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Introduction: This study investigates the role of hypoxia-related genes in the
neuroprotective efficacy of Yang Xue oral liquid (YXKFY) in Alzheimer’s disease
(AD) and Parkinson’s disease (PD).

Methods and results: Using differential expression and weighted gene co-
expression network analysis (WGCNA), we identified 106 and 9 hypoxia-
associated genes in AD and PD, respectively, that are implicated in the
transcriptomic and proteomic profiles. An artificial intelligence-driven hypoxia
signature (AIDHS), comprising 17 and 3 genes for AD and PD, was developed and
validated across nine independent cohorts (n = 1713), integrating 10 machine
learning algorithms and 113 algorithmic combinations. Significant associations
were observed between AIDHS markers and immune cells in AD and PD,
including naive CD4+ T cells, macrophages, and neutrophils. Interactions with
miRNAs (hsa-miR-1, hsa-miR-124) and transcription factors (USF1) were also
identified. Single-cell RNA sequencing (scRNA-seq) data highlighted distinct
expression patterns of AIDHS genes in various cell types, such as high
expression of TGM2 in endothelial cells, PDGFRB in endothelial and
mesenchymal cells, and SYK in microglia. YXKFY treatment was shown to
repair cellular damage and decrease reactive oxygen species (ROS) levels.
Notably, genes with previously dysfunctional expression, including FKBPL,
TGM2, PPIL1, BLVRB, and PDGFRB, exhibited significant recovery after YXKFY
treatment, associated with riboflavin and lysicamine.
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Conclusion: The above genes are suggested to be central to hypoxia and
neuroinflammation responses in AD and PD, and are potential key mediators of
YXKFY’s neuroprotective action.
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Introduction

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are
the two most common neurodegenerative disorders that have a
significant impact on the aging population worldwide (Nowell
et al., 2023). AD is estimated to affect approximately 4% of
individuals aged 65 and above, whereas PD is estimated to
affect around 1% of the total population of individuals aged
60 and above (Macdonald et al., 2018; Aborode et al., 2022). AD is
characterized by progressive memory loss, cognitive decline, and
the accumulation of amyloid-beta (Aß) plaques and
neurofibrillary tangles in the brain (Breijyeh and Karaman,
2020). PD, on the other hand, is characterized by motor
symptoms such as tremors, rigidity, and bradykinesia, as well
as the loss of dopaminergic neurons in the substantia nigra
(Hayes, 2019). While the etiology of AD and PD remains
complex and multifactorial, emerging evidence suggests that
hypoxia is detrimental to the brain and plays a crucial role in
the pathogeneses of these diseases (Burtscher et al., 2021).
Hypoxia can result from various factors, including impaired
blood flow, mitochondrial dysfunction, and oxidative stress, all
of which have been implicated in the development and
progression of AD and PD (Grabska-Kobyłecka et al., 2023;
Su et al., 2023). Understanding the role of hypoxia-related
features in the pathogenesis of AD and PD is crucial for the
development of novel therapeutic strategies. Targeting hypoxia
signaling pathways, such as HIF-1α, may offer potential
therapeutic avenues for the treatment and prevention of these
devastating neurodegenerative disorders (Baillieul et al., 2017).

Traditional Chinese medicines (TCMs) have been used in the
treatment of neurological disease for thousands of years (Su et al.,
2024). Yangxue oral liquid (YXKFY) is composed of four traditional
Chinese medicines: Melanteritum, Fructus Crataegi, Fructus
Hippophae, and Ziziphus jujuba. Since 7000 B.C., the fruit of
Crataegus pinnatifida has been used to produce prehistoric
fermented beverages (Moreira et al., 2023). Recent studies have
shown that the fruit possesses neuroprotective properties that could
be effective against AD (Lee et al., 2019; Moreira et al., 2023). Fructus
Hippophae has been traditionally used in the treatment of brain
conditions, with the aim of enhancing cognitive abilities such as
learning and memory, as well as alleviating pathological damage in
mice with AD through modulating oxidative stress and
inflammatory processes (Dinkar Gore et al., 2023; Zhao et al.,
2023). The fruit of Ziziphus jujuba has been proven to possess
anti-inflammatory (Al-Reza et al., 2010) and neuroprotective
(Kaeidi et al., 2015) abilities due to the presence of
neuroprotective compounds such as triterpenoids, flavonoids,
polysaccharides, saponins and alkaloids (Kim et al., 2021). Hence,
YXKFY exhibits a promising potential for therapeutic intervention
in the treatment of neurodegenerative diseases. Nevertheless, further

research is needed to clarify the material basis and targets of YXKFY
in addressing neurodegenerative diseases.

Recently, there has been a growing body of evidence supporting
the widespread use of transcriptomics and proteomics in enhancing
our understanding of pathophysiological mechanisms and
facilitating the development of diagnostic tools for various
diseases (Li et al., 2020; Mu et al., 2020; Yang et al., 2021; Yang
et al., 2023). Moreover, the utilization of weighted gene coexpression
network analysis (WGCNA) offers the ability to illustrate the
interconnections between diverse genes through the creation of a
co-expression network, which not only enables the identification of
modules that are associated with specific phenotypes but also proves
to be more efficient in the investigation of crucial pathways and
genes involved in numerous human disorders (Langfelder and
Horvath, 2008; Zhang et al., 2024). In addition, the limitations of
expression-based multigene signatures in clinical settings can be
attributed to their lack of uniqueness and appropriateness in selected
modeling methods, and the absence of strict validation in large
multicenter cohorts (Wang et al., 2022; Yang et al., 2024). Hence, our
objective was to conduct a comprehensive analysis of the molecular
mechanisms, as well as the diagnostic and therapeutic targets of
YXKFY on AD/PD, using transcriptome, proteome, and hypoxia-
related features.

In this study, we performed an integrated analysis to
discovery a consensus artificial intelligence-driven hypoxia
signature (AIDHS) from 110 kinds of algorithm combinations
across transcriptome and proteome. Then, we employed ultra-
high-performance liquid chromatography coupled with
Quadrupole Exactive-Orbitrap high-resolution mass
spectrometry (UHPLC-Q Exactive-Orbitrap HR-MS) to
identify the chemicals present in YXKFY. Finally, the key
AIDHS was applied in in vitro experimental validation to
assess potential hypoxia-related mechanisms of YXKFY in
AD/PD. Figure 1 showed the flowchart of the study design.

Materials and methods

Data acquisition from the GEO database

The mRNA and protein expression data for AD/PD were
acquired from the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/gds). A total of 36 AD, 48 PD and
47 normal serum samples were collected from GSE339087 (protein)
for differential expression analysis. GSE5281 (87 AD cases and
74 controls) and GSE26927 (12 PD cases and 8 controls) datasets
were selected for weighted gene co-expression network analysis.
Then, we downloaded GSE150696 (9 AD, 12 PD cases and
9 controls), GSE132903 (97 AD cases and 98 controls),
GSE63060 (145 AD cases and 104 controls), GSE63061 (140 AD
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cases and 134 controls), GSE20295 (40 PD cases and 53 controls),
GSE99039 (205 PD cases and 233 controls) and GSE57475 (93 PD
cases and 49 controls) for further analysis and validation.

Data preprocessing and differential
expression analysis

Various intergroup comparisons were conducted using
Sangerbox 3.0 (http://vip.sangerbox.com/home.html), which is a
freely accessible online platform for data analysis and
visualization. Initially, normalization of protein expression in the
GSE339087 dataset (AD and PD) was carried out. Following this,
volcano plots and heatmaps were generated for the differentially
expressed proteins (DEPs). DEPs with an absolute fold change of ≥
1.2 and a p-value < 0.05 were deemed to be statistically significant in
terms of differential expression.

Weighted gene co-expression network
analysis (WGCNA)

To identify modules of highly correlated genes and hub genes,
we utilized the WGCNA (Langfelder and Horvath, 2008) approach
to construct scale-free co-expression networks for two independent
datasets: GSE5281 (87 AD cases and 74 controls) and GSE26927
(12 PD cases and 8 controls). In the GSE5281 dataset, the brain
regions examined were the entorhinal cortex (EC), hippocampus
(HIP), medial temporal gyrus (MTG), posterior cingulate (PC),
superior frontal gyrus (SFG), and primary visual cortex (PVC).
For the GSE26927 dataset, the substantia nigra (SN) was the focused
brain region.

We initially employed Pearson correlation-based hierarchical
clustering to group all the genes and samples. Subsequently, we
determined the soft threshold power value to establish the co-
expression network, ensuring that it conformed to a scale-free

FIGURE 1
Flowchart of the study design.
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co-expression network. The adjacency matrices were then
transformed into a topological overlap matrix to identify gene
modules. Moreover, similar modules were merged and clustered
together. Finally, we generated module-trait relationship diagrams
and obtained the gene list associated with each module.

Intersection of hypoxia-related genes
involved in AD and PD shared by
transcriptome and proteome

The top four modules that have the closest association with AD/
PD were identified by analyzing the module-trait relationship
diagrams of the GSE5281 and GSE26927 datasets. A total of
8,371 hypoxia-related genes (HRG) were obtained from
COREMINE (https://www.coremine.com/medical/#search). To
identify the common HRGs between the DEGs and the
aforementioned module genes, Venn diagram analysis was
conducted. The overlapping genes were then subjected to
functional enrichment analysis using the Metascape (https://
metascape.org/gp/index.html) (Zhou Y. et al., 2019).

Signature obtained from artificial
intelligence-driven integrative approaches

In order to ensure a highly accurate and stable performance for
the consensus artificial intelligence-driven hypoxia signature
(AIDHS), we integrated a total of 10 machine learning
algorithms and explored 113 algorithm combinations. These
integrative algorithms include Cox, CoxBoost, elastic network
(Enet), generalised boosted regression modelling (GBM), Lasso,
stepwise partial least squares regression for Cox (plsRcox),
random survival forest (RSF), Ridge, supervised principal
components (SuperPC), and survival support vector machine
(survival-SVM).

The procedure for generating the signature was as follows: (a) We
performed the 113 algorithm combinations on the HRGs, fitting
prediction models based on the leave-one-out cross-validation
(LOOCV) framework using the GSE39087 cohort; (b) We then
validated all these models using nine additional datasets (GSE5281,
GSE26927, GSE150696, GSE132903, GSE63060, GSE63061, GSE20295,
GSE99039, and GSE57475); (d) For each model, we calculated the area
under the curve (AUC) score across all validation datasets. In the case of
PD, we considered the model with the highest average AUC as optimal.
For AD, the optimal model was determined based on higher average
AUC and the least number of genes involved.

Profile of the immune cell infiltration

In order to assess the role of the immune microenvironment in
the development of AD and PD, we analyzed and compared the
immune infiltration patterns in both AD/PD and normal groups
through CIBERSORTx tool (https://cibersortx.stanford.edu/), which
specifically designed for accurately quantifying the relative
proportions of 22 immune cells subtypes within a complex
mixture of gene expressions. Lastly, to assess the correlation

between hub genes and differential infiltrated immune cells, a
Pearson correlation test analysis was carried out. For further
investigation, a correlation threshold of |r| > 0.2 was established.

Signaling information network and TF-
miRNA regulatory networks analysis of the
hub genes

SIGNOR 2.0 (https://signor.uniroma2.it/) (Licata et al., 2020), a
public repository that stores manually-annotated causal relationships
between proteins and other biologically relevant entities, was performed
to explore the signal transduction relationship of the former hub genes.
Then, TF-miRNA coregulatory network analysis was implemented on
the hub genes through curated regulatory interaction information
collected from the RegNetwork repository (Liu et al., 2015) with
Networkanalyst online tools (Zhou G. et al., 2019).

Analysis the heterogeneity of striata in the
AD and PD single-cell transcriptome

The basal ganglia are frequently affected in AD and PD. However,
there is limited understanding of the fundamental molecular processes
involved. The striatum is crucial for motor learning and various
cognitive functions. Therefore, the single-cell dataset GSE161045 was
obtained from the GEO database (https://www.ncbi.nlm.nih.gov/),
which contains 4 AD, 4 PD and 4 control striata samples. The data
underwent thorough preprocessing, including the removal of cells with
fewer than 200 genes, more than 5,000 genes, or more than 25%
mitochondrial genes. After this process, a total of 31,030 filtered cells
remained for analysis. To mitigate potential batch effects due to sample
identity, we utilized the “Harmony” R package (version 0.1.0) for batch
correction (Korsunsky et al., 2019). Subsequently, we used the
FindNeighbors and FindClusters functions (with a resolution of 0.1)
for cell cluster identification, following the uniform manifold
approximation and projection (UMAP) analysis. Prior to this, we
referenced preexisting markers from published literature to identify
specific cell types and their respective markers through SingleCellBase
(Meng et al., 2023). Finally, we present bubble plots depicting the
expression of 26 AIDHS genes in different disease and cell groups.

Serum preparation containing YXKFY

The YXKFY samples used in this study were acquired from
Hubei Fenghuang Baiyunshan Pharmaceutical Co., Ltd. Blood
samples containing YXKFY were obtained from the YXKFY rat
group. The original concentration of the YXKFY was 0.4 g/mL. The
rats were administered a dosage of 2 mg/mL of the YXKFY. Each rat
received 5 mL of the YXKFY orally, once in the morning and once in
the afternoon, for a total of two administrations per day. This oral
administration was continued for 5 consecutive days. Following the
last administration, the abdominal aorta was punctured to collect
blood 1 h later. The collected blood samples were centrifuged at
3000 r/min to separate the serum, which was then incubated at 56°C
for 30 min for inactivation. The serum was subsequently filtered and
sterilized using a 0.22 micron filter, and stored at −20°C for future
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use. All of the animal procedures, such as housing and care, and
experimental protocols were approved by the Ethics Committee of
Shanghai University of Traditional Chinese Medicine (No.
PZSHUTCM210702015).

Cell culture and treatment

Human neuroblastoma SH-SY5Y cells were cultured in a
medium composed of DMEM supplemented with 10% fetal
bovine serum (FBS, Gibco, Australia) at a controlled
environment of 37°C with 5% CO2. The cells were evenly
distributed with a density of 10,000 cells per well in 96-well
plates and allowed to grow for a period of 12 h. To determine
the optimal concentration of the hypoxic model in SH-SY5Y cells,
the viability of SH-SY5Y cells was assessed using the CCK8 assay
after exposure to different concentrations of CoCl2 (0 μM, 25 μM,

50 μM, 100 μM, 200 μM, 400 μM, 500 μM, 600 μM, 800 μM, and
1000 μM) for 24 h. In order to evaluate the potential neuroprotective
properties of YXKFY on SH-SY5Y cells, CoCl2 group was exposed to
800 μM for 24 h; and YXKFY group was subjected to 800 μM
CoCl2 and serum containing 10% YXKFY for 24 h.

ROS measurement

ROS generation in SH-SY5Y cells was examined using the
fluorescent dye 2′,7′-dichlorodihydrofluorescein diacetate
(DCFH-DA; Beyotime, Shanghai, China). SH-SY5Y cells were
firstly washed three times with phosphate-buffered saline (PBS).
Subsequently, the cells were incubated in PBS supplemented with
10 μM of DCFH-DA at a temperature of 37°C for a duration of
20 min. Following the incubation period, cells were once again
washed three times using PBS. To visualize the cells, the

TABLE 1 Primer sequence of RT-qPCR.

Gene Forward Reverse

BLVRB CCTGAAGTACGTGGCTGTGAT TCATGTTTGGAGATGACCCTTGA

C10orf54 TCATCCTGCTCCTGGTCTACAA AATCCCTTGAATGTTGCTGTCCAT

CDC37 TGAGGTGTCTGATGATGAAGACG GTTCCTCCTTCTCCTTCTGGAAC

CHCHD6 TCTTCAGAGCAATTCCATGAGGC GATCTCGGTAGCAGTGGAGAATC

FKBPL TTGGAGAAAAGGACACCTCTCAG CTTACTTCCAGCTCAAGCGTTTC

FN1 AGCCGAGGTTTTAACTGCGA CCCACTCGGTAAGTGTTCCC

GLUL GTGAGAAAGTCCAGGCCATGTAT CTGTTGGAACCCTCAGACTGTAA

HOXC4 GTATAGCTGCACCAGTCTCCAG AGAGCGACTGTGATTTCTCGG

PFN1 GCTACAAGGACTCGCCCTC CAAGTGTCAGCCCATTCACGTA

PPIL1 TGCTCCAAAGACCTGTAAGAACT TTGCCATAGATAGATGCACCACC

PRDX4 GAGACACTACGTTTGGTTCAAGC TTTCACTACCAGGTTTCCAGCC

PSMB1 CTGCAATGCTGTCTACAATCCTG TCTCTCTGGTAAGACCCTACTGG

PSMG1 GCTAGAAAAATATCCGTGCTCCA GTTTAGCACAACCAACTTCCTCC

SLC16A14 CATCTGTGCTAATGGCATCTCTG CGAATGCACGGCTGAATAAGTAA

SLC17A7 CATGGTCAATAACAGCACGACC ACAATGTAGCCCCAGAAAAAGGA

SMYD3 GGGGTTCAAGTGATGAAAGTTGG TCTTCAATCAGGCTGTGTTCTCT

SYK GCAGAAGCCATATCGAGGGA ATCTCTCTTGGACACCCTGC

FMO5 TAGCCAAACAGCCAAGCAGG AGTCCCCTACACGATTCAGGA

HDAC4 TCACTCCCTACCTGAGCACC GGCCTGAAAGATACCAGTCTGT

TGM2 GTCAGCTACAATGGGATCTTGGG AAGGCAGTCACGGTATTTCTCAT

DNM2 TCGACATTGAGCAGTCCTACATC GGGATGGCTCTCTTCTTGTTCAG

PDGFRB GGACATACCCCCGCAAAGAA CTCTCCGTCACATTGCAGGT

FXYD5 CCTGTGTCTTCTCACCATCGTT AGAACTGGACGTGGTATCTTTCA

SETDB1 GATGCTGTCAACAAGAAGAGCAG GCCTTTGTGCCAAGTCTTAGTTC

MYBPH TCTCAGAAAACCTGTGTGGACTC AGAAGTCTCGCTCAATAAACCCT

JUP CAACAAGAACAACCCCAAGTTCC GGTCCAGAGCAGCTTTTCATAAC
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TABLE 2 The detailed information of chemical components derived from YXKFY by UPLC-Q/TOF-MS.

No. Rt/
min

Ion
mode

Measured
mass/Da

Molecular
formula

Calculated
mass/Da

Error/
ppm

Identification Peak
area

Peak
Area_Plasma

1 0.912 [M + H]+ 183.0858 C6H15O6 183.0863 −2.8 Sorbitol 538,380 0

2 0.921 [M-H]- 179.0570 C6H11O6 179.0561 5.0 Glucose 1,676,539 0

3 0.996 [M-H]- 191.0566 C7H11O6 191.0561 2.6 Quinic acid 3,460,700 7,512

4 0.999 [M + H]+ 116.0698 C5H10NO2 116.0706 −6.9 Proline 575,886 0

5 1.009 [M-H]- 341.1085 C12H21O11 341.1089 −1.3 Sucrose 3,205,474 0

6 1.122 [M-H]- 133.0147 C4H5O5 133.0143 3.4 Succinic acid 51,667 0

7 1.240 [M + H]+ 171.0285 C7H7O5 171.0288 −1.8 Gallic acid 173,573 0

8 1.355 [M + H]+ 155.0335 C7H7O4 155.0339 −2.5 Protocatechuic acid
isomer

202,678 0

9 1.443 [M-H]- 191.0204 C6H7O7 191.0197 3.5 Citric acid 989,583 0

10 1.451 [M + H]+ 442.1446 C19H20N7O6 442.1470 −5.3 Folcidin 20,070 0

11 1.732 [M + H]+ 245.0759 C9H13N2O6 245.0768 −3.7 Uridine 87,619 0

12 1.735 [M + H]+ 113.0339 C4H5N2O2 113.0346 −5.8 Uracil 45,669 0

13 1.800 [M + H]+ 170.0809 C8H12NO3 170.0812 −1.6 Pyridoxine 344,564 0

14 2.119 [M + H]+ 132.1009 C6H14NO2 132.1019 −7.6 Leucine 50,928 0

15 2.179 [M-H]- 169.0148 C7H5O5 169.0143 3.3 Gallic acid isomer 9,768 0

16 2.275 [M-H]- 375.1293 C17H19N4O6 375.1310 −4.6 Riboflavine isomer 2,690 0

17 2.297 [M + H]+ 132.1015 C6H14NO2 132.1019 −3.1 Leucine isomer 53,312 0

18 2.346 [M + H]+ 268.1042 C10H14N5O4 268.1040 0.6 Adenosine 41,479 0

19 2.497 [M + H]+ 180.1014 C10H14NO2 180.1019 −2.8 Maltoxazine isomer 14,685 0

20 2.507 [M + H]+ 132.1009 C6H14NO2 132.1019 −7.6 Leucine isomer 3,040 0

21 2.553 [M + H]+ 144.1020 C7H14NO2 144.1019 0.7 Stachydrine 43,600 0

22 2.795 [M-H]- 169.0148 C7H5O5 169.0143 3.3 Gallic acid isomer 3,642 0

23 2.860 [M + H]+ 121.0638 C8H9O 121.0648 −8.2 Acetophenone isomer 6,696 0

24 2.927 [M + H]+ 180.1017 C10H14NO2 180.1019 −1.1 Maltoxazine 208,124 0

25 3.266 [M-H]- 375.1289 C17H19N4O6 375.1310 −5.6 Riboflavine isomer 3,815 0

26 4.368 [M + H]+ 139.0387 C7H7O3 139.0390 −1.9 p-Hydroxybenzoic acid 8,603 0

27 4.580 [M-H]- 153.0199 C7H5O4 153.0193 3.7 3,4-Dihydroxybenzoic
acid

53,048 0

28 6.523 [M + H]+ 137.0594 C8H9O2 137.0597 −2.2 4′-Hydroxyacetophenone 31,247 0

29 7.179 [M + H]+ 169.0490 C8H9O4 169.0495 −3.2 Vanillic acid isomer 14,596 0

30 7.569 [M-H]- 137.0251 C7H5O3 137.0244 5.0 p-Hydroxybenzoic acid
isomer

16,430 0

31 7.976 [M-H]- 153.0201 C7H5O4 153.0193 5.0 Protocatechuic acid 57,954 0

32 8.002 [M + H]+ 155.0332 C7H7O4 155.0339 −4.4 Protocatechuic acid
isomer

31,047 0

33 8.105 [M + H]+ 139.0384 C7H7O3 139.0390 −4.1 p-Hydroxybenzoic acid
isomer

17,940 0

34 8.169 [M + H]+ 355.1010 C16H19O9 355.1024 −3.8 Chlorogenic acid 12,483 0

35 8.474 [M + H]+ 146.1168 C7H16NO2 146.1176 −5.2 Acetylcholine 3,356 0

(Continued on following page)

Frontiers in Pharmacology frontiersin.org06

Chen et al. 10.3389/fphar.2024.1411273

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1411273


TABLE 2 (Continued) The detailed information of chemical components derived from YXKFY by UPLC-Q/TOF-MS.

No. Rt/
min

Ion
mode

Measured
mass/Da

Molecular
formula

Calculated
mass/Da

Error/
ppm

Identification Peak
area

Peak
Area_Plasma

36 8.514 [M + H]+ 193.0494 C10H9O4 193.0495 −0.7 Scopoletin 86,514 0

37 10.068 [M + H]+ 220.1182 C9H18NO5 220.1180 1.1 Vitamin B5 2,572 0

38 11.137 [M-H]- 153.0193 C7H5O4 153.0193 −0.2 Protocatechuic acid
isomer

5,234 0

39 11.615 [M-H]- 137.0248 C7H5O3 137.0244 2.8 p-Hydroxybenzoic acid
isomer

9,789 0

40 12.202 [M + H]+ 169.0489 C8H9O4 169.0495 −3.8 Vanillic acid 12,655 0

41 12.733 [M + H]+ 355.1023 C16H19O9 355.1024 −0.2 Neochlorogenic acid 106,958 0

42 13.679 [M + H]+ 139.0384 C7H7O3 139.0390 −4.1 p-Hydroxybenzoic acid
isomer

6,711 0

43 13.794 [M + H]+ 265.1434 C15H21O4 265.1434 −0.1 Tauremisin 7,131 0

44 13.817 [M + H]+ 355.1016 C16H19O9 355.1024 −2.1 Chlorogenic acid isomer 78,977 0

45 13.927 [M + H]+ 328.1533 C19H22NO4 328.1543 −3.2 Stepholidine 11,349 0

46 14.065 [M + H]+ 195.0649 C10H11O4 195.0652 −1.5 Ferulic acid 20,975 0

47 14.066 [M + H]+ 107.0485 C7H7O 107.0491 −6.0 Benzaldehyde isomer 8,745 0

48 14.336 [M + H]+ 193.0491 C10H9O4 193.0495 −2.3 Scopoletin isomer 15,683 0

49 14.466 [M + H]+ 199.0595 C9H11O5 199.0601 −3.0 Syringic acid 9,747 0

50 14.590 [M-H]- 431.1544 C19H27O11 431.1559 −3.4 Zizybeoside I 21,089 0

51 14.668 [M + H]+ 286.1437 C17H20NO3 286.1438 −0.2 Coclaurine 362,560 0

52 14.839 [M + H]+ 298.1437 C18H20NO3 298.1438 −0.2 Lysicamine 20,761 293

53 15.304 [M-H]- 375.1283 C17H19N4O6 375.1310 −7.2 Riboflavine 7,526 550

54 15.384 [M + H]+ 151.0748 C9H11O2 151.0754 −3.7 Benzyl acetate 39,685 0

55 15.481 [M + H]+ 579.1688 C27H31O14 579.1708 −3.5 Vitexin 2″-O-rhamnoside
isomer

5,046 0

56 15.598 [M-H]- 593.2068 C25H37O16 593.2087 −3.2 Zizybeoside Ⅱ 6,509 0

57 15.667 [M + H]+ 433.1689 C19H29O11 433.1704 −3.6 Zizybeoside I isomer 11,773 0

58 15.737 [M + H]+ 149.0596 C9H9O2 149.0597 −0.7 Cinnamic acid 138,605 3,943

59 15.738 [M + H]+ 121.0646 C8H9O 121.0648 −1.6 Acetophenone 25,054 0

60 16.187 [M + H]+ 757.2143 C33H41O20 757.2186 −5.6 Kaempferol 3-
sophoroside-7-

rhamnoside isomer

1,508 0

61 16.312 [M + H]+ 265.1435 C15H21O4 265.1434 0.2 Tauremisin isomer 5,990 0

62 16.365 [M + H]+ 387.2005 C19H31O8 387.2013 −2.2 Roseoside 34,972 0

63 16.366 [M + H]+ 225.1481 C13H21O3 225.1485 −1.9 Vomifoliol 12,846 0

64 16.871 [M + H]+ 377.1445 C17H18NO2 377.1456 −2.8 Vitamin B2 10,101 0

65 16.944 [M + H]+ 757.2171 C33H41O20 757.2186 −1.9 Kaempferol 3-
sophoroside-7-

rhamnoside isomer

2,400 0

66 17.088 [M + H]+ 387.2003 C19H31O8 387.2013 −2.7 Roseoside isomer 7,682 0

67 17.381 [M + H]+ 757.2161 C33H41O20 757.2186 −3.3 Kaempferol 3-
sophoroside-7-

rhamnoside isomer

3,779 0

(Continued on following page)
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TABLE 2 (Continued) The detailed information of chemical components derived from YXKFY by UPLC-Q/TOF-MS.

No. Rt/
min

Ion
mode

Measured
mass/Da

Molecular
formula

Calculated
mass/Da

Error/
ppm

Identification Peak
area

Peak
Area_Plasma

68 17.912 [M + H]+ 449.1073 C21H21O11 449.1078 −1.2 Astragalin 48,278 0

69 18.184 [M + H]+ 268.1320 C17H18NO2 268.1332 −4.5 Asimilobine 29,885 0

70 18.366 [M + H]+ 287.0525 C15H11O6 287.0550 −8.8 Kaempferol 10,734 0

71 18.393 [M + H]+ 757.2205 C33H41O20 757.2186 2.5 Kaempferol 3-
sophoroside-7-

rhamnoside isomer

1901 0

72 18.613 [M-H]- 137.0250 C7H5O3 137.0244 4.2 p-Hydroxybenzoic acid 88,834 40,444

73 18.616 [M + H]+ 757.2158 C33H41O20 757.2186 −3.7 Kaempferol 3-
sophoroside-7-
rhamnoside

1,245 0

74 18.660 [M-H]- 609.1445 C27H29O16 609.1461 −2.6 Quercetin 3-O-rutinoside 2,246 0

75 18.828 [M + H]+ 579.1693 C27H31O14 579.1708 −2.6 Vitexin 2″-O-rhamnoside 12,438 0

76 18.981 [M + H]+ 193.0492 C10H9O4 193.0495 −1.7 Scopoletin isomer 23,891 0

77 19.026 [M + H]+ 433.1112 C21H21O10 433.1129 −4.0 Kaempferol 7-O-
rhamnoside

7,534 0

78 19.149 [M-H]- 577.1547 C27H29O14 577.1563 −2.7 Isovitexin 2″-O-
rhamnoside

10,637 0

79 19.346 [M + H]+ 579.1697 C27H31O14 579.1708 −2.0 Vitexin 2″-O-rhamnoside
isomer

35,547 0

80 19.658 [M + H]+ 449.1066 C21H21O11 449.1078 −2.8 Quercetin-7-O-α-L-
Rhamnoside

33,657 3,377

81 19.686 [M-H]- 609.1454 C27H29O16 609.1461 −1.2 Quercetin 3-glucoside 7-
rhamnoside

1,648 0

82 19.806 [M + H]+ 449.1070 C21H21O11 449.1078 −1.9 Astragalin isomer 33,234 0

83 19.851 [M-H]- 609.1453 C27H29O16 609.1461 −1.3 Rutin 7,175 0

84 20.070 [M + H]+ 625.1749 C28H33O16 625.1763 −2.3 Isorhamnetin-3-O-
rutinoside

38,081 0

85 21.330 [M + H]+ 479.1157 C22H23O12 479.1184 −5.6 Isorhamnetin-3-O-
glucoside

5,304 0

86 21.594 [M + H]+ 282.1493 C18H20NO2 282.1489 1.6 Nornuciferine 43,012 0

87 21.608 [M + H]+ 625.1751 C28H33O16 625.1763 −1.9 Narcissin 25,240 0

88 21.810 [M + H]+ 479.1172 C22H23O12 479.1184 −2.5 Isorhamnetin 3-O-
galactoside

8,510 0

89 21.899 [M + H]+ 165.0907 C10H13O2 165.0910 −1.9 Eugenol 35,879 0

90 22.875 [M + H]+ 247.1324 C15H19O3 247.1329 −1.9 Zederone 10,755 0

91 23.949 [M + H]+ 291.0861 C15H15O6 291.0863 −0.7 Catechin 21,686 0

92 24.750 [M + H]+ 219.1743 C15H23O 219.1743 −0.2 Tumerone 77,472 0

93 24.916 [M + H]+ 433.1123 C21H21O10 433.1129 −1.4 Vitexin 4,581 0

94 25.676 [M + H]+ 115.1110 C7H15O 115.1117 −6.4 Heptanal isomer 8,247 0

95 27.283 [M + H]+ 107.0485 C7H7O 107.0491 −6.0 Benzaldehyde 36,091 0

96 27.744 [M + H]+ 173.1533 C10H21O2 173.1536 −1.8 Isoamyl isovalerate 34,456 0

97 27.751 [M + H]+ 115.1111 C7H15O 115.1117 −5.6 Heptanal 26,140 0

98 28.044 [M + H]+ 219.1736 C15H23O 219.1743 −3.4 Tumerone 8,308 7,917

(Continued on following page)
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measurements and analysis were conducted using a FACS Calibur
flow cytometer (Beckman, San Jose, United States).

Validation of YXKFY-associated AIDHS genes
by RT-qPCR

The extraction of total RNA from cells was carried out using
TRIzol (Invitrogen Corporation, CA, United States). Subsequently,
cDNAwas synthesized using the cDNA Synthesis SuperMix. In order
to detect the mRNA expression levels of AIDHS, RT-qPCR was
conducted using GAPDH as an internal reference. The
amplification primers used in the experiment were obtained from
Shanghai Sangon Biological Engineering Technology and are detailed
in Table 1. To ensure consistency, the mRNA expression level of each
target gene was normalized to that of GAPDH within the same
sample. The relative expression of each target gene was determined
using the 2−ΔΔCT method.

Analysis of YXKFY and drug serum via high
performance liquid chromatography (HPLC)

To perform the analysis, an Acquity UPLC® BEH C18 column
(100 mm × 2.1 mm, 1.7 µm) was utilized in conjunction with a
Dionex Ultimate 3,000 high-pressure liquid system. The mobile
phase consisted of a mixture of 0.1% formic acid in water and
methanol. The elution procedure involved a stepwise gradient: from
0 to 4 min, 4%methanol; from 4 to 10min, 4%–12%methanol; from
10 to 30 min, 12%–70% methanol; at 30 min, 70% methanol; from
35 to 38 min, 70%–95% methanol; at 38 min, 95% methanol; and
from 42 to 45 min, 4% methanol. The flow velocity was maintained
at 0.3 mL/min. The column temperature was set at 40°C, and the
sample size used for each analysis was 5 μL. For the analysis and
detection of the compounds, a Q Exactive quadrupole-electrostatic
field orbitrap high-resolution mass spectrometer was employed. The
ion source used was an electrospray ion source (H-ESI). The
scanning mode utilized for this analysis was full MS/SIM mode
(covered m/z 80–1,200), allowing for the detection of both positive
and negative ions.

Molecular docking validation

The Protein Data Bank (PDB, https://www.rcsb.org/) was accessed
to retrieve the crystal structures of the primary targets. The three-
dimensional configurations of the active compoundswere obtained from
PubChem (https://pubchem.ncbi.nlm.nih.gov/). Utilizing AutoDock
Vina (http://vina.scripps.edu/), molecular docking was carried out to
compute the affinity between the active compounds and primary targets.
The corresponding PDB identifiers were 5oog, 2 × 7 k and 3s3j for
BLVRB, PPIL1, and TGM2, respectively. The AlphaFold algorithm was
used to predict the structures of FKBPL and PDGFRB, which are
proteins without a known 3D structure in the PDB database. Then,
water molecules were eliminated from the proteins, and polar hydrogen
atoms were added. Subsequently, active binding sites were constructed
based on the ligand’s position in the PDB complex.

Statistical analysis

The data presented in this study were expressed as the mean ±
standard deviation (SD), using the social science statistical software
package for data analysis. An independent sample t-test was
employed to compare the two groups of data, while a one-way
analysis of variance was used to compare multiple sets of data. The
column graphs were created using GraphPad Prism 6 software. A
significance level of p < 0.05 was considered statistically significant.

Results

Identification of DEPs in AD and PD

Human serum protein expression dataset of GSE39087 (AD and
PD) was applied for our differential protein expression analysis.
After data preprocessing and differential expression analysis, we
identified 1988 DEPs between AD and healthy controls (|Fold
change| ≥ 1.2 and p-value < 0.05), including 723 upregulated
(DNAJC8, IGLC1, LGALS1, ICAM4, and TRA2A) and
1,265 downregulated proteins (EDC3, HRH1, RP9, IL9, and
HOXA1) (Figure 2A). The top 30 DEPs of AD (Figure 2C) were

TABLE 2 (Continued) The detailed information of chemical components derived from YXKFY by UPLC-Q/TOF-MS.

No. Rt/
min

Ion
mode

Measured
mass/Da

Molecular
formula

Calculated
mass/Da

Error/
ppm

Identification Peak
area

Peak
Area_Plasma

99 29.112 [M + H]+ 487.3401 C30H47O5 487.3418 −3.5 Ceanothic acid 8,080 0

100 29.453 [M-H]- 157.1239 C9H17O2 157.1234 3.2 Ethyl heptanoate 11,742 0

101 29.631 [M + H]+ 159.1375 C9H19O2 159.1380 −2.9 Propionyl hexanoate 10,372 0

102 29.805 [M-H]- 169.1238 C10H17O2 169.1234 2.3 Isoamyl Senecioate 1878 1,256

103 30.270 [M + H]+ 229.0854 C14H13O3 229.0859 −2.3 trans-Resveratrol 16,971 0

104 30.591 [M + H]+ 219.1739 C15H23O 219.1743 −2.0 Tumerone 13,849 20,300

105 32.050 [M + H]+ 235.1688 C15H23O2 235.1693 −1.9 Curcumenol 175,822 0

106 38.723 [M + H]+ 135.0802 C9H11O 135.0804 −1.8 Chavicol 83,475 0

107 42.510 [M + H]+ 257.2473 C16H33O2 257.2475 −0.8 Palmitic acid 272,046 0
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visualized in heatmap. In addition, we also identified 344 DEPs
between PD and healthy controls (|Fold change| ≥ 1.2 and p-value <
0.05), including 90 upregulated (VEGF, RASL11B, CRB3, DBF4B,
and PCBD2) and 254 downregulated proteins (ERO1LB, C1orf162,
WDR22, MTMR2, and RABEP2) (Figure 2B). And the top 30 DEPs
of PD were visualized in heatmap (Figure 2D).

WGCNA of the whole transcriptome
expression matrix

We performedWGCNA analysis to find similar gene expression
patterns tended to exert similar biological functions in GSE5281
(AD) and GSE26927 (PD). Figures 3A, B displayed the hierarchical
clustering dendrograms of the samples. Subsequently, we examined
the soft threshold powers of the network topology and determined β
values of 5 and 12 to be the optimal soft-thresholding parameters for
GSE5281 (AD) and GSE26927 (PD) datasets (Figures 3E, F). From

the GSE5281 dataset, we identified 9 modules (Figure 3C), while
from the GSE26927 dataset, we identified 15 modules (Figure 3D).
To investigate the associations between gene modules and AD or
PD, we constructed module-trait diagrams. In GSE5281, the four
modules with the highest correlation to AD were MEyellow
(r = −0.57, p = 5e−15), MEblack (r = 0.53, p = 3e−13), MEblue
(r = 0.49, p = 6e−11), andMEred (r = 0.46, p = 8e−10). In GSE26927,
the four modules with the highest correlation to PD were MEpink
(r = 0.71, p = 5e−04), MEmagenta (r = 0.59, p = 0.006), MEpurple
(r = 0.55, p = 0.01), and MEyellow (r = 0.55, p = 0.01).

Hypoxia-related genes involved in AD and
PD shared by transcriptome and proteome

To discover functional genes concurrently involved in both AD
and PD across the transcriptome and proteome, we employed two
methods to identify key genes. Firstly, we used WGCNA to identify

FIGURE 2
Identification of differentially expressed proteins (DEPs) in AD and PD. Volcano plots of DEPs in AD (A) and PD (B). Heatmaps of the top 30DEPs in AD
(C) and PD (D). Red, upregulated DEPs; blue, downregulated DEPs.
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modules that are related to AD and PD. Secondly, we conducted
differential expression analysis to identify the most dysregulated
genes. In total, we identified 200 genes in AD and 17 genes in PD
that were concurrently involved in the transcriptome and proteome,
respectively (Figures 4A, B). Enrichment analysis of concurrent
Genes Involved in AD showed that the terms were mainly
enriched in cytokine signaling in immune system, PI3K-Akt
signaling pathway, mitochondrial matrix, inflammatory response,
and positive regulation of superoxide anion generation (Figure 4C),
whereas PD was related to histone modifying activity, regulation of
muscle system process, focal adhesion, regulation of metal ion
transport and negative regulation of striated muscle cell
differentiation (Figure 4D).

In view of the important role of hypoxia-related genes in AD and
PD, we extracted 106 and 9 hypoxia-related genes involved in AD
and PD for further analysis by intersecting the DEPs and WGCNA
related mRNAs with 8,371 hypoxia-related genes.

Integrated development of AD and PD
consensus signature

A total of 106 and 9 hypoxia-related genes involved in AD and
PD were further incorporated into our integration program to
develop an AIDHS. In the protein training cohort, we applied
110 algorithm combinations via ten-fold cross-validation to

construct prediction models and calculated the average AUC of
each algorithm in the remaining testing cohorts. In AD, the
combination of glmBoost and LDA with higher average AUC
(0.764) and proper genes (N = 17) was selected as the final
model, which contained BLVRB, C10orf54, CDC37, CHCHD6,
FKBPL, FN1, GLUL, HOXC4, PFN1, PPIL1, PRDX4, PSMB1,
PSMG1, SLC16A14, SLC17A7, SMYD3, and SYK. In PD, the
combination of glmBoost and RF with the highest average AUC
(0.722) was selected as the final model (N = 3), including FMO5,
HDAC4, and TGM2 (Figure 5).

Altered of immune cell infiltration in AD
and PD

We observed 8 (GSE60630) and 4 (GSE60631) significant
differences in the infiltration of cells between AD and healthy
samples. In GSE60630, T cells CD4 naïve, NK cells resting,
Macrophages M0, Mast cells activated and Neutrophils cell types
were upregulated, whereas T cells CD4 memory resting, T cells
gamma delta and Macrophages M2 cell types downregulated
(Figure 6A). In GSE60631, NK cells resting cell type was
upregulated, whereas B cells naive, T cells CD4 memory resting
and Macrophages M2 cell types downregulated (Figure 6B).

We observed 4 (GSE57475) and 7 (GSE99039) significant
differences in the infiltration of cells between PD and healthy

FIGURE 3
Identification of modules correlated with AD and PD in transcriptome datasets. Hierarchical clustering dendrograms were constructed for the
samples in the AD (A) and PD (B) datasets. Additionally, module-trait relationship diagrams were generated for the AD (C) and PD (D) datasets. In these
diagrams, each row represents a color module, while each column represents a clinical trait. The correlation and p-value for each module-trait
combination are displayed in the respective cells. Furthermore, an analysis was performed to assess the scale independence andmean connectivity
for the optimal soft threshold powers in the AD (E) and PD (F) datasets.
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samples. In GSE57475, T cells CD4 memory activated and NK cells
resting cell types were upregulated, whereas B cells memory and
T cells CD4memory resting cell types downregulated (Figure 6C). In
GSE99039, 4 cell types were upregulated, including T cells
CD4 naive, Monocytes, Macrophages M0, and Neutrophils; the
three downregulated cell types were: B cells memory,
Macrophages M1, and Macrophages M2 (Figure 6D).

Correlation analysis between AIDHSmarkers
and infiltrating cells

|r| > 0.2 was set as a correlation threshold for further analysis. In
AD, T cells CD4 naïve cell was correlated with BLVRB, C10orf54,
CDC37, CHCHD6, GLUL, HOXC4, and PPIL1 in GSE63060; and
C10orf54, CHCHD6, GLUL, PFN1, PSMB1, and SYK in GSE63061.

FIGURE 4
Hypoxia-related genes involved in AD and PD shared by transcriptome and proteome. Venn diagram of hypoxia-related genes shared by
transcriptome and proteome in AD (A) and PD (B). Pathway enrichment analyses of the common hypoxia-related genes in AD (C) and PD (D).
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T cells CD4 memory resting cell was correlated with C10orf54,
CDC37, GLUL, HOXC4, PPIL1, PRDX4, PSMB1, PSMG1,
SLC16A14, and SYK in GSE63060; and BLVRB, C10orf54,
CDC37, GLUL, HOXC4, PFN1, PPIL1, PRDX4, PSMB1, PSMG1,
SLC17A7, and SYK in GSE63061. T cells gamma delta cell was
correlated with C10orf54, PFN1, PPIL1, PRDX4, PSMB1, PSMG1,
and SYK in GSE63060; and C10orf54, CHCHD6, GLUL, PFN1,
PPIL1, PRDX4, PSMB1, PSMG1, and SYK in GSE63061. NK cells
resting cell was correlated with BLVRB, CDC37, HOXC4, and

PSMB1 in GSE63060; and C10orf54, CHCHD6, GLUL, HOXC4,
PFN1, PRDX4, PSMB1, PSMG1, and SYK in GSE63061.
Macrophages M0 cell was correlated with C10orf54, CHCHD6,
GLUL, PPIL1, PSMG1, and SYK in GSE63060; and C10orf54,
GLUL, PPIL1, PRDX4, PSMB1, PSMG1, and SYK in
GSE63061.Macrophages M2 cell was correlated with C10orf54,
PRDX4, PSMG1, and SYK in GSE63060; and GLUL in
GSE63061. Mast cells activated cell was correlated with
CDC37 and SMYD3 in GSE63060; and BLVRB, PPIL1, and

FIGURE 5
Generation of the artificial intelligence-derived hypoxia-related gene signature in AD and PD. The C-indices of 110 machine-learning algorithms in
eleven cohorts of AD (A) and seven in PD (B).
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SMYD3 in GSE63061. Neutrophils were correlated with C10orf54,
CDC37, CHCHD6, GLUL, HOXC4, PPIL1, PRDX4, PSMB1,
PSMG1, SMYD3, and SYK in GSE63060, and in GSE63061
(Figures 7A, B).

In PD, B cells memory cell was related to FMO5 and TGM2 in
GSE57475. T cells CD4 naïve cell was related to HDAC4 in
GSE99039. Monocytes was related to FMO5 in GSE57475.
Macrophages M0 cell was related to TGM2 in GSE57475.
Neutrophils was related to HDAC4 in GSE99039 (Figures 7C, D).

TF–miRNA coregulatory network

The NetworkAnalyst online platform was used to generate a
TF-miRNA co-regulatory network. The analysis of this network
provided insights on the interaction between TFs, miRNAs, and
the selected hub genes, which could explain the underlying
mechanism of how hub gene expression is regulated.
Figure 8A shows the TF–miRNA co-regulatory network. The
AD TF–miRNA co-regulatory network is consisted of 269 nodes
and 343 edges. A total of 149 miRNAs and 61 TF genes interacted
with the validated AIDHS genes, including MYC, MAX,
TFAP2A, USF1, NFIC, hsa-miR-632, hsa-miR-1, hsa-miR-124,
hsa-miR-127-5p and hsa-miR-140-5p. Functional enrichment
analysis showed these nodes were related to Osteoclast
differentiation, Th17 cell differentiation, TNF signaling
pathway, IL-17 signaling pathway, and Longevity regulating
pathway (Figure 8B). HOXC4 owned the largest number of
neighbors, followed by FN1, PFN1, CDC37, SLC17A7,
SLC16A14, CHCHD6, SMYD3, PPIL1, BLVRB, and PRDX4.

Figure 8C shows the TF–miRNA co-regulatory network. The PD
TF–miRNA co-regulatory network is consisted of 108 nodes and
109 edges. A total of 46 miRNAs and 28 TF genes interacted with the
validated AIDHS genes, including USF1, TFAP2A, TFAP2C, SP1,
POU2F1, hsa-miR-19a, hsa-miR-19b, hsa-miR-1, hsa-miR-106b
and hsa-miR-124. Functional enrichment analysis showed these
nodes were related to Apelin signaling pathway, cGMP-PKG
signaling pathway, Cellular senescence, Cell cycle and Osteoclast
differentiation (Figure 8D). HDAC4 owned the largest number
of neighbors.

Construct the signaling information network
based on SIGNOR

We further built the signaling information network of AIDHS
through SIGNOR2.0. The AD signaling network included six
interaction mechanisms, such as ubiquitination, transcriptional
regulation, polyubiquitination, phosphorylation,
dephosphorylation and binding. SYK showed the highest number
of interaction, followed by FN1, PFN1, CDC37, and PSMB1.
Moreover, FN1 interacted with more complex than other hub
genes, including SNAIL/RELA/PARP1, FN1/SDC4, Av/
b6 integrin, A8/b1 integrin, A5/b1 integrin complex. In addition,
the analysis also identified the effect of actin cytoskeleton
reorganization as potential phenotype (Figure 9A).

The PD signaling network included five interaction
mechanisms, such as transcriptional regulation, phosphorylation,
dephosphorylation, deacetylation and binding. HDAC4 showed the
highest number of interaction and was inhibited by AMPK complex.

FIGURE 6
The results of immune cell infiltration analysis. A box plot of AD infiltrated immune cells in GSE60630 (A) and GSE60631 (B). A box plot of PD
infiltrated immune cells in GSE57475 (C) and GSE99039 (D). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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TGM2 can directly phosphorylate H3C1 and Histone
H3 (Figure 9B).

Analysis the heterogeneity of striata in the
AD and PD single-cell transcriptome

The quality control summary of our single-cell RNA sequencing
(scRNA-seq) data is presented in Figure 10A. After preprocessing

the data, we used the harmony algorithm to merge the samples and
effectively eliminate any potential batch effects. Figure 10B displays
the representation of the merged dataset, which includes AD, PD
and control samples after the implementation of the harmony
algorithm. By following the standard procedures of Seurat, a total
of 12 clusters were successfully identified and visualized using
UMAP, as shown in Figure 10C. Subsequently, we observed eight
distinct cell clusters (Figure 10D), including astrocytes (AQP4,
GFAP), CD8 T cells (CCL5, NKG7, GZMK, GZMA, GZMM,

FIGURE 7
The correlation between AIDHS genes and infiltrated immune cells in AD ((A): GSE60630, (B) GSE60630) and PD ((C): GSE57475, (D) GSE99039).
Nodes that appear redder indicate a stronger positive correlation, while nodes that appear bluer indicate a stronger negative correlation.
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CCL4, CD69, LGALS1, LGALS3, PDCD1, PRDM1, and CXCR6),
endothelial cells (FLT1, CLDN5), mesenchymal cells (CD44,
CHI3L1, and HIF1A), microglia cells (CSF1R, CD74, C3), neural
cells (GAD1, GAD2, SOX2, and SLC17A7), oligodendrocytes (MBP,
PLP1), and Opcs (PDGFRA, VCAN, CSPG4). Figure 11A showed
the distribution of 8 cell types in 12 samples. And the top 5 marker
genes were identified within the cell-type populations (Figure 11B).
Figure 11C showed that most of the 26 AIDHS genes were
differentially expressed among the three groups. These genes
were specifically expressed in different cells, such as TGM2 being
highly expressed in endothelial cells, PDGFRB being highly
expressed in endothelial and mesenchymal cells, and SYK being
highly expressed in microglia cells (Figure 11D).

YXKFY restored the damaged SH-SY5Y cells
caused by CoCl2 and reduce the ROS level

The viability of SH-SY5Y cells was assessed using the
CCK8 assay after exposure to different concentrations of

CoCl2 for 24 h. As depicted in Figure 12A, the viability of cells
gradually declined as the concentration of CoCl2 increased from
400 to 1000 μM. Notably, when the CoCl2 concentration reached
800 μM, SH-SY5Y cell viability dropped to 57%. Subsequently, the
concentration of 800 μMwas selected for subsequent experiments as
it induced significant damaging effects. In order to examine the
potential of YXKFY in preventing CoCl2-induced cell death, the
CCK8 assay was performed on SH-SY5Y cells treated with YXKFY-
containing serum in the presence of CoCl2. As depicted in
Figure 12B, the addition of YXKFY-containing serum led to a
notable improvement in cell viability, with an increase to 67%.
Moreover, YXKFY-containing serum can reduce the ROS level in
the hypoxia model (Figure 12C).

Validation of hub genes

In order to validate the findings of the bioinformatics
analysis, we identified the 17 AIDHS genes of AD and
9 AIDHS genes of PD. The mRNA expression levels of these

FIGURE 8
TF–miRNA coregulatory network and pathway enrichment analyses in AD (A,B) and PD (C,D). The round nodes are AIDHS genes, the diamond nodes
are TF genes, and the square nodes are miRNA genes.
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genes were assessed using RT-qPCR. The hypoxia group
exhibited decreased expression of BLVRB, C10orf54, CDC37,
FKBPL, FN1, GLUL, HOXC4, PPIL1, PRDX4, PSMB1, SLC17A7,
SMYD3, SYK, FMO5, HDAC4, TGM2, PDGFRB, MYBPH, and

JUP and increased expression of FXYD5 and DNM2 compared to
the control group. Additionally, the expression of FKBPL, TGM2,
PPIL1, BLVRB, and PDGFRB showed substantial recovery after
YXKFY treatment (Figure 13).

FIGURE 9
Signaling information network of the AIDHS genes through SIGNOR in AD (A) and PD (B).
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Identification of the components in YXKFY
and YXKFY-containing serum

Based on the information provided by high-resolution mass
spectrometry, such as accurate molecular masses for quasi-
molecular ions and loading ions, the precise relative molecular
mass of the primary mass spectra is inferred. The preliminary
estimation of the various components obtained under high-
resolution mass spectrometry is then conducted using the
Peakview 1.2 software for molecular formula fitting. The HPLC
analysis identified a total of 107 chemical components in the
YXKFY, and a further 9 prototype components were identified in
the YXKFY-containing serum (Table 2).

Molecular docking validation

The present research investigated binding affinity between
the above five genes and the 8 prototype ingredients in the
YXKFY-containing serum. The molecular docking results
revealed different levels of binding between natural products
and hub genes, with the majority of natural products showing
good binding capabilities to the hub genes. Particularly,

riboflavin and lysicamine exhibited higher binding affinity
than other compounds (Table 3).

Discussion

To this day, researchers continue to face the challenging task of
finding an effective drug for treating AD and PD using modern
medicine. However, there is a growing body of evidence suggesting
that traditional Chinese medicine may offer promise in the prevention
and treatment of AD and PD (Pei et al., 2020; Chen et al., 2022).
Hypoxia, characterized by oxygen deprivation, is implicated in neuronal
stress, initiating a cascade that culminates in neuronal dysfunction and
demise, thereby exacerbating the pathogenesis and progression of AD
and PD (March-Diaz et al., 2021; Guo et al., 2022). Our study, therefore,
presents an integrative strategy, merging bidirectional transcriptome
and proteome analyses, to delineate the hypoxia-related molecular
signatures and pathways that underpin the neuroprotective efficacy
of YXKFY in both AD and PD.

In our study, we first profiled hypoxia-related mRNA and protein
expression in AD and PD. Our analysis revealed that the dysregulated
mRNAs and proteins in both conditions predominantly converge on
mitochondrial and inflammatory pathways in AD, and pathways

FIGURE 10
Preprocessing of scRNA-seq data was conducted to prepare for downstream analysis. (A) Following quality control steps, the counts, percentages,
and features related to mitochondrial and ribosome genes were assessed for each sample under analysis. (B) Visualization of sample distribution was
achieved using UMAP plots after integration of the datasets using the harmony algorithm. (C) A clustering algorithm with a resolution of 0.1 was applied,
resulting in the identification of 12 clusters. (D) UMAP plot was used to show the distribution of the eight different cell types.
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related to the muscle system in PD. It is a recognized phenomenon that
hypoxia triggers the activation of multiple signaling cascades, notably
cytokine signaling within the immune system (Sturrock et al., 2018) and
the PI3K-Akt pathway (Pan et al., 2021), which are integral to
inflammatory responses and the modulation of mitochondrial
function (Wang et al., 2021). The mitochondrial matrix is acutely
vulnerable to hypoxia, which can augment the production of superoxide
anions, thereby exacerbating oxidative stress and neuroinflammation.
(Spooner et al., 2021). Furthermore, hypoxia has been implicated in the
upregulation of pro-inflammatory cytokines and chemokines,
perpetuating the chronic inflammatory milieu characteristic of AD
and PD (Merelli et al., 2021). Additionally, hypoxia impacts muscle
function, with disruptions in muscle system processes linked to the
motor symptoms of PD (Miterko et al., 2021). Consequently,
elucidating the molecular underpinnings of hypoxia’s impact on

these pathways is essential for devising innovative therapeutic
strategies for both AD and PD.

In this study, we conducted a comprehensive analysis using nine
independent cohorts to identify stable AIDHS for the development
of AD and PD. Recognizing the potential influence of researcher
preferences and biases in algorithm selection, we employed a
rigorous approach by integrating ten distinct machine learning
algorithms to discern the optimal signature from a
comprehensive set of 113 algorithmic combinations. This strategy
culminated in the identification of AIDHS in AD (17 genes) and PD
(3 genes). Our in vitro validation corroborated the machine learning
predictions, with the majority of genes showing significant
differential expression following hypoxia treatment. Notably,
YXKFY was found to ameliorate the dysfunction of five key
genes (FKBPL, TGM2, PPIL1, BLVRB, and PDGFRB). While

FIGURE 11
ScRNA-seq data was employed to annotate and scrutinize the distribution of cell proportions among the three groups. (A) The overall cell fraction
comparison among the three groups. (B) A heatmap was produced to display the levels of expression of marker genes in the identified cells. Bubble plots
depicting the expression of 26 AIDHS genes in different disease (C) and cell groups (D).
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some of the biomarkers associated with these genes have been
previously implicated in AD and PD, others represent novel
findings in the context of neurodegenerative diseases.

PPIL1 plays a crucial role as an enzyme-substrate pair within the
spliceosome, exerting its function in the facilitation of RNA splicing
and ensuring the survival of neurons, and its mutations may cause

FIGURE 12
YXKFY restored the damaged SH-SY5Y cells caused by CoCl2 and reduce the ROS level. (A) The viability of SH-SY5Y cells was assessed using the
CCK8 assay after exposure to different concentrations of CoCl2. (B) YXKFY-containing serum restored the damaged SH-SY5Y cells caused by CoCl2. (C)
YXKFY-containing serum reduced the ROS level in the hypoxia model. ***: p < 0.001.
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neurodegenerative disease (Chai et al., 2021). The silencing of
TGM2, implicated in the pathogenesis of AD and PD, inhibited
mitochondrial calcium influx, accumulation of mtROS,
phosphorylation of Tau, and ultimately protected neuronal cells

from Aβ-induced cell death (Lee et al., 2021). The depletion of
PDGFRB within the precuneus region in individuals with AD has
been linked to fibrinogen leakage, a decline in oxygenation, and the
accumulation of fibrillar Aβ (Miners et al., 2018). Therefore, PPIL1,

FIGURE 13
Validation of the mRNA expression levels of AIDHS genes. *: p < 0.05, **: p < 0.01, ***: p < 0.001.

TABLE 3 The protein-ligand binding energy of molecular docking results (kcal/mol).

Ligand BLVRB (5oog) FKBPL (AlphaFold) PDGFRB (AlphaFold) PPIL1 (2 × 7k) TGM2 (3s3j)

Cinnamic acid −5.7 −5.4 −5.2 −5.8 −5.8

Isoamyl Senecioate −5.1 −4.7 −4.1 −4.9 −5.3

Lysicamine −7.5 −7.2 −6.4 −7.4 −7.1

p-Hydroxybenzoic acid −5.3 −5 −4.7 −5.7 −5.5

Quinic acid −5.4 −5.2 −4.6 −6.1 −5.6

Riboflavin −7.6 −6.6 −6.3 −8.2 −7.5

Tumerone −6.6 −5.9 −5.5 −5.5 −6.7
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TGM2 and PDGFRB may serve as therapeutic targets of YXKFY in
AD and PD. However, FKBPL and BLVRB have never been
investigated in AD and PD, suggesting a new therapeutic strategy
through hypoxia-related mechanism in AD and PD.

In our study, HPLC were also utilized to pinpoint specific
ingredients in YXKFY, which led to the identification of
107 chemical components. The 8 prototype ingredients in the
YXKFY-containing serum were found to be quinic acid,
lysicamine, riboflavin, cinnamic acid, p-hydroxybenzoic acid,
quercetin-7-O-α-L-rhamnoside, tumerone and isoamyl senecioate.
Several of these components, including quinic acid, riboflavin, and
cinnamic acid, have demonstrated significant anti-inflammatory
effects and upregulating antioxidant enzyme activities in
neurodegenerative disease. For instance, in in vitro studies, quinic
acid has demonstrated neuroprotective and neurotrophic effects on
Aβ-induced toxicity, as well as enhancing the activity of neurite
outgrowth in PC 12 cells (Hur et al., 2001). It is suggested that quinic
acid exerts its neuroprotective effects through the PKA signaling
pathway and has successfully restored catalase levels (Rebai et al.,
2017). Patients with dementia and AD have shown low levels of
riboflavin, and supplementing with riboflavin has been found
beneficial in treating cognitive impairment, as it shields cells
from oxidative stress by boosting antioxidant enzyme activities
and the glutathione redox cycle, and diminishing pro-
inflammatory responses in the brain (Zhang et al., 2023).
Cinnamic acid, a naturally occurring antioxidant, triggers PPARα
activation, promoting lysosomal biogenesis and reducing amyloid
plaque pathology in an ADmouse model (Chandra et al., 2019), and
protecting dopaminergic neurons in a PD mouse model (Prorok
et al., 2019). Therefore, the combination of our discovered results
that YXKFY can reduce the ROS levels in hypoxic SH-SY5Y cell
injury, suggesting that these components may be effective in
YXKFY’s prevention and treatment of AD and PD through
antioxidant damage. Moreover, Riboflavin has the best binding
affinity with PPIL1, followed by BLVRB, TGM2, FKBPL, and
PDGFRB. Additionally, lysicamine and tumerone also exhibit
good binding affinity with these proteins. Collectively, the
potential therapeutic effects of these chemical monomers from
YXKFY on AD and PD through these genes warrant further
exploration in our future studies.

Conclusion

In conclusion, our study leveraged a synergistic approach
combining transcriptome and proteome analyses with machine
learning to innovatively identify 17 and 3 hypoxia-associated
biomarkers for AD and PD, respectively. Furthermore, we
elucidated the neuroprotective mechanisms of YXKFY,
highlighting its antioxidant properties. This was achieved through
the identification of eight bioactive compounds, engagement with
five molecular targets, and modulation of several pathways pivotal in
neuroprotection.
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