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Throughout its history, humanity has been exposed to various diseases. As human
society evolved, the incidence and prevalence of communicable and non-communicable
diseases varied over centuries. Attempting to influence the disease course and prevent
mortality, societies have given much attention to inventing new treatment methods and
developing drugs. As a result of those efforts, drug discovery expenditures have been
constantly increasing in the past years, and it seems that they will keep increasing over the
years to come. Although, during the preclinical phase of drug discovery, great efforts are put
into the selection of the best molecules for further progression (Dowden and Munro, 2019),
a lack of efficacy in humans contributes significantly to a high attrition rate of new
molecular entities in the clinical trials (Schlander et al., 2021; Sun et al., 2022) and calls for
innovative scientific solutions in pharmaceutical research and development.

Translational medicine (TM) is a rather recent, but rapidly developing scientific field,
defined by the European Society for Translational Medicine as an “interdisciplinary branch
of the biomedical field supported by three main pillars: benchside, bedside, and community.
The goal of TM is to combine disciplines, resources, expertise, and techniques within these
pillars to promote enhancements in prevention, diagnosis, and therapies” (Cohrs et al.,
2015). Translational medical research is divided into five stages: T0 research represents
basic in vitro and in vivo research; T1 research stage covers the translation of basic research
knowledge to humans (target engagement, Phase 1 clinical research) followed by T2 stage
investigating success of translation to patients (Phase 2 and 3 clinical trials) while in the
T3 research stage success of clinical implementation is evaluated, and finally, translation to
communities is in the focus of T4 research stage (Callard et al., 2011; IOM, 2013).

Translational pathology has been opening the doors for research within translational
medicine by translating clinical data into basic research. Therefore, pathologists have been
encouraged to participate in “reverse translational research” that broadens the knowledge of
mechanisms underlying known clinical entities (Zhang, 2022). On the other hand, under the
umbrella of translational research, translation pathology focuses on applying the knowledge
gained by basic science research to clinical practice (Translational Science Spectrum, 2020). In
the eyes of the authors, translational pathology may be regarded as an even broader scientific
discipline, offering opportunities to improve the drug discovery process by helping to
circumvent numerous obstacles, paving the path from target validation to clinical trials
and reverse, from clinical to basic research (Figure 1), thus contributing to building up a bridge
over “Translational gap” (Hartl et al., 2021) and “Walley of death” (Seyhan, 2019). We will try
to outline the possible use of data gained by pathohistological evaluation along the drug
discovery process highlighting target validation, design of an in vitro and in vivo screening
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cascade, pharmacokinetic studies, and clinical trials including the
impact of reverse translational pathology on drug discovery process.

Target validation is a crucial step in the early, Stage 1 drug
discovery process (Singh et al., 2023). Possible drug targets are
identified in various biological studies, ranging from molecular
biology interventions to clinical research. The usage of knock-in
and knock-out experimental animals and cell lines enabled a
detailed study of tissue changes at molecular and morphological
levels, induced by gene/protein alterations, important to understand
human disease pathology (Doyle et al., 2012). Nevertheless, not all
suggested drug targets, proven to play a role in disease-related
in vitro systems and/or animal models, have had an impact on
human disease course. Numerous strategies have been implemented
to reduce the drug attrition rate caused by insufficient drug target
validation including AstraZeneca’s “5R framework” strategy
(Morgan et al., 2018) that embraces the “Right target within the
right tissue in the right patient” motto. Although such strategies
have improved the success rate in drug development, efficient target
assessment remains a difficult task (Emmerich et al., 2021).

Translational pathology may support efforts to achieve the above-
defined 5R research goal by studying drug-target expression dynamics,
on a protein and mRNA level, in human disease along its’

developmental path and by comparing target expression during
various stages of the disease to the pattern within non-diseased
tissue (Figures 2A, B). In contrast to methods based on the analysis
of tissue homogenates, the evaluation of histological slides offers insight
into target-bearing cell type (Čužić et al., 2021), as well as cell-cell, cell-
extracellular matrix interactions within the tissue (Zidar et al., 2020;
Mahdi et al., 2023), and impact of active substances secreted by
constitutive, metaplastic (Antolić et al., 2019) or infiltrating cells,
thus enabling understanding of physiological and pathophysiological
processes taking place in their natural environment. Through decades of
research, it became evident, that the cellular “environment” plays a
crucial role in the cell phenotype through its’ life; during development,
in health, and in disease. Understanding the importance of the
environment and structural organization of tissue and its’ niches,
gained through thorough pathological evaluation, initiated the
development of an array of new omics and spatial technologies that
are being employed to study the pathophysiology of human disease
within the spatial context (Conrad and Altmüller, 2022; Britt, 2023).
Further, a significant effort has been invested to develop in vitro
system(s) representing human tissue structure and function,
providing experimental conditions as close as possible to human
tissue/disease environment (Allen et al., 2023).

FIGURE 1
Translational pathology in drug discovery.
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The design of an in vitro and in vivo screening cascade focused on
the targeted patient population relies on a deep understanding of the
disease and comprehensive translational research. Research within the
field of translational pathology notably contributes to the elucidation of
possible impediments and enables the bypassing of drawbacks along the
drug discovery path. A dataset gained during the target/pathway
validation phase of the early drug research process is essential to set
up a novel drug/antibody/oligonucleotide selection cascade and optimal
biomarkers that should be monitored throughout the whole drug
discovery and development process. One of the crucial steps during
early compound efficacy testing is the establishment of in vitro assays,
either using cell lines, primary human/rodent cells, or human tissue.
Pathohistological evaluation could contribute to translating data

collected from human disease into in vitro systems that should
closely outline the pathophysiological process of interest by
determining the level of drug-target expression (Figures 2A, B, D,
E–G), target-synthesis at mRNA level (Figure 2H), targets’ (sub)
cellular location within the tissue (Bosnar et al., 2011) and cell
culture at various time-points during in vitro cultivation period
(Figure 2C). Histological readouts on downstream events, upon
biologically relevant trigger and/or pharmacological treatment in the
in vitro culture of tissue explants fromhealthy and diseased donors, naïve
and genetically modified animals, animal models, and/or 3D cell
cultures, could highlight differences in physiological and
pathophysiological pathways among species and experimental
conditions used for novel drug selection. It is the opinion of the

FIGURE 2
Translational pathology in the drug discovery process. (A) Target expression in non-IBD human colon mucosa, IHC. (B) Target expression in IBD
human colon mucosa, IHC. (C) Target expression in cell line CaCo2 grown on a membrane in vitro, IHC/ISH. (D) Target expression in naïve rat small
intestine, IHC. (E) Target expression in the model of indomethacin-induced mucosa damage in rat small intestine, IHC. (F)Digital image analysis of target
expression in stem-cell niche vs villus epithelium, Visiopharm software. (G) Visualization of epithelial cell subtype in human lungs; Precision-cut lung
slices, IHC. (H) Target validation inmurine dorsal root ganglion, double ISH. (I) Tracking the labeled oligonucleotide within the murine intestine at 3 hours
and 24 hours post per os application; IF.
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authors that a comprehensive understanding of experimental in vivo
models is of uttermost importance for obtaining data relevant to human
disease. Understanding the extent of translatability, including limitations,
of animal models to human disease, is important for decision-making in
the drug discovery process. The pathohistological analysis could provide
powerful insight (Čužić et al., 2021). It may prove valuable to investigate
the presence and function of multiple target-expressing cell types
(epithelial/mesenchymal cell types, resident/infiltrating inflammatory
cells, metaplastic, dysplastic or tumor cells, etc.) in naïve tissue,
human disease, and experimental models. At the same time, drug
targets usually are not expressed by only one cell type. Further, the
target expression in laboratory animals does not always reflect target
expression in humans, varies among rodent (murine/rat) strains, and
expression dynamics in animal models do not necessarily correspond to
the human disease itself (Čužić et al., 2021). Investigating cells’ life-cycle
and functional circuits of (immunological) cells at different stages of the
disease additionally could shed light on the intricate disease development
and multiple organ responses to the drug intervention and could prove
important in the clinical research phase. On the other hand, the
pathological examination has revealed great heterogeneity of tissue
composition and spatial distribution of different cell (sub)types within
tumor samples from different patients (Massa and Seliger, 2023) with
likely implications on treatment outcomes. This calls for another level of
complexity in setting up appropriate in vitro and in vivo testing systems
for oncology drug development.

Although pathologic evaluation is not frequently included in
pharmacokinetic studies during preclinical research, there is a
possibility to capture the distribution and accumulation of labeled
drugs/oligonucleotide within organs, tissues, and cell types in vivo
(Figure 2I) (Matijašić, 2012), is more and more addressed by label-
free methods combining histology and mass spectrometry (Spruill,
2022). Such evaluation provides a true basis for PK/PD assessment
that considers drug distribution not only among different organs but also
different tissues and different cells within tissues.

Throughout the entire translational circle, starting with patients,
followed by experimental and toxicological studies, and ending with
clinical trials, pathohistological analysis proved to contribute to an
overall understanding of a disease and therapy outcome (beneficial
and/or adverse). Multiple drug targets have been brought to light by the
reverse translational pathology studies of their expression and potential
role in human disease, αV integrin chain being only one illustration
among of many examples. The first integrins were described in 80ties by
a group of Erkki Ruoslahti (Pytela et al., 1985; Gehlsenlena et al., 1988).
Soon followed pathohistological reports on their expression in kidneys
(Čužić, 1991; Waldherr et al., 1992; Shimizu et al., 2006) and their
potential role in glomerulonephritis. The expression of αV, β1, and
β3 integrin chains within crescents in the extraglomerular proliferative
form of glomerulonephritis was brought to light (Baraldi A. ate al, 1995)
and confirmed by the following studies (Sonnenberg et al., 1990; Hillis
et al., 1997; Roy-Chaudhury et al., 1997; Kagami et al., 2004). Decades
later, it has been shown that pharmacological inhibition of αvβ1 integrin
in experimental settings ameliorates renal failure (Chang et al., 2017).
Experimental investigation of αVβ1, αVβ3, and αVβ6 integrin role in
vitro (Andjus et al., 2018) and in animal models covering a broader span
of conditions like fibrosis (Henderson and Sheppard, 2013) and cancer
(Hamidi and Ivaska, 2018) identified integrins as a possible drug-targets.
Based on data gathered along the challenging path of pre-clinical
research, new chemical entities designed for defined therapy areas are

currently tested in humans; αVβ1,αVβ3 and αVβ6 integrin inhibitors for
the treatment of glioblastoma (Cilengitide) (Stupp et al., 2014) and
pulmonary fibrosis (PLN-74809) (Pliant Therapeutics https://
clinicaltrials.gov/ct2/show/NCT04396756) found their way to the clinic.

Last but not least, pathological classifications of diseases, as well as
novel molecular pathology approaches, that cluster patients into
subgroups likely to respond to therapeutic intervention, provide the
basis for progress toward a personalized medicine approach. This has
been most prominent in the field of oncology, as shown in the example
of mamma carcinoma (Zhang, 2023) and GIST tumor (Mechahougui
et al., 2023).

In conclusion, introducing translational pathology, as an ineluctable
element to a drug-discovery process, in the opinion of the authors,
ensures an understanding of drug-target physiology and its’ role in
disease-related pathophysiology, the importance of which has been
underlined by GOT-IT (Guidelines on Target Assessment for
Innovative Therapeutics) recommendations and summarized within
critical path questions defined by the authors (Emmerich et al., 2021).
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