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Ginsenosides, the primary bioactive ingredients derived from the root of Panax
ginseng, are eagerly in demand for tumor patients as a complementary and
alternative drug. Ginsenosides have increasingly become a “hot topic” in recent
years due to their multifunctional role in treating colorectal cancer (CRC) and
regulating tumor microenvironment (TME). Emerging experimental research on
ginsenosides in the treatment and immune regulation of CRC has been published,
while no review sums up its specific role in the CRC microenvironment.
Therefore, this paper systematically introduces how ginsenosides affect the
TME, specifically by enhancing immune response, inhibiting the activation of
stromal cells, and altering the hallmarks of CRC cells. In addition, we discuss their
impact on the physicochemical properties of the tumor microenvironment.
Furthermore, we discuss the application of ginsenosides in clinical treatment
as their efficacy in enhancing tumor patient immunity and prolonging survival.
The future perspectives of ginsenoside as a complementary and alternative drug
of CRC are also provided. This review hopes to open up a new horizon for the
cancer treatment of Traditional Chinese Medicine monomers.
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1 Introduction

Colorectal cancer (CRC) is the fourth most lethal cancer worldwide, causing nearly
900,000 deaths annually. In addition to aging populations and dietary habits in high-income
countries, adverse risk factors such as obesity, lack of physical exercise, and smoking also
increase the illness risk (Patel et al., 2022). The tumor microenvironment (TME) is a critical
factor in the tumor progression (Dekker et al., 2019). In recent years, the TME has become
one of the hotspots of tumor molecular biology research, helping researchers to understand
the role of a complex ecosystem composed of tumor cells, immune cells, cancer-associated
fibroblasts (CAF), endothelial cells, mural cells, additional tissue-resident cells, and the
dynamic, vascularized extracellular matrix in which these cells are embedded.

Increasing evidence suggests that the TME, which supports the tumor, is an essential
ecosystem for malignant cells to obtain sufficient oxygen and nutrient supply to meet their
high metabolic demands, ultimately leading to cancer (Visser and Joyce, 2023). The
correlation between the degree of immune cell enrichment, composition, and functional
differences in the TME and the occurrence and development of CRC has been strongly
confirmed (Chen et al., 2021; Mei et al., 2021; Liu et al., 2022; Zhong et al., 2022). Therefore,
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blocking the transition to an immune-suppressive TME has become
a promising CRC treatment strategy. In 1979, Lord et al. (Lord et al.,
1979) proposed the “seed and soil” theory of the TME, likening
tumor cells to “seeds” and other components that maintain the
growth of tumor cells as “soil” (including immune cells, glial cells,
and extracellular matrix, etc.). Since then, many researchers have
researched and provided additional data based on this classic
concept. They proposed that the intrinsic characteristics of tumor
cells, including genetic changes, epigenetic changes, metabolic
reprogramming, and signal release, are key determinants of the
tumor shaping its microenvironment, and therapeutic interventions
may affect the TME and be affected by the TME and systemic
changes in the patient (Xiao and Yu, 2021).

Although many drugs are available for regulating TME, the
primary strategy is to enhance the anti-tumor ability of T cells by
inhibiting immune checkpoints. They are not enough to reverse the
progression of CRC. Currently, the latest guidelines (Mi et al., 2023)
stipulate that pembrolizumab, programmed cell death protein 1
(PD-1) inhibitor, is applicable as a first-line treatment for patients
with unresectable or metastatic high microsatellite instability (MSI-
H) or mismatch repair gene defect type (dMMR) CRC with all wild-
type KRAS, NRAS, and BRAF genes. MSI-H/dMMR advanced
second-line and above CRC patients accept immunotherapeutic
drugs, including PD-1/PD-Ligand 1 (PD-L1) inhibitors, such as
nivolumab (Lenz et al., 2022), enfortumab (Li et al., 2021). The same
kind of PD-1/PD-L1 inhibitors also include tislelizumab and
carrelizumab (Yi et al., 2022). Other drugs include cytotoxic T
lymphocyte-associated protein 4 (CTLA4) inhibitors (Paillon and
Hivroz, 2023), CSF1R inhibitors (Wen et al., 2023), C-C motif
chemokine ligand 2 (CCL2) or C-C motif chemokine receptor 2
(CCR2) inhibitors (Goenka et al., 2023), CD47/signal regulatory
protein α(SIRPα) complex antagonists (Li et al., 2023), co-
stimulatory molecules such as CD40 (Sadeghlar et al., 2021), and
inhibitors of the protein PI3Kγ (Lee et al., 2020). Candonilimab
(Cervantes et al., 2023) (PD-1/CTLA-4 bispecific antibody) was
launched this year.

Ginseng is considered a precious herb used to treat various
diseases for thousands of years, and its use as a dietary supplement is
gradually increasing in North America, Europe, and other countries.
Yadav et al. (2024) The pharmacological properties of ginseng are
attributed to its various active ingredients (Kang et al., 2021), among
which ginsenosides are the main substances (Chen et al., 2022).
Numerous studies have shown that the ginsenosides affect various
metabolic pathways in the body through various physiological
activities, mainly inhibiting tumor cell growth and invasion
(Chung and Park, 2016; Jin et al., 2021), inhibiting tumor
microvascular formation (Zhu et al., 2021), promoting tumor cell
apoptosis (Yin et al., 2021), etc. Currently, the ginsenosides are
widely used in the prevention and treatment of cancers, such as
intestinal cancer (Xing et al., 2000; Mancuso and Santangelo, 2017;
Sun et al., 2022; Chen et al., 2023; Jiang et al., 2023), lung cancer
(Peng et al., 2020), breast cancer (Zhu et al., 2023).

Ginsenosides have gradually attracted the attention of
researchers, and their role in reversing immune-suppressive TME
has received special attention (Sekar et al., 2022; Zhao et al., 2022).
Increasing evidence shows that ginsenosides benefit the intestinal
ecological environment of normal people and CRC patients and
animals (Hou et al., 2022; El-Banna et al., 2022; Lei et al., 2022).

Clinical data show that CRC patients taking ginsenosides induce
tumor cell cycle blockage and cell apoptosis (Li et al., 2020), reduce
cancer-induced collective fatigue (Kim et al., 2020), and inhibit
tumor metastasis (Yun et al., 2010). Ginsenosides are a natural drug
component with complex components, multiple targets, multiple
pathways, and few side effects.

This article encompasses the structure of ginsenosides and their
impact on the colorectal TME. More importantly, we highlight
research on the immunomodulatory effects of ginsenosides,
focusing on their role and mechanisms in promoting immune
responses in the TME. By integrating the latest clinical research
evidence, this review comprehensively evaluates the potential and
prospects of ginsenosides in treating CRC, providing a scientific
basis and reference for future clinical applications.

2 Ginsenosides are the main active
ingredients of ginseng

2.1 Structure and classification of
ginsenosides

Ginsenosides are one of the classic triterpenoid compounds
composed of aglycones and sugar ligands. They are divided into four
types based on the structural features of the core skeleton:
protopanaxadiol (PPD), protopanaxatriol (PPT), oleanolic acid
(OA), and ocotillol (OT) (Figure 1). Over a hundred natural
ginsenoside monomers have been isolated and purified using
scientific techniques (Yin et al., 2021; Li et al., 2023). Among
them, PPD and PPT are the main active ingredients. Their
chemical structures are very similar, and both are tetracyclic
triterpene saponins composed of 17 carbons. Different types of
PPD-type ginsenosides and PPT-type ginsenosides have different
types according to the position and number of hydroxyl groups.
PPD-type ginsenosides with glycosidic bonds at C-3 and/or C-20
include protopanaxdiol, ginsenoside Rb1, Rb2, Rb3, Rc, Rd, F2,
20(R)-ginsenoside Rg3, 20(S)-ginsenoside Rg3, 20(R)-ginsenoside
Rh2, 20(S)-ginsenoside Rh2, ginsenoside compound K (CK) and
Rk2. PPT-type ginsenosides characterized by glycosidic bonds at C-
6 and/or C-20 include ginsenoside Re, Rf, Rg1, Rg2, Rh1, and Rh4.
OA-type ginsenosides mainly include ginsenoside Ro and others.
OT-type ginsenosides mainly include Pseudoginenoside
F11 and others.

2.2 Ginsenoside content variation and the
biosynthesis pathways

In recent years, new biosynthesis of ginsenosides has been
directly related to the activity of squalene monooxygenase.
Biosynthesis starts from the mevalonic acid pathway and the
methylerythritol-4-phosphate/deoxyxylulose-5-phosphate pathway
to produce farnesyl diphosphate, which is converted into 2,3-epoxy
squalene through the action of squalene synthase and squalene
epoxidase (Seki et al., 2015). The OA-type saponin precursor OA
is carboxylated to form via β-Amyrin synthase and OA synthase
(Kim et al., 2015). The PPD-type saponin precursor PPD and PPT-
type saponin precursor PPT (Hou et al., 2021) are produced
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separately by hydroxylation via dammarenediol synthase, PPD
synthase, or PPT synthase. The OT-type saponin precursor OT
(Yang et al., 2023) is produced by catalysis via PgOSC11. After the
basic skeletons of PPD, PPT, OA, and OT are synthesized, the
subsequent structures of ginsenoside biosynthesis are completed by
various uridine diphosphate-dependent glycosyltransferases
catalyzing glycosylation modification or acyltransferases
catalyzing acylation modification (Shi et al., 2023). Recently, Hu
et al. (Hu et al., 2023) found that using supercritical CO2 to extract
total ginsenosides from ginseng leaves better retains the activity of
ginsenosides.

The content of ginsenosides in ginseng varies according to the
part. Some scholars have evaluated the correlation of ginseng tissue
samples. The results show that the content of ginsenosides is similar
among the same ginseng, and the content of ginsenosides in ginseng
leaves, leaf stalks, and stems shows a decreasing trend, with the roots
containing a larger amount of ginsenosides (Xu et al., 2017).

The type of ginsenosides does not vary much with different
varieties of ginseng, mainly depending on the part of the ginseng.
Recently, Jin et al. (Jin et al., 2022) established a ginsenoside mass
spectrometry database, detecting 174 kinds of ginsenoside
monomers or isomers (69 PPD-type ginsenosides, 63 PPT-type
ginsenosides, 22 OA-type ginsenosides, 11 OT-type ginsenosides,
and seven other types of ginsenosides). There are large differences in
ginsenosides between different ginseng tissues, leaves, or roots. PPT-

type ginsenosides have a higher abundance in leaves, PPD-type
ginsenosides have a higher content in roots than in leaves, and OA
and OT-type ginsenosides are evenly distributed (Luo et al., 2023).

3 Ginsenosides regulate immune
response in the colorectal tumor
microenvironment

3.1 Lymphocytes

Most CRC patients have an immune dysfunction state,
characterized by a decrease in CD4+T cells and a decrease in the
ratio of CD4+T/CD8+T cells (Robins et al., 1991; Li et al., 2020).
CD4+T cells drive qualitative changes in anti-cancer immune
responses (DiToro and Basu, 2021). CD8+T cells cause tumor cell
death by releasing granzymes and perforins or through fatty acid
synthase ligand (FASL)-fatty acid synthase (Fas)-mediated cell
apoptosis. High infiltration of CD8+T cells indicates a better
prognosis and a more satisfactory immune therapy response
(Shang et al., 2022). The T-helper1 (Th1) subtype of CD4+T cells
assists cytotoxic T cells and B cells in producing Interferon-γ (IFN-
γ) and Tumor necrosis factor-α (TNF-α) to directly kill cancer cells
(Woznicki et al., 2020). In contrast, the Th2 subtype secretes anti-
inflammatory mediators, which have a pro-tumor effect (Hombach

FIGURE 1
Morphology of the ginseng plant and the chemical structure of ginsenosides.
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et al., 2020). In the tumor tissues and peripheral blood of humans
and mice, there is an increase in the expression of the Regulatory
T cell (Treg) subgroup (TSLPR+ Tregs) of the thymic stromal
lymphopoietin (TSLP) receptor, which does not exist in the
peripheral blood of adjacent normal colon tissues and healthy
controls (Obata-Ninomiya et al., 2022). Tregs are a highly
immunosuppressive subgroup, serving as the “gatekeeper” of the
steady-state CRC immune microenvironment (Obata-Ninomiya
et al., 2022). In the tertiary lymphoid structures within the
tumor, B cells promote T cell activation through antigen
presentation. B cells also support tumor growth, specifically by
secreting pro-angiogenic mediators, immune complexes, and
complement activation to promote inflammation and immune
suppression (Xia et al., 2023). Invariant natural killer T-cells are
enriched in CRC tumor lesions.

As previously mentioned, ginsenosides enhance the immune
response of adaptive immune cells within CRC tumor tissue and
enhance the cytotoxic effect on tumor cells (Figure 2). In the
subcutaneous transplantation tumor model of MC38 in mice,
ginsenoside Rh2 enhances the anti-tumor effect of anti-PD-
L1 antibodies. The mechanism is that the combined treatment
increases the expression of C-X-C motif ligand 10 (CXCL10),
thereby promoting the infiltration and activation of CD8+T cells
within the tumor (Huang et al., 2023). Ginsenoside Rh2, Rg3, and
CK block the interaction between PD-1 and its ligand PD-L1,
enhancing the activity of cytotoxic T cells (Yim et al., 2020). In the
subcutaneous transplantation tumormodel ofMC38 inmice expressing
humanized PD-1/PD-L1, red ginseng containing a large amount of
ginsenoside Rh2, Rg3, and CK significantly inhibit tumor growth,

increases the infiltration of CD8+T cells into the tumor, and
enhance the production of granzyme b (Lee et al., 2023).
Ginsenoside Rb1 and Rc reduce the number and size of intestinal
adenomas in mouse models of intestinal adenomas. The mechanism is
to inhibit the activation of Tregs induced by hypoxia-inducible factor-
1α (HIF-1α) in tumor tissues (Xu et al., 2018). Ginsenoside Re and
ginsenoside Rd significantly promote the adaptive immune response in
the CRC microenvironment. The mechanism is to increase the
Th1 activity, inhibit the differentiation of T helper cell 17 (Th17)
and regulate the balance of Th17/Treg (Wang et al., 2021). Ginsenoside
Rg1 improves the structure of the microbial community in the intestine
and restore the intestinal homeostasis. The mechanism is to
downregulate the proportion of Th17 cells (Zhang et al., 2022).

3.2 Myeloid cells

Myeloid immune cells include macrophages, neutrophils,
platelets, and others. Tumor-associated macrophages (TAM)
are recruited from peripheral circulating monocytes to the
tumor microenvironment, where they differentiate into
pro-inflammatory, antigen-presenting, and anti-tumor
M1 phenotypes or immunosuppressive M2 phenotypes. The
M2 phenotype also promotes tumorigenesis by promoting
angiogenesis, metastasis, and treatment resistance (Wang
et al., 2021). Systemic accumulation of neutrophils contributes
to immune suppression and extracellular matrix (ECM)
remodeling in distant organs (He et al., 2022). Neutrophils
promote the formation of pre-metastatic niches by forming

FIGURE 2
Ginsenosides modulate immune cells in CRC. (A): the immune cells of the Lymphocytes. (B): the immune cells of the myeloid systems.
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sticky net-like structures called neutrophil extracellular traps that
trap circulating cancer cells in distant inflamed organs (Khan
et al., 2021). Monocytes also differentiate into tumor-supporting
TAMs to promote an immunosuppressive state in the TME (Lam
et al., 2021). Dendritic cells (DC) play a central role in regulating
the balance between CD8+ T cell immunity and tumor antigen
tolerance by integrating information from the TME and
transmitting it to T cells and other immune cells, forming an
anti-tumor immune response (Fu and Jiang, 2018). Mast cells
exert pro-tumor and anti-tumor activities depending on
environmental stimuli (Sakita et al., 2022). Eosinophils have
the ability to directly kill CRC cells by releasing cytotoxic
molecules (Grisaru-Tal et al., 2022). Myeloid-derived
suppressor cells (MDSC) have potent immunosuppressive
abilities, inhibiting T cells, natural killer (NK) cells, B cells,
and DC cells through paracrine secretion and cell-cell contact
(Kumar et al., 2016). Platelets are activated and aggregated by
circulating tumor cells (CTC), promoting CRC metastasis and
related immune escape by protecting CTCs from physical stress
and immune attack (Liang et al., 2015; Kanikarla-Marie et al.,
2017; Pereira-Veiga et al., 2022).

As previously mentioned, ginsenosides enhance the tumor-
suppressing characteristics of innate and adaptive immune cells
in the CRC microenvironment to induce tumor cell apoptosis and
enhance the anti-tumor activity of chemotherapeutic drugs
(Figure 2). Ginsenoside Rg3 increases the number of leukocytes
in colon cancer patients and promotes the phagocytic ability of
macrophages (Zhu and Gao, 2021). Cyclophosphamide is still
widely used as an anti-tumor agent and immunosuppressant in
clinical practice (Taniura et al., 2020). Ginsenoside Rh2 enhance
cyclophosphamide’s anti-tumor activity by reducing micronuclei
formation in polychromatic erythrocytes and Deoxyribo Nucleic
Acid (DNA) strand breaks in leukocytes (Qi et al., 2019). In
MC38 cells co-cultured with TAMs, ginsenosides inhibit the
invasion and migration of colon cancer cells, and the mechanism
is that Rh2 inhibit the polarization of TAMs to M2 macrophages
(Liu et al., 2023). In addition, the abnormal immune response-
mediated inflammatory response is a key factor in promoting the
carcinogenesis of ulcerative colitis (UC) to CRC, and slowing down
the inflammatory process prevents the carcinogenesis of UC (Yang
et al., 2013; Li et al., 2021). Ginsenoside Rk2 reduce the secretion of
pro-inflammatory cytokines, such as Interleukin-1β (IL-1β),
Interleukin-6 (IL-6), Interleukin-10 (IL-10), TNF-α, in the vitro
UC model established by co-culturing Caco-2 cell clones with THP-
1 cells in a concentration-dependent manner, and slow down the
inflammatory process by inhibiting the activation of the extracellular
signal-regulated kinase (ERK)/mitogen-activated protein kinase
(MEK) pathway (Huang et al., 2022).

4 Ginsenosides modulate matrix cells
and matrix components in the
colorectal tumor microenvironment

4.1 Cancer-associated fibroblasts

The origin of CAF is still debated among researchers. Kamali
et al. recently proposed that CAFs originate from bone marrow-

derived mesenchymal cells, specifically triggered by C-X-C motif
chemokine ligand 12 (CXCL12) signaling and transforming growth
factor β (TGF-β) (Kamali Zonouzi et al., 2022). In the early stages of
CRC formation, there is an increase in the proliferation of
connective tissue in the colon, specifically characterized by a
large proliferation of colorectal cancer fibroblasts, with the
highest proportion being leprosy interstitial cells (Kobayashi
et al., 2022). Studies have found that colon cancer cells induce
tumor formation by producing 12(S)-HETE acting on CAFs (Stadler
et al., 2017). Different tissues in the colon have different fibroblast
lineages, leading to different subgroups of CAFs with different
cellular states or functions (Costa et al., 2018). As the tumor
progresses further, the composition and function of CAFs
change, specifically through the production of large amounts of
fibrosis, chemotactic factors, and different factors (such as fibroblast
growth factors, FGFs) to form a microenvironment that supports
CRC (Visser and Joyce, 2023). CAFs express different factors,
including α-smooth muscle actin (αSMA), vimentin, WNT2,
Fibroblast activation protein (FAP), and Gremlin1 (GREM1),
among which WNT2 (Aizawa et al., 2019) and GREM1
(Karagiannis et al., 2013) mainly promote tumor metastasis.
Activin A secreted by CAFs plays a major role in TGF-β-induced
pre-metastatic changes in epithelial cells (David and Massagué,
2018). It can be said that CAFs play an important role in both
the formation and metastasis of CRC.

As previously mentioned, ginsenoside Rg3 and Rd prevent CRC
formation prophylactically. The mechanism is that ginsenoside
Rg3 and Rd inhibit CRC cells from secreting TGF-β, and
through the TGF-β/Smad signaling pathway, they reverse
activated CAFs to a resting state, thereby weakening the dense
interstitial barrier within the tumor (Huang et al., 2017), depicted
in Figure 3. Rg3 and Rd also promote the recovery of physiological
functions of the intestinal epithelium. The mechanism is that
Rg3 and Rd downregulate oncogenic signaling molecules iNOS,
signal transducer and activator of transcription 3 (STAT3),
phosphorylated STAT3, sarcoma gene (Src) and phosphorylated
Src, promote the secretion function of goblet cells and Paneth cell
clusters, and restore the expression of E-cadherin and N-Cadherin
(Huang et al., 2017). Currently, there are not many studies on the
effect of ginsenosides on CAFs in CRC. Existing research focuses on
ginsenosides promoting the expression of glutathione to alleviate
fibroblast proliferation caused by smoke stimulation. Ginsenoside
Rg1, Rb1, and Rg3 downregulate the mRNA and protein levels of
multidrug resistance-associated protein 1 (MRP1), basic fibroblast
growth factor (bFGF), and fibroblast growth factor receptor 1
(FGFR1), and reduce the protein expression of glutathione
S-transferase π (GST-π) (Weiqin et al., 2011; Jin et al., 2017).
Rg3 also enhances the vitality of matrix cells and weakens cancer
cell migration. The mechanism is to promote the cell cycle transition
from the G0/G1 phase to the S phase and inhibit the cancer cell-
related fibroblast-like phenotype (Peng et al., 2017).

4.2 Cancer-associated adipocytes

Cancer-associated adipocytes (CAA) influence cancer cells and
host cells in the TME by releasing metabolites, growth factors, and
inflammatory adipokines (Iacono et al., 2022). There is an active
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exchange of metabolites between CAAs and cancer cells; specifically,
CAAs release metabolites such as adenosine triphosphate (ATP),
lactate, pyruvate, and glutamine into the colorectal cancer
microenvironment, increasing the oxidation of fatty acids in
cancer cells (Wu et al., 2021). CAAs promote metabolic
reprogramming and chemoresistance in colon cancer cells. CAAs
release adipokines and metabolic factors to regulate the immune
response of anti-tumor immune cells (Harmon et al., 2019; Grigoras
and Amalinei, 2023). CAAs contribute to the formation of a low-
grade chronic inflammatory environment conducive to
tumorigenesis, the mechanism being that CAAs influence the
TME by releasing pro-inflammatory factors IL-1β, IL-6, IL-8, and
TNF-α (Grigoras and Amalinei, 2023). In addition, CAAs are
frequently located at the front of invasive colorectal cancer,
exhibiting a fibroblast-like phenotype, and establish a
bidirectional molecular dialogue with colorectal tumor cells,
leading to functional changes in normal cells and promoting
CRC invasion (Munteanu et al., 2020).

As previously mentioned, ginsenoside F2 reduce the lipid levels
accumulated in the 3T3-L1 cell line during adipogenesis and inhibits
the growth of breast cancer cells (Siraj et al., 2015). However, its
effect on CRC has not been reported. Ginsenoside Rb2 improve
TNF-α-induced apoptosis in 3T3-L1 adipocytes, the mechanism
being that Rb2 reduces the phosphorylation levels of p65 and IκBα in
the nuclear factor κB (NF-κB) pathway both in vitro and in vivo to
inhibit adipocyte apoptosis (Lin et al., 2020). Ginsenoside
Rg1 promotes the neural differentiation of mouse adipose stem
cells through the miRNA-124 signaling pathway (Dong et al., 2017).
Ginsenoside Rh1 (Gu et al., 2013), Rh2 (Hwang et al., 2007), Rb1
(Wang et al., 2017; Cai and Chen, 2021), Rg3 (Hwang et al., 2009),
and F2 (Zhou et al., 2021) inhibit adipocyte differentiation while also
suppressing the overexpression of adipokines (peroxisome
proliferator-activated receptor γ, PPARγ) and inflammatory
factors (such as TNF-α). Ginsenoside CK and Rg3 inhibit early
adipocyte formation through the Adenosine 5’-monophosphate
(AMP)-activated protein kinase (AMPK), mitogen-activated
protein kinase (MAPK), and perine-threonine kinase (AKT)

signaling pathways (Oh and Chun, 2022; Jue-Yao et al., 2023).
Ginsenoside Rb2 reduces fat accumulation through an AKT-
dependent mechanism (Dai et al., 2018). In addition, CRC cell
mitochondria often have functional disorders (Ohshima et al.,
2022). Ginsenoside Rd improves mitochondrial biogenesis
function, the mechanism being that Rd promotes the
phosphorylation of TANK-binding kinase 1 (TBK1) and AMPK
in adipocytes through the WNT5A/Ca2+ signaling pathway,
promoting the expression of lipopolysaccharide-induced
membrane proteins (Wan et al., 2023).

4.3 Extracellular matrix, neurons and
nerve fibers

Increasing evidence suggests that the ECM, neurons, and nerve
fibers contribute to the formation of CRC. The ECM is a complex
network composed of macromolecules (such as collagen, enzymes,
proteoglycans, and glycosaminoglycans) secreted by CRC cells,
supporting epithelial/endothelial cells, the underlying matrix, and
the cell membrane (Nersisyan et al., 2021). It can be said that the
degradation of the ECM and the dynamic physical conditions of the
TME affected by it are important pathways for the progression and
metastasis of CRC (Andreuzzi et al., 2022; Franchi et al., 2023).
There is active paracrine signaling crosstalk between neurons and
tumor cells. Neurons stimulate cancer stemness, anti-apoptosis, and
proliferative ability by releasing neurotransmitters, neurotrophic
proteins, and chemokines (Schonkeren et al., 2021; Zhu et al.,
2022). Perineural invasion (PNI) (i.e., local extension of CRC
cells along nerves) is observed in CRC, which is closely related to
poor prognosis (Liu et al., 2022).

As previously mentioned, ginsenoside CK inhibits the activity of
matrix metalloproteinases (MMPs), thereby reducing the
degradation of various protein components of the ECM (Park
and Yoon, 2012). At present, no studies have found the
mechanism by which ginsenosides affect neurons in the TME.
The author speculates that in the TME, ginsenosides block

FIGURE 3
Themainmolecular mechanism of ginsenosides on thematrix cells andmatrix components. Ginsenosides treat CRC bymodulating various stromal
components.
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cancer cells from communicating with the surrounding ECM and
nerve fibers through integrins, thereby inhibiting the
progression of CRC.

4.4 Vascular endothelial cells

Ginsenosides inhibit the formation of blood vessels in the
colorectal TME, reducing the transfer of nutrients and lowering
the survival rate of CRC cells. Ginsenoside Rg1, Rb1, and
Rg3 reduce the density of microvessels in tumors (Jin et al.,
2017). Ginsenoside CK inhibits the formation of blood vessels in
the colon (Park and Yoon, 2012). Ginsenoside Rg3 slows CRC’s
new blood vessel formation rate (Hong et al., 2020), regulate the
TME, inhibits CRC cells’ growth, proliferation, and migration,
and promotes cell apoptosis (Jian et al., 2016; Xu et al., 2023).
Clinical studies have confirmed that the combined use of Rg3 and
chemotherapy regulates the level of local vascular endothelial

growth factor in CRC to enhance the effect of chemotherapy (Zhu
and Gao, 2021).

5 Ginsenosides change the basic
hallmarks of CRC cells

Ginsenosides alter the characteristics of CRC cells, such as
resistance to cell death, continuous proliferation, and drug
resistance, as shown in Figure 4. Anti-cell death is one of the
basic characteristics of tumor cells. Apoptosis refers to
programmed cell death that occurs after irreversible DNA
damage (Roos et al., 2016). Ginsenosides induce apoptosis and
autophagy by regulating various proteins and molecular
pathways. Ginsenoside Rd downregulates the expression of
lncRNA membrane-associated guanylate kinase inverted one
intronic transcript 1 (MAGI1-IT1), increases the proportion of
CRC cells in the G0/G1 phase, reduces the proportion in the S

FIGURE 4
The action mechanism of ginsenosides on tumor cells. DNA damage, cell apoptosis, cell cycle arrest, metastasis inhibition are the most common
feature changes after ginsenoside intervention in CRC cells. (A): inducing apoptosis. (B): inducing cell cycle arrest. (C): inhibiting tissue invation and
metastasis. (D): regulating autophagy. (E): inducing differentiation.
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phase, reduces the protein expression levels of CyclinD1, Caspase3,
B-cell lymphoma-2 (Bcl-2), increases the expression levels of p21,
cleaved-Caspase3, Bax, and ultimately promotes the apoptosis of
SW480 CRC cells (Kou et al., 2023) (Figure 4). Ginsenosides Rd and
Re induce apoptosis of CRC cells HCT116 and HT29 by regulating
the expression of apoptosis-related genes, such as increasing the
protein expression levels of p53, p21, Bax, Caspase3, Caspase8,
Caspase9, while significantly inhibiting the differentiation of
Th17 cells, promoting the adaptive immune response of the CRC
microenvironment by regulating the balance of Th17/Treg (Wang
et al., 2021). Ginsenoside Rg3 and 5-FU combined treatment
significantly enhance the apoptosis of CRC cells by activating the
Apaf1/caspase 9/caspase three pathway. It blocks the cell cycle of
CRC cells SW620 and LOVO in the G0/G1 phase by promoting the
expression of Cyclin D1, cyclin-dependent kinase 2 (CDK2), and
CDK4 (Hong et al., 2020). Ginsenoside Rh2 combined with sodium
selenite has a synergistic anti-tumor effect on HCT-116 human CRC
cells cultured in vitro, inducing G1 phase and S phase block,
increasing cell apoptosis rate, increasing Bax/Bcl2 ratio and
caspase-3 expression, significantly inducing reactive oxygen
species (ROS) production and autophagy (Zhu et al., 2016). It
has also been proven that Rh2 directly inhibits the activity of
PDZ-binding kinase/T-LAK cell-originated protein kinase (PBK/
TOPK), inducing the death of HCT116 cells (Yang et al., 2016).
Ginsenoside Rh2 and Rg3 both induce the death of HCT116 and
SW480 cells, significantly increase the level of pro-apoptotic
regulator Bax by activating NF-κB transcriptional activity, and
induce CRC cells to die in the form of cytoplasmic vacuole
accumulation by reducing the level of anti-apoptotic regulator
Bcl-2 (Li et al., 2011).

Continuous proliferation signals are another fundamental
characteristic of tumor cells. Normal colon epithelial cells need to
activate mitotic growth signals to transition from a resting state to an
active proliferation state. However, due to the dysregulation of self-
renewal and differentiation signals in CRC cells, overexpression of cell
cycle proteins or non-expression of CDK inhibitors allows cancer cells
to maintain an active proliferation state (Schwartz and Shah, 2005).
Ginsenosides change the self-sufficient growth signals of CRC cells and
inhibit the proliferation and vitality of CRC cells. Ginsenoside CK
significantly upregulates the expression of cyclin-dependent kinase
inhibitor 1A (CDKN1A), downregulates the expression of CDK6,
Cyclin D, and Cyclin E, causing G1 phase arrest in CRC HCT-116
and HT-29 cells (Yao et al., 2018). Ginsenoside CK also significantly
inhibits human CRC cell proliferation HCT-116 and SW480 (Wang
et al., 2012). Ginsenoside 20(S)-PPD (PD), 20(S)-PPT (PT), and
Rh2 reduce the vitality of Caco-2 cells (Popovich and Kitts, 2004).
Ginsenoside Rb2 inhibits the growth, adhesion, epithelial-mesenchymal
transition (EMT) of CRC cells through the TGF-β1/Smad signaling
pathway (Dai et al., 2019). Ginsenosides Re and Rd significantly inhibit
the growth of CRC cells by upregulating cell cycle protein A to inhibit
the G2/M cell cycle and inducing apoptosis by regulating the expression
of apoptosis-related genes (Wang et al., 2021).

Ginsenosides inhibit the metastasis and invasion of CRC cells by
mediating the Epidermal Growth Factor Receptor (EGFR) signaling
pathway, NF-κB signaling pathway, and PI3K/Akt signaling
pathway. Ginsenoside Rb2 downregulates EMT-related gene
expression through the EGFR/SOX2 signaling axis, inhibiting the
migration and invasion of CRC cells (Phi et al., 2018). Li et al. found

that ginsenoside Rh2 induces the death of CRC cells and inhibits
cancer cell migration by activating NF-κB transcriptional activity (Li
et al., 2011). Rh2 induces the expression of miR491 to inhibit the
metastasis of CRC cells (Wei et al., 2021). Ginsenoside Rg3 and 5-
fluorouracil combined treatment of CRC cells enhances the anti-
tumor effect of 5-fluorouracil in CRC cells and inhibits tumor
invasion and migration through the PI3K/AKT pathway (Sun
et al., 2017; Liu et al., 2022). 20(S)-ginsenoside Rh2 also inhibit
the expression of IL-6-induced STAT3 andMMPs, including MMP-
1, MMP-2, and MMP-9, thereby inhibiting the CRC cell invasion
(Han et al., 2016).

Ginsenosides enhance the efficacy of chemotherapy drugs for
CRC and reduce the drug resistance and side effects of other drug
treatments. Oxaliplatin and 5-Fu are the most commonly used
first-line chemotherapy drugs for CRC (Yang et al., 2023; Mi
et al., 2023), and ginsenosides reverse chemotherapy resistance in
CRC. Ginsenoside Rh2 significantly inhibits the proliferation of
oxaliplatin (L-OHP) resistant CRC cells (LoVo/L-OHP) and
LoVo cells and induces apoptosis in LoVo cells, significantly
reducing the expression of P-gp and Bcl-2, increasing the
expression levels of Smad4, Bax, and caspase-3, reversing the
drug resistance of LoVo/L-OHP cells to L-OHP (Ma et al., 2019).
Ginsenoside Rh2 enhance the cytotoxicity of 5-FU to drug-
resistant CRC cells (LoVo/5-FU and HCT-8/5-FU), increase
the number of drug-resistant CRC cells in the G0/G1 phase,
decrease the number of cells in the S phase, and induce cell
apoptosis. Ginsenoside Rh2 treatment inhibits the migration
process of drug-resistant CRC cells and the EMT process, and
the expression of drug-resistant genes MRP1, multidrug
resistance protein 1 (MDR1), Low-density lipoprotein
receptor-related protein (LRP), and GST is negatively
correlated with ginsenoside Rh2 (Liu et al., 2018).
Ginsenosides increase the sensitivity of anti-tumor drugs. It
has been found that CK combined with chemotherapy drugs
enhance the sensitivity of chemotherapy drugs and reverses drug
resistance in tumor cells. CK enhances tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL)-induced apoptosis in
HCT116 CRC cells and increases the sensitivity of CRC HT-29
cells to the drug tolerance of recombinant TRAIL. Combined use
leads to a decrease in the expression of proteins that promote cell
survival and an increase in the expression of pro-apoptotic
proteins and then induces an increase in the expression of
death receptor 5 (DR5) on the cell surface (Chen et al., 2016).
Ginsenoside Rp1 inhibits AKT activation and
SIRT1 upregulation induced by Actinomycin D. Ginsenoside
Rp1 combined with chemotherapy drugs avoid drug resistance
and enhance the anti-tumor effect of drugs (Yun et al., 2020). In
addition, the standard treatment methods for CRC will cause
damage to normal tissue organs while killing cancer cells, such as
myocardial cell damage and intestinal flora disorder. Rh2 reduces
local pathological remodeling by reducing the transformation of
cardiac fibroblasts to myofibroblasts (FMT) and endothelial-
mesenchymal transition (EndMT) (Hou et al., 2022).
Ginsenoside CK significantly inhibits the growth of CRC in
mice and, by significantly upregulating the adhesion bacteria
that inhibit the proliferation of human CRC cells, restores the
disordered intestinal flora of tumor-bearing mice (Shao
et al., 2022).
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6 Ginsenosides regulate the
physicochemical properties of tumor
microenvironment

The physicochemical properties of TME are different from those
of the normal internal environment, including hypoxia, low pH,
high pressure, and excessive angiogenesis, all of which lead to the
accelerated development of CRC. Ginsenosides inhibit the growth of
CRC by regulating the physicochemical properties of the TME. The
details are as follows, see Figure 5.

CRC cells have a high oxygen consumption and relatively
insufficient oxygen supply, often in a state of hypoxia and high
permeability of tumor blood vessels. Under normal circumstances,
the oxygen partial pressure of human tissues is about 40 mmHg, while
the oxygen partial pressure of most TMEs is less than 7.5 mmHg
(Casazza et al., 2014). In a low oxygen microenvironment, the HIF level
will be upregulated, thereby increasing the expression of other genes
such as VEGF, inducing the formation of new blood vessels, and
maintaining a stable state of oxygen (Ma et al., 2022). Although no
studies have confirmed a direct association between ginsenosides and
HIF, current research confirms that ginsenosides have anti-angiogenic
effects in intestinal tumors. Rg3 inhibits the expression of vascular
endothelial growth factor (VEGF) and prolongs the lifespan of
CT26 CRC model mice (Liu et al., 2018). Rh2 regulates the
expression of miRNAs related to angiogenesis in CRC. Li et al.
identified through the miRNA target prediction program that
Rh2 inhibits the growth and angiogenesis of CRC in SW620 and
HCT-116 cells treated with Rh2. The mechanism is to increase the
expression of miR-150-3p to restore the activity of the Wnt pathway,
slow down cell proliferation/migration and colony formation, and
reduce the generation of new blood vessels (Li et al., 2023). In

addition, Rh2 also regulate the expression of miRNAs related to
angiogenesis in A549 lung cancer cells (Chen et al., 2019).

The pH value of normal tissues is 7.2–7.5, and the pH value of
the CRC tissue environment is generally 6.5–6.9. The acidic
microenvironment of tumor cells is due to the tumor’s
preference for aerobic glycolysis, enhanced pentose phosphate
pathway, and hypoxia. High-speed aerobic glycolysis to maintain
the required energy and carbon source is a metabolic marker of CRC
cells, called the Warburg effect, leading to the accumulation of lactic
acid (Zhong et al., 2022). Oncogenes such as EGFR (Maddalena
et al., 2020; Gao et al., 2021), E2F1, c-myc (Jing et al., 2022) and Ras
(Serna-Blasco et al., 2019) are important regulators of the Warburg
effect. The mechanism of ginsenosides in regulating the acidic
microenvironment may be related to the aforementioned
hypoxia. Rh2 and Rd regulate the Warburg effect by inhibiting
the activity of the EGFR pathway (Phi et al., 2018; 2019).

7 Ginsenosides show promising anti-
cancer effects in clinical application

Current clinical research has confirmed that ginsenosides
improve immune function and survival rate of tumor patients.
Ginsenoside H pill (GH) is a new clinical adjuvant drug for
cancer treatment. The main anti-cancer component of GH,
Ginsenoside Rh2, reaches a steady state in the human body after
oral administration of GH twice daily for five consecutive days
(Wang et al., 2021). Aerobic exercise induces oxidative stress and
DNA damage, reducing the incidence of CRC. Ginsenoside
Rg1 protects the expression of skeletal muscle p16INK4a protein
induced by exercise in young men. It reverses the significantly

FIGURE 5
Ginsenosides regulate the physicochemical properties of TME characterized by hypoxia, low pH and excessive angiogenesis.
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increased p16INK4a protein to close to baseline levels after 3 h (Wu
et al., 2020). The combination of Ginsenoside Rg3 capsules and
chemotherapy significantly improves the survival rate of
postoperative patients with non-small cell lung cancer by
improving immune function and inhibiting tumor angiogenesis
(Lu et al., 2008). Ginsenoside Rg3 combined with transarterial
chemoembolization (TACE) prolong the median overall survival
of patients with advanced HCC. Rg3 also prolongs the time for the
disease to progress to an incurable stage and reduces the adverse
reactions related to TACE and hematological abnormalities (Zhou
et al., 2016).

Ginsenoside is an immunomodulator used to treat CRC.
Ginsenoside Rg3 treat CRC well (Tang et al., 2018). Its
mechanism may be that Rg3 remodels the TME by inhibiting
angiogenesis and promoting anti-tumor immunity (Zhao et al.,
2022). Then, CRC downregulates its own immunogenicity by
expressing high levels of PD-L1, which binds to the T cell
receptor PD-1 to prevent the cytotoxic effect of T lymphocytes
(Payandeh et al., 2020). Ginsenoside Rg1 inhibits the expression of
PD-L1 through superoxide. Moreover, ginsenoside Rg1 inhibits the
metastasis of CRC by interfering with the COX-2-Myo10 signaling
axis and inhibiting filopodia production (Liu et al., 2023).
Ginsenoside CK reverses the immunosuppressive TME.
Ginsenoside CK significantly enhances the immune response of
T cells while also increasing the ability of T cell receptors to
recognize viral and tumor-associated antigens. Ginsenoside CK
works synergistically with anti-PD-1, enhancing its anti-tumor
efficacy (You et al., 2021). In addition, ginsenosides may treat
CRC by reducing pro-inflammatory cytokines in the TME. It has
been found that Rb1 significantly reduces the levels of TNF-α and
IL-6 cytokines in mice with CRC cachexia models, alleviating
symptoms caused by inflammation (Lu et al., 2020).

It is worth noting that CRC increases the psychological burden
of patients, causing anxiety and depression (Cheng et al., 2022;
Renna et al., 2022). Ginsenosides have the effect of anti-depression
and improve the mood of cancer patients (Guan and Qi, 2023). The
latest research found that ginsenoside Rh4 significantly inhibits the
depressive-like behavior of depressed mouse models, alleviates
neuronal damage and hypothalamic-pituitary-adrenal axis
disorder, and inhibits hippocampal neuronal apoptosis and
synaptic structural damage caused by excessive activation of
microglia and astrocytes through the immune-inflammatory
response and signaling molecule interaction pathway, thereby
improving the depressive state (Shao et al., 2023). Ginsenoside
Rh2 significantly reduce the depressive-like symptoms of mice
induced by chronic unpredictable mild stress and downregulate
the brain-derived neurotrophic factor (BDNF) signaling cascade and
hippocampal neurogenesis, exerting an anti-depressant effect by
positively regulating the BDNF-Tyrosine Kinase receptor B pathway
(Shi et al., 2022). These studies suggest that ginsenoside Rh4 and
Rh2 may be promising clinical drugs for treating anxiety and
depression in CRC patients.

8 Conclusion and perspectives

Traditional Chinese medicine has a long history of treating CRC,
with ginseng being one of the most important medicinal herbs. With

advancements in medicine, our understanding of ginseng, especially
its main active component—ginsenosides, has deepened. Currently,
immunotherapy has become a breakthrough in colorectal cancer
treatment. By searching electronic databases such as PubMed,
Scopus, Web of Science and China National Knowledge
Infrastructure, we obtained relevant literature on the treatment of
CRC with ginsenosides and their immunomodulatory effects up to
December 2023. The role of ginsenosides in the TME of CRC has
been a research hotspot in recent years. We summarized the
chemical structures, classifications, sources, and biosynthetic
pathways of various ginsenosides. We documented the role of
ginsenosides in promoting immune responses and inhibiting
stromal cell activation within the colorectal TME. We
summarized their effects on tumor cells and the TME,
elucidating their mechanisms of action. Finally, we reviewed their
clinical efficacy. This comprehensive review highlights the potential
of ginsenosides as a promising immunomodulator in treating
colorectal cancer.

According to the evidence summarized in this article,
ginsenosides exhibit anticancer effects, including inducing cell
cycle arrest and apoptosis, regulating autophagy, and reducing
tumor invasiveness. Ginsenosides regulate the immune responses
of myeloid and lymphoid cells within the TME. Ginsenoside Rh2,
Rg3, and CK enhance the infiltration of CD8+ T cells into the
transplantation tumor with MC38 cells and increase granzyme
production by inhibiting the expression of the key checkpoint
PD-L1 on tumor cells. Ginsenosides trigger the infiltration and
cytotoxicity of CD4+/CD8+ T lymphocytes and NK cells, promote
the conversion of M2 macrophages to M1 macrophages, enhance
TAM secretion, and reduce the number of immunosuppressive
Tregs. Additionally, ginsenosides exhibit anti-tumor effects,
including inducing cell cycle arrest and apoptosis, regulating
autophagy, and reducing tumor invasion. They also reverse
hypoxia, acidity, and excessive angiogenesis in the TME, thereby
slowing tumor progression. This evidence indicates that
ginsenosides enhance immune responses within the colorectal
tumor microenvironment, effectively converting “cold tumors”
into “hot tumors.” This highlights their significant potential and
feasibility in combination with immunotherapy or chemotherapy
for the treatment of colorectal cancer. In clinical applications for
CRC treatment, ginsenosides also exhibit good immunomodulatory
effects, especially Rg1, Rg3, and Rh2. Ginsenosides alleviate
depression and anxiety in CRC patients, enhancing their quality
of life. With the successful market launch of Cardunelli in 2023,
immunotherapy is expected to be a major breakthrough in CRC
treatment. Ginsenosides, in synergy with immune checkpoint
inhibitors, remodel the tumor immune microenvironment,
inhibit tumor metastasis, and reduce adverse events associated
with immunosuppressive drugs, greatly improving patients’
quality of life. Thus, ginsenosides represent a promising adjunct
in the comprehensive management of CRC. Their integration into
immunotherapy offers a hopeful pathway toward enhancing
treatment outcomes.

Ginsenosides hold certain advantages and potential as an
adjunctive and alternative therapy for CRC. Firstly, ginsenosides
possess unique immunomodulatory and anti-tumor properties,
targeting multiple sites and signaling pathways to exert
multifaceted effects. They directly inhibit tumours and enhance
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immune responses within the TME. Secondly, ginsenosides exhibit
favorable drug safety profiles. They maintain stability in the body
and do not produce significant toxic side effects with long-term use,
ensuring high safety for tumor patients. Thirdly, while exerting anti-
tumor effects, ginsenosides also inhibit the pro-tumorigenic physical
and chemical characteristics. They suppress excessive tumor
angiogenesis and improve hypoxic and acidic
microenvironments. However, there are limitations to the use of
ginsenosides in CRC treatment. Firstly, although several studies
based on cell and animal experiments indicate the potential efficacy
of ginsenosides for CRC, high-quality and large-scale clinical studies
are lacking to confirm their therapeutic effects. Secondly, the
bioavailability of ginsenosides needs improvement. The
gastrointestinal tract does not easily absorb most ginsenosides
due to their low permeability through the intestinal epithelium.
Future preparations of these herbal monomers could benefit from
incorporating nanotechnology to prevent early release of active
ingredients, thereby enhancing bioavailability and targeted
therapeutic effects. Thirdly, the understanding of the molecular
mechanisms by which ginsenosides regulate the tumor immune
microenvironment is still superficial. More in-depth basic medical
research is required to elucidate these mechanisms comprehensively.
Therefore, developing ginsenoside-based therapies for CRC holds
significant promise, warranting further investigation and
optimization.

In summary, ginsenosides hold promising prospects as an
adjunctive and alternative treatment for CRC. Traditional
Chinese Medicine has a long history of clinical application. In
patients with colorectal cancer undergoing chemotherapy and
immunotherapy, ginsenosides exhibit synergistic anticancer
effects and can reverse drug resistance in various cancer cells.
This potential synergistic action may enhance the tolerance of
chemotherapy and immunotherapy in clinical settings for
colorectal cancer patients, thereby extending their overall
survival. Current research and exploration of representative
herbal monomers like ginsenosides can expand the therapeutic
scope of Traditional Chinese Medicine and promote its
international application. In drug development, the future
combination of herbal monomers with nanotechnology, using
nanocarrier materials to transport the monomers and prevent
early drug release, will significantly enhance the bioavailability
and clinical therapeutic effects of these compounds. We

anticipate that ginsenosides will become a promising treatment
option for CRC patients in the future.
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