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Clobenpropit is a histamine H3 receptor antagonist and has developed as a
potential therapeutic drug due to its ability to inhibit CXCR4, a chemokine
receptor involved in autoimmune diseases and cancer pathogenesis. The
CXCL12/CXCR4 axis involves several biological phenomena, including cell
proliferation, migration, angiogenesis, inflammation, and metastasis.
Accordingly, inhibiting CXCR4 can have promising clinical outcomes in
patients with malignancy or autoimmune disorders. Based on available
knowledge, Clobenpropit can effectively regulate the release of monocyte-
derived inflammatory cytokine in autoimmune diseases such as juvenile
idiopathic arthritis (JIA), presenting a potential targeted target with possible
advantages over current therapeutic approaches. This review summarizes the
intricate interplay between Clobenpropit and CXCR4 and the molecular
mechanisms underlying their interactions, comprehensively analyzing their
impact on immune regulation. Furthermore, we discuss preclinical and clinical
investigations highlighting the probable efficacy of Clobenpropit for managing
autoimmune diseases and cancer. Through this study, we aim to clarify the
immunomodulatory role of Clobenpropit and its advantages and disadvantages
as a novel therapeutic opportunity.
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1 Introduction

The complicated network of molecular communications orchestrating immune
responses has long been pivotal in exploring pioneering therapeutic approaches against
autoimmune diseases (ADs) and malignancies (Dhillon et al., 2020; Masoumi et al., 2021).
Among the numerous players, the chemokine receptor CXCR4 has emerged as a critical
mediator in the pathogenesis of various immune-based human disorders (Pozzobon et al.,
2016; Bagheri et al., 2019; Kawaguchi et al., 2019). The role of CXCR4 in immune regulation
cannot be overstated. CXCR4 involvement in immune cell trafficking (Kucia et al., 2005;
Pelekanos et al., 2014), homing (Burger and Bürkle, 2007; Yellowley, 2013; Asri et al., 2016),
and cell activation (Kumar et al., 2006; Hong et al., 2009) make it a pivotal player in the
orchestration of immune responses (Jacobson and Weiss, 2013). Ligation of CXCL12 to
CXCR4 can initiate several downstream signaling pathways, inducing cell growth and
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proliferation, migration, angiogenesis, inflammation, and metastasis
(Hassanshahi et al., 2010; Aminzadeh et al., 2012; Azin et al., 2012;
Khorramdelazad et al., 2016; Nazari et al., 2017). Dysregulation of
CXCR4 signaling has been associated with ADs, where aberrant
immune responses target self-antigens, and tumorigenesis, where
uncontrolled cell proliferation and evasion of immune surveillance
are hallmarks (Chong and Mohan, 2009; Chatterjee et al., 2014;
García-Cuesta et al., 2019; Shi et al., 2020). Therefore, inhibition of
the CXCL12/CXCR4 axis can be a potential therapeutic target in
cancers and ADs (Chong and Mohan, 2009; Derlin and Hueper,
2018). Numerous studies employed CXCR4 inhibitors to suppress
the CXCL12/CXCR4 signals for treating cancer (Domanska et al.,
2012; Biasci et al., 2020; Bockorny et al., 2020; Chaudary et al., 2021).
AMD3100 is one of the most common CXCR4 inhibitors (De
Clercq, 2003). Researchers showed that it could be effective in
cancer therapy via the inhibition of tumor cell proliferation and
reducing the infiltration of immunosuppressive cells, such as
regulatory T cells (Tregs) and myeloid-derived suppressor cells
(MDSCs) into the tumor microenvironment (TME) (Scala, 2015;
Liu et al., 2021; Lei et al., 2022). Our recent study showed that A1, a
novel fluorinated CXCR4 inhibitor, can effectively treat colorectal
cancer (CRC) in vitro and in vivo (Khorramdelazad et al., 2023).

Regarding the potential association between the CXCL12/
CXCR4 axis and various signaling pathways, such as the ERK
pathway, it has been reported that the CXCL12/CXCR4 signaling
pathway plays a proinflammatory role in experimental
emporomandibular joint osteoarthritis (TMJOA) model and the
bicyclam derivative AMD3100 could reduce the severity of
experimental TMJOA (Wang et al., 2016). Current attention has
turned towards Clobenpropit, initially recognized as a histamine
H3 receptor antagonist, and its exciting proficiency in inhibiting
CXCR4 (Mani et al., 2021; Bekaddour et al., 2023). The question
here is, in addition to the antihistaminic properties of Clobenpropit, to
what extent can this drug help treat CXCL12/CXCR4-related diseases
by inhibiting CXCR4? Moreover, what interactions may occur with
the simultaneous inhibition of histamine H3 receptor and CXCR4.

This review article aims to summarize the complicated molecular
dance between Clobenpropit and CXCR4, clarifying the potential of
Clobenpropit as a therapeutic agent in ADs and human malignancies.
We will unravel the molecular mechanisms supporting the inhibitory
effects of Clobenpropit on CXCR4, exploring its impact on immune
cell function and immune-mediated pathologies. Additionally, we will
critically analyze preclinical and clinical evidence, evaluating
Clobenpropit’s efficacy and safety profile in the most critical ADs
and cancer. By doing so, we endeavor to contribute to the developing
landscape of targeted therapy, offering new perspectives on utilizing
Clobenpropit as a potential therapeutic intervention against diseases
characterized by CXCR4-associated immune dysregulation.

2 Methodology

2.1 Literature search strategy

A comprehensive literature search was conducted across several
databases, including PubMed, Scopus, Web of Science, and Google
Scholar. The search terms included “Clobenpropit,” “CXCR4,”
“histamine H3 receptor antagonist,” “autoimmune diseases,”

“cancer,” “CXCL12/CXCR4 axis,” “cell proliferation,”
“migration,” “angiogenesis,” “inflammation,” and “metastasis.”
The search was limited to articles published in English from
1990 to the present (May 2024).

2.2 Inclusion and exclusion criteria

Studies were included in the review if they met the following
criteria: Investigated the role of Clobenpropit as a CXCR4 inhibitor;
addressed the molecular mechanisms of the CXCL12/CXCR4 axis;
examined the effects of Clobenpropit on autoimmune diseases or
cancer; included preclinical or clinical data supporting the efficacy of
Clobenpropit; peer-reviewed articles, reviews, and clinical trial
reports. Moreover, studies were excluded if they did not focus on
Clobenpropit or its interaction with CXCR4, were not peer-
reviewed, included editorials and commentaries, lacked sufficient
methodological detail or experimental rigor, or were unavailable in
full-text form.

2.3 Data extraction and analysis

Two reviewers independently extracted data using a
standardized form. Extracted information included study design,
sample size, methods, key findings, and conclusions. Discrepancies
between reviewers were resolved through discussion or consultation
with a third reviewer.

3 The CXCL12/CXCR4 signaling
pathway: unraveling developmental
and immunological connectivity

As discussed, the CXCL12/CXCR4 signaling pathway is a vital
conduit linking developmental processes with immune regulation.
Through a complex interplay of chemokine ligand CXCL12 and its
receptor CXCR4, this pathway influences diverse cellular behaviors
crucial for tissue morphogenesis and immune surveillance (Ara
et al., 2005). As we explore the intricate mechanisms and
multifaceted roles of the CXCL12/CXCR4 axis in this section, we
gain insight into its profound influence on developmental
connectivity and immunological responses.

3.1 Importance of the CXCL12/CXCR4 axis in
development

Hematopoietic stem cells (HSCs) are pivotal in hematopoiesis or
generating blood cells (Nemeth and Bodine, 2007). During
midgestation, HSCs originate from hemogenic endothelial cells or
mesenchymal cells adjacent to the dorsal aorta, migrate to the fetal
liver, and colonize the bone marrow (BM) (Nagasawa et al., 1996;
Ma et al., 1998; Zou et al., 1998; Ara et al., 2003). Researchers have
found that the CXCL12/CXCR4 axis facilitates the BM niche’s
hematopoietic stem and progenitor cell (HSPC) colonization
during development by genetically modified murine models
lacking CXCL12 or CXCR4. In addition, HSC maintenance
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requires CXCL12/CXCR4 signaling, as evidenced by conditional
deletion experiments in BM (Sugiyama et al., 2006; Tzeng et al.,
2011; Ding and Morrison, 2013; Greenbaum et al., 2013). Moreover,
sperm and oocytes are formed by migrating and colonizing
primordial germ cells (PGCs). CXCL12/CXCR4 signaling
underlies the colonization of the genital ridges by PGCs, which
originate from the allantoic root (Nagasawa, 2014). In murine
models, CXCL12/CXCR4 signaling is implicated in colonization
(Nagasawa et al., 1996; Zou et al., 1998). Findings in zebrafish
further corroborate the significance of CXCL12 in directing PGC
migration toward the gonads (Knaut et al., 2003; Nagasawa, 2014).

Signaling between CXCL12 and CXCR4 is fundamental for
cardiogenesis and vascular development. Its deficiency impairs
membrane formation in the cardioventricular septum and
compromises vascularization in multiple tissues (Tachibana et al.,
1998; Ara et al., 2005; Li et al., 2013). CXCL12 plays a vital role in
patterning vascular pathways during mesenteric development,
specifically by facilitating interactions between arterial endothelial
cells and the adjacent capillaries (Ara et al., 2005). Zebrafish studies
have demonstrated that CXCR4a contributes to forming arterial
networks during brain vascularization (Chong et al., 2001; Siekmann
et al., 2009). CXCL12/CXCR4 signaling is intricately involved in
neurogenesis, influencing migration, differentiation, and axonal
guidance. Using mice deficient in CXCL12 or CXCR4, aberrant
granule cell clustering in the cerebellum has been observed,
hippocampal dentate gyrus morphology has been altered, and the
assembly of GABAergic interneurons is disrupted, emphasizing the
importance of CXCL12/CXCR4 signaling in neurodevelopmental
processes (Ma et al., 1998; Zou et al., 1998; Bagri et al., 2002; Lu et al.,
2002; Stumm et al., 2003; Zhu et al., 2009). Additionally,
CXCL12 guides the axon trajectory of motor and sensory
neurons during the development of the nervous system
(Chalasani et al., 2003; Lieberam et al., 2005).

3.2 Immunological aspects of the
CXCL12/CXCR4 axis

The CXCL12/CXCR4 signaling pathway is critical in immune
regulation and exemplifies the nuanced interactions that govern cell
migration, homing, and immune surveillance (Lu et al., 2024). This
section summarizes the bio-structure, bio-function, and signaling of
the CXCL12/CXCR4 axis. At the epicenter of this pathway lies
CXCL12, also identified as stromal cell-derived factor-1 α (SDF-1α)
(Kukreja, 2005). CXCL12 is a member of the CXC chemokine
family, categorized by a conserved cysteine motif that adopts the
canonical chemokine fold, comprising three anti-parallel β strands
and a single α helix (N terminus post-translational, 2016). In
disulfide bonds, the cysteine residues are responsible for the
stability of the protein (Xu et al., 2013). The exclusive spatial
arrangement of amino acid residues outlines the chemotactic
specificity, supporting its ligation with the CXCR4 receptor. The
CXCR4 is considered a chemokine receptor for CXCL12 and a
seven-transmembrane G protein-coupled receptor (GPCR) (Teixido
et al., 2018). CXCR4 possesses a multifaceted structure containing
an extracellular N-terminus, seven transmembrane helices, three
intracellular loops, and an intracellular C-terminus. The
CXCR4 binding pocket contains the N-terminus of CXCL12,

starting a cascade of conformational alterations that activate
several downstream signaling occurrences (Van Hout, 2019).

Following ligation of CXCL12 to CXCR4, a series of bioevents
occur, activating downstream signaling pathways that regulate immune
cell performance through inducing G-protein pairing and activating
heterotrimeric G proteins, principally Gαi (Liekens et al., 2010). Gαi, in
turn, hinders adenylyl cyclase, reducing the production of cyclic AMP
(cAMP) (Scala, 2015). Condensed cAMP levels modulate intracellular
signaling, inducing cell proliferation, differentiation, migration, and
survival (Castaldo et al., 2014).Moreover, activating CXCR4 induces the
phosphorylation of intracellular adaptor molecules and domains,
engaging and triggering kinases such as focal adhesion kinase (FAK)
and mitogen-activated protein kinases (MAPK). FAK can regulate cell
adhesion and migration, while MAPKs contribute to cell proliferation
and survival (Rigiracciolo et al., 2021). The Ras/Raf/MEK/ERK
signaling pathway is a prominent downstream branch of MAPK
signaling and plays a fundamental role in cellular responses to
CXCL12 (Kumari et al., 2021). The phosphoinositide 3-kinase
(PI3K) pathway is also employed, activating Akt, which modulates
diverse cellular processes, including cell proliferation, metabolism, and
survival (West et al., 2002; Mousavi, 2020) (Figure 1). Contributing
these signaling cascades in various physiological and pathological states
magnificently tunes immune cell responses, pointing out their
locomotion, activation, and functions (Mousavi, 2020). As discussed,
the CXCL12/CXCR4 axis is crucial in immune cell trafficking,
predominantly in hematopoiesis and the homing of immune cells to
lymphoid organs and inflammatory milieus (Salcedo and Oppenheim,
2003; Nagasawa, 2014). Evidence revealed that this pathway is critical in
embryonic development, organogenesis, and tissue repair (Cheng et al.,
2014). Beyond the CXCL12/CXCR4 axis’s physiological functions, its
dysregulation concerns several pathological conditions, including
cancer metastasis, ADs, and human immunodeficiency virus (HIV)
infection (Liekens et al., 2010). The interactions of CXCR4 with other
related proteins are illustrated in Figure 2.

Taken together, the CXCL12/CXCR4 axis is a testament to the
complicated molecular interactions network that governs immune
responses. Therefore, understanding the bio-structure of
CXCL12 and CXCR4 offers essential perceptions of their
functional roles. The stage-managed activation of downstream
signaling pathways orchestrates a symphony of immune
responses, emphasizing the pathway’s significance in physiologic
and pathologic conditions. As we unravel the intricacies of the
immune system and its components, the CXCL12/CXCR4 axis
emerges as an essential player, suggesting potential therapeutic
targets for several immune-related disorders such as ADs
and cancers.

4 Role of CXCL12/CXCR4 axis in
pathologic states

4.1 Cancer

CAFs are believed to be the major producers of CXCL12 in the
TME, as they are the most common and significant cells that secrete
it (Costa et al., 2014). M2macrophages and cancer cells also produce
CXCL12. By secreting CXCL12, M2 macrophages can activate and
differentiate CAF (Liu et al., 2019). Despite being widely expressed
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by cancer cells from various sources, the CXCR4 receptor is typically
found on cancer stem cells (CSCs) and is not present in normal
mammary epithelial cells (Yi et al., 2019). This suggests that the
CXCL12/CXCR4 axis can function in autocrine and paracrine
manners. CXCR4, which promotes embryonic development, is
required for CSC migration toward metastatic sites (Huang et al.,
2010). Other cells that express CXCR4 include neutrophils,
endothelial cells, lymphocytes, stromal fibroblasts, hematopoietic
stem cells (HSCs), and MDSCs (Mortezaee, 2020). Accordingly,
recruiting CXCR4+ MDSCs, M2 macrophages, and Tregs can
suppress anti-tumor immune responses, inducing tumor growth
and progression.

Genetic mutations and epigenetic changes are at the root of
cancer, one of the leading causes of premature death worldwide
(Kanwal and Gupta, 2012). It has been revealed that various growth
factors and signaling pathways intricately regulate primary
tumorigenesis (Cross and Dexter, 1991; Guo et al., 2020). The
CXCL12/CXCR4/PI3K/AKT axis is involved in the pathogenesis
of several malignancies, such as adamantinomatous
craniopharyngiomas, breast cancer (BCa), neuroblastoma,
pancreatic intraepithelial neoplasia, medullary thyroid cancer,
hepatocellular carcinoma (HCC), colorectal cancer (CRC), and

glioblastoma (GB), via activation of different downstream
signaling pathways, inducing tumor cell proliferation, migration,
and invasion (Carmo et al., 2010; Yin et al., 2019; Yang et al., 2020;
Hjazi et al., 2023; Yang et al., 2023). Additionally, CXCR7, a receptor
related to CXCR4 and CXCL12, has been associated with the growth
and metastasis of tumor cells in colon cancer, melanoma, and BCa
(Wang et al., 2015). Metastasis is a major cause of cancer-related
mortality that involves sequential invasion, circulation, infiltration,
and proliferation (Ha et al., 2013). CXCL12/CXCR4 affects integrin
expression, homeobox genes, tight junctions, and matrix
metalloproteinases, which affect colorectal, endometrial, breast,
and glioma metastasis (Yang et al., 2023).

Several studies have demonstrated that CXCL12 is
overexpressed in tumor tissues of various human malignancies
(Portella et al., 2021). In addition to fostering pre-metastatic
niches (tumorigenic soils), it recruits tumor cells (oncogenic
“seeds”) to the niches, inducing tumor progression and
metastasis (Yang et al., 2020). Cancer stem/progenitor cells
overexpress the CXCR4 receptor, which transmits
CXCL12 signals. Oncogenes are activated following the ligation
of CXCL12 to CXCR4, which activates multiple downstream
pathways. By activating the CXCL12/CXCR4 axis, cancer stem,

FIGURE 1
The CXCL12/CXCR4 signaling pathway. The downstream pathways are shown with violet lines (source: KEGG, https://www.kegg.jp/pathway/
hsa04062+N01765).
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and progenitor cells are mobilized to pre-metastatic niches and
undergo epithelial-mesenchymal transition (EMT) (Yang
et al., 2020).

Although it has long been established that cancer-associated
fibroblasts (CAFs), the primary producers of CXCL12 in the TME,
can induce EMT in tumor cells, the direct involvement of
CXCL12 in EMT has remained unclear (Jiang et al., 2023). This
ambiguity persists because other factors secreted by CAFs, such as
tumor growth factor-beta (TGF-β) and IL-6, are also known to be
highly transformative. Interestingly, recent investigations have
revealed that overexpression of CXCL12 in MCF7 cell lines
(Breast cancer) leads to upregulation of OCT4, Nanog, and SOX2
(DiNatale et al., 2022). These factors are well known for their roles in
pluripotency and stem cell reprogramming, further confirming the
close association between EMT and the stem cell program in cancer.
Additionally, CXCL12-driven EMT induction in this model system
was found to depend on the Wnt/β-catenin pathway.

Moreover, the significance of CXCL12 in the TME is explored by
its interaction with CXCR4, which is often overexpressed in various
cancers. This axis stimulates EMT and promotes tumor invasiveness
and metastasis (Anastasiadou et al., 2023). The role of the Wnt/β-
catenin pathway in this process highlights a critical signaling
mechanism that integrates external signals from the TME with
intracellular pathways governing cell differentiation and
proliferation (Moon, 2005). Studies have reported that activating
theWnt/β-catenin pathway can stabilize β-catenin in the cytoplasm,
translocating to the nucleus, and the subsequent activation of target
genes that promote EMT and stemness properties (Jiang et al.,
2007). In addition to CXCL12, the interplay between CAFs and
tumor cells involves a complex network of signaling molecules. For
instance, TGF-β has been extensively studied for its dual role in
cancer. It acts as a tumor suppressor in the early stages and a
metastasis promoter in the advanced stages (Pardali and Moustakas,
2007). Similarly, IL-6 is known to activate the JAK/STAT3 signaling

pathway, contributing to EMT and cancer progression (Pardali and
Moustakas, 2007). Understanding the specific contributions of these
factors, including CXCL12, within the TME is crucial for developing
targeted therapies to disrupt these pro-tumorigenic interactions.

Collectively, the evidence suggests that CXCL12 plays a
significant role in inducing EMT and stemness in tumor cells,
with the Wnt/β-catenin pathway being a crucial mediator in this
process. Further studies are required to fully elucidate how
CXCL12 and other CAF-derived factors contribute to tumor
progression and explore potential therapeutic strategies targeting
these pathways (Shan et al., 2015).

According to the available knowledge, the TME plays a pivotal
role in cancer progression. The hypoxic condition and high acidity, as
well as expressing inhibitory immune checkpoints, such as
programmed cell death protein 1/programmed cell death ligand 1
(PD-1/PD-L1), anti-cytotoxic T lymphocyte-associated antigen-4
(CTLA-4), like lymphocyte activation gene-3 (LAG-3), T cell
immunoglobulin and mucin-domain containing-3 (TIM-3), T cell
immunoglobulin and ITIM domain (TIGIT), and V-domain Ig
suppressor of T cell activation (VISTA) are the essential features of
the TME (Qin et al., 2019). Moreover, recruitment and infiltration of
immunosuppressive immune cells, such as regulatory T cells (Tregs),
tumor-associated macrophages (TAMs), cancer-associated fibroblasts
(CAFs), and myeloid-derived suppressor cells (MDSCs) in the TME
can suppress anti-tumor immune responses to tumor cells via
releasing immunosuppressive mediators, such as IL-10, IL-35, and
tumor growth factor beta (TGF-β) (Gao et al., 2023) (Figure 3).
Chemokines recruit anti and pro-tumor immune and non-immune
cells into the TME. Dysregulation of CXCL12 secretion by tumor cells
and expression of CXCR4 by immunosuppressive cells induces the
creation of an inhibitory TME by fostering the infiltration of the
mentioned regulatory and cancer-associated cells (Mortezaee, 2020).

As discussed, the CXCL12/CXCR4 axis is involved in tumor
angiogenesis and metastasis of tumor cells to distant organs. By

FIGURE 2
CXCR4 protein interactions (source: STRING, https://stringdb.org/cgi/network?taskId=bT78SZ6aKg1s&sessionId=b9z8Gu1eenbw&allnodes=1).
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inducing vascular endothelial growth factor (VEGF) through the
PI3K/AKT pathway, the CXCR4 receptor can induce tumor
angiogenesis, an essential step in tumor progression
(Ghalehbandi et al., 2023). Furthermore, the upregulation of
CXCR4 in hypoxic conditions and its role in hypoxia-inducible
factor-1 α (HIF-1 α)-induced VEGF expression can lead to
angiogenesis in the TME (Kruszyna et al., 2022) (Figure 3).
Accordingly, understanding the complicated mechanisms
underlying tumorigenesis, progression, and the role of the
CXCL12/CXCR4 axis in these processes is essential for emerging
targeted therapeutic interventions in cancer therapy.

4.2 Autoimmune diseases

An AD occurs when the immune system components, such as
autoantibodies and autoreactive T cells, incorrectly target specific
self-antigens, damaging tissues and organs (Muñoz-Carrillo et al.,
2018a). These diseases are not generalized attacks but are mediated
by immune responses directed against specific body parts (Muñoz-
Carrillo et al., 2018b). A particular AD targets a particular tissue or
organ, resulting in diverse clinical symptoms (Pisetsky, 2023). In
addition, a majority of ADs appear to have a relapsing/remitting
course, where periods of active disease (flare-ups) alternate with
periods of remission. Symptoms worsen during flare-ups due to

increased immune activity, while symptoms decrease during
remissions due to reduced immune activity (Lebel et al., 2023).
As a result of genetic predisposition, environmental triggers
(smoking, chemical compounds, infectious agents, radiation, and
ultraviolet light), and dysregulation of immune tolerance, the
underlying pathophysiological mechanisms often fail to
differentiate self from non-self (Javierre et al., 2011; Capalbo
et al., 2012). Therefore, diagnosing and managing these diseases
requires understanding their specific target antigens and dynamic
nature (Muñoz-Carrillo et al., 2018a). Activated innate immune
cells, stromal cells, and tissue cells produce cytokines and
chemokines, which regulate immune cell trafficking and play a
significant role in ADs (Shachar and Karin, 2013; Elemam et al.,
2020; Fallahi et al., 2020; Abassifard et al., 2021; Moadab et al., 2021;
Abbasifard et al., 2023). Although CXCL12 was initially regarded as
a homeostatic chemokine, it also plays a vital role in inflammation.
Inflammatory bowel disease (IBD), multiple sclerosis (MS),
rheumatoid arthritis (RA), psoriasis (PsO), type 1 diabetes (T1D),
and systemic lupus erythematosus (SLE) are among the ADs that are
implicated by the CXCL12/CXCR4 axis (García-Cuesta et al.,
2019) (Figure 4).

CXCL12 plays a crucial role in skin homeostasis and inflammation
(Abdelaal et al., 2020). In PsO as a chronic inflammatory skin disease,
inflammatory leukocytes, including dendritic cells (DCs), macrophages,
and T cells, accumulate, leading to pronounced inflammatory

FIGURE 3
The role of/CXCL12CXCR4 axis in the TME. The critical features of the TME influence cancer progression. The TME is characterized by hypoxia, high
acidity, and expression of inhibitory immune checkpoints such as PD-1/PD-L1, CTLA-4, LAG-3, TIM-3, TIGIT, and VISTA. Additionally,
immunosuppressive cells like Tregs, TAMs, CAFs, and MDSCs are recruited, suppressing anti-tumor immune responses via secreting immunosuppressive
cytokines, such as IL-10, IL-35, and TGF-β. Chemokines, particularly the dysregulated CXCL12/CXCR4 axis, play a role in recruiting regulatory and
cancer-associated cells to the TME. The CXCR4 receptor, upregulated in hypoxic conditions, induces angiogenesis through the PI3K/AKT pathway,
contributing to tumor progression by promoting VEGF expression. This axis is implicated in both tumor angiogenesis and metastasis to distant organs.
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angiogenesis (Gulletta et al., 2013). VEGF-A upregulates the expression
of CXCL12 in psoriatic lesions. Psoriatic skin lesions also exhibit
elevated mRNA levels of CXCR4 and CXCL12 (Petit et al., 2007;
Suárez-Fariñas et al., 2011). A study evaluated CXCL12 expression
in PsO vulgaris and psoriatic arthritis (PsA) patients concerning disease
activity and methotrexate (MTX) therapy, and findings showed
significantly higher CXCL12 expression in PsA patients compared to
PsO vulgaris patients before treatment but not after. Post-MTX therapy,
PsO vulgaris patients showed a significant decrease in
CXCL12 expression, while PsA patients did not show a significant
change. The reduction in PASI scores correlated moderately with
decreased CXCL12 expression in PsO patients. Accordingly,
CXCL12 may be involved in the progression from PsO vulgaris to
PsA, with MTX therapy reducing CXCL12 expression and disease
severity, suggesting CXCL12 as a potential biomarker for psoriasis
severity (Abdelaal et al., 2020).

MS is a demyelinating disease characterized by inflammation,
progressive myelin loss within the central nervous system (CNS),
and failure to remyelinate damaged axons (Carbajal et al., 2010).
Leukocytes need to penetrate the brain parenchyma for tissue injury,
and the unique CNS barriers challenge immune cell activation
(Perry et al., 1997). CXCL12, constitutively expressed in the adult
CNS and upregulated under pathological conditions, orchestrates
leukocyte trafficking in the CNS (Durrant et al., 2014). Chemokines,
receptors, and adhesion molecules orchestrate leukocyte trafficking
(Olson and Ley, 2002). InMS patients, CXCL12 levels are elevated in
serum and cerebrospinal fluid and expressed in active lesions,
suggesting its involvement in disease pathology (Azin et al., 2012;
Khorramdelazad et al., 2016; Bagheri et al., 2019; Marastoni et al.,
2021). It has been revealed that CXCL12 localization on blood
vessels specifies a potential role in leucocyte extravasation, and
the CXCL12/CXCR4 axis may contribute to plasma cell
differentiation and persistence. In addition, following the cleavage
of CXCL12 by metalloproteases, it can convert to a neurotoxic
mediator that can damage axons (Krumbholz et al., 2006).

Issues in MS suggest deficiencies in recruiting and maturing
oligodendrocyte progenitor cells (OPCs), indicating the crucial role
of cell replacement therapies in improving remyelination (Hughes
and Stockton, 2021). In a study using a model of viral-induced
demyelination, the signaling cues guiding the migration of
transplanted remyelination-competent cells were investigated
(Carbajal et al., 2010). While rodent-derived glial cell
transplantation in MS models has been successful, the
mechanisms of cell navigation within the inflammatory
environment created by persistent viruses are poorly understood.
The JHM strain of mouse hepatitis virus (JHMV) infection in mice
induced an immune-mediated demyelinating disease similar to MS.
Surgical engraftment of GFP+ neural stem cells (NSCs) into the
spinal cords of JHMV-infected mice resulted in migration,
proliferation, and differentiation into OPCs and mature
oligodendrocytes, inducing axonal remyelination. Using anti-
CXCL12 blocking serum significantly reduced the migration and
proliferation of engrafted stem cells. Additionally,
CXCR4 antagonists, but not CXCR7, similarly inhibited
migration and proliferation (Carbajal et al., 2010). These
outcomes emphasize the pivotal role of the CXCL12/CXCR4 axis
in recruiting engrafted stem cells to damaged CNS sites in mice with
immune-mediated demyelination due to persistent viral infection.

RA is an inflammatory autoimmune disease that primarily
affects the joints. This type of AD involves synovial fibroblasts,
endothelial cells, and chronic inflammation (Masoumi et al., 2023).
The pathogenesis of RA involves a complex interplay between
immune cells and cytokines (Kondo et al., 2021). It has been
revealed that activated macrophages and synovial fibroblasts are
activated by T cells, causing the release of pro-inflammatory
cytokines like TNF-α and IL-17 (Tu et al., 2022). Releasing pro-
inflammatory cytokines and chemokines by activated macrophages
contributes to inflammation and joint damage (Moadab et al., 2021).
A crucial aspect of RA is the degradation of bone and cartilage,
which occurs due to synovial fibroblasts and macrophages secreting

FIGURE 4
Dysregulation of the CXCL12/CXCR4 axis in ADs.
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matrix metalloproteinases (MMPs) (Lefevre et al., 2015). As a result,
cartilage and the bones beneath are destroyed by MMPs that destroy
extracellular matrix components. T cells and macrophages
collaborate on this coordinated attack, facilitated by MMPs,
highlighting the importance of targeting these pathways in
therapeutic interventions against RA (Siouti and Andreakos,
2019). It has been shown that chronic inflammation and bone
erosion are related to the CXCL12/CXCR4 axis, contributing to
bone and cartilage damage (Peng et al., 2020). It is associated with
CXCL12 that neovascularization occurs in inflamed RA joints,
particularly in their early stages (Yu et al., 2003). As a result,
immune cells in the synovium express CXCR4. CXCL12 also
induces recruiting osteoclast precursors, stimulating
differentiation, bone resorption, and cartilage degradation (Grassi
et al., 2004; Wright et al., 2005). Hypoxia stimulates VEGF and
CXCR4 expression in inflamed joints by activating HIF-1 (Imtiyaz
and Simon, 2010). In addition, in vitro experiments revealed that
CXCL12 enhances chondrocyte necrosis, signifying the role of this
CXC chemokine in cartilage damage (Xu et al., 2012).

MicroRNAs (miRs) play a significant role in the initiation and
progression of RA, though the specific functions and mechanisms of
miR-23 in RA are not fully understood (Evangelatos et al., 2019). An
investigation demonstrated that miR-23 was downregulated, while
CXCL12 was upregulated in RA samples compared to control
samples (Gao et al., 2021). Overexpression of miR-23 suppressed
inflammation by reducing TNF-α, IL-1β, and IL-8 expression.
Mechanistically, miR-23 decreased CXCL12 mRNA expression by
binding to its 3′-untranslated region, and overexpression of
CXCL12 counteracted the anti-inflammatory effects of miR-23
mimic. Additionally, CXCL12 promotes inflammation by
activating NF-κB signaling (Gao et al., 2021). Therefore, miR-23
alleviates RA inflammation by regulating CXCL12 via the NF-κB
pathway, suggesting that targeting miR-23 could be a potential
strategy for diagnosing and treating RA.

Another investigation found that the levels of CXCR4 and
CXCL12 in the serum and joint synovial fluid were significantly
higher in patients with RA than in normal subjects. These levels were
also higher in the RA-active group compared to both the remission
and control groups. A positive correlation was also observed
between the expression of CXCR4 and CXCL12 and the
erythrocyte sedimentation rate (ESR), C-reactive protein (CRP),
rheumatoid factor (RF), and Disease activity score in 28 joints
(DAS28) scores. These outcomes suggest that CXCR4 and
CXCL12 are highly expressed in RA patients, with their levels
correlating positively with these clinical markers of disease
activity (Peng et al., 2020).

SLE is characterized by immune complexes of autoantibodies
and autoantigens circulating in the blood, leading to an
inflammatory process and organ damage (Abbasifard et al.,
2020). It has been revealed that chemokines, including CXCL9,
CXCL10, CXCL12, and CXCL13, play crucial roles in the
pathogenesis of SLE (Pan et al., 2022). The expression of
CXCR4 is upregulated in various immune cell types, such as
monocytes, neutrophils, T cells, B cells, and plasma cells (Badr
et al., 2015). Moreover, CXCL12 expression is elevated in the kidney.
CXCR4 is upregulated in SLE patients, suggesting it may be a
therapeutic target for SLE patients with kidney and CNS
involvement (Wang et al., 2010; Badr et al., 2015). In contrast,

circulating B cells from SLE patients show altered migration and
distribution of B cell compartments due to the downregulation of
CXCR4 (Biajoux et al., 2012). The signaling cascades involving
PI3K/AKT, MAPKs (ERK, JNK, p38), and the regulation of NF-
κB nuclear translocation (IκBs) are critically involved in B cell
differentiation and the production of autoantibodies during SLE
disease progression (Sen et al., 2014).

However, it appears that inhibiting the CXCR4/CXCL12 axis
could mitigate the autoimmune response and inflammation
associated with SLE. Studies in lupus-prone murine models
demonstrated that CXCR4 was upregulated in B cells, monocytes,
neutrophils, and plasma cells, driven by toll-like receptors (TLRs)
and pro-inflammatory cytokines. By upregulating this pathway,
B cells were able to survive and migrate towards gradients of
CXCL12 (Balabanian et al., 2003; von Hofsten et al., 2024).

A previous study found that NZB/W mice susceptible to lupus
had elevated CXCL12 levels in the kidneys, contributing to lupus
nephritis (Balabanian et al., 2003). Similar findings in other mouse
models (B6.Sle1.Yaa, BXSB, MRL.lpr) were also confirmed (Wang
et al., 2009). However, these findings are not replicated in human
SLE patients (Wang et al., 2009). Studies report that B cells and
CD4+ T cells express high levels of CXCR4 when disease severity is
high, while others conclude that low levels of CXCR4 in specific
lymphocyte subsets are associated with disease severity (Chong and
Mohan, 2009). Discrepancies may be attributed to sample size
differences and patient characteristics. Rather than measuring
CXCR4 and CXCL12 levels in peripheral blood, end organs
could provide more insights into their role in SLE. Biopsies of
lupus nephritis and cutaneous lupus skin demonstrate increased
CXCL12 levels correlated with disease severity. The migration of
CXCR4+ cells into these organs may explain why some studies report
lower levels of CXCR4 in peripheral blood (Chong and
Mohan, 2009).

SLE-associated glomerulonephritis is accompanied by
hyperplastic kidney lesions caused by CXCR4 dysregulation in
kidney epithelial cells (Rizzo et al., 2013). This interaction may
be crucial during lupus in attracting these cells to the kidney and
skin, which are affected peripherally. In addition, CXCL12 binding
to CXCR4 boosts cell survival, proliferation, and transcription,
based on studies with mice lacking either CXCL12 or CXCR4. In
mice with defective CXCL12 or CXCR4, vascularization, bone
marrow myelopoiesis, and limb innervation have been observed.
As a result of these findings, CXCL12/CXCR4 interactions play a
crucial role in numerous physiological processes and are likely to
significantly impact pathological conditions such as lupus (Wang
et al., 2010).

Several chemokines are associated with T1D, including
CXCL10, CCL5, CCL8, CXCL9, and CX3CL1, which are involved
in insulin metabolism and pancreatic β-cell destruction (Overbergh
et al., 2006). CXCL12/CXCR4 signaling is critical Field (Oliver-
Krasinski et al., 2009) for the pancreatic islet to develop and
differentiate. CXCL12 induces pancreatic and duodenal
homeobox 1 (Pdx1) expression in the pre-pancreas region by
attracting CXCR4-expressing angioblasts. All islet cell types must
be formed to express neurogenin 3 (Ngn3) via Pdx1 (Oliver-
Krasinski et al., 2009). CXCL12 is also vital in influencing
immune processes and directing T-cell migration. Recruiting
autoreactive T cells into pancreatic islets causes insulitis and
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T1D. According to most studies, CXCL12 inhibition inhibits
diabetes progression and insulitis, but conflicting reports suggest
that adoptive cell transfer may protect against diabetes. Among the
unique properties of CXCL12 are that it induces bidirectional
movement of T cells and exerts a chemorepulsive effect on
diabetogenic T cells while promoting normal T cell adhesion
(Vidaković et al., 2015). By expressing CXCL12 in islets,
autoreactive T cells are selectively repelled, and Treg cells are
retained at the site. Tregs are critical in suppressing
autoimmunity and are implicated in the development of T1D. It
has been demonstrated that the absence of Tregs in pancreatic
lymph nodes (PLNs) is correlated with T1D in non-obese diabetic
mice. The restoration of euglycemia is associated with the recovery
of Treg populations in PLNs, which is linked to a decrease in
CXCL12 expression. In order to treat T1D effectively, we may
need to enhance the CXCL12/CXCR4 axis and retain Tregs in
PLNs (Vidaković et al., 2015).

Recently, an investigation reported that CD57+ CD8+ T cells,
also known as effector memory cells, contribute to tumor and virus
immunity and are associated with autoimmunity (Zhong et al.,
2024). However, there needs to be more knowledge of how they
contribute to T1D. Upon examining a T1D patient with a
STAT3 mutation, these cells were observed to be increased. The
CD57+ CD8+ T cells of T1D patients undergo significant changes
during disease progression. In longitudinal studies, their prevalence
was associated with declining function of the CD4+ cells. There is
evidence that these cells are critical to the pathophysiology of T1D,
as they produce cytotoxic cytokines, increase glucose uptake, and
produce pro-inflammatory cytokines. Erk1/2 signaling enhances
CD57+ CD8+ T cell expansion and function in vitro via the
CXCL12/CXCR4 axis. Changes in serum CXCL12 levels were
noted during the peri-remission phase of T1D. T1D mice treated
with LY2510924, a CXCR4 antagonist, showed reduced infiltration
of T cells and improved insulin sensitivity (Zhong et al., 2024). Based
on these findings, CD57+CD8+ T cells play a crucial role in driving
T1D responses, which may be a potential therapeutic option to delay
the progression of the disease.

An essential function of intestinal epithelial cells (IECs) in the
normal intestinal mucosa is migration, barrier maturation, and
restitution, which are all mediated by cAMP. In recent studies,
CXCR4 and CXCL12 are present in lamina propria T cells (LPTs),
which have been implicated in IBD pathogenesis. IECs of IBD
patients express CXCR4 more, and CXCL12 is upregulated in
inflamed mucosa. In all sources of peripheral blood T cells
(PBTs) and LPTs, CXCL12 functions as a potent
chemoattractant, whether they are normal or IBD-related. As
evidenced by the accumulation of CXCR4+ cells near CXCR12-
expressing IECs, interactions between CXCL12 and
CXCR4 contribute to mucosal deregulation, specifically impacting
memory CD45RO+ LPTs (Werner et al., 2013). CXCL12 directs the
proliferation of epithelial endocrine precursor cells in the human
development of islet cells and phosphatidyl inositol-3 and AKT
kinase (Oliver-Krasinski et al., 2009; Weir et al., 2011). It has been
found that some IBDs, such as ulcerative colitis and Crohn’s disease,
are caused by dysregulated immune responses in a genetically
susceptible individual in response to environmental triggers
(Scharl and Rogler, 2012; Wallace et al., 2014). It has been
shown that intestinal epithelial cells and lamina propria cells

express CXCL12 and CXCR4 upregulation in IBD patients. The
CXCL12/CXCR4 axis is associated with IBD progression and
severity, as it recruits memory Th1 cells, particularly T cells
(Agace et al., 2000; Katsuta et al., 2000). It has been reported
that polymorphisms in this axis contribute to the recruitment of
memory Th1 cells (Mrowicki et al., 2014).

Collectively, it should be noted that the dual role of the CXCL12/
CXCR4 axis in ADs like SLE and T1D indicates that targeting this
axis may not always be practical. Increased CXCL12 levels in lupus-
prone mice have been associated with improved SLE symptoms
when treated with specific peptides, suggesting its role in the
disease’s pathogenesis (Chong and Mohan, 2009). In T1D, the
CXCL12/CXCR4 axis plays a significant role in promoting
pancreatic β-cell survival. Studies show that CXCL12 helps
protect β-cells from apoptosis and streptozotocin (STZ)-induced
diabetes by activating the AKT pathway, which promotes cell
survival. Blocking CXCR4 induces apoptosis and reduces cell
survival markers in β-cells, while overexpressing CXCL12 in β-
cells enhances resistance to apoptosis and diabetes (Yano et al.,
2007). However, the phenotype of recruited CXCR4+ cells can be
crucial in the ADs pathogenesis. These findings highlight the
complexity of the CXCL12/CXCR4 axis, which can contribute to
disease pathogenesis in SLE and offer therapeutic benefits in T1D,
suggesting that blanket targeting of this axis may not be
universally beneficial.

5 Targeting CXCR4 in pathologic
conditions

This section summarized the importance of receptor and ligand
inhibition in all types of diseases and autoimmune diseases.

5.1 Cancer

The CXCL12/CXCR4 axis plays a pivotal role in tumor
progression and metastasis, making it a promising therapeutic
target in cancer. By interacting with its receptor CXCR4,
CXCL12 promotes migration, invasion, and angiogenesis in
cancer cells, a chemokine abundantly expressed in the TME. This
ligation is disrupted by inhibitors, which inhibit metastatic spread
and stimulate antitumor immune responses. Various cancers have
shown promising outcomes when CXCR4 inhibitors are used, such
as AMD3100 (Zhou et al., 2020). Thus, the CXCL12/CXCR4 axis has
become a compelling target for novel cancer therapies to enhance
treatment efficacy and prevent metastasis.

Considering the role CXCR4 plays in tumor progression and
metastasis, its inhibition offers significant potential for cancer
treatment (Chatterjee et al., 2014). The expression of CXCR4 is
associated with increased invasiveness and distant metastases in
several cancers (Yang et al., 2020). It has been shown in preclinical
and early clinical studies that blocking CXCR4 can disrupt the
interaction between cancer cells and the microenvironment,
preventing cancer cells from migrating to secondary sites
(Zlotnik, 2008). A strategy to impede cancer progression and
improve treatment outcomes is effective in early clinical studies
targeting CXCR4. Due to these findings, CXCR4 inhibitors are being
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explored as potential cancer therapies that could impede metastasis
and boost cancer therapy efficacy.

An investigation of patients with microsatellite stable pancreatic
(PDA) or CRCwho failed to respond to immune therapy using T cell
checkpoint inhibitors in the context of cancer biology (Biasci et al.,
2020). Based on their observations that cancer cells in these tumors
are coated with CXCL12, the researchers proposed a possible
explanation for this lack of response. Further, they note that
stimulation of CXCR4 inhibited the migration of these immune
cells mediated by other chemokines. For 7 days, the researchers
continuously infused AMD3100 to patients to assess the relevance of
these findings. Using transcriptomic analysis, they compared
biopsies taken before and after treatment of metastatic lesions.
This immunological response, which appears to be predictive of a
positive clinical response to T-cell checkpoint inhibition, was found
to be induced by the CXCR4 inhibitor. The non-response to
immunotherapy may be linked to CXCL12 in cancer cells in
some pancreatic and CRCs with specific characteristics
(microsatellite stable). Researchers observed that
AMD3100 inhibited the tumor’s immune response, making it
more susceptible to T cell checkpoint inhibitors by disrupting its
immune response (Biasci et al., 2020). These findings suggest that
targeting the CXCR4 pathway could enhance immunotherapy
effectiveness in these cancer types. As a result of intrinsic/
acquired resistance, antiangiogenic therapies provided limited
survival benefits to cancer patients (Haibe et al., 2020). It was
crucial for improving treatment outcomes to understand and
target resistance mechanisms, especially in cancers that required
antiangiogenic therapy, such as colon cancer. Anti-VEGFR2
treatment increased CXCL12/CXCR4 expression in orthotopic
CRC models and conditional Apc mutant spontaneous rectal
tumors (Jung et al., 2017). In response to CXCR4 signaling, anti-
VEGFR2 innate immune cells were recruited to the CRCs, including
Ly6Clow monocytes and Ly6G+ neutrophils (Jung et al., 2017). These
pathways can also be successfully targeted genetically and
pharmacologically, including AMD3100, which significantly
enhanced response to treatment. These strategies can be readily
translated into the clinic. The effectiveness of PD-1 inhibitors in
pancreatic ductal adenocarcinoma (PDAC) is limited, suggesting
alternative pathways should be explored (Kabacaoglu et al., 2018).

In metastatic PDAC, BL-8040 was combined with
pembrolizumab and chemotherapy in a study (Bockorny et al.,
2020). There was a 34.5% disease control rate (DCR) in cohort 1
(chemotherapy-resistant patients), as well as a median overall
survival (mOS) of 3.3 months in second-line therapy. As a
result of BL-8040, CD8+ T cells were infiltrated in cohort
2 more efficiently, and immunosuppressive cells were reduced.
Combined with pembrolizumab and chemotherapy, the tumor
objective response rate (ORR) was 32%, DCR was 77%, and the
median response duration was 7.8 months. A randomized trial is
needed to confirm the effectiveness of dual CXCR4 and PD-1
blockade in PDAC (Bockorny et al., 2020). An investigation was
conducted to assess the efficacy of a combined approach
incorporating radiation therapy (RT) with cisplatin (RTCT) and
the CXCR4 inhibitor X4-136, which was considered suitable for
clinical use (Chaudary et al., 2021). This study found that RTCT
alone increased CXCL12/CXCR4 signaling, intratumoral
accumulation of myeloid cells, and PD-L1 expression.

In contrast, X4-136 was introduced along with RTCT to
counteract these effects, enhancing the primary tumor response
and reducing metastases. Furthermore, X4-136 alleviated late
histologic changes caused by delayed RT toxicity by reducing
acute toxicity in intestinal crypt cells. Study findings indicate that
this combination therapy can minimize adverse effects on normal
tissues, including the intestines, while improving cervical cancer
treatment outcomes. It is suggested that clinical trials should be
conducted to explore these benefits further, as well as the possibility
of applying this approach to other cancer types for which RTCT is a
curative (Chaudary et al., 2021).

It has been shown that immune checkpoint blockade (ICB)
therapies are less effective in triple-negative breast cancer (TNBC)
due to insufficient T cell infiltration. Immunostimulatory
approaches have been developed in the field (Kruszyna et al.,
2022) to enhance ICB response. As part of a novel strategy
aimed at improving AMD3100’s therapeutic efficacy (Lu et al.,
2021), a liposomal formulation targeting CXCR4 was developed.
A dual blocker and targeting moiety, AMD3100 acted both
extracellularly and intracellularly to inhibit CXCR4 activation.
AMD3100 was encapsulated within the liposome and coated on
its surface. Based on the results of the Liposomal-AMD3100 study,
AMD3100 was more effective in remodeling the immune and
stromal microenvironment than AMD3100 free, suggesting that
the liposomal formulation had an improved pharmacodynamic
profile. A murine TNBC model (4T1) demonstrated increased
antitumor effects and longer survival times when anti-PD-L1 was
combined with Liposomal-AMD3100 (Lu et al., 2021). Accordingly,
ICB therapy can be applied to previously ICB-insensitive cancer
types by delivering CXCR4 inhibitors liposomal to activate the
immune system. It has been revealed that CXCR4 is
overexpressed and functional in CRC, which has prompted
researchers to examine whether it can enhance standard CRC
therapy (Xu et al., 2018). In a CRC HCT116 xenograft model, a
study assessed the efficacy of a novel peptide antagonist of CXCR4,
Peptide R (Pep R) (D’Alterio et al., 2020). Pep R was administered to
mice bearing xenografts of HCT116 with chemotherapeutic agents
5-Fluorouracil (5FU) and oxaliplatin, or 5FU combined with
radiotherapy (RT-CT). Compared to chemotherapy alone or Pep
R alone, which resulted in 2- and 1.6-fold reductions of the relative
tumor volume (RTV) after 2 weeks, the combination of
chemotherapy and Pep R significantly reduced the RTV fourfold.
According to in vitro experiments, Pep R inhibited HCT116 cell
growth and further reduced the ability of those cells to clone. It was
also explored whether Pep R could target epithelial-mesenchymal
transition (EMT). A decrease in ECAD expression and an increase in
ZEB-1 and CD90 expression were observed with chemotherapy
treatment. Pep R restored the pre-treatment expression levels. Pep R
also reduced a population of CD133+CXCR4+ cells in HCT116 and
HT29 cells, considered stem-resistant cancer cells (D’Alterio et al.,
2020). In general, the findings suggest that targeting CXCR4 with
Pep R enhances the effectiveness of colon cancer treatment by
reducing stem-resistant cancer cell proliferation, reversing EMT-
induced markers, and inhibiting cell growth. Clinical studies are
needed to explore this further.

In our recent study, we showed the potential significance of N, N″-
thiocarbonylbis(N′-(3,4-dimethylphenyl)-2,2,2-trifluoroacetimidamide)
(A1) as a potent inhibitor of the CXCR4 chemokine receptor in the
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context of CRC therapy (Khorramdelazad et al., 2023). Compared with
established CXCR4 inhibitors, A1 exhibited notable inhibitory activity, as
demonstrated in silico. The investigation further revealed that A1 induced
a cytotoxic effect on CT26mouse CRC cells, leading to apoptosis andG2/
M cell cycle arrest, in contrast to the limited impact of the control
molecule AMD3100. A1’s effectiveness extended to reducing cell
proliferation, particularly when combined with CXCL12, and
downregulating the expression of CXCR4 receptors in treated cells.
The dual-functionality of A1, acting as both a CXCR4 inhibitor and a
cytotoxic agent, suggests its potential as a promising candidate for
enhancing CRC treatment strategies (Khorramdelazad et al., 2023).

In another investigation, glioblastoma multiforme (GBM), a
highly invasive and resistance-to-treatment brain tumor, was
addressed. GBM’s resistance and invasiveness are contributed to
by aberrant p53 function influenced by overexpressed MDM2 and
MDM4 proteins, as well as an increase in CXCR4 expression
(Daniele et al., 2021). This study examined whether inhibiting
the p53-MDM axis could enhance the sensitivity of GBM cells. A
dual MDM2/4 inhibitor, RS3594, and a CXCR4 antagonist,
AMD3100, were used to treat human GBM cells and GBM stem-
like cells and in addition to inhibiting neurosphere growth and
inducing differentiation of GBM cells, AMD3100 and
RS3594 demonstrated synergistic effects on cancer stem
components (Daniele et al., 2021). It appears that simultaneous
blockade of CXCR4 and MDM2/4 may offer potential therapeutic
benefits in reducing GBM proliferation and invasiveness.

Among the therapeutic challenges associated with triple-
negative breast cancer (TNBC), which lacks molecular targets,
this study addressed. TNBC tumor growth and metastasis are
implicated in the CXCR4/SDF-1 axis, which may be targeted as a
therapeutic target. TNBC cells were investigated for their response to
Saikosaponin A (SSA), a compound derived from Radix bupleuri
(Wang et al., 2020). In mouse models, SSA significantly reduced
TNBC cell proliferation, colonization, migration, and invasion,
inhibiting primary tumor growth and reducing lung metastasis.
Notably, SSA decreased CXCR4 expression without affecting
CXCR7. Consequently, MMP-9 and MMP-2 expression were
inhibited, and the Akt/mTOR pathway was inactivated.
Accordingly, SSA tends to exert its effects by inhibiting
CXCR4 expression, which makes it an attractive candidate
therapeutic agent for TNBC patients (Wang et al., 2020).

5.2 Autoimmune diseases

Several pathological processes, such as cancer and inflammatory
diseases (Bekaddour et al., 2023), are implicated in aberrant CXCR4/
CXCL12 signaling (Mousavi, 2020). EPI-X4 was discovered to be an
endogenous peptide antagonist and inverse agonist of CXCR4,
suggesting that it could be developed as a therapeutic (Harms
et al., 2021). A modified EPI-X4 derivative with increased anti-
CXCR4 activity, referred to as JM#21, was engineered by researchers
using molecular docking analysis and rational drug design. Among
other things, JM#21 suppressed human immunodeficiency virus
(HIV)-1 infection more effectively than AMD3100, a small molecule
CXCR4 antagonist approved for clinical use. JM#21 did not cause
toxic effects in zebrafish embryos, demonstrating its safety. A mouse
model of atopic dermatitis revealed that it attenuated allergen-

induced immune cell infiltration and prevented skin
inflammation. As a novel and potent CXCR4 antagonist, EPI-X4
JM#21 is positioned in the text as a first-in-class inhibitor with
therapeutic efficacy in treating atopic dermatitis, highlighting its
importance (Harms et al., 2021). This study supports the clinical
development of CXCR4 antagonists to address various diseases
associated with CXCR4, including asthma and atopic dermatitis.

A study aimed at developing a CXCR4 inhibitor suitable for
topical use in treating psoriasis to minimize systemic toxicity
(Boonsith, 2017). As a topical drug for psoriasis, the researchers
developed PAMD, a polycation derived fromAMD3100. In addition
to its adaptability for chemical modification, PAMD can be
combined with other drugs and form nanocarriers. Due to the
localized nature of psoriasis as a skin disease, topical delivery of
PAMD improved safety and compliance by targeting the disease
locally. A challenge was overcoming the skin’s main barrier, the
stratum corneum (SC), which necessitated modifying the technique.
It was found that the modified, negatively charged PAMD
demonstrated low toxicity in HaCaT cells and good retention
and penetration in both healthy and psoriatic skin models after
adding citraconic anhydride for a negative charge and oleic acid for
lipophilicity. As a result of the modified polymer’s characteristics,
several factors influenced the penetrant’s success, including its size,
charge, and partition coefficients. The topical administration of
AMD3100 and subcutaneous injection of PAMD.COO-
significantly reduced psoriasis symptoms in an IMQ-induced
psoriasis mouse model. It was found that blocking CXCR4/SDF-
1 reduced skin inflammation, as demonstrated by lower mRNA
levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α.
CXCR4 antagonistic polymers were shown to have similar
therapeutic effects to AMD3100 administration by topical
application. The polymer’s anti-psoriatic activity in mice did not
appear to be affected by its penetration, indicating its efficacy in
localized treatment without compromising therapeutic outcomes
(Boonsith, 2017).

Researchers investigated the role of the CXCL12/CXCR4 axis
in chronic PsO-like skin inflammation, where elevated levels of the
angiogenic chemokine CXCL12 and its receptor CXCR4 had been
previously observed. Using two experimental models, they found
that the CXCL12/CXCR4 axis upregulates blood vessels and
macrophages in inflamed skin (Boonsith, 2017). With
AMD3100, skin inflammation, inflammation angiogenesis, and
accumulation of inflammatory cells were effectively reduced in
both models. Anti-CXCL12 antibodies had similar anti-
inflammatory effects. These findings were confirmed in vitro,
suggesting that the CXCL12/CXCR4 axis plays a crucial role in
inflammation and inflammatory angiogenesis. Taking advantage
of these molecular mechanisms may provide insights into the
mechanisms underlying vascular activation in psoriasis, a
chronic inflammatory skin disease (Boonsith, 2017). Another
study explores the role of CXCR4, expressed by basal
keratinocytes (KCs), in inflamed skin using a mouse model
with specific loss of CXCR4 in K14-expressing cells (Takekoshi
et al., 2013). Despite no apparent skin defects in these mice, they
showed increased ear swelling, greater epidermal thickness, and
enhanced parakeratosis in an IL-23-mediated psoriasiform
dermatitis model. This suggests that CXCR4 plays a regulatory
role in keratinocyte proliferation.
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Further experiments in vitro demonstrated that CXCL12, a
chemokine, blocked IL-22-induced keratinocyte proliferation and
worked synergistically with IL-22 to upregulate suppressor of
cytokine signaling 3 (SOCS3), a key regulator of signal
transducer and activator of transcription 3 (STAT3), indicating
that SOCS3 is required for CXCR4-mediated growth inhibition.
In human psoriatic skin, both CXCR4 and SOCS3 were upregulated
in the junctional region at the border of psoriatic plaques (Takekoshi
et al., 2013). These findings indicate that CXCR4 surprisingly
hinders keratinocyte proliferation and mitigates the effects of
proliferative cytokines, providing insights into its role in skin
inflammation, particularly in PsO.

They play a crucial role in migrating leukocytes across the blood-
brain barrier (BBB) during the inflammatory response in the CNS
(Pachter et al., 2003). CXCL12 is highly expressed bymicroendothelial
cells throughout the CNS, suggesting it may help maintain the BBB.
With AMD3100, a specific antagonist of the CXCL12 receptor
CXCR4, this hypothesis was tested in experimental autoimmune
encephalomyelitis (EAE) (McCandless et al., 2006). A study
demonstrates that infiltrating leukocytes migrate more rapidly into
the CNS parenchyma when CXCR4 activation is lost. CXCL12 is
expressed on the basolateral surface of spinal cord endothelial cells
under normal conditions (McCandless et al., 2006; Liu and Dorovini-
Zis, 2009). As EAE progresses, this polarity is lost in vessels where
mononuclear cells have extensively invaded the parenchyma. EAE
worsened by inhibiting CXCR4 activation during disease induction
since mononuclear cells infiltrated the white matter, resulting in
decreased perivascular cuffs and more inflammation. It appears
that CXCL12 serves as an anti-inflammatory factor in EAE,
limiting the infiltration of autoreactive effector cells into the
parenchyma by localizing CXCR4-expressing mononuclear cells to
the perivascular space (McCandless et al., 2006).

A novel mutant chemokine designed to antagonize CXCR3 and
CXCR4 was used to investigate the role of these receptors in T
lymphocyte activation and migration to the central nervous system
(Kohler et al., 2008). CXCL11(4–79) antagonist was developed from
truncationmutants with the highest affinity for CXCR3. CXCR3 ligands
(CXCL9, CXCL10, and CXCL11) strongly inhibited mouse T-cell
migration with this antagonist. CXCL12(P2G2), another synthetic
receptor antagonist, minimally activated these receptors but inhibited
activating T cells’ migration in response to the drug. These synthetic
receptor antagonists inhibited EAE by interfering with the action of
CXCR3 and CXCR4 in a mouse model of multiple sclerosis called
experimental autoimmune encephalomyelitis (EAE). They also reduced
CD4+ T cell accumulation in the CNS. The results of further
investigation indicate that CXCL12(P2G2) inhibits the sensitization
phase of the immune response, but CXCL11(4–79) inhibits the
effector phase. In treating CNS autoimmune diseases, the findings
suggest that targeting both CXCR4 and CXCR3 simultaneously may be
beneficial (Kohler et al., 2008).

CXCL12 is implicated in the pathological development of RA,
particularly concerning the abnormal migration of peripheral
immune cells in joints (Ding et al., 2023). There is controversy
surrounding the impact of low-dose methotrexate (MTX) on
CXCL12 signaling responses in RA despite its widespread use.
According to clinical data, low-dose MTX treatment was
associated with clinically relevant downregulation of the
CXCR4 on peripheral T cells. By suppressing CXCR4 expression,

low-dose MTX significantly decreased cell migration in in vitro
experiments with CD3+ T cells. A significant increase in genomic
hypermethylation was observed across the promoter region of the
CXCR4 gene in CD3+ T cells treated with low-dose MTX. A
significant improvement in arthritis pathology was demonstrated
by low-dose MTX-mediated downregulation of CXCR4. It was also
found that conditional disruption of the cxcr4 gene in peripheral
immune cells reduced inflammation in arthritis mice’s joints and
lungs. It is noteworthy, however, that genetic modification in these
mice did not affect their clinical scores for arthritis. By
downregulating CXCR4 expression, low-dose MTX may impair
immune cell migration and exert anti-inflammatory effects on
RA patients (Ding et al., 2023). These findings indicate the
MTX’s potential therapeutic effects for RA by revealing how it
influences CXCL12 signaling and immune cell behavior.

The chemokine CXCL12 gene polymorphism has been linked to
T1D in humans. CXCL12 levels are elevated in the bone marrow of
non-obese diabetic mice, a model predisposed to T1D (Leng et al.,
2008). NOD mice accumulate naive T cells, Tregs, and
hematopoietic stem cells (HSCs) in their bone marrow (BM).
AMD3100, an antagonist of CXCR4, mobilizes T cells and HSCs
from their BM. By simultaneously inhibiting insulitis and preventing
diabetes, this treatment is simultaneously effective. AMD3100 can
treat or prevent T1D in humans by altering T cell and HSC
trafficking, which supports the hypothesis that elevated
CXCL12 expression promotes T1D in NODmice (Leng et al., 2008).

An emphasis was placed on the role of CXCR4 in diabetic
neuropathy, a common cause of painful diabetic neuropathy (PDN).
Observations of elevated CXCR4 levels in peripheral nerve samples
from diabetic patients prompted an investigation of the effects of three
agents in a streptozotocin (STZ)-induced PDNmodel in rodents and a
naive rat model activating CXCR4/CXCL12 signals (da Silva Junior
et al., 2020). A diabetic neuropathy model was induced in Wistar rats
through intraperitoneal injection of STZ, providing a platform for
measuring rat hypersensitivity, levels of IL-6, and the concentration
of calcium [Ca2+]i inside diabetic synaptosomes. The outcomes
designated a significant decrease in hypersensitivity in diabetic rats
following intrathecal administration of Phα1β or intraperitoneal
administration of AMD3100, while ω-conotoxin MVIIA did not
show an equivalent effect. In naïve rats with activated CXCR4/
CXCL12 axis, CXCL12 administration induced hypersensitivity,
which was alleviated by Phα1β or AMD3100 after 2 h of treatment,
contrasting with the lack of effect detected with ω-conotoxin MVIIA.

Moreover, the study investigated the modulation of IL-6 levels
and calcium influx in spinal cord synaptosomes, revealing a decline
in both parameters following treatment with the examined agents.
Conclusively, Phα1β, ω-conotoxin MVIIA, and AMD3100 revealed
effectiveness in decreasing hypersensitivity in STZ-induced PDN in
diabetic rats and naïve rats with activated CXCR4/CXCL12 axis. The
results propose potential therapeutic avenues, with Phα1β
implicating voltage-dependent calcium channels in its repressing
effects on PDN (da Silva Junior et al., 2020).

It is expected to find vascular, glomerular, and tubulointerstitial
lesions in a renal biopsy taken from a patient with SLE (Weening
et al., 2004). The Bowman’s capsule parietal epithelial cells of
proliferative glomerulonephritis become activated, and
CD133+CD24+ progenitor cells invade the glomerular tuft (Rizzo
et al., 2013). It has been shown that an injury to podocytes results in

Frontiers in Pharmacology frontiersin.org12

Abbasifard et al. 10.3389/fphar.2024.1410104

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1410104


dysregulated progenitor cells expressing CXCR4, along with high
expression of CXCL12 in podocytes, which uses renal biopsies and
rat models. In rat models, similar changes are observed in the
expression of angiotensin II (Ang II) type-1 (AT1) receptors,
which appear to be associated with parietal epithelial cell
proliferation. Angiotensin-converting enzyme inhibitors have
been shown to normalize the Ang II/AT1 receptor/
CXCR4 pathways and to result in regression of lesions in
patients with severe forms of glomerular proliferative disorders
(Rizzo et al., 2013).

The migration, proliferation, and survival of B1a lymphocytes in
the peritoneal cavity are influenced by CXCL12 in normal mice. In
NZB/W mice, where these cells are self-reactive and expand, they
exhibit increased sensitivity to CXCL12 (Ding et al., 2023).
CXCL12 is produced constitutively in the peritoneal cavity,
spleen, and glomeruli of mice with nephritis. CXCL12 is specific
to the NZB genetic background and modulated by IL-10. In NZB/W
mice, antagonists of CXCL12 or IL-10 are used early in life to
prevent autoantibodies, nephritis, and mortality. Beginning anti-
CXCL12 monoclonal antibody treatment later in life, autoantibodies
are inhibited, kidney-related symptoms are eliminated, and B1a
lymphocytes and T lymphocytes are suppressed. In this lupus mouse
model, abnormally sensitive PerB1a lymphocytes to CXCL12 and
IL-10 contribute to the development of autoimmunity (Ding et al.,
2023). These data suggest the potential for preventing or mitigating
autoimmune manifestations by targeting the CXCL12/CXCR4 axis.

Ulcerative colitis (UC) and IBD are examined to explore the
immunological significance of the CXCL12/CXCR4 chemokine axis
(Mikami et al., 2008). A multifaceted approach to the study is taken,
starting with assessing CXCR4 expression on peripheral T cells in
patients with active UC, which revealed significant increases
compared with normal controls. According to this study,
CXCL12/CXCR4 interaction is associated with UC
pathophysiology, where increased expression correlates positively
with disease activity. Using a murine model of dextran sulfate
sodium (DSS)-induced colitis, the study further demonstrates
that CXCR4 expression is elevated on leukocytes and that
CXCL12 expression increases in colonic tissue when colitis is
induced. A CXCR4 antagonist effectively reduces colonic
inflammation in the DSS colitis model and the IL-10 knockout
mouse model, suggesting it may be a promising therapeutic
intervention. In mesenteric lymph node cells, the antagonist
decreases pro-inflammatory cytokines, tumor necrosis factor, and
interferon (IFN) production while preserving IL-10 production
(Mikami et al., 2008). These findings illustrate potential
therapeutic avenues for treating IBD, particularly UC, by
targeting the CXCL12/CXCR4 chemokine axis, offering new
avenues for intervention in this complex inflammatory condition.

6 What is clobenpropit?

Clobenpropit is a potent imidothiocarbamic ester characterized
by isothiourea with S-3-(imidazole-4-yl) propyl and N-4-
chlorobenzyl substituents. Functioning as a highly effective
histamine H3 antagonist and inverse agonist (pA2 = 9.93), it
demonstrates notable activity as a partial agonist at H4 receptors.
This compound induces eosinophil shape change with an EC50 of

3 nM. Clobenpropit serves as both an H3-receptor antagonist and an
H4-receptor agonist. Classified as an imidazole, an
imidothiocarbamic ester, and an organochlorine compound, it is
a conjugate base of Clobenpropit (2+) (Pubchem, 2024). It is
essential to emphasize that Clobenpropit exhibits a distinctly low
affinity for histamine H1R and H2R, registering pKis of 5.2 and 5.6,
respectively (Esbenshade et al., 2003). Regarding its pharmacological
impact, Clobenpropit is a concentration-dependent inhibitor of
[3H]-dopamine transport in SH-SY5Y cells. The inhibitory effect
is pronounced, with a maximum inhibition of 82.7% ± 2.8% and an
IC50 value of 490 nM (pIC50 6.31 ± 0.11) (Mena-Avila et al., 2018).
Furthermore, Clobenpropit distinguishes itself as a subunit-selective
noncompetitive antagonist when interacting with recombinant
N-methyl-D-aspartate (NMDA) receptors. Its inhibitory activity
is particularly potent against the NR1/NR2B receptor, with an
IC50 of 1 μM (Mena-Avila et al., 2018). In therapeutic
applications, a combination regimen involving.

6.1 Histamine, histamine receptors, and
clobenpropit

The biogenic amine histamine, synthesized from histidine, has
been studied in pharmacology since its discovery in the early 20th
century by Sir Henry H. Dale (Dy and Schneider, 2004). Histamine
is widely distributed throughout the body and primarily mediates
inflammatory processes. The fact that it binds to four GPCR
subtypes–H1, H2, H3, and H4 – accounts for its pleiotropic
regulatory role in cellular events (Chazot and Tiligada, 2008). In
addition to exhibiting differential expressions in different types of
cells, histamine shows a broad spectrum of activities. Upon
activation, the H3 receptor inhibits cAMP formation,
accumulates Ca2+, and activates the MAPK pathway. As a target
for ligands in treating such conditions, it is implicated in central
nervous system disorders (Zampeli and Tiligada, 2009) (Figure 5).

Meanwhile, leukocyte chemotaxis to inflammation sites is
mediated by the H4 receptor, mainly expressed in immune cells,
including mast cells, monocytes, eosinophils, DCs, T-cells, and NK
cells. The H4 receptor more readily absorbs Histamine than the
H1 receptor, and activation of the receptor increases intracellular
Ca2+ concentration (Hofstra et al., 2003) (Figure 5). As an
endogenous agonist for the liver-expressed chemokine LEC/
CCL16, it contributes to the trafficking of eosinophils (Nakayama
et al., 2004).

6.1.1 Histamine receptors in cancer
Various cancer types exhibit heterogeneous outcomes due to the

intricate interplay between disparate pathways related to histamine
metabolism, the unique landscape of the TME, and the H4 histamine
receptor’s central role in signaling cascades (Massari et al., 2020).
Histamine has been shown to play a significant role in multiple
stages of tumorigenesis, primarily through the H4 receptor,
impacting diverse cell types, including cancer cells (Nguyen and
Cho, 2021). There is a consistent pattern emerging across a broad
spectrum of cancer types, including BCa, CRC, oral tongue
squamous cell carcinoma, gastric cancer, melanoma, laryngeal
squamous cell carcinoma, bladder urothelial carcinoma, and
uterine corpus endometrial carcinoma (Nguyen and Cho, 2021).
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Compared with normal tissues, tumors exhibit a significant
reduction in the expression of the H4 receptor gene and/or
protein (Nicoud et al., 2019). Additionally, H4 receptor
expression correlates with clinicopathological characteristics,
suggesting that cancer cell differentiation and tumor progression
may be influenced by H4 receptor expression (Fang et al., 2011). The
correlation indicates that H4 receptors can be used as a novel
prognostic biomarker, providing valuable insights into disease
prognosis. It has been reported that partial differentiation in
pancreatic cancer is associated with inhibition of cell
proliferation through the H1 and H2 receptors (Cricco et al.,
2000). Histamine inhibits cell proliferation through the
H2 receptor and modulates mitogen-activated protein kinase and
Bcl-2 family proteins through the G0/G1 phase (Martín et al., 2002;
Cricco et al., 2004; Cricco et al., 2006). Moreover, a previous study
suggests that the H3 and H4 receptors play a role in pancreatic
cancer cell proliferation, with the H3 receptor increasing
proliferation and the H4 receptor decreasing cell proliferation
(Cricco et al., 2008).

Malignancies of the bile ducts, such as cholangiocarcinoma
(CCA), are associated with EMT, increasing invasion potential
(Vaquero et al., 2017). It has been demonstrated that
Clobenpropit, a potent H4HR agonist, inhibits the growth of
mammary adenocarcinoma by acting on four receptors (H1-H4)
(Patnaik et al., 2018). A study found that cholangiocytes and CCA
cells express H1-H4 HRs, and the H3HR inhibits cell proliferation.

CCA proliferation, invasion, and EMT phenotypes were
significantly reduced by Clobenpropit in vitro, affecting the
extracellular matrix (ECM). Moreover, Clobenpropit inhibited
xenograft tumor growth by disrupting focal contact proteins and
altering epithelial and mesenchymal markers in vivo. Genetic
manipulation confirmed that H4HR was explicitly involved in
these effects. Using Clobenpropit to modulate H4HR, CCA cells
disrupt their EMT processes, ECM breakdown, and invasion
potential (Patnaik et al., 2018).

In another preclinical investigation, for 15 weeks, mice were fed
diets containing different test chemicals (terfenadine, cimetidine, or
Clobenpropit) to induce colorectal carcinogenesis (Tanaka et al.,
2016). Azoxymethane and dextran sodium sulfate (DSS) induced
colorectal carcinogenesis in male ICR mice. During week 18, diets
containing cimetidine (Hrh2) and Clobenpropit (Hrh3 antagonist/
inverse agonist) significantly reduced colonic adenocarcinoma
diversity. Colorectal carcinogenesis induced by AOM-DSS was
not affected by terfenadine (Hrh1 antagonist).
Immunohistochemical analysis revealed varying intensities of
adenocarcinoma cells expressing Hrh1, Hrh2, Hrh3, and Hrh4.
Inflammation-related colorectal cancer may be accelerated by
Hrh2, Hrh3, and Hrh4, according to Clobenpropit, an
Hrh3 antagonist and Hrh4 receptor agonist. Additionally, the
study provided insight into the molecular aspects of colorectal
carcinogenesis that are influenced by histamine receptors by
identifying the mRNA expression of pro-inflammatory cytokines

FIGURE 5
Histamine/histamine receptors and the CXCL12/CXCR4 axis. Clobenpropit binds to H3/H4 and CXCR4 receptors and can inhibit the downstream
pathways. Inhibition of these receptors can lead to a decrease in cell proliferation,migration, and production of cytokines, which are used in the treatment
of cancer and ADs.
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and inducible inflammatory enzymes in colonic mucosa (Tanaka
et al., 2016) (Table 1).

6.1.2 Histamine receptors in autoimmune diseases
Various human immune cells express the H4 receptor, which

indicates its role in immunomodulation (Nguyen and Cho, 2021).
The similar tissue distribution indicates similar physiological roles
for this receptor across species despite interspecies differences in
amino acid sequence and receptor characteristics. ADs, particularly
RA, are associated with histamine. Histamine is considered a pro-
inflammatory mediator in arthritic diseases despite its anti-
inflammatory properties (Adlesic et al., 2007; Ohki et al., 2007;
Grzybowska-Kowalczyk et al., 2008). It indicates that H4 receptors
may be related to RA by their expression varying with its severity
and duration in synovial cells (Grzybowska-Kowalczyk et al., 2007).
Patients with osteoarthritis and RA are found to have H4 receptors
within synovial and vascular wall cells, as well as within fibroblasts
and macrophages (Grzybowska-Kowalczyk et al., 2008). It has been
suggested that the H4 receptor plays a functional role in normal
cartilage in rats and that histamine contributes systemically to the
arthritic phenotype (Zampeli et al., 2008). This raises fascinating
questions about the mechanisms mediated by the H4 receptor in
cartilage. According to a comprehensive investigation, Clobenpropit
significantly inhibits the production of pro-inflammatory cytokines
and chemokines in inflammatory monocytes derived from blood
and synovial fluid from individuals with Juvenile Idiopathic
Arthritis (JIA) (Bekaddour et al., 2023). A remarkable aspect of
Clobenpropit’s anti-inflammatory effects is that it modulates the
inflammatory signature observed in patients with JIA rather than
targeting specific cytokines. Clobenpropit potentially alleviates the

hypersecretion of cytokines and chemokines associated with flare-
ups in JIA patients, according to these ex vivo findings (Bekaddour
et al., 2023). A significant anti-inflammatory effect of Clobenpropit
has been demonstrated in animal models of RA, in which IL-6
promotes osteoclast activation, synoviocyte proliferation, and
recruitment to inflammatory sites, resulting in synovial pannus
development (Lipsky, 2006; Bekaddour et al., 2023). By
consistently reducing cartilage destruction, bone remodeling,
immune cell tissue infiltration, and pannus formation in
collagen-induced arthritis (CIA) mice, the medication
clobenpropit significantly reduced cartilage damage, bone
remodeling, and immune cell tissue infiltration.

In addition, Clobenpropit diminishes disease progression in
arthritic mice and reduces paw thickness, similar to a positive
response observed with prednisone as a reference corticosteroid. In a
rat model of Alzheimer’s disease (AD) induced by amyloid beta peptide
(AβP) infusion, the therapeutic potential of BF 2649 (an H3 receptor
inverse agonist) and Clobenpropit was explored. The animals were
treated daily for 1 week after 3 weeks of AβP administration.
Interestingly, the findings showed that both drugs significantly
reduced AβP deposits and mitigated neuronal and glial reactions in
the brain. Additionally, a remarkable reduction in BBB breakdown was
detected following the treatments and exhibited protective effects
against edema formation. Clobenpropit demonstrated superior
effects compared to BF 2649. These findings indicate that blocking
H3 receptors and stimulating H4 receptors may offer therapeutic
benefits in treating AD pathology, providing novel insights into
potential treatment strategies (Patnaik et al., 2018).

In Parkinson’s disease (PD), dopaminergic pathways are
abnormal, α-synuclein levels are elevated, and tau is

TABLE 1 The most important therapeutic impacts of Clobenpropit in various disorders.

Disease Mechanism and therapeutic outcomes Ref

JIA • Inhibits the production of pro-inflammatory cytokines and chemokines in inflammatory monocytes
• Anti-inflammatory effects
• Alleviating the hypersecretion of cytokines and chemokines associated with flare-ups

García-Cuesta et al. (2019)

RA • Reduces cartilage destruction
• Reduces bone remodeling
• Reduces immune cell tissue infiltration
• Reduces pannus formation in animal models of RA
• Modulates cytokine production
• Anti-inflammatory effect, comparable to the positive response observed with prednisone

García-Cuesta et al. (2019)

AD • Reduces AβP deposits
• Mitigates neuronal and glial reactions
• Protective effects against BBB breakdown and edema formation

Gao et al. (2021)

SLE • Inhibits pDCs and IFN-α production
• Downregulating the expression of TRAIL
• Inhibits TLR7-activated pDCs by CXCR4

Wang et al. (2010b)

CCA • Modulates H4 receptors
• Disrupts EMT
• Reduces invasion potential
• Decreases tumor growth

Weir et al. (2011)

Pancreatic cancer • Combination of Clobenpropit and gemcitabine induces significant apoptosis in tumor cells
• Inhibits tumor cell migration
• Upregulation of E-cadherin
• Downregulation of vimentin and MMP-9
• Downregulation of Zeb1
• Inhibits tumor cell invasion
• Inhibits tumor growth

Scharl and Rogler (2012)
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phosphorylated in cerebrospinal fluid (CSF). There is a heightened
number of histaminergic nerve fibers in specific brain regions of PD,
such as the substantia nigra pars Compacta (SNpc), the striatum
(STr), and the caudate putamen (CP), as well as an upregulation of
H3 receptors and a downregulation of H4 receptors in postmortem
cases. By treating SNpC and STr with chronic BF 2649 or
Clobenpropit and administering monoclonal antihistamine
antibodies (AHmAb), PD-induced brain pathology was reduced
significantly. As a result of these findings, revealing the involvement
of histamine receptors in PD, novel insights can be gained into
developing potential drug strategies for treating the disease, opening
up a previously untapped area of research in this field (Sharma
et al., 2021).

The immune system’s type I IFNs have vital antiviral and
immunomodulatory effects, but prolonged exposure can lead to
autoimmune reactions. In SLE, patients exhibit ongoing IFN-α
production due to endogenous IFN-α inducers, specifically small
immune complexes containing DNA or RNA. These inducers act on
naturally IFN-α producing cells, or plasmacytoid dendritic cells
(pDC). pDCs are central to innate and adaptive immunity but,
through IFN-α production, may contribute to autoimmunity
(Rönnblom et al., 2003). It was detected that the histamine
receptor 4 (H4R) played a crucial role in mediating the
inhibitory impact of histamine on human pDC (Gschwandtner
et al., 2011). In this regard, a study explored the effects of
Clobenpropit on this process, and the findings showed a more
potent inhibitory effect compared to histamine, resulting in a
significant reduction of approximately 90% in the levels of IFN-α
secreted and membrane TNF-related apoptosis-inducing ligand
(TRAIL) expression following HIV-1 stimulation (Smith et al.,
2017). Notably, Clobenpropit exhibited no cytotoxic effects at a
concentration of 10 μM. This inhibitory effect of Clobenpropit was
comparable to that observed with A151, a TLR7 antagonist.
Accordingly, it is possible to use this inhibitory impact of
Clobenpropit on pDCs and IFN-α production in treating
patients with SLE.

An investigation showed that CD14++CD16− and CD14+CD16+

monocyte subsets are activated in systemic juvenile idiopathic
arthritis (Macaubas et al., 2012). Their in-depth analysis of
protein expression at the single-cell level also revealed the
presence of a mixed M1/M2 phenotype at the individual cell
level during the flare phase. Consistent with an M2 phenotype,
following exposure to lipopolysaccharides (LPS), monocytes express
IL-1β; however, they do not release it in systemic juvenile idiopathic
arthritis. Despite the inflammatory nature of active monocytes in
systemic juvenile idiopathic arthritis, circulating monocytes exibit
remarkable anti-inflammatory features. In addition, the
perseverance of some of these phenotypes throughout the
clinically inactive disease phase claims that this condition mirrors
a compensatory response against hyperinflammation (Macaubas
et al., 2012).

It has been found that monocytes express the H4R protein,
which IFN-γ upregulates (Damaj et al., 2007). Clobenpropit and 4-
methylhistamine are H4R agonists that cause monocytes to mobilize
Ca2+ (Roßbach et al., 2009). In addition, H4R agonists inhibited
CCL2 protein production in transmigration assays because they
reduced the recruitment of monocytes in supernatants.
CCL2 production was downregulated at mRNA and protein

levels. Consequently, Clobenpropit can induce a Ca2+ influx in
monocytes, inhibiting CCL2 production and reducing monocyte
recruitment by activating the H4R on monocytes (Dijkstra et al.,
2007). It has also been reported that small molecules can inhibit
CXCR4 and reduce the polarization of the M1 to M2 phenotype
(Song et al., 2021). Therefore, Clobenpropit can also inhibit this
phenotype by switching through CXCR blocking. This dual ligation
of Clobenpropit to CXCR4 and H4R receptors may be beneficial in
regulating mixed M1/M2 monocyte-mediated anti-inflammatory
responses by decreasing their recruitment and inhibiting
prolonged M2-type polarization in some disorders, such as
systemic juvenile idiopathic arthritis (Table 1).

Collectively, these data designate the importance of
understanding the intricacies of histamine signaling pathways
and receptor-specific functions for immune-related disorders and
could provide valuable insights into potential therapeutic
interventions targeting these pathways.

6.2 Molecular docking

In this study, we explored Clobenpropit interactions in
CXCR4 binding pocket for CXCL12 with the aid of molecular
docking technique, following our previously performed
simulations (Khorramdelazad et al., 2023), and the obtained
results were then compared to those of known potent
CXCR4 inhibitors, including BPRCX807 (Song et al., 2021),
BPRCX714 (Song et al., 2021), AMD3100 (Zhou et al., 2020),
WZ811 (Li et al., 2016), MSX-122 (Zhang et al., 2008), as well as
ITD, the crystallographic ligand (3ODU) (Table 2). A comparison
between the studied ligands’ mode of interactions with that of
Clobenpropit shows that the ligand sits very close to those of
WZ811 and MSX-122. All three ligands establish π-π stacked and
π-π T-shaped electrostatic interactions with residues W94, H113,
and Y116. While the hydrophobic pattern is similar in the three
ligands, the presence of methanimidamide and imidazole moieties in
Clobenpropit structure provides π-cation interactions and salt-
bridge formations with E32, W94, D97, and R183 that are not
observed in WZ811 and MSX-122 structures and subsequently
results in the better binding energy of Clobenpropit for
CXCR4 binding pocket for CXCL12. A comparison between
AMD3100 and Clobenpropit demonstrates that the presence of
positively charged amine groups in AMD3100 structure mediates
the formation of salt bridges and charge-charge interactions that
enhance AMD3100 binding energy for CXCL12 binding groove
significantly (Figure 6). It has already been observed that the
creation of salt bridges between ligand and protein acts as clips
that stabilize protein structure and can be used as a valuable tool for
drug design (Spassov et al., 2023).

6.3 Therapeutic effectiveness of
clobenpropit via CXCR4 inhibition

It has been revealed that Clobenpropit inhibits mammary
adenocarcinoma spread by acting as a specific H3 antagonist
and H4 agonist by decreasing invasion potential (Medina et al.,
2008). Several studies have shown that Clobenpropit modulates
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H4 receptors, disrupts EMT, reduces invasion potential, and
decreases tumor growth in CCA (Meng et al., 2011). EMT also
plays a vital role in pancreatic cancer metastasis and
progression. In addition, Zeb1 is known to make human
pancreatic cancer cells resistant to chemotherapy

(Arumugam et al., 2009). Therefore, therapeutic agents
targeting the EMT process could restore pancreatic cancer’s
resistance to chemotherapy.

Combining Clobenpropit (50 μg) and Gemcitabine (5 μg) was
reported to be effective (Paik et al., 2014). A study using

TABLE 2 Binding energy calculation and the type of proposed compound interactions over CXCR4 binding site for CXCL12. The molecules binding energy
values (Except for that of Clobenpropit) are obtained from Nazari et al. (2017).

Compound MMGBSA
(Kcal/
mol)

Glide
score

Interaction over CXCR4 binding site

H-bond Hydrophobic Electrostatic Salt
bridge

BPRCX807 −69.67 ± 3.03 −10.32 C186, H203,
E288

E32, L41, Y45, D97, W94, A98, V112, H113, Y116,
I185, C186, D187, A188, Y190, F199, Q200, H203

W94, H113, Y116 E32, D97,
D187, R188

BPRCX714 −64.12 ± 3.03 −8.85 N33, D97,
E288

E32, L41, Y45, D97, W94, A98, V112, H113, Y116,
I185, C186, D187, A188, Y190, F199, Q200, H203

W94, H113, Y116 E32, D97,
D187, E288

AMD3100 −59 ± 3.32 −8.61 — L41, Y45, D97, W94, A98, V112, H113, Y116, I185,
C186, D187, A188, E288

W94, A98 E32, D97,
D187, E288

ITD −47.50 ± 2.00 −7.75 — L41, Y45, D97, W94, A98, V112, H113, Y116, I185,
C186, D187, A188, E288

W94, D97, E288 D97, E288

Clobenpropit −53.47 ± 0.820 −6.21 — E32, L41, Y45, W94, D97, A98, H113, Y116, R183,
C186

W94, V112, H113, Y116,
R183

E32, A98

WZ811 −41.80 ± 0.801 −5.51 Y116, E288 D97, W94, A98, V112, H113, Y116, I185, C186,
D187, A188, E288

W94, H113, Y116, C186 E32, D97

MSX-122 −36.71 ± 2.666 −4.76 Y116 D97, W94, A98, V112, H113, Y116, I185, C186,
D187

E32, W94, D97, H113,
Y116, R183, C186

—

FIGURE 6
The overall structure of CXCR4 (monomer) and the CXCR4 binding site (groove) for CXCL12 along with a close view of Clobenpropit interactions
with CXCR4. Green dashes represent salt bridges and velvet dashes represent π- π stacked and π- π T-shaped electrostatic interactions.
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clobenpropit in combination with Gemcitabine demonstrated that
H4 receptors were present and manifested as two subunits, while
H3 receptors were not expressed. Clobenpropit inhibited cell
migration and increased apoptosis. It has been shown that
Clobenpropit induces changes in gene expression associated with
cell adhesion and migration, including the upregulation of
E-cadherin, while the downregulation of vimentin and matrix
metalloproteinase 9 (MMP-9). Compared with Gemcitabine
alone, Clobenpropit significantly inhibited tumor growth in a
Panc-1 xenograft mouse model, decreasing tumor weight.
Correspondingly, Clobenpropit and Gemcitabine synergized to
increase apoptosis in the mouse model, owing to the
upregulation of E-cadherin and the downregulation of Zeb1.
According to these findings, Clobenpropit, particularly when
combined with Gemcitabine, shows efficacy at impeding tumor
progression and inducing programmed cell death, suggesting that
it may be a promising treatment for pancreatic cancer (Paik
et al., 2014).

The CXCR4 receptor is a potential therapeutic target in chronic
and acute inflammatory disorders (Smith et al., 2017).

IFNs-I derived from pDCs serve as a cornerstone of antiviral
defense and are vital to preventing viral propagation
(Khorramdelazad et al., 2022). Dysregulated IFNs-I production,
however, can have adverse effects in inflammatory and autoimmune
disorders, which is why pDCsmust be tightly regulated (Herbeuval and
Shearer, 2007). The impact of monoamines and polyamines on pDC
function has been uncovered, suggesting that a common receptor
mechanism is involved. Researchers have discovered that polyamine
derivatives such as spermine phenylguanide and spermidine
phenylguanide inhibit HIV-1 CXCR4-tropic strains, suggesting an
intricate interaction with this receptor (Wilkinson et al., 2011). In
addition, muroid and human pDCs cannot be developed in the BM
without CXCL12/CXCR4 signaling (Kohara et al., 2007; Tassone et al.,
2010). In particular, the internalization of CXCR4 plays a pivotal role in
attenuating pDC activation, delineating an important
immunomodulating mechanism. According to findings in a study,
Clobenpropit induces CXCR4 internalization in pDCs, whereas FFN-
511 (a fluorescent aminemimicking serotonin) colocalizes strongly with
CXCR4 (Smith et al., 2017). Therefore, inhibiting CXCR4 by
Clobenpropit could reduce the pathologic effects of dysregulated
pDC-derived IFNs-I production in inflammatory and
autoimmune diseases.

In TLR7-activated human pDCs, histamine and its analog
Clobenpropit inhibited the production of all subtypes of IFN by
engaging CXCR4. In the broncho-alveolar wash, Clobenpropit
administration through intranasal spray significantly reduced
type I and III IFN secretion in mice infected with IAV (Smith
et al., 2017). CXCR4, not histamine receptors, exclusively mediated
the anti-IFN activity of Clobenpropit. Clobenpropit may inhibit
monocyte-driven inflammation, particularly in RA, due to its
prominent expression in various immune cells, including
monocytes and macrophages.

The anti-inflammatory activity of Clobenpropit on monocytes
has been demonstrated by competitive experiments using
AMD3100 as a CXCR4 antagonist and siRNA-based approaches
for reducing CXCR4 expression (Smith et al., 2017). In addition to
emphasizing the role of CXCR4 signaling in IFN pathway
regulation, this study indicates CXCR4’s role in regulating

inflammation in a broad range of cell types, including monocytes
and pDCs. Considering the prevalence of type I IFNs in RA and their
functional activity, the concurrent suppression of IFNs and anti-
inflammatory effects of CXCR4 present significant clinical
advantages (Rönnblom and Eloranta, 2013). Researchers have
found that individuals with active RA have higher levels of
CXCR4 and its natural ligand, CXCL12, in serum and joint
synovial fluids. CXCR4 and CXCL12 expression levels were also
higher in the group with active RA compared to the group in
remission (Peng et al., 2020). It has been suggested that targeting
CXCR4 as a therapeutic strategy for RA patients could hold
considerable promise because of the increased accessibility
of CXCR4.

Compared to JAK inhibitors, Clobenpropit demonstrates its
impact at an earlier stage of the inflammatory process
(Bekaddour et al., 2023). Instead of directly targeting cytokine-
mediated signaling, Clobenpropit intervenes one step upstream
by inhibiting the production of inflammatory cytokines.
Compared to JAK inhibitors, this unique approach may offer
distinct benefits regarding therapeutic effectiveness. In mouse
models of RA with Clobenpropit treatment, the marked
reduction in disease progression suggests using Clobenpropit-like
molecules to target CXCR4 as a potential therapeutic strategy for
arthritic conditions (Bekaddour et al., 2023). Clobenpropit is a small
molecule with no side effects in in vivo preclinical models, indicating
that it could be a possible breakthrough drug for treating RA.
Clobenpropit modulates cytokine production to exert a
comprehensive anti-inflammatory effect by targeting the widely
expressed immune cell receptor CXCR4. Clobenpropit combines
these attributes to highlight it as a compelling RA treatment
candidate (Bekaddour et al., 2023). Regarding the role of
CXCR4 in TLR7-mediated inflammation and promising results
following treatment of TLR7-dependent lupus-like model with
IT1t (a CXCR4 inhibitor), it is possible that administrating
Clobenpropit reduces systemic inflammation by suppressing type
I IFNs production by pDCs and anti-dsDNA autoantibodies,
preventing glomerulonephritis in SLE (Smith et al., 2019) (Table 1).

Clobenpropit and AMD3100 have different mechanisms of
action (Bhatt et al., 2010). AMD3100’s main mechanism is its
ability to block CXCR4 and activate CXCR7, whereas
Clobenpropit modulates histamine H3 and CXCR4 receptors
(Kalatskaya et al., 2009; Liao et al., 2013). Compared with
AMD3100, clobenpropit exerts unique effects on target pathways,
potentially resulting in synergistic or complementary therapeutic
outcomes (Figure 5). However, it is noteworthy that AMD3100 may
be limited by side effects and resistance development in specific
clinical contexts, even though it has demonstrated efficacy in specific
clinical contexts (Sideeffects, 2024). In contrast, preclinical studies
suggest that clobenpropit may be more tolerated and sustainable as a
therapeutic option based on its promising efficacy and safety profiles
(Yang et al., 2002). Consideration should also be given to the specific
disease context. According to the severity and stage of the condition,
some drugs may be more effective than others. Clobenpropit is
expected to provide crucial insights for clinical decision-making
through comprehensive preclinical investigations and
comparative studies.

On the other hand, while several novel small molecules targeting
CXCR4 are in clinical and preclinical development phases,
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Clobenpropit may stand out for several reasons (Debnath et al.,
2013; Lu et al., 2024). Clobenpropit demonstrates superior efficacy
compared to early-stage drugs. According to our in silico studies,
Clobenpropit might exhibit the same or even stronger binding
affinity or more potent inhibitory effects on CXCR4-mediated
pathways crucial for disease progression compared with novel
CXCR4 inhibitors, such as WZ811 and MSX-122. This efficacy
could be demonstrated through preclinical studies or even early
clinical trials. Moreover, Clobenpropit may possess a more favorable
safety profile. This aspect is critical in drug development, especially
in autoimmune and cancer diseases where patients may already be
compromised in terms of their health status. A better safety profile
can translate into reduced adverse effects and improved patient
compliance and outcomes (Bekaddour et al., 2021). Clobenpropit
might exhibit favorable pharmacokinetic and pharmacodynamic
properties, such as better bioavailability, longer half-life, or more
predictable metabolism (Ishizuka et al., 2008). These factors
contribute to the drug’s effectiveness and suitability for clinical
use. As discussed, Clobenpropit may act through novel
mechanisms beyond mere CXCR4 antagonism (Bekaddour et al.,
2021). This could involve additional pathways or synergistic effects
that enhance its therapeutic potential, offering a unique advantage
over other CXCR4-targeting agents (McHugh, 2019). Clobenpropit
may have advanced further along the clinical development pipeline
compared to the early-stage drugs if applicable. This could imply a
more comprehensive understanding of its efficacy, safety, and
dosing regimens through advanced clinical trials or real-world data.

7 Concluding Remarks

Since the CXCL12/CXCR4 axis plays a crucial role in cancer and
AD pathogenesis, inhibiting it seems like a promising therapeutic
approach. Notably, several inhibitors for CXCR4 have been
conceptualized and developed, with AMD3100 standing out as
one of the most significant achievements, having been approved
by the FDA in 2008 and showing efficacy in the treatment of cancer
and AIDS, as well as transplantation (De Clercq, 2019). Our
molecular docking analyses have unveiled promising binding
scores for Clobenpropit compared to other potent
CXCR4 inhibitors. Furthermore, the compound’s dual inhibitory
action on H3 and H4 histamine receptors warrants attention, given
the pivotal roles of these receptors in fostering cancer and ADs, such
as RA. Clobenpropit’s concurrent and synergistic impact on these
receptors may yield favorable outcomes in the context of cancer and
AD treatment.

Even with the intriguing dual mechanism of action, the current
shortage of comprehensive studies hampers a conclusive
determination of Clobenpropit’s efficacy in inhibiting CXCR4.
Further investigations across preclinical and clinical phases are
imperative to elucidate the precise role of Clobenpropit in the
treatment of malignancies and ADs through CXCR4 inhibition.
These studies would not only contribute to substantiating the
therapeutic potential of Clobenpropit but also shed light on its
intricate interplay with histamine and CXCR4 receptors, thus
advancing our understanding of its therapeutic utility.
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