healthy or diseased tissues,

replicate testis structure and function. Baert et al. (2019) developed
human testicular organoids by seeding adult and teen primary
testicular cells into agar blocks, resulting in compact structures
that can produce testosterone, form tight junctions, and support
germ cell renewal. Other methods like alginate-based hydrogels and
3D bioprinting have also been used to generate testicular organoids,
supporting spermatogenesis and Leydig cell functionalityMatrigel®-
based testicular organoid cultures in rodents, pioneered by Alves-
Lopes et al., replicate in vivo testis features. They utilized a Matrigel
gradient system for co-culturing Sertoli and germ cells. Typically,
testicular organoid techniques involve direct cell-Matrigel mixing or
a medium-Matrigel blend (Pendergraft et al., 2017; Yuan et al.,
2020). In their study, a novel three-layer gradient system was
developed by optimizing culture conditions, including the
number of cells and concentration of Matrigel. Spherical–tubular

structures were assessed using Sox9, Ddx4, and Scp3 as markers.
Positive Ddx4 and Scp3 staining indicated the presence of germ cells,
suggesting spermatogenesis potential. Sertoli cells, which are crucial
for spermatogenesis, were positive for Scp3. Zo-1 expression
suggested a potential blood–testis barrier (BTB), although this
finding requires validation. Ki67 staining revealed the presence of
proliferating cells (Wu et al., 2022).

These organoids exhibited a functional blood-testis barrier and
maintained undifferentiated germ cells for prolonged periods
(Alves-Lopes et al., 2017). Testicular organoids from porcine cells
in collagen hydrogel mimic native testis architecture. 3D printing
and microfluidic systems improve organoid fidelity (Vermeulen
et al., 2019). Innovative techniques such as 3D printing and
microfluidic systems have also been employed to enhance the
fidelity of testicular organoids. Baert’s group utilized 3D-printed
scaffolds to develop structurally compartmentalized organoids from
mouse testicular cells, promoting tubulogenesis and supporting
germ cell differentiation (Richer et al., 2021). Testicular
organoids offer vast potential for studying male reproductive
health, including spermatogenesis and hormone regulation. They
provide avenues for disease modeling, drug testing, and personalized
medicine in male infertility (Patrício et al., 2023).

Recently, Stopel et al. produced testis organoids from primary
testicular cells of neonatal mice using transwell inserts. Our findings
demonstrate that these organoids form tubule-like structures and
exhibit cellular organization similar to that observed in live testicular
tissue (Stopel et al., 2024).

3.1.2 Epididymis organoids
The epididymis, which is vital for sperm maturation, is

segmented into the caput, corpus, and cauda in larger mammals,
with an additional initial segment in rodents (Pinel et al., 2019). It
features a single convoluted tubule with a pseudostratified
epithelium containing principal, clear, basal, and halo cells (Pinel
et al., 2019). The blood-epididymis barrier (BEB) regulates luminal
content and protects spermatozoa. Epididymal transit enhances
sperm motility and fertilization potential through the luminal
microenvironment and motility-affecting molecules (Sullivan and
Belleannée, 2017). Generation of epididymal organoids was initially
attempted using spheroid cultures from single cells, with human
epididymal cells forming spheres under 2D conditions. Acinus
formation in cultured rat epididymal basal cells was dependent
on fibroblast growth factor (FGF) and dihydrotestosterone (Mandon
et al., 2015). Basal cells could differentiate into principal cells,
indicating existence of stem cell (Mandon et al., 2015). Recent
developments by Leir et al. and Pinel and Cyr involved human
and rat epididymal basal cells, respectively, forming 3D cultures
(Leir et al., 2020; Pinel and Cyr, 2021).

3.1.3 Organoids for prostate glands
The prostate gland, essential for sperm nourishment and

transport, comprises luminal cells, basal cells, and rare
neuroendocrine cells within a pseudostratified epithelium
(Crowley and Shen, 2022). Prostatic fluid, containing zinc, citric
acid, prostate-specific antigen (PSA), and choline, is pivotal for
sperm liquefaction post-ejaculation, facilitated by PSA degrading
Semenogelin I and II. Novel experimental models have emerged for
studying prostate cancer (PCa) due to limitations in traditional cell
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lines and 2D cultures for drug screening. PCa organoids, derived
from various cell sources, recapitulate the tumor microenvironment,
aiding in understanding tumor development, progression, and
therapy response. Examples include CRPC-derived organoids
predicting enzalutamide sensitivity based on genetic alterations.
High-throughput imaging assays enhance drug response analysis
in diverse PCa phenotypes. Organoids elucidate mechanisms of drug
resistance, like dual loss of TP53 and PTEN conferring resistance to
anti-androgens. They serve in drug development and testing, using
co-culture models to study microenvironmental effects and
metastasis. Challenges include experimental variability and biopsy
sample representativeness, with ongoing optimization for improved
clinical outcomes in advanced PCa (Conteduca et al., 2020;
Elbadawy et al., 2020; Gleave et al., 2020; Choo et al., 2021;
Dhimolea et al., 2021).

Notably, urethral complications, from injury or congenital
issues, present treatment challenges. Advances in stem cell
research, notably 3D bioprinting, offer solutions. Tissue-
engineered urethral grafts, pioneered by Atala and refined by
Raya-Rivera, show promise in treating pediatric patients with
urethral defects (ATALA et al., 1999; Raya-Rivera et al., 2011).
Kajbafzadeh et al. explored regenerative methods, showcasing cell
sheet techniques’ effectiveness in urethral reconstruction
(Kajbafzadeh et al., 2017). Challenges persist in 3D bioprinting
regarding implant mechanical strength and biocompatibility. Efforts
in developing urethral organoids and cultivating corpus spongiosum
structures concurrently hold promise for clinical advancements
(Patrício et al., 2023).

3.2 Organoids for the female
reproductive system

The female reproductive system comprises the ovaries, fallopian
tubes, uterus, cervix, and vagina. This system responsible for gamet
and sex hormone production and pregnancy. Female reproductive
tissue organoids, including human endometrial organoids,
effectively model endometrial physiology and pathology. Derived
from diverse stem cell sources, they accurately mimic glandular
structures and functions, responding to hormones and replicating
conditions like endometriosis and cancer. Utilizing CD146+
mesenchymal stem cells for endometrial-like epithelium creation
offers prospects for regenerative medicine and embryo implantation
studies. Additionally, 3D stromal cell models enable research on
decidualization and angiogenesis. Further exploration is needed to
fully leverage endometrial organoids for understanding
implantation challenges and early pregnancy failure (Hennes
et al., 2019; Mittal et al., 2019; Zambuto et al., 2019; Cui et al.,
2020; Wiwatpanit et al., 2020).

3.2.1 Vulva organoids
The vulva, comprising various structures such as the labia

majora, labia minora, and clitoris, serves as the initial defense
barrier for the female reproductive tract. Although no organoids
have been derived directly from the vulva, insights can be obtained
from skin organoid studies due to the similarity in epithelial
composition. Organoid studies on the skin have revealed
spatiotemporal aspects of epidermal development and facilitated

the long-term expansion of keratinocytes, offering a potential model
for studying gene alterations implicated in vulvar diseases and
carcinogenesis. Sweat glands, crucial for microbial homeostasis,
have been studied using organoid cultures, suggesting a possible
avenue for developing vulvar sweat gland-derived organoids.
Overall, vulva-derived organoids hold promise for understanding
epithelial biology, microbiome interactions, and diseases like genital
infections and vulvar cancers (Boonekamp et al., 2019; Diao
et al., 2019).

3.2.2 Vaginal organoids
Research on vaginal development, primarily conducted in mice,

has highlighted the intricate interplay between epithelial cells and
the underlying stroma, influence of hormone receptor genes, and
pivotal role of the Wnt/β-catenin pathway (Heremans et al., 2021).
Recently, Ali et al. (2020) established a sophisticated 3D organoid
culture system using mouse vaginal epithelial cells. This innovative
model revealed the critical roles of Wnt and BMP signaling
pathways in maintaining the stem cell niche within the vaginal
epithelium. By meticulously controlling the culture conditions and
manipulating key signaling molecules such as EGF, TGF-βR, and
ROCK inhibitors, they expanded and sustained these organoids
in vitro (Ali et al., 2020). Moreover, the identification of specific
markers, such as AXIN2, provided insights into cellular hierarchy
and lineage differentiation within the vaginal epithelium.

3.2.3 Cervix organoids
The cervix, which is vulnerable to human papillomavirus

-induced cancer, lacks accurate modeling in 2D cultures. 3D
organoids provide a physiologically relevant platform for
studying cervical cancer mechanisms. Cervical organoids, derived
from patient biopsies, express specific markers and exhibit
differentiation, offering insight into cervical cancer development.
They enable studies on pathways like Wnt signaling in tumor
progression (Heremans et al., 2021). Moreover, cervical organoids
offer potential applications in personalized medicine, allowing for
the testing of patient-specific drug responses. Maru et al. (2020)
successfully developed cervical organoids from patient-derived
biopsies using a specific medium containing RSPO1, Noggin,
EGF, ROCKi, and Jagged-1. Cervical organoids exhibited
enhanced expression of SCJ markers compared to traditional cell
lines and demonstrated differentiation into both endo- and
ectocervical cell types. Chumduri et al. (2021) also created long-
lasting endocervical-like organoids from patient samples, reliant on
Wnt agonists RSPO1 and WNT3A, showing potential
differentiation towards ectocervical characteristics (Chumduri
et al., 2021). Maru et al. (2019a, b) developed cervical clear cell
carcinoma organoids using established culture conditions.
Xenografting these organoids in mice allows for more clinically
relevant treatment efficacy evaluation (Maru et al., 2019a; Maru
et al., 2019b).

3.2.4 Endometrial orgnaoids
The endometrium, which lines the uterus, sheds monthly under

hormonal regulation. It consists of two layers: lamina basalis and
lamina functionalis. The source of the endometrium remains
controversial, and possible sources include stem and bone
marrow-derived cells. Uncertainty exists regarding the hierarchy
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of proposed stem cell candidates and their translation to humans.
Studies have been conducted to understand endometrial
regeneration signaling. Previous 3D culture attempts were limited
by short lifespans and inadequate in vivo mimicry, indicating the
need for more representative models. For instance, Iguchi et al.
(1985) successfully cultured luminal mouse endometrial cells on
collagen gel matrices in serum-free conditions, exhibiting
characteristics akin to adenogenesis, despite their short-lived
nature (Iguchi et al., 1985). Similarly, Rinehart et al. (1988)
seeded 3D endometrial glands on Matrigel-coated plates,
resulting in structures with apicobasal polarity and preserved
intercellular connections, albeit spreading out into 2D monolayer
colonies (Rinehart Jr et al., 1988). Previous efforts faced challenges
like low serum requirements, limited long-term maintenance, and
incomplete endometrial characteristics. Ongoing work aims to
develop advanced 3D endometrial models. Recently, organoids
were cultured successfully using a defined medium (Boretto et al.,
2017; Turco et al., 2017; Haider et al., 2019). RSPO1 or
CHIR99021 activation of Wnt/β-catenin signaling was essential
for their development, reflecting Wnt’s role in uterine gland
formation. In vivo lineage tracing identified AXIN2+ cells as
potential stem cell candidates in the mouse uterus (Syed et al.,
2020). Human endometrial organoid development did not require
exogenous WNT3A. Inhibition of BMP (Noggin) and TGF-β/Alk
(A83-01) pathways was crucial, alongside EGF, FGF10, 17β-
estradiol (E2), insulin (ITS), and inhibition of p38 MAPK,
ROCK, and sirtuin. Hormone treatment replicated the menstrual
cycle and early decidualization (Haider et al., 2019; Hennes et al.,
2019; Bui et al., 2020; Cochrane et al., 2020; Syed et al., 2020).
Trophoblast organoids were derived with minimal differences in
medium. Marinić et al. (2020) derived endometrial gland organoids
from the term placentas with slight modifications, showing hormone
responsiveness and distinct molecular patterns (Marinić
et al., 2020).

Importantly, adenomyosis and endometriosis involve ectopic
endometrial tissue. Adenomyosis is within the uterine wall, while
endometriosis involves tissue outside the uterus. Primate studies
offer insights, but ethical concerns arise. Human-derived 3D
organoids show promise for studying endometriosis (Heremans
et al., 2021). Enriching organoid cultures with diverse cell types
for studying adenomyosis and endometriosis is crucial. A reported
co-culture model includes adenomyotic epithelial cells, stromal cells,
and myocytes (Mehasseb et al., 2010). Although AXIN2+ cells were
suggested as endometrial cancer (EC)-initiating cells in mice, the
human counterpart remains unidentified (Syed et al., 2020). Patient-
derived EC cell lines (e.g., Ishikawa, RL95-2) showed genomic
stability but lacked intra-tumor heterogeneity (Van Nyen et al.,
2018). Mouse xenograft models showed fair engraftment rates but
struggled to replicate tumor microenvironments (Depreeuw et al.,
2015). 3D culturing techniques, including spheroid cultures,
revealed altered metabolism and drug susceptibility. Organoid
development relied on key factors like RSPO1, EGF, and FGF2,
with validated genomics showing mutations in ARID1A, CTNNB1,
and PTEN (Boretto et al., 2019). Organoids were tested for
sensitivity to chemotherapeutics and inhibitors targeting PI3K
and mTOR pathways (Pauli et al., 2017; Heremans et al., 2021).
Boretto et al. (2019) showed that organoids can replicate different
endometrial states, including cancerous ones like Lynch syndrome

mutations. This lays the groundwork for advanced organoid models
for co-culture systems, drug testing, and gene-editing studies
(Boretto et al., 2019).

3.2.5 Fallopian tube organoids
Fallopian tube organoids derived from fallopian tube epithelial

cells (FTECs) offer insights into infertility, tumor etiology, and drug
effects (Chang et al., 2020). FTE organoids exhibit polarized
columnar cells, tight junctions, and functional similarities to
native tissue (Chang et al., 2020). They replicate mucosal fold
architecture, express secretory markers, and respond to hormonal
cues akin to the fallopian tube epithelium (Chang et al., 2020). These
organoids present a valuable model for studying fallopian tube
biology and pathology. Additionally, Fallopian tube organoids
derived from FTECs or iPSCs accurately model fallopian tube
biology and pathology, exhibiting distinct gene profiles and
anatomical features compared to 2D cell lines. iPSC-derived
organoids replicate fallopian tube anatomy through precise
differentiation steps and expression of specific markers (Yucer
et al., 2017). These organoids serve as disease models for
conditions like chronic chlamydia infection (Kessler et al., 2019).
However, challenges remain in long-term culture maintenance and
achieving functional maturity for studying high-grade serous
ovarian cancer (sHGSC) (Cui et al., 2020).

3.3 Embryonic and fetal organoids

Organoids have been developed from the embryonic and fetal
stages. Trophoblast organoids derived from cytotrophoblasts
(CTBs) model early placenta formation and placental diseases
(Turco et al., 2018). Cultured in trophoblast organoid medium
(TOM), CTB organoids closely mimic the morphology,
differentiation ability, and gene expression patterns of human
placental villi (Haider et al., 2018; Haider and Beristain, 2023).
They demonstrate stemness, proliferation, and fusion characteristics
akin to villous cytotrophoblasts (vCTBs), making them suitable for
modeling implantation. While CTB organoids hold promise for
disease modeling and investigating trophoblast invasion, further
optimization is needed to enhance self-renewal, specificity, and
differentiation (Turco et al., 2018). Additionally, human iPSCs
produce trophoblast cystic structures resembling trophectoderm
for implantation studies. Previous 3D models lacked true
organoid characteristics (Wong et al., 2018; Cui et al., 2020).

Modeling the ovarian surface epithelium (OSE), the origin of
most malignant ovarian tumors is crucial for exploring
endometriosis etiology (Lawrenson et al., 2009). While 3D
culturing of normal OSE remains unexplored for organoid
construction, human oocytes have been mimicked in 3D
structures derived from human embryonic stem cells (hESCs),
showing meiotic entry and oocyte-like characteristics (Jung et al.,
2017). These follicle-like cells (FLCs) express oocyte-specific
markers, providing a platform for investigating human germ cell
development and gene mechanisms, including noncoding RNAs
(Jung et al., 2017; Cui et al., 2020).

Meanwhile, studying early human embryo development is
challenging due to limited access to embryonic tissues.
Pluripotent stem cells and surplus blastocysts offer insights, but
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ethical constraints restrict their use (Haider and Beristain, 2023).
Recent advances in stem cell-based blastocyst models, known as
blastoids, resembling natural blastocysts, provide insights into early
embryonic development. They exhibit spatial organization similar to
epiblast, hypoblast, and trophectoderm-like cells, with efficiencies
ranging from 2% to 80%. Differentiation protocols prioritize lineage
expansion, resulting in blastoids resembling blastocyst morphology
and implantation processes (Theunissen et al., 2014; Rostovskaya
et al., 2019). Blastoids aid in studying embryogenesis, implantation,
and early pregnancy. Co-culture with endometrial cells reveals
intercellular communication’s role in blastocyst attachment, with
applications spanning developmental biology, fertility, and embryo
safety (Kagawa et al., 2022).

Additionally, human placental research faces hurdles due to
ethical constraints and limited tissue access. Trophoblasts, crucial
for nutrient exchange, show species-specific developmental
pathways, despite shared functions with rodents (Haider and
Beristain, 2023). In 2018, 2D and 3D long-term regenerative
trophoblast cultures were established from progenitor
cytotrophoblasts (CTB) of first-trimester chorionic villi (<8 weeks
gestation) (Haider et al., 2018; Okae et al., 2018). These cultures
express trophoblast lineage genes, exhibit hypomethylation of the
ELF5 promoter, and express chromosome 19 miRNA cluster micro
RNAs. They can be perpetuated long-term with specific signaling
conditions, fostering stem-like states and spontaneous fusion into
hormone-producing multinucleated syncytiotrophoblast (SCT) in
both 2D and 3D conditions. Removal of Wnt-activating factors
prompts CTB differentiation into invasive extravillous trophoblasts
(EVT). Trophoblast organoids represent a significant advancement
in in vitro models, closely mirroring trophoblast cell lineage
complexity observed in vivo (Haider et al., 2018). Single-cell
transcriptomics confirms differentiation trajectories along
extravillous and villous pathways (Shannon et al., 2022). Recent
work addressed the limitations of blastoid models, including
inverted syncytial structures, by utilizing suspension culture with
gentle agitation. This approach produced organoids with properly
oriented large syncytial structures that secrete high levels of SCT-
associated factors (Yang et al., 2024). The choice of trophoblast
progenitor source is crucial for trophoblast organoid design. While
primary CTBs and TSC lines can both yield organoids, those from
TSC lines may better resemble EVT progenitor-like cells
transcriptionally and in surface marker expression (Sheridan
et al., 2021). Moreover, TSC lines cultured in 2D or 3D exhibit
detectable levels of Class I HLA-A/B, with 3D culture partially
reducing their expression (Sheridan et al., 2021). Recent findings
suggest that progenitors in hTSC line-derived organoids resemble a
developmentally downstream state akin to column CTB (Shannon
et al., 2022b). Though hTSC lines are favored for trophoblast studies,
evaluating their merits and limitations is vital, particularly
considering recent reports on their derivation from pluripotent
stem cell (PSC) sources and induced TSCs (Karvas et al., 2022;
Soncin et al., 2022; Tan et al., 2022). Trophoblast organoids aid in
studying stem cell dynamics, highlighting YAP1 signaling’s
importance via inhibition and CRISPR-Cas9-mediated knockout
experiments (Meinhardt et al., 2020). Additionally, trophoblast
organoids have elucidated the role of TGFβ signaling in EVT
development, showing that exogenous TGFβ impulse is necessary
for EVT marker expression, while its inhibition results in pro-

migratory/pro-invasive features (Haider et al., 2022). Moreover,
trophoblast organoids have been utilized to study vertical viral
infection routes and ensuing inflammatory responses in decidual
cells. Human cytomegalovirus infection triggers a Type III
interferon response in trophoblast organoids, offering protection
to decidual cells (Yang et al., 2022). iPSC-derived TSC organoids
have also shed light on ZIKA and SARS-CoV-2 virus interactions
with trophoblasts (Karvas et al., 2022). However, it is important to
note limitations such as the inverted nature of the organoid and
expression of MHC class I ligands not typically seen in progenitor
CTB or SCT, which may impact interpretations related to pathogen-
host modeling.

Interestingly, 3D organoids are crucial for modeling embryonic
development, especially for the pituitary gland and hypothalamus
(Chukwurah et al., 2019). The SFEBq method enables the three-
dimensional culturing of ES cells, promoting differentiation into
ectodermal derivatives (Watanabe et al., 2005; Eiraku et al., 2008;
Sasai et al., 2012). Utilizing SFEBq cultures, hypothalamic neurons
were successfully induced frommouse ES cells (Wataya et al., 2008).
Growth factor-free, chemically defined medium (gfCDM)
supplemented with Sonic Hedgehog (SHH) optimally induces
hypothalamic neuron differentiation (Suga, 2016). Crucially,
specifying the rostral hypothalamic fate of mouse ES cells relied
on removing exogenous growth factors rather than adding specific
inductive signals (Chukwurah et al., 2019).

4 Neurotherapeutic drugs and
reproductive health

Neurotherapeutic drugs play critical roles in managing
neurological disorders, and their impact on reproductive health
has been increasingly recognized. As depicted in Table 1, these drugs
exert diverse effects on various aspects of reproductive function,
including sperm quality, hormone levels, and embryonic
development. Understanding these interactions is essential for
optimizing treatment strategies and minimizing potential adverse
effects on reproductive outcomes.

4.1 Antidepressants

Depression affects approximately 300 million people worldwide
and is a significant global health issue (Sołek et al., 2021b).
Antidepressants, initially developed in the 1950s, constitute the
primary treatment for depression, and they target
neurotransmitter imbalances in the brain (Sartorius et al., 2007).
However, long-term use of antidepressants, often necessary for full
therapeutic benefits, can lead to sexual dysfunctions, affecting
patients’ self-esteem and treatment compliance ((Montejo et al.,
2019). These dysfunctions include reduced sexual desire, arousal
difficulties, and orgasmic dysfunction (Higgins et al., 2010). The
relationship between depression, pharmacotherapy, and sexual
dysfunction is complex and lacks clear clinical guidelines
(Hellstrom, 2008; Segraves and Balon, 2014). Antidepressants
modulate neurotransmitters like serotonin, norepinephrine, and
dopamine, influencing the sexual response cycle, and potentially
explaining their effects on sexual function (Graf et al., 2019). Further
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TABLE 1 Neurotherapeutic agents’ adverse impacts on reproductive systems and fetal development.

Therapeutic class Drug Mechanisms Example
toxicities

Study
type

References

Antidepressant -Amitriptyline -Formation of micronuclei Mouse-derived
spermatogonia and
Spermatocyte

In vitro Solek, et al. (2021)

-Escitalopram -Increase in telomeric binding factor (TRF1/
TRF2) protein expression

-Fluoxetine -Initiation of apoptotic cell death

-Imipramine -Varied toxicity on mouse spermatogenic cells

-Trazodone -Decreased sperm concentration, motility,
and normal morphology; increased sperm
DNA damage

-Olanzapine -Elevated serum levels of FSH, LH, and
testosterone

-Reboxetine -Augmented oxidative stress

-Venlafaxine

Selective serotonin
reuptake inhibitors

Fluoxetine Maladaptive offspring production flea Daphnia magna In vivo Campos, et al. (2016)

Sertaline -Increased sperm DNA damage and induced
histopathological lesions

Male rat Atli, et al. (2017)

-Abnormal sperm morphology and increased
malondialdehyde (MDA) degeneration in
cellular-tubular structures

-Elevated serum LH and testosterone levels

-Enhanced oxidative stress (OS)

Testicular toxicity

Citalopram -Decrease in sperm motility Men Clinical Safarinejad, 2008

Escitalopram -Abnormal sperm DNA fragmentation Koyuncu, et al., 2011

Fluoxetine Safarinejad, 2008; Atli, et al.,
2017

Paroxetine Tanrikut, et al., 2010

Antipsychotics Chlorpromazine -Increased activity of caspases-3, -8, and -9 Elmorsy, et al., 2017

Haloperidol -Elevated ROS (Reactive Oxygen Species)
production

Female rat In vivo

Risperidone -Decreased total intracellular glutathione
levels

Rat’s ovarian theca
interstitial cells

In vitro

Clozapine -Heightened lipid peroxidation (LPO)

Olanzapine -Elevated prolactin levels Man Clinical Konarzewska, et al., 2009

Risperidone -Reproductive hormone disorders identified

Sexual dysfunction observed

Antiepileptics -Initially upregulates Aldh1a2 Zebrafish embryo
toxicity

In vivo Beker van Woudenberg, et al.,
2014

-Valporic acid -Subsequently downregulates Cyp26a1

-Carbamazepine -Suggests a teratogenic mechanism

-Ethosuximide - Hatching and Motor Activity

-Levetiracetam -Pericardial Edema

-Motor Activity Suppression

Valporate -Elevated serum concentrations of
Testosterone

Women Clinical Morrell, et al., 2002; Asif, 2017

(Continued on following page)
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TABLE 1 (Continued) Neurotherapeutic agents’ adverse impacts on reproductive systems and fetal development.

Therapeutic class Drug Mechanisms Example
toxicities

Study
type

References

-High prevalence of Menstrual Disorders,
PCO, and PCOS

-Increased concentration of Androgens Man Mikkonen, et al., 2004; Asif,
2017

-Abnormalities in sperm quality

-Reduced testicular volume

Oxcarbazepine -Higher prevalence of PCO Women Mikkonen, et al., 2004; Asif,
2017

-Higher serum concentrations of Androgens

-Higher serum concentrations of DHEAS

-Increased frequency of morphologically
abnormal sperm

Man Artama, et al., 2004; Asif, 2017

-Lower serum testosterone levels

Carbamazepine -Menstrual disorders linked to reduced
bioactive E2 levels, indicated by altered E2/
SHBG ratio

Women Isojarvi (2001)

-Reduced sperm concentration and high
frequency of poorly motile sperm

Man Perucca (2004)

Induces hepatic P450 enzymes, elevating
SHBG levels and lowering bioactive androgens

Lamotrigine -High incidence of abortion and embryo
lethality

Female rat In vivo Padmanabhan, et al., 2003;
Hejazi and Taghdisi, 2019

Congenital malformations and intrauterine
growth retardation

-Decreased pup birth rate

-Significant reduction in body weight Male rat Daoud, et al., 2004

Vigabatrin -Reduction in the weight of testes, epididymis,
seminal vesicles, ventral prostate, and vas
deferensGabapentin

Levetiracetam Dose-dependent decreases in sperm
concentration, motility, and normal
morphology

Male rat In vivo Baysal, et al. (2017)

Increased sperm DNA damage observed

Alterations in oxidative stress markers
indicating tissue damage

Anti-cholinesterase Dimethoate Male Mice In vivo Verma and Mohanty, 2009

Chlorpyrifos -Reduced epididymal and testicular sperm
counts

Joshi et al., 2007; Mor and
Soreq, 2011

-Decreased serum testosterone concentration

Pathological degeneration of seminiferous
tubules

-Reduction in testicular glycogen and sialic
acid content

-Increased cholesterol and protein content,
dose-dependent

Malathion -Increased testicular acid phosphatase
activities

Choudhary et al., 2008; Mor and
Soreq, 2011

-Inhibition of testosterone secretion by Leydig
cells

(Continued on following page)
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research into direct interactions between antidepressants and
reproductive cells is necessary to better understand and manage
their side effects (ST et al., 2006; Solek et al., 2021).

4.1.1 The reprotoxic side effects of treating
depression

Most authors agree that Antidepressants and neuroleptic drugs are
associated with sexual dysfunction, potentially due to their reproductive
toxicity, impacting germ cell development, embryonic cell apoptosis,
and fertility (Spiller et al., 2009; Kanatsu-Shinohara et al., 2010; Sato
et al., 2011; Sato et al., 2012). One study demonstrated decreased ATP
production in spermatogenic cells treated with amitriptyline
hydrochloride, escitalopram, fluoxetine hydrochloride, imipramine
hydrochloride, mirtazapine, olanzapine, reboxetine, and venlafaxine
hydrochloride after 48 and 96 h, suggesting potential impairment of
mitochondrial function (Sołek et al., 2021a).

Under stress, cells often arrest their cycle to facilitate repairing
damage, resulting in changes to the cell cycle profile.
Antidepressant-induced oxidative stress leads to increased DNA
fragmentation and micronuclei formation, potentially due to
reduced mitochondrial potential and irreversible damage (Aitken
et al., 2014). Notably, antidepressants may influence the cell cycle,
potentially inducing apoptotic cell death via various pathways. In
particular, changes in cyclin D2 activity, governing the G1 to S phase
transition, were observed, alongside the activation of proteins
involved in cell cycle regulation (Biber et al., 2018). The
activation of proteins (p16, p21, p27, p53) suggests their role in
regulating the cell cycle via CDK inhibition (p16), DNA replication
initiation (p21), G1/S phase transition (p27), and cell division (p53)
(Roshdy and Fyiad, 2010; Mao et al., 2011; Battal et al., 2013; Biber
et al., 2018). This activation hints at DNA damage repair and
adaptive responses. Dysregulation of the cell cycle, crucial for

spermatogenesis, may impair germ cell development, induce
embryonic cell apoptosis, and reduce fertility (Spiller et al., 2009;
Kanatsu-Shinohara et al., 2010; Sato et al., 2011; Sato et al., 2012).
Antidepressants influence cell differentiation and proliferation
through glucocorticoid receptor phosphorylation, upregulating
p27 and p57, and induce cell cycle arrest in non-spermatogenic
cells by inhibiting ERK1/2 kinase phosphorylation, altering gene
expression in the p21/p53 pathway (Krishnan et al., 2008; Pechnick
et al., 2011).

Disturbances in mitotic and meiotic processes, chromosomal
aberrations, and reductions in sperm count, motility, and
morphology are consistently observed across experimental sets
(Alzahrani, 2012; Hassanane et al., 2012). Furthermore, the
crucial protein NuMa, responsible for organizing and stabilizing
the mitotic spindle apparatus, may be affected, leading to abnormal
mitotic spindle formation after exposure to antidepressant drugs
(Bhattacharya et al., 2013). Additionally, the interaction of cytotoxic
drugs with tubulin subunits may disrupt microtubule
polymerization and depolymerization, thereby impairing the
function of the mitotic spindle. These highlight the complex
impact of antidepressant treatment on reproductive health.
Telomere dysfunction leads to genomic instability, apoptosis, or
cellular senescence (Picco et al., 2016). Research has indicated a
relationship between the levels of TRF1 and TRF2 proteins,
expression of p53 and MAPK kinase, and the induction of
apoptosis. Cell lines treated with antidepressants showed
increased TRF1 and TRF2 synthesis. While some studies provide
evidence of telomere length reduction in depressive disorder
patients (Ridout et al., 2016), and changes in the amount of
mitochondrial DNA (mtDNA) or telomere length due to stress
and depression (Powell et al., 2018), there is insufficient data on
TRF1 and TRF2 expression changes after antidepressant treatment.

TABLE 1 (Continued) Neurotherapeutic agents’ adverse impacts on reproductive systems and fetal development.

Therapeutic class Drug Mechanisms Example
toxicities

Study
type

References

Opioid Methadone -Considerable increase in oxidative stress
levels

Male rats In vivo Haddadi, et al., 2020

Buprenorphine Loss of gonadotropin hormones observed

Changes detected in sperm parameters
(Haddadi, Ai et al., 2020)

Morphine -Testis atrophy observed Bu, et al., 2011; Ghowsi and
Yousofvand 2015; Moinaddini,
et al., 2023Reduction in the number of germ cells

Weight loss in the testis, prostate, and seminal
vesicles

Associated with morphine dependence

Nanoparticles Silver nitrate NPs -Follicular growth deformities, oocyte
maturation inhibition

Female rat In vivo Charehsaz, et al., 2016

-Damaged neurons in hippocampal regions of
adult and offspring rats

Titanium
dioxide NPs

Concentration-dependent alteration in
ovarian gene expressions

Female Mice In vivo Karimipour, et al. (2018)

Aluminum
oxide NPs

-Placental toxicities -Cytotoxicity and
genotoxicity

Ex vivo Chinese hamster
ovary cell line

In vitro Di Virgilio, et al., 2010
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In the final phase, cell death mechanisms are activated, marked
by increased cleavage of caspase three and reduced synthesis of Bcl-
2. The interplay of proteins within the Bcl-2 family significantly
influences cell fate, determining whether cells survive or undergo
apoptosis (Djordjevic et al., 2012). Additionally, the Bcl-2 family
mediates the intrinsic pathway of apoptosis, wherein mitochondria
play a significant role. Some findings suggest that patients with
depressive disorders exhibit low expression of anti-apoptotic Bcl-2,
which is increased with antidepressant treatment (Sakr et al., 2013;
Khaksar et al., 2017). Preclinical studies have also demonstrated that
antidepressants elevate Bcl-2 levels, offering protection against
apoptotic cell death through interaction with mitochondrial
voltage-dependent anion channels. Apoptosis is common in the
testis as a safeguard mechanism for eliminating defective germ cells
(Shukla et al., 2012) which is exacerbated by antidepressant usage
inducing DNA fragmentation and lipid peroxidation, leading to
cellular damage (Atli et al., 2017b). While confirmation in complex
in vivomodels is necessary due to testicular tissue complexity, these
findings offer valuable insights into antidepressant-induced
reproductive toxicity (Mytych et al., 2017).

4.1.2 Selective serotonin reuptake inhibitors
Selective serotonin reuptake inhibitors (SSRIs), commonly used

to treat depression, raised concerns for endocrine-disruption.
Human studies suggest developmental toxicity, reversible sexual
dysfunction, and sperm DNA damage. In aquatic environments,
fluoxetine, an SSRI component, acts as a neuroendocrine disruptor,
affecting fish fertility and behavior. Daphnia magna’ studies reveal
SSRIs alter reproductive responses and offspring size, reversed by
cyproheptadine. These findings highlight serotonin’s role in
reproductive regulation, necessitating further research (Campos
et al., 2016).

In arthropods, serotonin neurons regulate vital processes like
oogenesis, growth, and behavior. Yet, understanding of non-
decapod crustaceans like Daphnia is limited. Evidence suggests
serotonergic neurons influence growth and reproduction in
Daphnia, inferred from SSRIs’ effects and the presence of
serotonin biosynthesis enzymes in their genome. Neurotoxin 5,7-
dihydroxytryptamine (5,7-DHT) damages serotonergic neurons,
leading to oxidative damage, hypoxia, and neurotoxicity
(Lamichhane et al., 2014; Campos et al., 2016; Nation Sr, 2022).

Daphnia’s stress response involves adjusting reproductive
investment to maximize fitness. Serotonergic interneurons in the
brain regulate this process, as evidenced by SSRIs’ effects. Fluoxetine
increases serotonin-immunoreactivity under low food conditions,
mimicking “optimum” reproductive conditions, while 5,7-DHT
reduces it, aligning with reduced reproduction. These findings
highlight serotonin’s crucial role in Daphnia’s reproductive
investment regulation, revealing adaptive mechanisms in varied
food environments (Gorbi et al., 2011; Gaukler et al., 2015).

Infertility affects 15% of couples, with male factors contributing
to 30%–50% of cases. Factors like varicocele, infections, endocrine
disorders, obesity, radiation, and drug use, including SSRIs, can
impact male fertility by affecting sperm parameters and hormonal
balance (Atli et al., 2017a).

SSRIs like sertraline, fluoxetine, and trazodone can impact male
fertility due to their effects on sperm parameters and hormonal
balance. SSRIs commonly prescribed for depression, such as

sertraline, fluoxetine, and trazodone, are associated with sexual
side effects, potentially affecting sperm count and morphology.
For instance, Trazodone an antidepressant with anxiolytic and
sleep-inducing effects, is widely used for insomnia. While clinical
studies have linked SSRIs to decreased sperm quality, trazodone’s
reproductive toxicity remains underexplored, particularly in males
of reproductive age (Nørr et al., 2016). A study found that TRZ
administration reduced sperm concentration in male rats, motility,
and normal morphology while increasing sperm DNA damage and
testicular degeneration. Elevated serum levels of FSH, LH, and
testosterone, along with oxidative stress in testicular tissue, were
also observed (Ilgın et al., 2018). These hormonal changes were
associated with decreased sperm quality and testicular degeneration.
Additionally, trazodone exposure led to oxidative stress, as indicated
by elevated levels of malondialdehyde (MDA) in testicular tissue,
reflecting lipid peroxidation (Rahal et al., 2014; Sabeti et al., 2016;
Ilgın et al., 2018). Clinical research on patients undergoing TRZ
treatment is crucial for identifying potential reproductive toxicity,
emphasizing the importance of monitoring sperm parameters
before, during, and after TRZ therapy.

4.1.3 Lithium
Lithium salts are commonly used to treat major depressive

disorders, with exposure occurring through various sources such
as drinking water, food, and the environment. While low levels can
alleviate depression, prolonged therapeutic doses may lead to
complications affecting the renal, nervous, thyroid, and
circulatory systems. Furthermore, Li + exposure can result in
teratogenic effects and sterility (Aral and Vecchio-Sadus, 2008;
Ommati et al., 2021).

As evidence, One study aimed to explore Li+’s adverse effects on
testicular tissue, spermatogenesis, and hormones using in vitro and
in vivo models. In vitro, Leydig cells were cultured with Li+ at
escalating concentrations (0–100 ppm), while mice were given Li+
in drinking water (0–100 ppm) for 5 weeks in vivo (Ommati et al.,
2021). Testicular and sperm samples were analyzed. Notably,
oxidative stress has been implicated in testis and sperm injury in
animals treated with Li+. Li+ affects testosterone biosynthesis in vivo
and in vitro. Importantly, mitochondrial impairment plays a critical
role in sperm and Leydig cells abnormality, and testis injury with
Li+-exposure (Folgerø et al., 1993). Li+ induces decreased sperm
motility via mitochondrial impairment and reduced ATP levels
(Yousefsani et al., 2020). Li+ adversely affects the reproductive
system, with oxidative stress playing a crucial role. Sperm
mitochondria are particularly vulnerable, leading to reduced
motility. Additionally, Leydig cell ATP levels decrease, impacting
testosterone synthesis and secretion and increased lactate
dehydrogenase release. These effects may impair reproductive
function in long-term Li + treatment. Dysfunction in sperm
mitochondria may result from disrupted membrane potential and
electron transport chain interference (Filippa and Mohamed, 2019;
Yousefsani et al., 2020), as well as increasing mitochondrial
permeability and facilitating the release of various cell death
mediators into the cytoplasm. Recently, safe and clinically
applicable agents like amino acids and peptides enhance
mitochondrial function and energy metabolism. (Ben Saad et al.,
2017; Jamshidzadeh et al., 2017; Heidari et al., 2019). Further studies
are warranted to elucidate the precise mechanisms underlying Li+-

Frontiers in Pharmacology frontiersin.org11

Abady et al. 10.3389/fphar.2024.1412188

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1412188


induced reproductive organ injury, potential interactions of
adjunctive treatments with Li+’s pharmacological effects, and the
translation of experimental findings into clinical practice.

4.2 Antipsychotics (Aps)

Individuals with psychosis often require lifelong treatment with
AP, which can lead to various side effects, including abnormal
movements, weight gain, diabetes, and reproductive disorders like
menstrual irregularities or amenorrhea in women (Elmorsy et al.,
2017a). Despite past beliefs that typical APs were more toxic than
atypical ones, research suggests that both types show similar
reproductive toxicity (Murke et al., 2011).

Notably, APs can lead to reproductive disorders through
hyperprolactinemia, primarily induced by dopamine D2 receptor
inhibition. While typical antipsychotics are often associated with
hyperprolactinemia (about 57% of patients), atypical ones generally
do not affect prolactin levels except for risperidone (Wong, 2007).
However, there’s no direct correlation between prolactin levels and
menstrual irregularities (Lee and Kim, 2006). Regardless of
hyperprolactinemia status, antipsychotics are linked to similar
rates of reproductive dysfunction and may reduce peri-ovulatory
estradiol levels (Canuso et al., 2002). Hence, while
hyperprolactinemia is significant, it may not fully explain
antipsychotic-induced reproductive toxicity.

APs induce cytotoxic effects in rat ovarian theca interstitial cells
by inhibiting mitochondrial bioenergetics. Both in vitro (Elmorsy
et al., 2014) and in vivo (Martins et al., 2008) studies demonstrate
that APs induce oxidative stress in non-reproductive cells (Elmorsy
et al., 2017a; Elmorsy et al., 2017b).

The study explores how antipsychotics (APs) induce
reproductive toxicity via oxidative stress in rat ovarian theca
interstitial cells (TICs). APs cause cell damage, increased caspase
activity, and oxidative stress (high ROS production, reduced
glutathione levels, and heightened lipid peroxidation).
Antioxidants alleviate this damage, suggesting a potential
therapeutic approach, but clinical research is needed for future
validation (Elmorsy et al., 2017a).

Schizophrenia, a worldwide condition marked by symptoms like
hallucinations and confusion, often starts during the reproductive
years, affecting brain neuroendocrine functions and disrupting
reproductive processes (Ardıç et al., 2021). Antipsychotic
medications used for schizophrenia treatment can cause
reproductive toxicity by affecting hormonal regulation, leading to
sexual dysfunction, disrupted spermatogenesis, and abnormalities in
epididymal maturation (Solomon et al., 2019; Zhao et al., 2019).
Olanzapine (OLZ), a second-generation antipsychotic used for
schizophrenia and bipolar disorder treatment, affects various
neurotransmitter systems. It acts on multiple neurotransmitter
receptors, including dopamine, serotonin, muscarinic, adrenergic,
and histaminergic receptors. It can increase prolactin levels in
females, leading to adverse effects like amenorrhea, impotence,
and sexual dysfunction (Fernandes et al., 2019; Meftah et al.,
2020). Elevated prolactin levels can cause hypogonadism
hindering sperm production and causing issues like delayed
spermatogenesis, reduced semen quality, and abnormal testicular
tissue in both humans and animals (Akram et al., 2019; Zhao et al.,

2019). Research on male rats showed that OLZ administration
reduced normal sperm morphology and caused toxicity in
testicular tissue, attributed to increased oxidative stress, Leydig
cell damage, and disruption of hormone regulation (Ardıç et al.,
2021). Of particular importance, Elevated ROS levels in 25% of
infertile males contribute to sperm defects and dysfunction, affecting
sperm functions like capacitation, acrosome reaction, mitochondrial
sheath stability, and motility (Sikka and Hellstrom, 2017). Sperm
cells’ susceptibility to ROS is attributed to their high levels of
unsaturated fatty acids in the membrane and limited cytoplasmic
ROS-neutralizing enzymes (Sidorkiewicz et al., 2017). Lipid
oxidation can lead to compromised cell membrane integrity,
heightened membrane permeability, enzyme inactivation, DNA
impairment, and ultimately, cell apoptosis (Sikka and Hellstrom,
2017), potentially leading to decreased sperm count, activity,
motility, and abnormal sperm morphology (Sidorkiewicz et al.,
2017). Following olanzapine treatment, testicular GSH levels
decreased notably in addition to a significant increase in SOD
activity in the olanzapine-treated group (Ardıç et al., 2021).
Subsequently, free radicals induce sperm oxidative stress,
impairing function and fertility. Elevated ROS levels in the testes
lead to semen oxidative stress, associated with idiopathic infertility.
OLZ reduces GSH levels, indicating oxidative stress, while increased
SOD levels suggest a rapid ROS response. High doses of OLZ
exacerbate oxidative stress, impacting sperm morphology and
testicular structure (Simon and Carrell, 2013; Elghaffar et al.,
2016). More research needed to understand OLZ’s reproductive
toxicity. Monitoring sperm and hormone levels in patients is
essential for risk assessment (Ardıç et al., 2021).

4.3 Antiepileptics

Epilepsy, affecting 20–40 million people worldwide, is
characterized by abnormal neuronal activity and is managed with
long-term medication using antiepileptic drugs (AEDs), tailored to
individual needs (Asif, 2017). While newer AEDs offer improved
tolerability, challenges such as adverse effects and drug interactions
persist (Fisher et al., 2005). Certain AEDs may impact reproductive
health, contributing to reproductive disorders (Isojärvi et al., 2004).
The pharmacological landscape of AEDs has expanded with
advancements in drug design and insights into seizure
mechanisms (Mohanraj and Brodie, 2003). Epilepsy management
requires a comprehensive approach that addresses therapeutic gaps
and minimizes adverse effects (Kwan and Sander, 2004).
Reproductive dysfunction, including reduced fertility in both
sexes, is prevalent among epileptic patients, possibly due to
epilepsy itself or antiepileptic medication (Artama et al., 2004).
Catamenial epilepsy, influenced by hormonal changes, exhibits
estrogen-induced seizures and progesterone’s anticonvulsant
effects (Isojärvi et al., 2004). Thyroid hormones also affect
seizure activity, with thyrotoxicosis possibly increasing seizure
risk (Asif, 2017). Epilepsy correlates with various reproductive
disorders, including irregular menstrual cycles and decreased
potency which are exacerbated by untreated epilepsy (Asif, 2017).
Seizures and interictal periods disrupt hormone release, affecting
reproductive function. AEDs may also impact reproductive
hormones, causing menstrual disorders, reduced potency, and
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diminished sexual interest (Asif, 2017). Limited data exist on newer
AEDs like Oxcarbazepine and their reproductive effects.

Women with idiopathic generalized epilepsy (IGE) have higher
rates of reproductive disorders like polycystic ovaries (PCO),
hirsutism (HA), and polycystic ovary syndrome (PCOS)
compared to those with localization-related epilepsy (LRE) or
without epilepsy (Morrell et al., 2002). IGE is linked to
anovulatory cycles, polycystic appearing ovaries, elevated BMI,
and HA. In contrast, LRE is associated with PCOS related to left-
sided focus and hypothalamic amenorrhea and hyposexuality linked
to right-sided focus (Asif, 2017). Epilepsy disrupts pituitary
hormone regulation, with left-sided focus epilepsy linked to
disturbances in the temporo-limbic hypothalamic-pituitary axis,
with left-sided focus epilepsy showing increased LH secretion
and LH/FSH ratio (Herzog et al., 2003). Prenatal genetic factors
may influence epilepsy and hormone regulation, potentially creating
a bidirectional relationship with reproductive disorders (Asif, 2017).

4.3.1 Valproic acid
In women with epilepsy (WWE), valproic acid (VPA) use

predicts reproductive disorders like polycystic ovary syndrome
(PCOS), hirsutism (HA), and polycystic ovaries (PCO). Starting
VPA at a younger age correlates with increased HA and PCOS
incidence, while obesity does not significantly predict reproductive
issues (Asif, 2017). Regression analysis helped isolate these factors’
effects, consistent with previous research reports (Morrell et al.,
2002; Isojärvi et al., 2004). Further research is needed to confirm and
explore factors influencing reproductive health in WWE, as few
studies have utilized regression analysis to identify contributing
factors (Morrell et al., 2002; Herzog et al., 2003; Mikkonen
et al., 2004).

WWE had comparable fertility rates to controls, but lower
fertility if epilepsy persisted into adulthood. MWE also
experienced reduced fertility with active epilepsy in adulthood.
Few population-based studies have explored epilepsy’s impact on
fertility despite its correlation with reproductive disorders (Artama
et al., 2004). Active epilepsy and medication during adulthood were
associated with reduced fertility in WWE, while remission before
adulthood led to similar fertility rates as controls (Mikkonen
et al., 2004).

Furthermore, Girish et al. (2014) examined sodium valproate-
induced reproductive toxicity in male rats (Girish et al., 2014).
Treatment at 400 mg/kg/day led to reduced body and testis weights,
decreased sperm count and motility, and histological changes in the
testes, including necrosis, atrophy in seminiferous tubules, and
impaired spermatogenesis, as well as a notable reduction in
Johnsen’s testicular score (Bairy et al., 2010; Cansu, 2010; Girish
et al., 2014). Notably, sodium valproate disrupts cellular
mechanisms, potentially inducing free radical formation and lipid
peroxidation, which may disrupt testicular structure and function
(Tamber and Mountz, 2012). Additionally, it promotes apoptosis in
human and rat granulosa cells by increasing caspase-3 activity
(Cansu, 2010).

Turning to developmental toxicity caused by VPA, it induces
extensive transcriptional changes, with downregulated genes
associated with RNA processing and chromatin modification/
histone acetylation, consistent with its known histone deacetylase
(HDAC) inhibitory action. It is classified as a developmental

toxicology chemical, notably down-regulating mRNA expression
of neuronal markers like NF-68, NF-200, NMDA-receptor, and
GABAA-receptor. Moreover, therapeutic plasma concentrations in
adults and children upregulate nestin mRNA expression, suggesting
glial cell activation or neural precursor cell proliferation in response
to neuronal cell death (Krug et al., 2013).

4.3.2 Pregabalin
Pregabalin, six times more potent than Gabapentin, is widely

used in psychiatry and neurology for treating epilepsy, anxiety,
fibromyalgia, and neuropathic pain in diabetic patients. Acting on
voltage-gated calcium channels, it provides analgesic and anxiolytic
effects, also influencing the dopaminergic reward system. Despite
misuse potential, its prescribed use is escalating (Shokry et al., 2020).
Yet, when given at therapeutic doses to non-abusers, its abuse
potential may be lower compared to benzodiazepines, stimulants,
or opioids (Loftus and Wright, 2014). Pregabalin does not enhance
euphoria or sexual ability; it may cause dysfunction, especially in
epilepsy patients. Tramadol is highly toxic, affecting seminiferous
tubules and sperm severely. Morphine, hashish, and heroin also
impair sperm quality, with morphine’s effect on count and motility
debated (Isojärvi et al., 2005). For instance, a study found that
pregabalin negatively impacted male rat reproductive function,
reducing serum testosterone levels without affecting pituitary
gonadotropins. Histopathological examination revealed significant
degenerative changes in the seminiferous epithelium and decreased
cell counts for all spermatogenesis cells, Sertoli cells, and Leydig
cells. Immunohistochemical analysis indicated increased apoptosis,
shown by caspase3 expression (Shokry et al., 2020). Interestingly,
Pregabalin toxicity may involve central action, inhibiting the
hypothalamic-pituitary-gonadal axis. It decreases melatonin
levels, reducing Leydig cell protection against oxidative stress and
diminishing testosterone release. Additionally, its impact on
serotonin leads to reduced thyroid hormone levels, further
impairing Leydig cell development. Oxidative stress, implicated in
apoptosis induction, plays a significant role in pregabalin toxicity
(Zhao and Wang, 2012).

In female rats, pregabalin reduced pituitary gonadotropins but
increased E2, progesterone, and testosterone levels. Ovarian
histopathology showed increased atretic follicles and heightened
apoptosis, consistent with barbiturates inducing ovarian atrophy.
Tawfeeq et al. observed dose-dependent LH, FSH, and prolactin
inhibition with pregabalin inhibition, correlating with elevated
atretic ovarian follicles (Tawfeeq et al., 2016). Pregabalin’s
toxicity affects the pituitary gland, stimulating E2 secretion or
inhibiting progesterone’s effect on hypothalamic GnRH. Other
drugs, like tramadol, induce ovarian failure, while oxymorphone
partially inhibits ovulation (Shuey et al., 2008; El-Ghawet, 2015;
Shokry et al., 2020).

4.3.3 Anticonvulsant drugs
Anticonvulsant drugs like phenobarbital (PBT), phenytoin

(PHT), and carbamazepine (CBZ) are associated with teratogenic
effects when used during pregnancy, leading to major
malformations, microcephaly, growth retardation, and minor
facial and finger abnormalities in infants (Isojarvi, 2001; Perucca,
2004). The risk of congenital malformations is doubled in children
born to mothers taking AEDs, with specific syndromes like fetal
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hydantoin syndrome (associated with PHT) and spina bifida (linked
to VPA) highlighting these risks. Balancing the need to minimize
AED exposure against controlling maternal seizures is crucial during
pregnancy, with close monitoring recommended for pregnant
women on AEDs (Wagh et al., 2011; Asif, 2017).

While first-generation AEDs like VPA and CBZ are known for
teratogenic effects, limited data exist for newer compounds like
ethosuximide (ETH) and levetiracetam (LEV)) (Pennell et al., 2012).
ETH has shown teratogenicity and cognitive impairment in rodents,
while LEV has demonstrated developmental effects only at very high
doses (Mawhinney et al., 2013). Recent findings suggest LEVmay be
a safer alternative to VPA, with a lower risk of major congenital
malformations in women with epilepsy of childbearing age.

A previous report investigated Zebrafish as a valuable model for
assessing developmental toxicity, offering advantages for medium/
high-throughput screening as an embryonic/larval model. A study
aimed to enhance the predictability of the zebrafish model by
employing an integrated screening strategy with various
endpoints, including morphology, behavior, histopathology,
kinetics, and phenotyping through in situ hybridization. Four
AEDs (VPA, CBZ, ETH, and LEV) were selected as model
compounds (Beker van Woudenberg et al., 2014).
Histopathological analysis of VPA-treated larvae revealed reduced
brain cellularity, particularly in the optic regions, highlighting
histopathology as a sensitive endpoint. Motor activity analysis
confirmed VPA’s neurodevelopmental toxicity, supported by
literature evidence. CBZ primarily affected hatching and motor
activity at lower concentrations, aligning with rodent and human
studies indicating CBZ-induced neurodevelopmental disorders.
ETH-induced pericardial edema and neurodegeneration, with
biphasic dose-response effects observed. LEV exhibited significant
motor activity effects at lower concentrations, suggesting its
developmental neurotoxic potency, despite minimal structural
damage (Kultima et al., 2010; Beker van Woudenberg et al., 2014).

Additionally, expression patterns of Aldh1a2 and
Cyp26a1 indicated a link between gene expression and apical
endpoints, suggesting the potential use of molecular markers for
phenotype prediction (Menegola et al., 2006; Beker van
Woudenberg et al., 2014).

Recent studies suggest LEV may harm sperm quality in rats,
causing reduced concentration, motility, abnormal morphology,
DNA damage, and testicular tissue damage in male rats via
oxidative stress and hormonal imbalances. Human studies are
needed to assess LEV’s reproductive risks and fertility impact.
Clinical research should focus on reproductive toxicity and
fertility in LEV-treated individuals, evaluating sperm DNA
damage and oxidative status (Baysal et al., 2017).

4.4 Cholinergic toxicity

Various factors like toxic agents, malnutrition, illness, or stress
can disrupt male reproductive function, impairing fertility via
androgen production, germ cell development, and somatic cell
maintenance. Cholinergic signaling proteins, vital for sperm
function, are expressed in male reproductive tissues. Dysfunction,
possibly induced by agricultural agents or stress, can harm fertility.
Chemotherapeutic drugs may also affect cholinergic proteins,

underscoring the need to understand cholinergic toxicity in male
fertility (Mor and Soreq, 2011).

Spermatogenesis in testicular seminiferous tubules involves
Leydig cells producing testosterone and Sertoli cells maintaining
the microenvironment. It progresses through stages from
spermatogonia to spermatozoa. Cholinergic innervation aids
sperm transport and regulates production via acetylcholine,
acting on receptors in smooth muscles. Nicotinic receptors are in
parasympathetic ganglia, and muscarinic receptors are in smooth
muscles, with acetylcholinesterase terminating signaling (Mor and
Soreq, 2011).

Nicotinic acetylcholine receptors (nAChRs) in sperm aid
fertilization and regulate motility, influenced by testicular
proteins. nAChRs are involved in regulating Leydig cell function
and testosterone secretion (Kumar and Meizel, 2005). Muscarinic
acetylcholine receptors (mAChRs) in epithelial cells of sperm and
Sertoli cells affect proliferation and luminal fluid composition
(Avellar et al., 2010).

AChE has diverse isoforms like AChE-R and N-AChE, differing
in their C- and N-domains due to alternative splicing and promoter
usage. AChE-R is found in human and mouse sperm and is linked
with differentiation by containing pseudointron I4, interacts with
cellular proteins, and correlates with sperm motility. N-AChE,
found in round spermatids’ acrosome, is involved in
spermatogenic differentiation (Mor and Soreq, 2011). Exposure
to anti-cholinesterase pesticides like malathion, dimethoate, and
chlorpyrifos has been linked to testicular toxicity in rodents,
affecting sperm counts, testosterone levels, and testicular
histology, possibly through disruption of cholinergic signaling in
Leydig cell function (Joshi et al., 2007; Choudhary et al., 2008;
Ruchna Verma and Banalata Mohanty, 2009).

4.5 Molindone-induced
reproductive toxicity

Molindone hydrochloride, a dopamine D2 and serotonin 5-
HT2B receptor antagonist, is under investigation for treating
impulsive aggression (IA). Developed for schizophrenia, it is now
being studied as SPN-810, an extended-release version, for IA in
attention-deficit/hyperactivity disorder. Rat studies reported CNS
signs and prolactin increases. While developmental toxicity is not
evident, its effects on fertility are unclear. Dopamine antagonism-
induced prolactin elevation may affect reproduction differently
among species, necessitating further evaluation, particularly in
rats, for accurate human risk assessment (Krishna et al., 2017).

Regulatory-compliant DART studies on molindone HCl, a
dopamine D2 receptor antagonist, found no teratogenicity or
adverse fetal effects in rats (up to 40 mg/kg/day) and rabbits (up
to 15 mg/kg/day) during organogenesis. These doses, with exposure
margins of 69X and 6X over clinical levels, were well-tolerated
(Gopalakrishnan et al., 2018).

Furthermore, a postnatal development study revealed no effects
on survival, developmental milestones, or functional evaluations in
rats. Transient reductions in pup weight gain were observed at the
highest dose, but no post-weaning effects or impact on litter size.
Maternal hypoactivity is possibly linked to a slight reduction in pup
survival. Molindone HCl induced CNS-related signs and maternal
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toxicity in rats and rabbits, consistent with its pharmacology.
Fertility studies in rats showed altered estrous cycle duration but
no effects on mating or reproductive parameters in males or females
(Gopalakrishnan et al., 2018). These effects, attributed to dopamine
D2 receptor antagonism and prolactin secretion, are not considered
relevant to human reproduction. Clinical trials support the
reproductive safety of molindone HCl in target patients (Stocks
et al., 2012; Gopalakrishnan et al., 2018).

4.6 Nanoparticles (NPs) and drug delivery
nanocarriers

Nanotechnology in nervous system imaging and drug delivery
offers precise treatment but raises concerns about nanoparticles’
(NPs) health risks (Pinheiro et al., 2021; Faiz et al., 2022; Jo et al.,
2022; Qiao et al., 2023). NPs from various products may accumulate
in tissues, posing risks to pulmonary, liver, kidney, and neurological
issues. Their ability to breach barriers like the blood-brain barrier
and the placenta raises concerns about reproductive health and fetal
development (Hersh et al., 2022). In reproductive medicine, Gold
nanoparticles aid cell visualization in ovarian carcinoma, and
tocotrienol nanosized emulsions treat breast and ovarian tumors.
NP exposure can affect sperm count, morphology, hormonal levels,
and sexual behavior in males, and ovarian function in females
(Ahmad, 2022). Public awareness about NP toxicity is crucial for
both genders’ reproductive health and fetal development. NPs can
disrupt the female reproductive system, governed by hormones,
potentially leading to fetal abnormalities. Studies indicate acute and
chronic toxic effects on reproductive tissues, highlighting concerns
(Souza et al., 2021). NPs can penetrate biological barriers like the
placenta, affecting male and female reproductive tissues. Zebrafish
models offer insights into embryonic development due to ethical
constraints with traditional animal models (Blum et al., 2012). NPs
can disrupt reproductive function, leading to developmental and
fertility issues. Research shows adverse effects on maternal weight,
placental health, implantation rates, and hormone levels, impacting
pregnancy outcomes (Brohi et al., 2017). In pregnant mice,
cadmium oxide NPs delayed maternal weight gain and impacted
placental weight, possibly affecting implantation. Silica and titanium
oxide NPs reduced uterine weight and increased fetal reabsorption
rates, suggesting adverse effects on reproductive tissues and fertility
(Hou and Zhu, 2017).

4.6.1 Effects of gold and titanium dioxide NPs on
the male reproductive system

Male reproductive health is affected by NPs at molecular,
cellular, and histological levels, requiring thorough toxicity
evaluations (Habas et al., 2021). Titanium dioxide NPs during
mouse pregnancy altered male offspring’s neurological tissues
and affected Leydig and Sertoli cells, impacting reproductive
growth (Umezawa et al., 2012). Intra-tracheal carbon-based NP
exposure during pregnancy induces histopathological changes in
seminiferous tubules, affecting sperm production in male offspring.
Multi-walled carbon nanotube exposure causes reversible testicular
damage without affecting fertility in mice (Iftikhar et al., 2021).
Testicular nanoparticle accumulation impacts germ cell numbers,
histopathology, and sperm motility. Water-soluble NPs have fewer

toxic effects, while fat-soluble ones can induce apoptosis or
inflammation, compromising male fertility (Hong et al., 2016).

Gold NPs in semen impaired sperm motility, while polyvinyl
alcohol-coated iron oxide nanoparticles had no effect (Vassal et al.,
2021). In vitro models using mouse and bovine sperm showed
nanoparticle cytotoxicity, with silver nanoparticles most toxic
(Mohammadinejad et al., 2019). Airborne nanoparticulate
pollutants from industry pose reproductive health risks, evident
in germ-line mutational changes in mice exposed to such pollutants
(Jaishankar et al., 2014).

4.6.2 Effects of lead and zinc NPs on the male
reproductive system

Lead, a highly toxic heavy metal, is widespread in the
environment due to human activities and poses significant health
risks with neurotoxic and immunotoxic effects (Mahmood et al.,
2012). Zinc oxide nanoparticles, valued for their biocompatibility,
are used in products like sunscreens but can penetrate cells,
exhibiting toxicity influenced by size and dosage (Keerthana and
Kumar, 2020; Deore et al., 2021).

In research, the detrimental impacts of lead and zinc oxide
nanoparticles on experimental animals’ reproductive organs have
been elucidated, with outcomes dependent on dosage and exposure
duration (Lee et al., 2016). Exposure to zinc oxide nanoparticles has
been associated with notable declines in sperm counts and motility,
likely due to induced oxidative stress (Lee et al., 2016). Earlier
research has also highlighted toxic effects on the testis and
epididymis from both zinc oxide nanoparticles and lead. (Deore
et al., 2021). Indeed, oxidative stress emerges as a pivotal factor in
metal-induced toxicity, marked by an imbalance between free
radicals and antioxidants such as superoxide dismutase, catalase,
and glutathione peroxidase (Ighodaro and Akinloye, 2018). This
imbalance can precipitate organ toxicity and is implicated in various
health conditions. Increased oxidative stress has been observed in
the male reproductive systems following exposure to lead and zinc
oxide NPs, underscoring their involvement in the toxic effects of
these metals (Ighodaro and Akinloye, 2018; Deore et al., 2021).

4.6.3 Effects of NPs on the female
reproductive system

NPs’ toxic effects include female reproductive disruption,
teratogenicity, and prenatal development issues, as they translocate
to reproductive and fetal tissues through inhalation, ingestion, or
dermal absorption (Dugershaw et al., 2020). Titanium dioxide
(TiO2) NPs disrupted granulosa cell hormonal secretions, reducing
pregnancy rates and altering ovarian gene expression in mice (Chen
et al., 2003). Exposure to zinc oxide NPs during pregnancy or lactation
poses health risks to mothers and embryos (Clementino et al., 2021).
Nanoparticles accumulate in ovarian tissues in a size-dependent
manner, with larger particles accumulating more than smaller ones
(Raj et al., 2017). NPs affect oogenesis based on factors like size, surface
charges, and exposure routes. Metals, metallic oxides, carbon-based
NPs, and quantum dots penetrate female germline cells, inducing
reactive oxygen species, DNA damage, and inflammation. Gold and
silver NPs, including their alloys, accumulate in oocytes and cumulus
cells, with silver NPs showing higher toxicity (Mao et al., 2022).

NPs have adverse effects on the female hormonal system by
disrupting the hypothalamus-pituitary-ovarian axis, leading to
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neuro-hormonal instabilities (Hou and Zhu, 2017). Nickel NPs in
rats disrupt hormones and damage ovaries, while titanium dioxide
NPs affect hormone levels and follicles in female rats (Karimipour
et al., 2018). Furthermore, quantum dots and calcium phosphate
NPs disrupt ovarian cell activities and steroid synthesis pathways.
NPs crossing cellular barriers impact placental function and fetal
development, influenced by barrier thickness. Evolving placental
barriers regulate substance exchange between maternal and fetal
compartments (Woods et al., 2018). Understanding NP-biological
barrier interactions is crucial for safer nanoparticle therapies
(Herrick and Bordoni, 2019). Drug-delivering NPs can induce
developmental toxicities, affecting fetal cell growth,
differentiation, and genetic expression. Crossing placental barriers
causes neurodevelopmental anomalies and DNA damage. In utero
gene editing with multifunctional nanoparticles offers therapeutic
promise with no fetal developmental adverse effects (Ricciardi et al.,
2018). However, NPs may cause fetal abnormalities, with variations
in toxicity among different types. Some, like amorphous silica-based
NPs, exhibit no prenatal toxicities, while others, such as
molybdenum-based NPs, impact maternal weight, fetal growth,
and genetic stability (Mohamed et al., 2020).

Regulatory frameworks for nanoparticle reproductive toxicity
need integration. Harmonized guidelines are essential for assessing
risks to reproductive health from nanoparticles, requiring
comprehensive data for clinical safety assessment (Grillo et al.,
2021). Reproductive toxicity studies may be needed in later
clinical trial phases based on product and patient considerations
(Husain et al., 2015).

4.7 Opioids

Opium use, prevalent during events like the SARS-CoV-
2 pandemic, poses risks to cognition and reproductive health
(Khosravi, 2022). Morphine, its main alkaloid, disrupts hormonal
balance via testicular opioid receptors, impairing sperm production
and quality. Morphine induces ROS, damaging cell membranes and
causing DNA fragmentation. Long-term use leads to dependence by
affecting brain receptors, affecting key structures like the amygdala
and hippocampus, and testicular opioid receptors, disrupting
hormonal balance (Moinaddini et al., 2023). Replacement
therapies like methadone and buprenorphine manage
dependence. Methadone aids detox but can cause side effects,
while buprenorphine, favored since 2001, has minimal placental
transfer in pregnant women (Meyer et al., 2015; Robin et al., 2022;
Moinaddini et al., 2023).

A study investigated sperm and testis parameters in morphine-
dependent animals and those undergoing detoxification with
methadone/buprenorphine (Moinaddini et al., 2023). Morphine
affects testicular opioid receptors, impacting germ and glandular
cells, increasing DNA fragmentation, and potentially causing
infertility. Morphine use and detox affect mitochondrial activity
and spermmotility; while improved viability is seen with methadone
detox. Testicular weight and dimensions decrease with morphine
use and detox (Moinaddini et al., 2023).

Chronic opium use in male rats alters testicular architecture,
inducing inflammation and toxicity. Opium addiction reduces
sexual activity via decreased testosterone levels, potentially

causing sexual suppression and infertility. Hypophysial gonadal
secretion function decreases, impacting sperm quality, which may
result from direct action on gonads or via the hypothalamic-
hypophysial-gonadal axis, affecting proper spermatogenesis and
male sexual responses. Suppression of this axis results in reduced
sperm count, semen quality, erectile function, and infertility. Further
research is needed to understand opium’s reproductive health effects
(Hejazian et al., 2007; Amin, 2013).

5 Examining neurotherapeutic drug-
induced reprotoxicity via organoid
modeling: Steps toward
personalized therapy

There is a significant gap in the literature regarding the
assessment of neurotherapeutic drug-induced reprotoxicity using
organoid modeling. This limitation underscores the crucial need to
develop and use reproductive organoids to study the toxic effects of
neurotherapeutic drugs on reproduction. Moreover, it highlights the
importance of incorporating organoid modeling into research
methodologies rather than conventional approaches based on cell
lines and mice to develop more clinically relevant and
predictive models.

Antidepressants may affect semen parameters and male fertility,
with mirtazapine potentially exerting fewer adverse effects on germ
cell DNA damage than amitriptyline. However, studies based on
germ cell lines may have limited human relevance. Further research
on the effects of antidepressants on semen quality and fertility is
crucial. Testicular organoids offer a promising solution for reducing
animal use in toxicity studies, thereby addressing limitations in
current clinical indicators for testicular toxicity. These 3D structures
mimic the intricate cell interactions in the testes, providing a
valuable tool for modeling normal development and
pathophysiology and performing drug testing. Thus, testicular
organoids hold immense potential for assessing reproductive
toxicity while minimizing animal use and associated costs.

Wu et al. (2022) established an enhanced testicular organoid
model comprising rat testicular cell homogenates to evaluate the
reproductive toxicity of antidepressants, focusing on mimicking
drug effects on various aspects of spermatogenesis and
elucidating underlying mechanisms. Using such a model,
amitriptyline and mirtazapine were selected, the two most
commonly used antidepressants, to assess their impact on
spermatogenic cells (Wu et al., 2022).

Testicular organoids were used to examine the effects of
antidepressants. Compared with mirtazapine, amitriptyline
induced greater apoptosis in the organoids with higher cell death
rates. Amitriptyline exhibited greater cytotoxicity across cell lines
than mirtazapine, indicating its higher potential for testicular
damage (Wu et al., 2022).

Immunostaining confirmed the presence of germ cells and
Sertoli cells, suggesting spermatogenesis initiation and BTB
formation (Yuan et al., 2020). In the abovementioned study, both
amitriptyline and mirtazapine exerted dose-dependent effects on
spermatogenesis-related gene expression, with amitriptyline
inducing greater toxicitythan mirtazapine (Yuan et al., 2020).
Extended mirtazapine treatment suggested potential damage to

Frontiers in Pharmacology frontiersin.org16

Abady et al. 10.3389/fphar.2024.1412188

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1412188


undifferentiated spermatogonia (Yuan et al., 2020). At lower doses,
none of the drugs affected Zo1 expression, preserving BTB integrity,
whereas amitriptyline downregulated Zo1 expression at higher
doses, indicating BTB damage (Yuan et al., 2020). Sertoli cells
displayed resistance to drug-induced damage, particularly for
mirtazapine (Wu et al., 2022). These findings underscore
differing reproductive toxicity profiles of amitriptyline and
mirtazapine, highlighting the need to assess drug effects on
testicular function and spermatogenesis.

The organoid platform evaluates antidepressant toxicity on
spermatogonia, with amitriptyline showing more significant
effects on spermatogenesis genes than mirtazapine. Comparisons
with mouse cell lines support these findings, validating the organoid
model’s relevance. Despite refinement needs, the model is a valuable
tool for drug toxicity screening and mechanistic studies on
spermatogenesis, offering high repeatability and ease of
operation. Pioneering research on rat testicular organoids may be
translated to human models, elucidating clinically relevant drug
reproductive toxicity (Wu et al., 2022).

Furthermore, lamotrigine, a commonly used drug for treating
various neurological conditions, such as epilepsy and bipolar
disorder, is associated with potential side effects, including
adverse effects on reproductive health such as disrupted
menstrual cycles, hormonal imbalances, and alterations in fertility
parameters. Furthermore, emerging evidence suggests that
lamotrigine can exert toxic effects on reproductive organs,
particularly the endometrium (Ann et al., 2023; Mwangi et al.,
2023; Rezk et al., 2024).

6 Advancements and challenges in
assessing developmental toxicity

Human organoids, although promising, encounter challenges
such as inconsistent batch outcomes and incomplete maturity,
affecting their reproducibility and ability to replicate native organ
functionality. Addressing the limitations of batch variability and

heterogeneity through standardized protocols could enhance the
reliability and applicability of human organoids (Velasco, Kedaigle
et al., 2019). Additionally, efforts to augment organoid complexity
involve integrating vascular and immune components to better
mimic native tissue structures and functions (Hofer and Lutolf,
2021). Engineering techniques create vascularized and immune
organoids, like brain organoids with microglia-like cells (Popova
et al., 2021). Additionally, Biomaterials and microfluidic systems
mimic in vivo cellular environments within organoids (Li
et al., 2022).

Another notable advancement is the emergence of “organs-on-
chips” (OoCs) platforms, which faithfully replicate the dynamic
microenvironment of human organs, facilitating in vitro assessment
of systemic toxicity (Figure 3). OoC devices replicate tissue
functions, aiding in understanding physiological dynamics and
multi-organ connectivity. Mathematical modeling quantifies
responses, while lab-on-a-chip platforms integrate microfluidic
chips for dynamic cultures. In biosciences, in silico and
theoretical modeling refine systems, with MoC systems modeling
toxin processes for systemic toxicity insights. (Devall et al., 2021;
Sung, 2022). For instance, embedding JEG3 on a chip can interact
precisely with HUVECs, resembling the placenta unit in maternal-
fetal interface studies (Mittal et al., 2019; Cui et al., 2020). Moreover,
high-throughput single-cell RNA sequencing (scRNA-seq) has been
instrumental in characterizing the transcriptome of individual cells
within organoids, allowing researchers to identify alterations
induced by toxic exposures. For example, scRNA-seq has been
used to study the effects of prenatal exposure to toxic substances
on cell development and differentiation (Wang et al., 2021). Despite
its promise, the integration of scRNA-seq into developmental
toxicity assessment with organoids remains limited (Devall
et al., 2021).

Ferasyi et al. demonstrated the complexity of reproductive
signaling pathways with a male reproductive axis model,
highlighting hormone interactions among the central nervous
system, pituitary gland, and gonads. Mathematical modeling
elucidates fluid dynamics, with lumped-parameter models

FIGURE 3
Integrated Multi-Organoid System on Chip: This model combines micro-engineered organoids (e.g., brain and reproductive organs) on chips with
single-cell RNA sequencing (sc-RNA-seq) and mass spectrometry to investigate the systemic toxicity of neurotherapeutic drugs. Therapeutic
compounds are introduced into the model to target brain diseases and assess their effects on reproductive organoids.
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resembling electrical circuits and hydrodynamic models analyzing
biofluid flows directly using the Navier-Stokes equation (Mazumdar,
2015; Ferasyi et al., 2016). Furthermore, pharmacokinetic (PK) and
pharmacodynamic (PD) models predict compound effects on the
endocrine system. PB PK-PD models, using ODEs, integrate
signaling processes with mathematical relationships like Hill and
Michaelis-Menten equations. Systems biology-based algorithms
simulate network models, aiding drug screening in OoCs
(Schnell, 2014).

Turning to microfluidics, it Microfluidics aids MEMS device
design for biomedicine, handling nanoliter volumes and integrating
sensors (Karolak et al., 2018; Manz et al., 2020). Laminar flow,
influenced by shear stress, governs fluid behavior, with diffusion
ensuring stable gradients. Computational fluid dynamics predict
behavior, while tissue-mimicking chips study molecular events
(Morshed and Dutta, 2018; Piemonte et al., 2018; Manz et al.,
2020; Sung, 2022). Interestingly, multi-organ systems mimic
interactions via microfluidic connections, aided by PBPK-PBPD
models. Scaling optimizes design for predicting responses (Lee et al.,
2017; Prantil-Baun et al., 2018).

Turning our attention to the reproductive tract, it is complex,
housing gonads and vital organs like the ovary. Microfluidic
biochips mimic ovulation, providing insights into infertility
pathways. OoC devices integrate endocrine loops, aiding the
study of endocrine-disrupting chemicals (EDCs)-triggered
pathways with in silico methods (Xiao et al., 2017; Bodke and
Burdette, 2021).

A novel endometrium-on-a-chip device simulated cyclic
estradiol hormone effects on stromal and endothelial cells. It
featured dual-chamber microfluidics with a porous membrane for
co-culturing, maintaining steroid sensitivity for biochemical
analysis. Endocrine organ-on-chip systems by Nguyen et al. and
Gnecco et al. could benefit from integration with in silico algorithms
or mathematical models, as shown by Lee et al. in a pancreas-
muscle-liver OoC (Gnecco et al., 2017; Lee et al., 2017; Nguyen
et al., 2017).

OoCs replicate dynamic hormone signaling in microfluidic
environments, mimicking human reproductive pathways
(Nawroth et al., 2018). Xiao et al. (Xiao et al., 2017) conducted a
study combining microfluidic culture of the human reproductive
tract with mathematical PK simulation. Their system orchestrated
synchronized fluid flows to emulate the menstrual cycle hormone
profile. Ovarian follicles generate hormones regulating downstream
tissues, with an ODE system modeling inter-organ hormonal
signaling for drug discovery and toxicological studies (Sung, 2022).

Additionally, the integration of omics technologies enhances the
understanding of developmental toxicity mechanisms and facilitates
biomarker discovery (Mao et al., 2024). Integration of mass
spectrometry with omics technologies and organoid models
enhances assay precision, refining compound potency ranking in
reprotoxicity tests. Mass spectrometry provides insights into
developmental toxicity mechanisms, identifying biomolecules,
metabolic pathways, and biomarker signatures in organoids exposed
to toxic compounds. This integration improves sensitivity and
specificity, aiding in early detection and prediction of adverse
developmental outcomes (Abady et al., 2023; Xu and Yang, 2024).
This synergistic approach advances our ability to evaluate and mitigate
developmental hazards in pharmaceutical and environmental contexts.

More research is needed to enhance reproductive disease
modeling. The epididymis is pivotal for sperm maturation, but
our understanding is limited. Few 3D epididymal organoids exist,
with challenges including the blood-epididymis barrier’s integrity
for drug testing. Additionally, mimicking the different portions of
the epididymis remains a significant challenge, highlighting the need
for further research in this area (Leir et al., 2020; Pinel and Cyr, 2021;
Patrício et al., 2023).

Emerging research focuses on embryoids, organized embryo-
like structures aiming to model integrated early embryonic
development. Unlike organoids, they offer reproducible cellular
organization and architecture within a shorter timeframe (Fu
et al., 2021). Gastruloids, for example, serve as models of
gastrulating embryos, providing insights into anterior-posterior
axial patterning and potential teratogenicity assessment (Papalia
et al., 2007; Mantziou et al., 2021). Saadeldin et al. (2024) conducted
an experiment involving the co-cultivation of endometrial organoids
(EOs) with embryos and made several significant observations.
Notably, it was observed a five-fold increase in the cell number
of co-cultured embryos and a seven-fold increase in the proportion
of trophoblast outgrowths compared to control embryos.
Additionally, embryos cultured with an EO-conditioned medium
demonstrated a higher rate of attachment compared to other
models, and remarkably, embryonic elongation was observed for
the first time, providing a valuable tool for investigating the intricate
processes involved in porcine embryo implantation (Saadeldin et al.,
2024). These advancements show promise for toxicological studies,
yet further research is needed to optimize their fine development
and application (Papalia et al., 2007; Li et al., 2022).

7 Conclusion

The integration of advanced technologies such as organoids
offers a promising approach to assess the reproductive toxicity of
neurotherapeutic drugs. Organoids provide a physiologically
relevant model that bridges the gap between traditional in vitro
cell cultures and in vivo animal studies, allowing for more accurate
assessments of drug effects on reproductive health. Despite their
potential, current studies on neurotherapeutic drug-induced
reproductive toxicity in organoid models are limited, highlighting
the need for further research in this area. Addressing the current
limitations of organoid technology, such as variability and maturity
levels, is essential for understanding their full potential for toxicity
screening and mechanistic studies. By advancing our understanding
of the complex interactions between neurotherapeutic drugs and
reproductive health, organoid modeling can lead to improved
clinical management and reproductive risk mitigation strategies
in drug development.
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