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Background: Obstructive sleep apnea (OSA) has been linked to various
pathologies, including arrhythmias such as atrial fibrillation. Specific treatment
options for OSA are mainly limited to symptomatic approaches. We previously
showed that increased production of reactive oxygen species (ROS) stimulates
late sodium current through the voltage-dependent Na+ channels via Ca2+/
calmodulin-dependent protein kinase IIδ (CaMKIIδ), thereby increasing the
propensity for arrhythmias. However, the impact on atrial intracellular Na+

homeostasis has never been demonstrated. Moreover, the patients often
exhibit a broad range of comorbidities, making it difficult to ascertain the
effects of OSA alone.

Objective: We analyzed the effects of OSA on ROS production, cytosolic Na+

level, and rate of spontaneous arrhythmia in atrial cardiomyocytes isolated from
an OSA mouse model free from comorbidities.

Methods:OSAwas induced in C57BL/6 wild-type and CaMKIIδ-knockout mice
by polytetrafluorethylene (PTFE) injection into the tongue. After 8 weeks, their
atrial cardiomyocytes were analyzed for cytosolic and mitochondrial ROS
production via laser-scanning confocal microscopy. Quantifications of the
cytosolic Na+ concentration and arrhythmia were performed by
epifluorescence microscopy.

Results: PTFE treatment resulted in increased cytosolic and mitochondrial
ROS production. Importantly, the cytosolic Na+ concentration
was dramatically increased at various stimulation frequencies in the
PTFE-treated mice, while the CaMKIIδ-knockout mice were protected.
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Accordingly, the rate of spontaneous Ca2+ release events increased in the wild-
type PTFE mice while being impeded in the CaMKIIδ-knockout mice.

Conclusion: Atrial Na+ concentration and propensity for spontaneous Ca2+ release
events were higher in an OSA mouse model in a CaMKIIδ-dependent manner,
which could have therapeutic implications.

KEYWORDS

sleep-disordered breathing, reactive oxygen species, CaMKIIδ, Na+ homeostasis, cardiac
arrhythmias, obstructive sleep apnea

1 Introduction

Over the past few decades, sleep-disordered breathing (SDB) has
emerged as a highly prevalent disease that currently affects about
one billion patients worldwide (Benjafield et al., 2019). SDB is
frequently associated with various cardiovascular disorders, such
as hypertension (Pengo et al., 2020), heart failure with reduced or
preserved ejection fractions (HFrEF/HFpEF) (Arzt et al., 2016;
Lebek et al., 2021; Wester et al., 2023; Hegner et al., 2024), and
arrhythmias like atrial fibrillation (Gami et al., 2004; Hegner et al.,
2021a; Hegner et al., 2021b; Mehra et al., 2022), which may lead to
subsequent strokes (Arzt et al., 2005). The interactions between SDB
and these cardiovascular disorders can substantially contribute to
patient morbidity and mortality while also posing economic
challenges (Gami et al., 2004; Arzt et al., 2005; Arzt et al., 2016;
Benjafield et al., 2019; Pengo et al., 2020; Lebek et al., 2021; Mehra
et al., 2022; Wester et al., 2023). The current therapeutic strategies
for SDB are mainly based on lifestyle interventions (e.g., weight loss,
reduced alcohol intake, sports, and exercise) and continuous positive
airway pressure (CPAP) therapy (Aurora et al., 2012; Randerath
et al., 2017; Patil et al., 2019). However, patient compliance with
these measures are often quite low, and adaptive servo-ventilation
therapy has even been shown to increase mortality in HFrEF
patients with central sleep apnea (Cowie et al., 2015; McEvoy
et al., 2016). Thus, new and advanced therapeutic strategies are
urgently needed for patients with SDB, which in turn requires
detailed understanding of the pathological mechanisms involved.

We previously found increased production levels of reactive
oxygen species (ROS) in human atrial biopsies of patients with SDB
(Lebek et al., 2020b). This increase was shown to result in increased
Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation
and enhanced CaMKII-dependent late Na+ current in the biopsies of
patients with SDB (Lebek et al., 2020b; Lebek et al., 2022). Notably,
the enhanced late Na+ current is an important trigger for early
afterdepolarizations (EADs) and subsequent arrhythmias (Wagner
et al., 2006; Sossalla et al., 2010; Glynn et al., 2015; Lebek et al.,
2020b; Lebek et al., 2022). Indeed, we demonstrated an increased
frequency of multicellular arrhythmias in the isolated trabeculae of
patients with SDB that could be blocked with CaMKII inhibition as
well as late Na+ current inhibition (Lebek et al., 2020b; Lebek et al.,
2022). However, these studies were limited by patient heterogeneity
and their various comorbidities that impacted myocardial Na+

homeostasis (Lebek et al., 2020b; Lebek et al., 2022). It is also
unclear whether myocardial Na+ concentration is actually affected
by the altered Na+ currents in SDB. Recently, we demonstrated for
the first time that intracellular Na+ entry and Na+ concentration
were higher in the atrial myocytes of patients with heart failure and

preserved ejection fraction—conditions in which SDB is very
common (Trum et al., 2024).

Therefore, we developed a mouse model of obstructive sleep
apnea (OSA) by injecting polytetrafluorethylene (PTFE) into the
murine tongue (Lebek et al., 2020a; Hegner et al., 2023); these
mice developed diastolic and mild systolic left-ventricular
dysfunctions after 8 weeks (Lebek et al., 2020a; Hegner et al.,
2023). Importantly, this approach allows analysis of OSA mice
without the confounding comorbidities that are frequently
exhibited by patients. PTFE is an inert substance that
permanently increases the murine tongue volume, thereby
leading to increased frequency of apneas, inspiratory flow
limitations (hypopneas), and subsequent hypoxemia (Lebek
et al., 2020a; Hegner et al., 2023). Notably, these OSA events
occur spontaneously in PTFE-injected mice and preferentially
during the murine sleeping period, making this mouse model a
suitable tool for investigating OSA-dependent effects in the
absence of any potentially confounding comorbidities (Lebek
et al., 2020a; Hegner et al., 2023). The objective of the current
work was to explore whether atrial ROS production increased in
the OSA mice that could subsequently lead to CaMKIIδ-
dependent pro-arrhythmic dysregulation of atrial Na+

homeostasis.

2 Materials and methods

All experiments involving mice were in compliance with the
directive 2010/63/EU of the European Parliament, Guide for the
Care and Use of Laboratory Animals published by the US National
Institutes of Health (NIH Publication No. 85–23, revised 1985), and
local institutional guidelines. The government of Unterfranken,
Bavaria, Germany also approved the animal protocol for this
study (protocol number: 55.2-2532-2-512).

2.1 OSA induction by PTFE injection

OSA was induced in the study mice as described previously
(Lebek et al., 2020a; Hegner et al., 2023). CaMKIIδ knockout (−/−)
and C57BL/6 wild-type mice were randomly assigned to either the
control (CTRL) or OSA induction by PTFE injection (PTFE) groups
(Figure 1). The PTFE (35 μm particle size, Sigma-Aldrich) was
injected into the tongues of the male mice at the age of
8–12 weeks (Lebek et al., 2020a). For optimal analgesia, the mice
were treated with buprenorphine (0.1 mg/kg bodyweight
intraperitoneal) 1 h before PTFE injection. Anesthesia was
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established using intraperitoneal injections of fentanyl (0.05 mg/kg
bodyweight), medetomidine (0.5 mg/kg), and midazolam (5 mg/kg).
Thereafter, the mice were placed on a heating plate in the supine
position. The anesthesia was continuously monitored by recording
the respiration and ECG, and the body temperature was monitored
using a rectal probe. In total, 100 μL of diluted PTFE (50% w/v in
glycerol, Sigma-Aldrich) was injected into multiple sites at the base
of the tongue using a 27-gauge cannula. Ultrasound imaging was
used to confirm successful PTFE injection into the tongue
(Vevo3100 system, VisualSonics). Once the procedure was
completed, the anesthesia was reversed using intraperitoneal
injections of atipamezole (2.5 mg/kg), flumazenil (0.5 mg/kg), and
buprenorphine (0.1 mg/kg bodyweight). The surgeries were
performed by an experienced investigator who was blinded to the
genotype of the mice. To reduce the stress on the animals, we
refrained from revalidating the OSA severity resulting from PTFE
injection as this was previously investigated in detail (Lebek
et al., 2020a).

2.2 Isolation of atrial cardiomyocytes

The mouse atrial cardiomyocytes were isolated as described
previously (Hegner et al., 2023). In brief, the explanted hearts were
mounted on a Langendorff perfusion apparatus and retrogradely
perfused with 113 mmol/L of NaCl, 4.7 mmol/L of KCl, 0.6 mmol/
L of KH2PO4, 0.6 mmol/L of Na2HPO4 × 2 mmol/L of H2O,
1.2 mmol/L of MgSO4 × 7mmol/L of H2O, 12 mmol/L of NaHCO3,
10 mmol/L of KHCO3, 10 mmol/L of HEPES, 30 mmol/L of
taurine, 10 mmol/L of 2,3-butanedione monoxime, and
5.5 mmol/L of glucose for 4 min at 37°C (pH 7.4). Next, trypsin
0.6%, 7.5 mg/mL of liberase TM (Roche), and 0.125 mmol/L of
CaCl2 were added while maintaining perfusion until the heart
became flaccid. Then, the murine atrium was collected in a
perfusion buffer supplemented with 5% bovine calf serum. The
tissue was sliced into small pieces and disintegrated by pipetting.
Stepwise Ca2+ reintroduction was then performed by increasing
[Ca2+] from 0.1 to 1.0 mmol/L. Owing to the limited number of
atrial cardiomyocytes obtained from the cell isolation, only one of
the following methods could be performed per subject.

2.3 Measurements of atrial ROS production

Isolated atrial cardiomyocytes were plated on laminin-coated
recording chambers and loaded with either 5 μmol/L of CellRox™
Orange (Thermo Fisher Scientific) or 5 μmol/L of MitoSox™ Red
(Thermo Fisher Scientific) in the presence of 0.04% (w/v) pluronic
acid (Invitrogen; 15 min incubation at 37°C). The chambers were
then placed on a laser-scanning confocal microscope (Zeiss LSM
700), and measurements were performed in Tyrode’s solution
containing 140 mmol/L of NaCl, 4 mmol/L of KCl, 5 mmol/L of
HEPES, 1 mmol/L ofMgCl2, 10 mmol/L of glucose, and 1mmol/L of
CaCl2 (pH 7.4 at room temperature with NaOH). The frame scans
(CellRox™ Orange: 555 nm excitation, LP 560 nm emission;
MitoSox™ Red: 488 nm excitation, LP 490 nm emission) were
acquired once every minute for 10 min upon electrical field
stimulation (1 Hz). The CellRox™ Orange and MitoSox™ Red
fluorescence (F) values were then normalized with respect to the
background fluorescence (F/F0). The slope of increase in F/F0 over
time was used as the measure of cellular (CellRox™ Orange) and
mitochondrial (MitoSox™ Red) ROS productions.

2.4 Epifluorescence microscopy

Intracellular Na+ was determined by epifluorescence microscopy
using the Na+-sensitive sodium-binding benzofuran isophthalate-
AM (SBFI-AM) dye (Thermo Fisher Scientific). The isolated atrial
cardiomyocytes were plated on laminin-coated measurement
chambers and loaded with 10 μmol/L of SBFI-AM for 90 min at
room temperature according to manufacturer instructions. The
loaded chambers were then placed on the stage of an inverted
microscope (Nikon Eclipse TE2000-U) and superfused with
Tyrode’s solution containing 140 mmol/L of NaCl, 4 mmol/L of
KCl, 5 mmol/L of HEPES, 1 mmol/L of MgCl2, 10 mmol/L of
glucose, and 1 mmol/L of CaCl2 (pH 7.4 at 37°C with NaOH).
Regular electrical stimulation was then performed by field
stimulation (1, 2, and 4 Hz with 20 V for 4 ms) in a sequential
manner for 5 min per frequency. The emissions were obtained using
a fluorescence detection system (IonOptix), and the SBFI
fluorescence emission ratio was measured by alternating

FIGURE 1
Experimental study flowchart.
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excitations at 340 nm and 380 nm. Then, steady-state measurements
averaged over 10 s with ongoing stimulation were analyzed. For
some experiments, calibration of the F340 nm/380 nm fluorescence
ratio for fixed Na+ concentrations (0, 10, and 20 mmol/L) was
performed. To achieve this, a K+-free solution containing
30 mmol/L of NaCl, 115 mmol/L of Na-gluconate, 10 mmol/L of
HEPES, 2 mmol/L of EGTA, and 10 mmol/L of glucose (pH 7.2 at
37°C with TRIS) was mixed with an Na+-free solution containing
30 mmol/L of KCl, 115 mmol/L of K-gluconate, 10 mmol/L of
HEPES, 2 mmol/L of EGTA, and 10 mmol/L of glucose
(pH 7.2 at 37°C with TRIS) in an appropriate proportion to
achieve the desired Na+ concentration. For all Na+ calibration
solutions, the ionophore Gramicidin D (10 μmol/L, Sigma-
Aldrich) was added to achieve cell permeabilization. For the
10 and 20 mmol/L Na+ calibration solutions, an additional
100 μmol/L of the Na+/K+-ATPase inhibitor strophanthidin
(Sigma-Aldrich) was added. Continuous electrical stimulation
was then performed at 1 Hz as described above, and the steady-
state fluorescence ratio was recorded after 20 min for each step in the
calibration process (with Tyrode’s solution for 0, 10, and 20 mmol/L
of Na+).

The spontaneous Ca2+ release events were analyzed by
epifluorescence microscopy as described previously (Hegner
et al., 2023). In short, the atrial cardiomyocytes were loaded with
the Ca2+-sensitive dye Fura-2-AM (5 μmol/L, Thermo Fisher
Scientific) and subjected to regular electrical field stimulation at
1, 2, and 4 Hz for 5 min per frequency. Deviations from the diastolic
Ca2+ baseline between two stimulated transients were defined as the
spontaneous Ca2+ release events and counted by one investigator
blinded to the genotype and intervention.

2.5 Statistical analysis

The experiments were performed and analyzed after being
blinded to the genotype (wild-type vs CaMKIIδ−/−) and treatment
(CTRL vs PTFE) of the mice, and the results were presented as mean
values per mouse ±standard error of the mean (SEM) for three
significant digits. The normal distribution was assessed via the
Shapiro–Wilk normality test, and student’s t-test was used to
compare two normally distributed continuous variables. One-way
ANOVA with Holm–Sidak’s post hoc correction was performed for
comparisons of more than two normally distributed groups.
GraphPad PRISM 10 was used to test for differences between the
linear regression slopes. Two-sided p-values below 0.05 were
considered to be statistically significant.

3 Results

3.1 ROS production is increased in atrial
cardiomyocytes of OSA mice

Previously, we demonstrated increased ROS production in the
myocardium of patients with SDB (Arzt et al., 2022). Additionally,
we were able to show increased ROS production in the ventricular
cardiomyocytes of the PTFE-treated mice (Hegner et al., 2023).
Since high-risk cardiovascular patients often have various

comorbidities, such as diabetes, heart failure, and coronary artery
disease, it is difficult to determine the independent effect of SDB on
ROS production. Therefore, in this study, we analyzed the effect of
specific OSA induction by PTFE treatment in mouse atrial
cardiomyocytes.

Eight weeks after the PTFE injections, the cytosolic ROS
production in the experimental mice increased compared to
those of the control animals (1.63e-2 ± 2.2e-3 in PTFE vs 7.95e-
3 ± 1.3e-3 (ΔF/F0*min−1) in control, p = 0.006, n = 7 vs 7, Figures
2A–C). Moreover, the time-dependent cytosolic ROS production
estimated by linear regression analysis was elevated in the PTFE-
treated mice compared to the controls (r2 = 0.666, p < 0.001, n = 7 in
PTFE vs r2 = 0.327, p < 0.001, n = 7 in control, and p < 0.001 for
difference in slopes, Figure 2B).

Similarly, mitochondrial ROS production quantified by
MitoSox™ Red was higher in the PTFE-treated mice than the
controls (2.68e-2 ± 4.4e-3 in PTFE vs 1.51e-2 ± 1.7e-3 in control,
p = 0.030, n = 7 vs 7, Figures 2D–F). Congruently, the time-
dependent mitochondrial ROS production estimated by linear
regression analysis was elevated in the PTFE mice compared to
the controls (r2 = 0.578, p < 0.001, n = 7 in PTFE vs r2 = 0.540, p <
0.001, n = 7 in control, p < 0.001 for difference in slopes, Figure 2E).

3.2 CaMKII-dependent dysregulation of
atrial Na+ homeostasis

The atrial cardiomyocyte Na+ concentration was assessed by
epifluorescence microscopy using the Na+-sensitive SBFI-AM
fluorescence dye. The cardiomyocytes underwent continuous
electrical stimulation at 1, 2, and 4 Hz to account for differences
between the physiological human and murine heart rates. The SBFI
F340/380 ratio was analyzed at steady-state levels (Figure 3A). In the
wild-type PTFE mice, the SBFI ratio increased to 1.26 ± 8.2e-3 as
compared to 1.17 ± 1.2e-2 in the control mice (p < 0.001, Figure 3B),
while the CaMKIIδ−/− PTFE mice remained protected (p < 0.001,
Figure 3B). Importantly, the SBFI F340/380 ratio increased similarly
across all frequencies, including 2 and 4 Hz, in the wild-type PTFE
mice while remaining at healthy control levels in the CaMKIIδ−/−
PTFE mice (Figures 3C, D).

Calibration experiments were conducted to convert the
ratiometric SBFI fluorescence values to Na+ concentrations
(mmol/L) (Figure 4A). The SBFI fluorescence ratios were
plotted for fixed Na+ concentrations (0, 10, and 20 mmol/L,
Figure 4B). The SBFI F340/380 ratio was converted to
intracellular Na+ concentration (mmol/L) using the resulting
calibration curve. The atrial cardiomyocyte Na+ concentration
at 1 Hz increased in the wild-type PTFE mice to 20.0 ± 0.65 from
12.6 ± 0.94 mmol/L in the wild-type control (p < 0.001,
Figure 4C) but remained at the control level (13.5 ±
0.74 mmol/L) in the CaMKIIδ−/− PTFE mice (p < 0.001 vs
wild-type PTFE, Figure 4C). At 2 Hz stimulation, the Na+

concentration increased to 20.6 ± 0.53 mmol/L in the wild-
type PTFE mice from 14.1 ± 0.96 mmol/L in the wild-type
control (p < 0.001). During 4 Hz stimulation, the intracellular
Na+ concentration increased further to 21.6 ± 0.62 mmol/L in the
wild-type PTFE mice from 15.7 ± 1.2 mmol/L in the control (p =
0.002). Moreover, at 2 and 4 Hz, Na+ concentrations in the
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FIGURE 2
ROS production is increased in the atrial cardiomyocytes of PTFE mice: (A) original laser-scanning confocal microscopy images of atrial
cardiomyocytes loaded with the CellRox™Orange dye (artificial coloring of monochrome image with Blue_Yellow LUT); (B) linear regression analysis of
the cytosolic ROS production over time (n = 15/7 control (CTRL) vs n = 14/7 PTFE); (C)mean slope of cytosolic ROS production over time (n = 15/7 CTRL vs
n = 14/7 PTFE); (D) original laser scanning confocal microscopy images of atrial cardiomyocytes loaded with the MitoSox™ Red dye (artificial
coloring of monochrome image with Red_Hot LUT); (E) linear regression analysis of the mitochondrial ROS production over time (n = 15/7 CTRL vs n =
13/7 PTFE); (F)mean slope of mitochondrial ROS production over time (n = 15/7 CTRL vs n = 13/7 PTFE). N indicates the number of cells/number of mice.
The comparisons are based on student’s t-test and linear regression analysis as appropriate.

FIGURE 3
Cytosolic Na+ is elevated only in the atrial cardiomyocytes of wild-type PTFE mice: (A) original traces of the SBFI ratio (F340/F380) in the atrial
cardiomyocytes; mean SBFI ratios at (B) 1 Hz, (C) 2 Hz, and (D) 4 Hz electrical stimulation (n = 19/5 wild-type control (CTRL), n = 38/10 wild-type PTFE,
n = 32/10 CaMKIIδ−/− CTRL, and n = 36/10 CaMKIIδ−/− PTFE). N indicates the number of cells/number of mice. The comparisons are based on one-way
ANOVA with Holm–Sidak’s post hoc correction.
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CaMKIIδ−/− PTFE mice were similar to those of the wild-type
control mice (2 Hz: 14.0 ± 0.82 mmol/L, p < 0.001 vs wild-type
PTFE; 4 Hz: 14.6 ± 0.93 mmol/L, p < 0.001 vs wild-type PTFE).

3.3 CaMKII-dependent arrhythmias in
isolated atrial myocytes of OSA mice

Spontaneous Ca2+ release events were assessed in isolated
atrial cardiomyocytes loaded with the Ca2+-sensitive Fura-2-AM
dye during regular electrical stimulation. Non-stimulated pro-
arrhythmic events could be observed in the myocytes from the
wild-type PTFE mice (Figure 5A, indicated by red arrows), while
the Ca2+ transient characteristics remained unaltered in the
PTFE mice (Figures 5B–D). At 1 Hz stimulation, the
incidence of spontaneous Ca2+ release events increased in the
wild-type PTFE mice by more than two-fold to 5.85e-2 ± 7.9e-3
(s−1) from 2.11e-2 ± 3.5e-3 in the wild-type control mice (p <
0.001, Figure 5E). Atrial cardiomyocytes from the CaMKIIδ−/−
PTFE mice were protected from such an increase in the rate of
arrhythmias (2.65e-2 ± 7.8e-3, p = 0.007 vs wild-type PTFE,
Figure 5E). Similar effects were also observed at 2 Hz
stimulation, with the rate of pro-arrhythmic non-stimulated
events increasing to 9.86e-2 ± 1.4e-2 in the wild-type PTFE
mice from 4.11e-2 ± 8.0e-3 in the wild-type control mice (p <
0.001, Figure 5F), whilst the CaMKIIδ−/− PTFE mice exhibited no
increase in the frequency of spontaneous Ca2+ release events
(3.20e-2 ± 7.4e-3, p < 0.001 vs wild-type PTFE, Figure 5F). At a
stimulation rate of 4 Hz, which is closer to the physiological
murine heart rate (Li et al., 1999), the rate of atrial pro-
arrhythmic events remained elevated by more than two-fold
in the wild-type PTFE mice compared to the control (1.29e-1 ±
1.7e-2 vs 5.24e-2 ± 6.8e-3, p < 0.001, Figure 5G). Once again,
atrial cardiomyocytes from the CaMKIIδ−/− PTFE mice exhibited
arrhythmia frequencies comparable to those of the healthy
controls (4.34e-2 ± 1.1e-2, p < 0.001 vs wild-type PTFE,
Figure 5G). Additionally, no significant differences were
observed between the CaMKIIδ−/− control and PTFE mice
(Figures 5E–G).

4 Discussion

In the present study, we show increased ROS production, Na+

overload, and more frequent spontaneous Ca2+ release events in the
atrial cardiomyocytes of OSA mice. The current therapeutic
strategies for SDB are mostly limited to lifestyle interventions
and CPAP therapy (Aurora et al., 2012; Randerath et al., 2017;
Patil et al., 2019). However, patient compliance is often low in such
cases, and interventions such as adaptive servo-ventilation therapy
may even be detrimental in certain patients (Cowie et al., 2015;
McEvoy et al., 2016). Although SDB is associated with increased
incidence of atrial fibrillation and lower sustained success of
cardioversion or pulmonary vein isolation (Gami et al., 2004;
Gami et al., 2007; Linz et al., 2018), CPAP therapy has failed to
reduce the arrhythmia burden and incidence of adverse
cardiovascular events (Peker et al., 2016; Traaen et al., 2021).
Additionally, SDB patients have been reported to frequently
suffer from heart failure, especially HFpEF (Lebek et al., 2021;
Levy et al., 2022; Wester et al., 2023). These aspects highlight the
urgent need for more targeted and effective therapies for
SDB patients.

Recently, we showed for the first time that intracellular Na+

entry and Na+ concentration are higher in the atrial myocytes of
patients with HFpEF, a condition in which SDB is very common,
which could contribute to atrial contractile dysfunction and
arrhythmias (Trum et al., 2024). Interestingly, we also showed
that patients with SDB have increased late Na+ current in their
remodeled atria, which could contribute to intracellular Na+

overload (Lebek et al., 2022). However, because these patients
could also have various comorbidities, it is very difficult to
determine the standalone effects of OSA.

The SDB mouse model utilized in this study is ideal for
exploration of the pathological mechanisms and novel
therapeutic targets as it is devoid of the confounding
comorbidities frequently exhibited by patients; the mouse model
is also more widely available than SDB patient biomaterial (Lebek
et al., 2020a; Hegner et al., 2023). It is noted that these mice
developed diastolic and mild systolic left-ventricular dysfunctions,
which also resulted in increased heart and lung weights (Lebek et al.,

FIGURE 4
Measurement of Na+ concentration and calibration procedure: (A) protocol for SBFI-AM calibration to Na+ concentration performed in the atrial
cardiomyocytes; (B)mean SBFI ratios (F340/F380) at 0, 10, and 20 mmol/L of Na+ with linear regression (n = 14 cells); mean intracellular Na+ concentration
at (C) 1 Hz electrical stimulation (n = 19/5 wild-type control (CTRL), n = 38/10wild-type PTFE, n = 32/10 CaMKIIδ−/−CTRL, and n = 36/10 CaMKIIδ−/− PTFE).
N indicates the number of cells/number of mice. The comparisons are based on one-way ANOVA with Holm–Sidak’s post hoc correction or linear
regression analysis as appropriate.
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2020a; Hegner et al., 2023). It is therefore possible that the effects
observed in the ventricles may contribute to changes in the atria.

4.1 SDB-dependent pathological
mechanisms promoting arrhythmias

The frequently discussed pro-arrhythmic mechanisms that
could facilitate atrial fibrillation in SDB include intrathoracic
pressure changes (Linz et al., 2011), autonomous imbalance and
beta-adrenergic stimulation during nocturnal awakening periods

(Abboud and Kumar, 2014), increased arterial blood pressure
(Hetzenecker et al., 2013), structural remodeling (Anter et al.,
2017), conduction abnormalities (Anter et al., 2017; Hegner
et al., 2021b), ion-channel dysfunction and triggered activity
(Lebek et al., 2020b; Lebek et al., 2022), and intermittent
hypoxia/desaturation (Tkacova et al., 1998; Iwasaki et al., 2014).
The latter is also a strong inductor of oxidative stress and ROS
production (Gozal and Kheirandish-Gozal, 2008). Indeed, we
previously observed increased production of cytosolic ROS in
human atrial tissues of SDB patients (Lebek et al., 2020b). In
agreement with these observations, in this study, we report

FIGURE 5
CaMKIIδ−/− mice are protected from spontaneous Ca2+ release events: (A) original recordings of Ca2+ transients (Fura-2 ratio, F340/F380) in the atrial
cardiomyocytes, where the spontaneous Ca2+ release events are indicated by red arrows in the wild-type PTFE mice; (B) mean diastolic Ca2+, (C) Ca2+

transient amplitude, and (D) relaxation time to 70% of baseline at 1 Hz with ANOVA; p = n.s. Incidence of spontaneous Ca2+ release events at (E) 1 Hz, (F)
2 Hz, and (G) 4 Hz electrical stimulation. N = 57/18 wild-type control (CTRL), n = 66/22 wild-type PTFE, n = 27/9 CaMKIIδ−/− CTRL, and n = 26/
9 CaMKIIδ−/− PTFE. N indicates the number of cells/number of mice. The comparisons are based on one-way ANOVA with Holm–Sidak’s post hoc
correction.
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increased cytosolic and mitochondrial ROS production in the atrial
myocytes of OSA mice without comorbidities.

ROS have been shown to oxidize many ion channels and
transporters. Indeed, direct oxidation of the ryanodine type-2
receptors (RyR2) can promote increased diastolic sarcoplasmic
reticulum Ca2+ release and subsequent arrhythmias (Huang et al.,
2021). On the other hand, CaMKIIδ is a kinase central to myocardial
Na+ and Ca2+ homeostasis that can also be directly oxidized at
methionine-281 and -282, thereby releasing the catalytic domain
leading to increased enzyme activation (Erickson et al., 2008; Lebek
et al., 2023b; Lebek et al., 2024).

Our group previously established that cardiac CaMKIIδ activity
is pathologically increased in SDB patients and also in SDB mice in
the model used in this study (Lebek et al., 2020a; Lebek et al., 2020b;
Arzt et al., 2022; Hegner et al., 2023). In the present study, we present
data from isolated atrial cardiomyocytes, but the limited amount of
tissue precluded further protein target analysis, which is a potential
limitation of this study. There are several important downstream
targets of CaMKIIδ, including voltage-gated Na+ channels
NaV1.5 and NaV1.8, RyR2, phospholamban, L-type Ca2+

channels, and Na+/Ca2+ exchangers, which have been shown to
be involved in arrhythmogenesis (Bers, 2002; Fischer et al., 2013;
Bengel et al., 2021). CaMKIIδ overactivation in SDB can lead to
disturbed Ca2+ homeostasis, including increased sarcoplasmic
reticulum Ca2+ leakage, pro-arrhythmic non-stimulated events in
humans and mice, and multicellular arrhythmias in the patient
trabeculae (Lebek et al., 2020b; Arzt et al., 2022; Hegner et al., 2023).
These pro-arrhythmic events could serve as triggers of atrial
fibrillation (Nattel et al., 2020).

4.2 Disturbance of atrial Na+ homeostasis as
a novel pathological mechanism in SDB

Increased CaMKIIδ activation can facilitate intracellular Na+

level overload (Wagner et al., 2006; Wagner et al., 2011), and recent
studies have highlighted the interactions between CaMKIIδ and
increased Na+ influx in heart failure (Bengel et al., 2021), resulting in
increased myocyte Na+ concentration (Despa, 2018). One of the
proposed mechanisms is increased late Na+ current (late INa), which
was detected in the atrial myocytes of patients with SDB (Lebek et al.,
2020b; Lebek et al., 2022). However, data regarding Na+ in the
mouse atrial myocytes is scarce as the biomaterial is limited by the
small murine atrium and methodological challenges (Garber et al.,
2022). Garber et al. (2017, 2022) recommend calibrating each
myocyte individually, which we did not perform for every cell in
this study with the aim of increasing the yield. Consequently, the
converted Na+ concentrations may be more general estimates. The
quiescent murine atrial myocyte Na+ concentrations were previously
reported at ~8 mmol/L with an increase to 11–12 mmol/L at 1 Hz
stimulation. Since the Na+ concentration increases in a frequency-
dependent manner (Despa et al., 2002; Pieske et al., 2002), we
conducted measurements at multiple frequencies (1, 2, and 4 Hz)
to account for the increased rates that are commonly seen in human
atrial arrhythmias (Lu and Chen, 2021). In addition, this allowed us
to take into account the physiologically different heart rates of
humans and mice to offer a more comprehensive translational
perspective. Our data are in direct agreement with the findings of

previously published literature as we estimated the atrial myocyte
Na+ concentration to be ~12 mmol/L at 1 Hz stimulation in healthy
wild-type mice.

Importantly, at all the tested frequencies, the Na+ concentrations in
the atrial cardiomyocytes were profoundly higher in the OSA mice in
excess of Δ+5mmol/L. Owing to the selected calibration range of
0–20 mmol/L Na+ (Figure 4B), any reported concentrations above
20 mmol/L may even be underestimated. An increase in the
intracellular Na+ by this margin impairs Na+/Ca2+ exchanger (NCX)
function owing to reduced transmembrane Na+ gradients in a manner
similar to that observed in heart failure (Despa et al., 2002; Pieske et al.,
2002; Hegner et al., 2022). ImpairedNCX functionmay further increase
the cellular Ca2+ levels by reduced Ca2+ export, which could further
increase CaMKIIδ activation in a Ca2+-dependent fashion, thereby
exacerbating Na+ increase (Sapia et al., 2010; Bengel et al., 2021).
Moreover, increased Na+ influx is linked to initiation of atrial
fibrillation (Sossalla et al., 2010; Wan et al., 2016). Cellular Na+

overload is also known to increase cytosolic and mitochondrial ROS
productions (Kohlhaas et al., 2010). Indeed, we measured increased
intracellular andmitochondrial ROS productions in the cardiomyocytes
of OSA mice. In turn, this could promote a vicious cycle by leading to
further Na+ increase via CaMKIIδ activation. Importantly, we did not
observe any increase in atrial Na+ concentrations in the cardiomyocytes
of CaMKIIδ−/− SDB mice at any of the evaluated frequencies.

In line with the disturbed Na+ homeostasis, we also observed
more than two-fold increase in pro-arrhythmic events in the atrial
cardiomyocytes of the wild-type SDB mice at all stimulation
frequencies (1, 2, and 4 Hz), which was almost similar to the
levels of healthy controls in the CaMKIIδ−/− SDB mice.
Moreover, production of ROS has been linked to
arrhythmogenesis in cardiomyocytes (Liu et al., 2022).
Importantly, ROS production and NADPH oxidase activity are
higher in SDB (Gozal and Kheirandish-Gozal, 2008), whereas the
other Ca2+ transient characteristics remain unaltered in the PTFE
mice. This may be attributed to compensatory effects on the
sarcoplasmic reticulum Ca2+ content, as observed in patients with
paroxysmal atrial fibrillation (Voigt et al., 2014). We previously
reported a reduced Ca2+ transient amplitude in the ventricular
cardiomyocytes of SDB mice (Hegner et al., 2023), which we did
not observe in the atrial cardiomyocytes in the present study.

Our data suggest that modulation of CaMKIIδ activity could be a
promising antiarrhythmic approach in SDB. Even as pharmacological
inhibition of CaMKIIδ is being investigated (Pellicena and Schulman,
2014; Lebek et al., 2018), CRISPR-Cas9 gene editing of CAMK2D
could be an advanced strategy to overcome the previous limitations, as
this technology has been used with >2,000-fold increased specificity
toward CAMK2D compared to other isoforms (Lebek et al., 2023a).
Additionally, pharmacological inhibition and genetic ablation of
(oxidative) activation of CaMKIIδ have been shown to protect
from pro-arrhythmic activities (Lebek et al., 2018; Lebek et al.,
2023a; Lebek et al., 2023b; Hegner et al., 2023).

5 Conclusion

Patients with SDB are at increased risk of developing atrial
fibrillation and have demonstrated lower efficacy for currently
available anti-arrhythmic therapies. In fact, targeted anti-arrhythmic
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therapies are completely lacking in SDB. In the present study, we
demonstrated that in an SDBmousemodel devoid of comorbidities, the
production of cytosolic and mitochondrial ROS increased in the atrial
cardiomyocytes. ROS are known to facilitate persistent overactivation of
Ca2+/calmodulin-dependent protein kinase IIδ (CaMKIIδ), which
results in disruption of the cellular Na+ and Ca2+ homeostasis.
Herein, we describe elevated Na+ concentrations at multiple
stimulation frequencies associated with higher chances of
spontaneous Ca2+ release events in SDB mice. Importantly, the
CaMKIIδ−/− mice were protected from such effects. Therefore,
inhibition of CaMKIIδ in SDB may reduce Na+ overload and
protect against arrhythmias, which could have therapeutic
implications in the future.
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