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Purpose: This study assessed the effect of amoxicillin on outcomes in intensive
care unit (ICU) patients with acute kidney injury (AKI), focusing on mortality rates
and acute kidney disease (AKD) occurrence.

Materials and Methods: We conducted a retrospective cohort analysis utilizing
data from theMedical InformationMart for Intensive Care IV (MIMIC-IV) database.
The study included intensive care unit patients diagnosed with AKI to assess the
effects of post-admission amoxicillin administration on 30-day and 90-day
mortality rates and acute kidney disease incidence. We employed Cox
proportional hazards models, propensity score matching, and inverse
probability of treatment weighting to control for potential confounders.

Results: Among 24,650 AKI patients, 676 (2.7%) received amoxicillin. The
results indicated significantly lower mortality rates at 30 days (hazard ratio
[HR] 0.54, 95% confidence interval [CI] 0.42–0.69) and 90 days (HR 0.64, 95%
CI 0.52–0.77) in the amoxicillin group compared to non-recipients.
Additionally, amoxicillin administration was associated with a reduced
incidence of AKD (HR 0.49, 95% CI 0.36–0.65) but resulted in a modestly
increased length of hospital stay (mean difference [MD] 1.95 days, 95% CI
1.15–2.75). A dose‒response relationship was evident, with higher doses
(>875 mg) further decreasing mortality rates. Subgroup analysis revealed
consistent benefits across most patient groups.

Conclusion: Amoxicillin administration following ICU admission in patients with
AKI was associated with improved survival rates and a lower incidence of AKD,
highlighting its potential as a therapeutic measure for AKI management.
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1 Introduction

Acute kidney injury (AKI) represents a significant medical challenge, affecting
approximately one-third of patients in intensive care units (ICUs) (Mehta et al., 2015).
This condition is associated with increased mortality rates both in the short and long term
and elevates the risk of progressing to chronic kidney disease (CKD), particularly in severe
cases of AKI (Levey and James, 2017; Hoste et al., 2018). Despite advancements in critical
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care and dialysis technologies, the development of effective
therapeutic strategies for AKI remains limited (Pickkers et al., 2021).

The gut microbiota has emerged as a pivotal factor in the
pathophysiology of AKI, mediated through intricate interactions
between the host immune system and the ecosystem of the
gastrointestinal tract (Andrade-Oliveira et al., 2015; Nakade et al.,
2018; Yang et al., 2020). Recently, a groundbreaking study by
Gharaie et al. revealed that the administration of antibiotics,
specifically amoxicillin, can facilitate the repair process in
ischemic AKI by modulating the gut microbiota, even when
administered after injury (Gharaie et al., 2023). Additionally, a
study conducted by Jeonghwan et al. suggested that amoxicillin-
induced intestinal microbiota depletion can attenuate the AKI-to-
CKD transition via NADPH oxidase 2 and trimethylamine-N-oxide
inhibition (Lee et al., 2024).

Amoxicillin, a widely prescribed penicillin and a beta-lactam
antibiotic, has traditionally been associated with adverse effects on
renal function, with high intravenous doses implicated in the onset of
AKI (Garnier et al., 2020; Mousseaux et al., 2021). This perspective,
however, is being challenged by emerging evidence that underscores the
protective effect of amoxicillin in acute ischemic scenarios. Nakamura
et al. demonstrated that a 10-day pretreatment with amoxicillin
effectively prevented acute ischemic liver injury in a mouse model
(Nakamura et al., 2019). Furthermore, recent studies by Gharaie et al.
and Jeonghwan et al. suggested that amoxicillin following severe AKI
could represent a promising novel therapeutic strategy to accelerate the
recovery of kidney function (Gharaie et al., 2023; Lee et al., 2024).
Despite these findings, the effectiveness of amoxicillin in clinical settings
has not been well-established, and fundamental studies on treating AKI
with amoxicillin are still limited.

We therefore aimed to investigate the impact of amoxicillin
administration on the prognosis of AKI in ICU patients. We focused
on evaluating whether amoxicillin exposure following ICU
admission correlates with a decrease in mortality rates at 30 and
90 days. Furthermore, we explored the association between
amoxicillin treatment and a reduced incidence of acute kidney
disease, characterized by AKI lasting beyond 7 days, up to 90 days.

2 Method

2.1 Data sources

The Medical Information Mart for Intensive Care IV ver 2.0
(MIMIC-IV, version 2.0) is a large and openly accessible critical care
database. It includes more than 70,000 ICU admissions hospitalized
at the Beth Israel Deaconess Medical Center (Boston, United States)
from 2008 to 2019. Authorization to access and utilize this database
was granted to one of the authors after successfully completing the
Protecting Human Research Participants course offered by the
National Institutes of Health (LX, certification number 12059504).

Permission for the establishment of this database was obtained
from the Institutional Review Boards of both the Massachusetts
Institute of Technology (MIT, Cambridge, MA, United States) and
the Beth Israel Deaconess Medical Center. This project complied
with the Helsinki Declaration, and no additional ethics approval was
necessary. To ensure privacy, all patient data included were
anonymized. This retrospective observational study adhered to

the guidelines of the Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE) initiative.

2.2 Population selection criteria

Eligible patients with AKI were those who were older than
18 years old at admission and who had been hospitalized for more
than 48 h. Patients were excluded from our study if 1) >5% of their
individual data were missing or 2) the baseline values exceeded the
median ±1.5 times the interquartile range. AKI diagnosis followed
the Kidney Disease: Improving Global Outcomes (KDIGO)
guidelines (Lameire et al., 2021), which specify changes in serum
creatinine (SCr) levels and urine output. Stage 1 is defined as an
increase ≥1.5 times the baseline SCr within the prior 7 days or
0.3 mg/dL in the SCr within 48 h or a urine output <0.5 mL/kg/h per
6 h. Stage 2 is characterized by an increase in SCr ≥2.0 times the
baseline or a urine output <0.5 mL/kg/h per 12 h. Stage 3 is
characterized by an increase in SCr ≥3.0 times baseline,
SCr ≥4.0 mg/dL, initiation of renal replacement therapy (RRT),
or urine output <0.3 mL/kg/h per 24 h. Patients who were diagnosed
with AKI 6 h before to 48 h after ICU admission were included in the
study. Baseline SCr was identified as the lowest value within 7 days
or 48 h prior to AKI diagnosis.

2.3 Data extraction

Patient data were retrieved from the MIMIC-IV database using
Structured Query Language (SQL) via PostgreSQL tools (version
15.1). The dataset included patient identifiers, clinical and
laboratory parameters, comorbidities, and scoring systems. The
clinical parameters included age, sex, ethnicity, heart rate, systolic
blood pressure (SBP), percutaneous oxygen saturation (SPO2),
diastolic blood pressure (DBP), vasopressin use, ventilator use,
and RRT. The following laboratory parameters were measured:
anion gap, blood urea nitrogen (BUN) level, SCr level, potassium
level, red blood cell (RBC) count, red cell distribution width (RDW),
and international normalized ratio (INR).

The scores, including the Sequential Organ Failure Assessment
(SOFA) score and Glasgow Coma Scale (GCS) score, were calculated
for each patient. Only the data from the first admission to the ICU were
collected for patients who had multiple admissions to the ICU. The
following comorbidities were identified: hypertension, diabetes, coronary
artery disease, chronic obstructive pulmonary disease (COPD),
malignancy, hematologic disease, atrial fibrillation, liver disease, shock,
and sepsis based on the ninth or 10th revision of the International
Classification of Diseases (ICD-9/10) code. The first measured values
within 6 h before ICU admission and within 48 h after ICU admission
were used as the baseline data. Amoxicillin exposure was defined as the
administration of at least one dose of amoxicillin orally or via a
nasogastric tube between 48 h before ICU admission and ICU discharge.

2.4 Outcomes

The primary outcome of our study focused on 30-day all-cause
mortality. The secondary outcomes included 90-day mortality,
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TABLE 1 Baseline characteristics of the study population.

Characteristic Use of amoxicillin p-value

All patients (n = 24,650) Non-amoxicillin (n = 23,974) Amoxicillin (n = 676)

Age, years 67.92 (15.53) 67.93 (15.49) 67.79 (17.16) 0.82

Sex, n (%) 0.977

Female 10,351 (42.0) 10,068 (42.0) 283 (41.9)

Male 14,299 (58.0) 13,906 (58.0) 393 (58.1)

Ethnicity, n (%) 0.812

Black 2059 (8.4) 1998 (8.3) 61 (9.0)

Other 5694 (23.1) 5540 (23.1) 154 (22.8)

White 16,897 (68.5) 16,436 (68.6) 461 (68.2)

SBP, mmHg 123.06 (24.98) 122.99 (25.00) 125.51 (24.44) 0.01

DBP, mmHg 67.06 (17.97) 67.00 (17.97) 68.93 (17.77) 0.006

Heart rate, beats/minute 85.00 [75.00, 100.00] 85.00 [75.00, 100.00] 87.00 [75.00, 102.00] 0.083

SpO2, % 99.00 [96.00, 100.00] 99.00 [96.00, 100.00] 98.00 [95.75, 100.00] 0.038

Hypertension, n (%) 14,370 (58.3) 14,000 (58.4) 370 (54.7) 0.062

Diabetes, n (%) 7999 (32.5) 7783 (32.5) 216 (32.0) 0.811

Coronary artery disease, n (%) 9320 (37.8) 9114 (38.0) 206 (30.5) <0.001

COPD, n (%) 2788 (11.3) 2706 (11.3) 82 (12.1) 0.535

Liver disease, n (%) 3534 (14.3) 3436 (14.3) 98 (14.5) 0.948

Atrial fibrillation (%) 4094 (16.6) 3978 (16.6) 116 (17.2) 0.735

Shock (%) 3296 (13.4) 3212 (13.4) 84 (12.4) 0.5

Sepsis (%) 14,560 (59.1) 14,096 (58.8) 464 (68.6) <0.001

Anion gap, mmol/L 15.00 [12.00, 18.00] 15.00 [12.00, 18.00] 15.00 [13.00, 18.00] <0.001

BUN, mg/dL 20.00 [14.00, 32.00] 20.00 [14.00, 32.00] 21.00 [15.00, 33.00] 0.134

Serum creatinine, mg/dL 1.00 [0.80, 1.50] 1.00 [0.80, 1.50] 1.10 [0.80, 1.60] 0.27

Serum potassium, mmol/L 4.20 [3.80, 4.70] 4.20 [3.80, 4.70] 4.20 [3.80, 4.70] 0.547

INR 1.30 [1.10, 1.50] 1.30 [1.10, 1.50] 1.30 [1.10, 1.50] 0.653

RBC, 1012/L 3.60 [3.02, 4.21] 3.59 [3.02, 4.21] 3.65 [3.03, 4.20] 0.483

RDW, % 14.30 [13.30, 15.80] 14.30 [13.30, 15.80] 14.50 [13.40, 16.00] 0.013

SOFA 5.00 [3.00, 8.00] 5.00 [3.00, 8.00] 5.00 [3.00, 7.00] 0.005

GCS 14.00 [10.00, 15.00] 14.00 [10.00, 15.00] 14.00 [11.75, 15.00] 0.135

AKI KDIGO stage, n (%) 0.558

Stage 1 7344 (29.8) 7155 (29.8) 189 (28.0)

Stage 2 12,441 (50.5) 12,093 (50.4) 348 (51.5)

Stage 3 4865 (19.7) 4726 (19.7) 139 (20.6)

Renal replacement therapy, n (%) 1287 (5.2) 1264 (5.3) 23 (3.4) 0.039

Vasoactive use (%) 11,753 (47.7) 11,508 (48.0) 245 (36.2) <0.001

Ventilator use (%) 12,436 (50.5) 12,127 (50.6) 309 (45.7) 0.014

Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood pressure, SpO2 percutaneous oxygen saturation, COPD, chronic obstructive pulmonary disease; BUN, blood urea nitrogen;

INR, international normalized ratio; RBC, red blood count; RDW, red cell distribution width; SOFA, sequential organ failure assessment; GCS, glasgow coma scale; KDIGO, Kidney Disease:

Improving Global Outcomes. Normally distributed data are presented as the mean (SD) (analysis of variance); non-normally distributed data are presented as median (IQR) (nonparametric

Wilcoxon test); and categorical variables are presented as n (%) (chi-square test).
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incidence of AKD, duration of ICU stay, and total length of hospital
stay. AKD diagnosis followed the 2017 Acute Disease Quality
Initiative-16 (ADQI-16) criteria, characterizing AKD as AKI
persisting for more than 7 days following the initial AKI event.

2.5 Statistical analysis

Baseline characteristics were categorized based on whether
patients were treated with amoxicillin and are presented as
frequencies (percentages) for categorical variables and means
(standard deviations) or medians (interquartile ranges) for
continuous variables. For group comparisons, the chi-square test
was used for categorical data. For continuous variables, we employed
analysis of variance or the Mann–WhitneyU test as appropriate. We
accounted for missing baseline data by using multiple imputation.

We used a stepwise selection method to choose variables for
inclusion in the Cox proportional hazards models. This method
involves iteratively adding or removing variables based on statistical
criteria to identify the most significant predictors. Cox proportional
hazards models were constructed to test the associations between
amoxicillin administration and outcomes, with adjustment for all
potential confounding variables, including age, sex, ethnicity,
vasoactive use, RRT, GCS score, SOFA score, RDW, anion gap,
potassium, BUN, SCr, INR, heart rate, SPO2, shock, sepsis, coronary
artery disease, liver disease, atrial fibrillation, and COPD (listed
in Table 1).

We conducted a series of sensitivity analyses to rigorously test the
robustness of our outcomes. Initially, a preplanned multivariable Cox
regression analysis was performed. Subsequently, to address potential
confounding factors, we employed propensity score matching (PSM),
aligning patients based on whether they received amoxicillin. A caliper
width of 0.2 was used to ensure closematching of patient characteristics.
The balance between the groups was evaluated using the standardmean
difference (SMD), with a threshold SMD of 0.1 set as the criterion for
significant baseline imbalance (Austin, 2011). After matching, we
analyzed the outcomes using a Cox regression model to confirm the
consistency of our findings.

Furthermore, to further refine our adjustment for potential
confounders, we performed inverse probability of treatment
weighting (IPTW) analysis. Weights for this analysis were derived
from a multivariable Cox regression model incorporating the same
covariates as the primary analysis. This method assigns weights to each
patient based on the inverse probability of receiving the treatment they
actually received, thus creating a synthetic sample in which the
distribution of measured covariates is independent of treatment
assignment (Raad et al., 2020; Chesnaye et al., 2022). The impact of
amoxicillin on the risk of 30-day and 90-day mortality, as well as AKD,
was then estimated by weighted Cox regression model with IPTW.

For outcomes including ICU length of stay and hospital length
of stay, we employed linear regression models, adjusting for the
covariates outlined earlier in our analysis.

Potential effect modifications by sex, ethnicity, age, GCS score,
SOFA score, shock, sepsis, vasoactive use, and AKI stage were
assessed by subgroup and interaction analyses for the primary
outcome. Subgroup analyses were performed using multivariable
Cox regression models, with a p-value for interactions less than
0.1 indicating a significant interaction.

Outcomes were measured as hazard ratios (HRs) for categorical
variables and mean differences (MDs) for continuous variables,
along with their 95% confidence intervals (CIs). Data analysis was
conducted using R software version 4.2.2. A two-tailed p-value less
than 0.05 was considered to indicate statistical significance.

3 Results

3.1 Subject characteristics

A total of 27,571 critically ill patients with AKI were included in our
study. After excluding patients according to the exclusion criteria,
24,650 patients with AKI were included in the analysis (Figure 1).
Among these, 676 (2.7%) patients had been exposed to amoxicillin,
while 23,974 (97.3%) had not received the antibiotic. The average age of
the study participants was 67.9 years, with males comprising 58.0%
(14,299) and females comprising 42.0% (10,351) of the sample.

Patient characteristics are detailed in Table 1. Notably, individuals
in the non-amoxicillin group were more likely to present with sepsis
and malignancy but less likely to suffer from coronary artery disease.
Additionally, this group exhibited higher SOFA scores and lower levels
of anion gap and RDW than did the amoxicillin group.Moreover, there

FIGURE 1
Flowchart of the study Abbreviations: MIMIC IV Multiparameter
Intelligent Monitoring in Intensive Care Database IV; AKI acute
kidney injury.
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were no significant differences in GCS score, BUN level, SCr level, or
AKI stage between the two groups.

3.2 Associations between amoxicillin and
30-day mortality and 90-day mortality

The 30-day mortality rate was significantly lower in the
amoxicillin group (9.0%) compared to the non-amoxicillin group
(15.8%) with a hazard ratio (HR) of 0.54 (95% confidence interval
[CI] 0.42–0.70, p < 0.001) (Figure 2). Similarly, the 90-day mortality
rate was also lower in the amoxicillin group (15.4%) compared to the

non-amoxicillin group (21.2%), with an HR of 0.68 (95% CI
0.56–0.83, p < 0.001) (Figure 2).

Even after adjusting for clinically relevant covariates, the
association between amoxicillin administration and reduced
mortality remained significant. The adjusted HR for 30-day
mortality was 0.54 (95% CI 0.42–0.69, p < 0.001), and for 90-day
mortality, it was 0.64 (95% CI 0.52–0.77, p < 0.001) (Figure 2).

After PSM, 674 patients who received amoxicillin were matched
with 674 patients who did not (Supplemental Table S1). This
analysis demonstrated that amoxicillin administration was
associated with significantly lower 30-day mortality (HR = 0.44,
95% CI 0.32–0.61, p < 0.001) and 90-day mortality (HR = 0.53, 95%

FIGURE 2
The association between amoxicillin administration and clinical outcomes in patients with AKI. (A). Association between amoxicillin administration
and clinical outcomes. Four different methods were used to address the associations: 1) univariable Cox regression, 2) multivariable Cox regression,
3) propensity score matching, and 4) inverse propensity weighted modeling. (B). Kaplan‒Meier survival curves of the amoxicillin group and
non-amoxicillin group after PSM for 30-day mortality. (C). Kaplan‒Meier survival curves of the amoxicillin group and non-amoxicillin group after
PSM for 30-daymortality. Notes: HRs (95% CIs) were derived fromCox proportional hazards regressionmodels. Covariates were adjusted as in themodel
II. The MDs (95% CIs) were derived from linear regression models. Covariates were adjusted as in the model II. Abbreviations: HR hazard ratio; MD mean
difference; PSM propensity score matching; IPTW inverse probability of treatment weighting; ICU intensive care unit.
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CI 0.41–0.69, p < 0.001) (Figure 2). The IPTW analyses also
supported these findings, showing that the amoxicillin group had
lower 30-daymortality (HR = 0.50, 95% CI 0.38–0.67, p < 0.001) and
90-daymortality (HR = 0.61, 95%CI 0.49–0.75, p < 0.001) compared
to the non-amoxicillin group (Figure 2).

Figure 3 shows the SMDs for all the individual covariates. After
PSM and IPTW, the baseline profiles were all balanced between the
two groups, with an SMD<10% for all variables.

According to the Kaplan‒Meier survival curve for 30-day
mortality, mortality was lower for the amoxicillin group than for
the non-amoxicillin group (HR = 0.54; p < 0.001). After PSM, the
Kaplan-Meier survival curve for 30-day mortality remained lower
for the amoxicillin group than for the non-amoxicillin group (HR =
0.44; p < 0.001), as noted in Figure 2. Similar results were observed
for 90-day mortality.

3.3 Associations between amoxicillin and
AKD incidence and length of stay

The incidence of AKD was lower in patients exposed to
amoxicillin compared to those who were not. The unadjusted HR

was 0.46 (95% CI 0.35–0.61, p < 0.001). After adjusting for relevant
covariates, the HR was 0.49 (95% CI 0.36–0.65, p < 0.001). Post-PSM
analysis yielded an HR of 0.52 (95% CI 0.36–0.77, p < 0.001), and the
IPTW analysis showed an HR of 0.49 (95% CI 0.46–0.52, p < 0.001)
(Figure 2). Nevertheless, amoxicillin use was associated with a longer
length of hospital stay (MD = 1.95, 95% CI 1.15–2.75, p <
0.001) (Figure 2).

3.4 Association between amoxicillin dose
and mortality

The amoxicillin group can be divided into two groups based on
the dose of amoxicillin: the high-dose amoxicillin group
(dose ≥875 mg), which consisted of 1.4% (n = 351) of patients,
and the low-dose amoxicillin group (dose <875 mg), which
consisted of 1.3% (n = 325) of patients. In multivariate analysis,
the amoxicillin dose was analyzed to determine whether it was
independently associated with all-cause mortality (Figure 4).

In model I adjusted for age, ethnicity, and sex, the high-dose
group was associated with a decreased risk of 30-day mortality (p <
0.001) and 90-day mortality (p < 0.001) (Figure 4). The HRs (95%

FIGURE 3
Love plot of balance in baseline characteristics before and after PSM and IPTW in the MIMIC-IV database. Note: Balance in baseline characteristics
before and after PSM and IPTW in the MIMIC-IV database. After PSM and IPTW, the standardized mean differences in the baseline and clinical
characteristics were well balanced. Abbreviations: GCS, Glasgow Coma Scale; DBP, diastolic blood pressure; SBP, systolic blood pressure; RDW, red cell
distribution width; BUN, blood urea nitrogen; INR, international normalized ratio; PT, prothrombin time; RBC, red blood cell; COPD, chronic
obstructive pulmonary disease; SpO2, percutaneous oxygen saturation; SOFA, Sequential Organ Failure Assessment.
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CIs) for the high-dose group were 0.46 (0.44–0.67) and 0.54
(0.40–0.74), respectively (Figure 4). Moreover, the low-dose
group had a decreased risk of 30-day mortality (p = 0.003)
(Figure 4). The HR (95%CI) for the low-dose group was 0.61
(0.43–0.85) (Figure 4).

In model II, after adjusting for the aforementioned covariates, a
high dose of amoxicillin remained a significant predictor of all-cause
mortality at 30 days and 90 days (HR, 95% CI: 0.45, 0.31–0.67; 0.50,
0.37–0.68, both p < 0.001), while a low dose of amoxicillin was also
associated with decreased 30-day mortality (HR, 95% CI: 0.62,
0.44–0.87) (Figure 4). The Kaplan‒Meier survival curve also
indicated that the high-dose group had lower mortality than the
low-dose group (Figure 4).

3.5 Subgroup analysis

According to the subgroup analysis, the association between
amoxicillin and the risk of 30-day mortality was similar in most
strata (Figure 5). Although significant interactions were observed
for subgroups stratified by age and SOFA score, the direction of
the association between amoxicillin and the risk of 30-day

mortality remained stable in most strata, except for ethnicity.
For patients of white and other ethnicities, the use of amoxicillin
was associated with decreased mortality (HR, 95% CI: 0.49,
0.34–0.72; HR, 95% CI: 0.27, 0.13–0.56), while no significant
difference in mortality existed for black patients (HR, 95% CI:
0.57, 0.21–1.53) (Figure 5).

4 Discussion

Our study, analyzing the population with AKI, revealed that
amoxicillin administration is correlated with reduced 30-day
mortality and 90-day mortality and decreased AKD incidence.
Notably, a dose-dependent attenuation in mortality was observed
with amoxicillin dosages between 875 mg and 2000 mg. To test the
association between amoxicillin administration and patient
outcomes, we constructed Cox proportional hazards models with
adjusted potential confounding variables. Kaplan‒Meier survival
curves also demonstrated this pattern. Furthermore, we employed
PSM and IPTW analysis to further refine our adjustment for
potential confounding variables. Subgroup analyses were
performed to show significant interactions.

FIGURE 4
The association between survival outcomes and different dosages and the Kaplan‒Meier survival curves of the high-dose group, low-dose group
and non-amoxicillin group. (A). HRs (95% CIs) for all-cause mortality across groups divided by therapeutic dose. (B). Group for 30-day mortality. (C). 90-
day mortality group. Models I and II were derived from Cox proportional hazards regression models; Model I covariates were adjusted for age, ethnicity,
and sex; Model II covariates were adjusted for age, ethnicity, vasoactive use, renal replacement therapy, GCS score, SOFA score, RDW, potassium,
chloride, anion gap, MCV, BUN, serum creatinine, urine output, INR, white blood cell count, heart rate, temperature, SpO2, malignancy, shock, deficiency
anemia, sepsis, coronary artery disease, liver disease, atrial fibrillation, and chronic obstructive pulmonary disease.
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β-Lactam antibiotics, which are crucial for treating bacterial
infections, have been implicated in increasing AKI risk,
particularly when combined with vancomycin (Downes et al.,
2017; Lima et al., 2020). Previous research suggested that high β-
lactam dosages are a potential cause of AKI, particularly at doses
above 8 g in total (Bellos et al., 2020). Our research diverges by
focusing on lower amoxicillin dosages, where we observed a
significant decrease in mortality, particularly at doses above
875 mg and below 2000 mg.

In our study, we focused on individuals suffering from AKI
and discovered that amoxicillin was associated with decreased
30-day mortality and 90-day mortality. In addition to reducing
mortality, we observed a notable decrease in the incidence of
AKD, further confirming the efficacy of amoxicillin in improving
AKI prognosis and renal function, which may slow the
progression of AKI to CKD. Recent investigations have
proposed that the pharmacological effects of amoxicillin may
be intricately linked to alterations within the intestinal
microbiome (Palleja et al., 2018; Zimmermann and Curtis,
2019). The gut microbiota, which is essential for

gastrointestinal homeostasis, is widely recognized to
significantly impact renal function (Dalile et al., 2019; Gharaie
et al., 2020; Chou et al., 2022; Portincasa et al., 2022). A recent
study by Gharaie et al. utilizing a murine model demonstrated
that amoxicillin can expedite renal recovery following severe
AKI, as evidenced by improved glomerular filtration rates and
diminished fibrosis (Gharaie et al., 2023). This regenerative
process is facilitated through modifications in renal CD8+

T cells and PD1+CD8+ cells. Additionally, Jeonghwan et al.
revealed that antibiotic-induced intestinal microbiota
depletion can attenuate the AKI-to-CKD transition. This study
indicated that plasma trimethylamine N-oxide (TMAO) is a key
metabolite associated with the AKI-to-CKD transition and that
NADPH oxidase 2 (NOX2) activation is a key regulator of the
TMAO-related AKI-to-CKD transition. Antibiotic-induced
microbiota depletion successfully inhibited gut microbiome-
derived TMAO metabolites and attenuated inflammation,
apoptosis, G2/M arrest, and fibrosis via NOX2 suppression
(Lee et al., 2024). Furthermore, the influence of antibiotics on
the gut microbiota in germ-free mice substantiated their

FIGURE 5
Subgroup analysis of the association between 30-day mortality and amoxicillin administration. Note: HRs (95% CIs) were derived from Cox
proportional hazards regression models. Covariates were adjusted as in the model II. Abbreviations: HR hazard ratio, GCS Glasgow Coma Scale, SOFA
Sequential Organ Failure Assessment, AKI acute kidney injury.
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contributory role in renal repair (Gong et al., 2019). Our findings
align with these findings, suggesting that the administration of
amoxicillin may be a beneficial approach for improving
AKI prognosis.

Our results demonstrated that amoxicillin use was associated
with a longer length of hospital stay, which may reflect that those
who did not receive amoxicillin potentially have higher mortality.
Thus, an extended length of hospital stay might indicate lower
mortality and better treatment outcomes, which is consistent with
our findings. The subgroup analyses showed that the association
between amoxicillin and the risk of 30-day mortality was similar in
most strata. Regarding demographic variations, our results showed
no significant difference in the effect of amoxicillin on black patients.
However, the small sample size (9%) of black patients and the
potential impact of gut microbiota diversity across ethnicities
warrant further investigation (Syromyatnikov et al., 2022).

A consensus report of the Acute Disease Quality Initiative
16 Workgroup suggested that treatment for infection with an
antibiotic for survival is necessary and might prevent or
ameliorate AKI by treating underlying causes and complications.
On the other hand, combining nephrotoxins can result in
pharmacodynamic drug interactions, which may lead to the
worsening of the disease (Chawla et al., 2017). A prospective
study is required to clarify the appropriate dose of amoxicillin
for the treatment of AKI in the future.

There are several limitations to our study. First, most of the
patients we included did not receive amoxicillin, so after PSM, the
sample size was relatively small. Second, we could not evaluate the
upper limit of the proper dosage of amoxicillin. To determine the
therapeutic effect of amoxicillin, additional clinical studies and
randomized controlled trials should be performed. Third, despite
the multivariable analysis and propensity score matching, residual
confounding factors cannot be fully excluded. Fourth, due to the lack
of follow-up serum creatinine data after ICU discharge, we were
unable to assess the long-term renal recovery of the patients. Finally,
this study was conducted using data from a single center. Therefore,
these findings should be validated in multicenter trials to ensure
their generalizability across different populations and
clinical settings.

5 Conclusion

The administration of amoxicillin is associated with lower
30-day mortality and 90-day mortality and a decreased incidence
of AKD in AKI patients in the ICU. These outcomes suggest that
amoxicillin might be a therapeutic intervention for a better AKI
prognosis. Additional studies are needed to determine the
efficiency, dosage, and duration of amoxicillin for
AKI treatment.
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