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Alzheimer’s disease (AD) is a progressive neurodegenerative disorder
characterized by cognitive decline and memory loss. Despite advances in
understanding the pathophysiological mechanisms of AD, effective treatments
remain scarce. Lithium salts, recognized as mood stabilizers in bipolar disorder,
have been extensively studied for their neuroprotective effects. Several studies
indicate that lithium may be a disease-modifying agent in the treatment of AD.
Lithium’s neuroprotective properties in AD by acting on multiple
neuropathological targets, such as reducing amyloid deposition and tau
phosphorylation, enhancing autophagy, neurogenesis, and synaptic plasticity,
regulating cholinergic and glucose metabolism, inhibiting neuroinflammation,
oxidative stress, and apoptosis, while preserving mitochondrial function. Clinical
trials have demonstrated that lithium therapy can improve cognitive function in
patients with AD. In particular, meta-analyses have shown that lithium may be a
more effective and safer treatment than the recently FDA-approved aducanumab
for improving cognitive function in patients with AD. The affordability and
therapeutic efficacy of lithium have prompted a reassessment of its use.
However, the use of lithium may lead to potential side effects and safety
issues, which may limit its clinical application. Currently, several new lithium
formulations are undergoing clinical trials to improve safety and efficacy. This
review focuses on lithium’s mechanism of action in treating AD, highlighting the
latest advances in preclinical studies and clinical trials. It also explores the side
effects of lithium therapy and coping strategies, offering a potential therapeutic
strategy for patients with AD.
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1 Introduction

As the global population grows and ages, the prevalence of dementia is projected to rise
from 57.4 million cases in 2019 to 152.8 million by 2050 (GBD, 2019 Dementia Forecasting
Collaborators, 2022). Dementia imposes a heavy economic burden on societies worldwide.
The World Alzheimer Report 2019 estimates the annual cost of dementia at $1 trillion, a
figure projected to double by 2030 (Anon, 2020). Alzheimer’s disease (AD) is the
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predominant cause of dementia, accounting for approximately
60%–80% of cases (Anon, 2020). Individuals with AD typically
experience progressive worsening memory loss, learning disabilities,
mental and behavioral changes, and impairments in daily activities
(Burns and Iliffe, 2009). Despite extensive research into AD, its
pathogenesis remains poorly understood, and no cure has been
found. The hallmark neuropathologic features of AD currently
include the extracellular deposition of amyloid-beta (Aβ) plaques
and intraneuronal neurofibrillary tangles (NFTs) (Bloom, 2014; de
Wolf et al., 2020). In addition, the pathophysiology of AD involves
the cholinergic neuronal loss, mitochondrial dysfunction,
inflammation, oxidative stress, metal ion deposition, gut
dysbiosis, abnormal autophagy, and disturbances in calcium
homeostasis (Liu et al., 2019; Liu S. et al., 2020). AD is associated
with several risk factors, including age, genetics, head trauma,
vascular disease, infections, environmental exposures (heavy
metals, trace metals), and lifestyle choices (Kivipelto et al., 2018;
Huat et al., 2019; Raulin et al., 2022; Bruno et al., 2023).
Pharmacological interventions may provide moderate
symptomatic relief. Current treatments for AD mainly involve
acetylcholinesterase inhibitors, such as donepezil, for mild to
severe dementia, and N-methyl-D-aspartic acid receptor
antagonists, such as memantine, for moderate to severe dementia
(Arvanitakis et al., 2019). In addition, non-pharmacological
approaches, including cognitive training, and psychological
support, play a vital role in managing AD (Kivipelto et al., 2018;
Sikkes et al., 2021). Recently, the U.S. Food and Drug
Administration (FDA) has approved two monoclonal antibodies,
aducanumab and lecanemab, for global marketing. These antibodies
have shown significant success in reducing Aβ levels, but their
efficacy in improving cognition remains unsatisfactory (Dhillon,
2021; Larkin, 2023; Wojtunik-Kulesza et al., 2023). This highlights
the complexity of AD pathogenesis. The management and treatment
of AD often require multi-targeted drugs or combinations of
different interventions, as treatment of a single factor is often
ineffective in improving symptoms. In conclusion, the treatment
of AD still poses significant challenges, and it is crucial to find more
optimal therapeutic strategies.

Lithium salts are approved by the FDA for treating manic
episodes and bipolar disorder (Goodwin, 2002). It is noteworthy
that lithium has the potential to target multiple pathological events
in AD, as evidenced by promising results in preclinical and clinical
trials. Preclinical studies have shown that lithium can reduce
amyloid deposition and tau phosphorylation, regulate autophagy,
inflammation, oxidative stress, cholinergic and glucose metabolism,
enhance neurogenesis and synaptic plasticity, maintain
mitochondrial homeostasis, and improve cognitive function
(Fiorentini et al., 2010; Toledo and Inestrosa, 2010; Zhang et al.,
2011; Sudduth et al., 2012; Trujillo-Estrada et al., 2013; Wilson et al.,
2017; Pan et al., 2018; Wilson et al., 2018; Habib et al., 2019; Liu M.
et al., 2020; Wilson et al., 2020; Xiang et al., 2020; Xiang et al., 2021;
Gherardelli et al., 2022; Lu et al., 2022; Wiseman et al., 2023).
Clinical studies have indicated that lithium therapy can reduce the
risk of AD, halt the progression of early-stage AD, and maintain
cognitive stability over extended periods (Forlenza et al., 2019;
Haussmann et al., 2021). These findings support the effectiveness
of lithium as a disease-modifying therapy for AD. Recent meta-
analyses have highlighted the effectiveness of lithium in enhancing

cognitive function in patients with mild cognitive impairment
(MCI) and AD. Specifically, these studies compared lithium to
recently FDA-approved or reviewed drugs, such as aducanumab,
lecanemab, and donanemab. The results suggest that lithiummay be
superior in improving cognitive symptoms in AD and may have
greater safety at lower doses compared to the other drugs (Terao
et al., 2022; Singulani et al., 2024; Terao and Kodama, 2024). In
terms of cost, aducanumab is priced at approximately $28,000 per
person per year, while lithium costs only about $40 per year (Terao
et al., 2022). The efficacy and cost benefits of lithium have prompted
a reassessment of this conventional medication. Although the exact
mechanism by which lithium acts in AD treatment remains unclear,
its inhibition of glycogen synthase kinase-3beta (GSK-3β) and
modulation of inositol monophosphatase (IMPase) are thought
to be crucial and are the focus of this review (Chalecka-
Franaszek and Chuang, 1999; Sarkar and Rubinsztein, 2006).
Nevertheless, there are still concerns about the safety and
potential side effects of lithium (McKnight et al., 2012). Although
studies suggest that lithium use in older patients with AD results in
few mild side effects that resolve with discontinuation, potential
risks associated with lithium therapy should not be overlooked
(Macdonald et al., 2008).

This review explores the mechanism by which lithium acts in the
treatment of AD, recent advances in preclinical and clinical trials,
and addresses potential side effects and safety concerns of lithium
therapy, along with proposed countermeasures. The objective of this
review is to highlight the potential of lithium as a treatment for AD
and propose a possible therapeutic strategy for patients with AD.

2 The history of lithium in
medical research

Lithium, the lightest solid element, was discovered in 1817 by
the Swedish chemist Johan August Arfwedson in the mineral olivine
(Damri et al., 2020). Lithium has been used in the medical field,
including psychiatry, for many years, dating back to the mid-19th
century (Shorter, 2009). Alexander Ure* first observed that lithium
could dissolve uric acid in vitro. Later, Dr. Garrod explored its
potential therapeutic effects on gout (Anon, 1860). In 1870, Silas
Weir Mitchell, a neurologist from Philadelphia, noted that lithium
bromide was superior to other bromides as an antiepileptic and
hypnotic (Anon, 1870). The following year, Professor William
Hammond of New York used lithium bromide for the first time
to treat mania. In 1894, Danish psychiatrist Frederik Lange applied
lithium carbonate to treat depression (Shorter, 2009). In 1949,
psychiatrist John Cade from Melbourne, Australia, used lithium
citrate and lithium carbonate to treat manic patients, many of whom
responded positively (Cade, 1949). John Cade’s discovery was
significant in reintroducing lithium into psychiatric treatment
(Bech, 2006). In 1952, Danish psychiatrist Mogens Schou
conducted a randomized controlled trial of lithium in mania,
influenced by John Cade’s article, and published the study’s
results in a British journal in 1954 (Schou et al., 1954). This
provided a viable alternative for the treatment of mania. Lithium
research in the United States started in the 1960s. By 1970, the U.S.
FDA had approved its marketing, making the United States the 50th
country to approve lithium (Shorter, 2009). These studies have

Frontiers in Pharmacology frontiersin.org02

Shen et al. 10.3389/fphar.2024.1408462

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1408462


shown that lithium is significantly effective as a mood stabilizer in
bipolar disorder, particularly in preventing manic and depressive
relapses. Since 1970, researchers have explored the effects of lithium
therapy on cognitive function (Squire et al., 1980; Muñoz-Montaño
et al., 1997; Wei et al., 2000). Since 2000, several small clinical trials
have evaluated the effects of lithium on cognitive function in
patients with AD, as well as investigated the mechanisms of
lithium’s action (Forlenza et al., 2011; Matsunaga et al., 2015).
Despite inconsistent findings, most studies have supported
lithium’s effectiveness in treating AD. Recent systematic reviews
and meta-analyses have further confirmed lithium’s effectiveness in
treating AD (Terao et al., 2022; Singulani et al., 2024; Terao and
Kodama, 2024). Figure 1 illustrates the timeline of lithium research
in medicine from its discovery in 1817–2024, with a focus on AD.

Lithium is a metallic element that exhibits monovalent cation
properties in chemical reactions and naturally forms salt structures
with anions. Psychiatrists commonly prescribe lithium carbonate
(Li2CO3) and lithium citrate (Li3C6H5O7) as medications.
Alternatives to these include lithium sulfate (Li2SO4), lithium
orotate (C5H3LiN2O4), and lithium aspartate (C4H5Li2NO4) (Oruch
et al., 2014; Pacholko and Bekar, 2021). Figure 2 summarizes the
chemical structures of various lithium salts. Different lithium salts may
exhibit variations in chemical composition, bioavailability,
pharmacodynamic characteristics, and clinical applications.
Currently, lithium carbonate and lithium chloride (LiCl) are the
primary lithium salts utilized in preclinical studies of AD, as shown
in Table 1 (Xiang et al., 2021; Gherardelli et al., 2022). Due to the side
effects and toxicity of lithium salts, there is an urgent need to explore
non-toxic lithium formulations (Gitlin, 2016; Kakhki and Ahmadi-
Soleimani, 2022). Lithium ascorbate, which has low acute and chronic
toxicity, has been found to mitigate ischemia-induced brain damage
and play a significant neuroprotective role (Torshin et al., 2022). In
studies on AD, lithium benzoate and lithium cholesterol sulfate have
been shown to improve cognitive and memory functions in animal
models through multiple pathways (Hu et al., 2022; Lu et al., 2022).
Nanolithium, which utilizes Medesis Pharma’s innovative drug
delivery technology (Aonys®) to enhance the bioavailability of
lithium and reduce its toxicity, has demonstrated potential in

preclinical studies with the microdose lithium formulation (NP03)
for the treatment of AD (Wilson et al., 2020). Clinical trials of
Nanolithium are currently underway for patients with mild to
severe AD (ClinicalTrials.gov ID: NCT05423522) (Guilliot et al.,
2024). Additionally, AL001 (LISPRO), an ionic co-crystal of lithium
salicylate and l-proline designed for targeted brain delivery to enhance
efficacy and minimize toxicity, has prevented hippocampal-dependent
associative memory decline in AD mouse models (Habib et al., 2019).
Clinical trials are currently being conducted on patients with mild to
moderate AD (ClinicalTrials.gov ID: NCT05363293). These new
lithium formulations are expected to provide a new treatment
option for AD. More information on the role of lithium salts in
AD can be found in the following Mechanisms section.

3 Potential mechanisms of lithium
treatment for Alzheimer’s disease

In preclinical research, lithium has been shown to exhibit a
variety of neuroprotective properties. Table 1 summarizes the
findings of preclinical research on lithium therapy in AD.
Lithium exposure in neuronal cultures can reduce total tau and
P-tau levels and protect against Aβ toxicity (Hong et al., 1997;
Muñoz-Montaño et al., 1997; Alvarez et al., 1999; Lovestone et al.,
1999; Rametti et al., 2008). In Aβ-overexpressing AD transgenic
mice, lithium therapy has been found to inhibit GSK-3 activity,
reduce Aβ deposition and tau phosphorylation, regulate autophagy,
inflammation, oxidative stress, cholinergic and glucose metabolism,
enhance neurogenesis and synaptic plasticity, maintain
mitochondrial homeostasis, and improve cognitive function
(Fiorentini et al., 2010; Toledo and Inestrosa, 2010; Zhang et al.,
2011; Sudduth et al., 2012; Trujillo-Estrada et al., 2013; Wilson et al.,
2017; Pan et al., 2018; Wilson et al., 2018; Habib et al., 2019; Liu M.
et al., 2020; Wilson et al., 2020; Xiang et al., 2020; Xiang et al., 2021;
Gherardelli et al., 2022; Lu et al., 2022; Wiseman et al., 2023).
Similarly, in transgenic mice overexpressing pathogenic mutant tau,
lithium therapy inhibited GSK-3 activity and tau phosphorylation
(Noble et al., 2005; Engel et al., 2006; Caccamo et al., 2007; Leroy

FIGURE 1
Timeline of lithium in medical research. Created with BioRender.com.
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et al., 2010; Shimada et al., 2012). However, the exact mechanisms of
lithium’s neuroprotective properties in the context of AD remain
unclear. The neuroprotective effects of lithium may be attributed to
the inhibition of GSK-3β and IMPase, as well as the regulation of
subsequent cascade reactions (Forlenza et al., 2014).

3.1 What is GSK-3 and why is it important?

GSK-3 is a serine/threonine-protein kinase that plays a crucial
role in various physiological processes (Lauretti et al., 2020). There

are two mammalian isoforms of GSK-3, α and β, which share a
highly conserved (98%) catalytic structural domain but differ in
their terminal regions (Liu and Klein, 2018; Marosi et al., 2022). The
β isoform is more abundant in the brain and its expression level
increases with age (Grimes and Jope, 2001b; Lee et al., 2006).
Abnormal increases in GSK-3β levels and activity in the brain
are associated with the pathogenesis of AD (Avila et al., 2010).
GSK-3 represents one of the primary pharmacodynamic targets of
lithium, which inhibits GSK-3 activity through three distinct
mechanisms. At first, lithium competes with Mg2+ ions to bind to
the catalytic site of GSK-3, which is necessary for enzyme activation,

FIGURE 2
Chemical structures of various lithium salts. Created with BioRender.com. Chemical structures were sourced from the open chemistry database,
PubChem, available at https://pubchem.ncbi.nlm.nih.gov/.
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TABLE 1 Summary of experimental studies on lithium treatment for Alzheimer’s Disease.

Drug Results AD models Lithium level/dosage References

LiCl Reducing tau phosphorylation Primary rat neurons 20 mM for 7 h Muñoz-Montaño et al.
(1997)

LiCl Reducing tau phosphorylation; enhancing
tau binding to microtubules; promoting
microtubule assembly

Overexpression of GSK-3β in human
NT2N neurons

10 mM for 2 h Hong et al. (1997)

LiCl Reducing tau phosphorylation Primary rat neurons and COS and CHO
cells

0–25 mM Lovestone et al. (1999)

LiCl Reducing tau mRNA levels; protecting
cultured neurons against Aβ toxicity

Primary rat neurons 1.25–7.5 mM for 8 h Rametti et al. (2008)

LiCl Reducing tau phosphorylation Primary rat neurons 10 mM for 3 h Alvarez et al. (1999)

LiCl Improving spatial memory; reducing Aβ
and P-tau levels

APP/PS1 mice 5 and 17.5 mg/kg by gavage once daily
for 2 months

Liu et al. (2020a)

LiCl Reversing the declined activities of SOD
and GSH-Px, the increasing content of
MDA and the decreased Nissl bodies;
regulating GSK-3β/NRF2/HO-1 pathway

APP/PS1 mice LiCl 100 mg/kg by gavage once daily for
2 months

Xiang et al. (2020)

LiCl Improving learning and memory function;
reducing senile plaque count and Aβ1-42
level; improving the level of α7 nAChR
protein; activating Wnt signaling

APP/PS1 mice and primary rat neurons LiCl 100 mg/kg by gavage once daily for
2 months

Xiang et al. (2021)

LiCl Increasing brain Aβ clearance, brain
microvascular LRP1 expression, and CSF
bulk-flow; restoring long-term spatial
memory deficits; reducing soluble Aβ
levels

APP/PS1 mice LiCl 300 mg/kg by gavage once daily for
21 days

Pan et al. (2018)

LiCl Reducing Aβ production and senile plaque
formation; improving spatial learning and
memory function; attenuating the
autophagy activation

APP/PS1 mice LiCl 0.18 mmol injected
intraperitoneally once daily for 3 months

Zhang et al. (2011)

LiCl Improving spatial memory; reducing Aβ
aggregates and Aβ oligomers, astrocytic
and microglia activation; preventing
changes in presynaptic and postsynaptic
marker proteins; activating Wnt signaling

APP/PS1 mice LiCl 3mequiv.kg-1 injected
intraperitoneally once daily for 3 months

Toledo and Inestrosa
(2010)

LiCl Inhibiting GSK-3; activating Wnt/β-
catenin signaling; stimulating adult
hippocampal neurogenesis; improving
cognitive functions; reducing Aβ
deposition and glia reaction

TgCRND8 mice Injected intraperitoneally LiCl 0.6 mol/L
(10 μL/g of body weight) once daily for
5 weeks

Fiorentini et al. (2010)

LiCl Reducing IP3R Ca2+ and VGCC Ca2+

responses in CA1 pyramidal neurons;
reducing nNOS and tau phosphorylation;
enhancing short term plasticity

3×Tg-AD mice Diet chow containing 0.4% LiCl
(approximately 2 g/kg of Li) for 30 days

Wiseman et al. (2023)

LiCl Reducing tau phosphorylation; does not
alter the Aβ load and rescue working
memory deficits

3×Tg-AD mice LiCl 300 μL of 0.6 mol/L injected
intraperitoneally once daily for 4 weeks

Caccamo et al. (2007)

LiCl Inhibiting GSK-3 activity; reducing tau
phosphorylation and the level of
aggregated insoluble tau

Transgenic mice overexpressing mutant
human tau

Plasma concentration at 24 h post-
injection ≈0.2 mEq/L

Noble et al. (2005)

LiCl Preventing tau hyperphosphorylation and
neurofibrillary tangle formation, but pre-
formed neurofibrillary tangles do not
revert

FTDP-17 tau and GSK-3β
overexpressing mice

Preventative effects: 12-month-old mice
diet chow containing 1.7 g LiCl/kg for
7.5months; reversion effects: 18-month-
old mice diet chow containing 1.7 g
LiCl/kg chow for 4 weeks, followed by a
diet containing 2.55 g LiCl/kg chow for
2 weeks

Engel et al. (2006)

(Continued on following page)
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TABLE 1 (Continued) Summary of experimental studies on lithium treatment for Alzheimer’s Disease.

Drug Results AD models Lithium level/dosage References

LiCl Enhancing soluble tau autophagy
clearance; inhibiting GSK-3; attenuating
motor disturbance

P301L mice Diet chow containing 2 g of LiCl per kg
for 2 months from 5 months of age
followed by 1 g of LiCl per kg chow for
another 2 months

Shimada et al. (2012)

Li2CO3 Stimulating glucose uptake; promoting
glycolysis and ATP synthesis; enhancing
glycolysis and AMPK activity

APP/PS1 mice and primary rat neurons Hippocampal neuronal cultures were
treated with Li2CO3 (10 mM);
hippocampal slices from APP/PS1 mice
were treated with Li2CO3 (10 mM)

Gherardelli et al. (2022)

Li2CO3 Rescuing behavioral/memory deficits;
preventing neuronal loss; ameliorating
axonal/synaptic pathology by reducing
abnormal intracellular protein
accumulation; modifying the morphology
and toxicity of the extracellular Aβ plaques;
inducing astrocyte activation

APP/PS1 mice Diet chow containing Li2CO3 1.2 g/kg for
6 months

Trujillo-Estrada et al.
(2013)

Li2CO3 Increasing telomere length in parietal
cortex and hippocampus

3×Tg-AD mice Diet chow containing 1.0 g (Li1) or 2.0 g
(Li2) of Li2CO3/kg for 8 months

Cardillo et al. (2018)

Li2CO3 Blocking development of NFTs in mutant
tau transgenic mice with advanced
neurofibrillary fiber pathology

Tgtau30 mice Diet chow containing 2.4 g of Li2CO3 per
kg for 8 months starting at the age of
3 months (to test for a preventive effect
on NFTs formation) or by oral gavage
(350 mg per kg of animal weight,
dissolved in water) for 1 month starting
at the age of 9 months (after
development of NFTs)

Leroy et al. (2010)

Li2CO3 Improving memory function; decreasing
exploration activity; increasing the activity
of acetylcholinesterase

Scopolamine-induced zebrafish 100 mg/L for 7 days Zanandrea et al. (2018)

Li2CO3 Rescuing memory performances but did
not modulate ChAT availability and
caspase-3 activity

Basal forebrain cholinergic depletion
Wistar rats

Diet chow containing of 0.24% Li2CO3

diet for 30 days
Gelfo et al. (2017)

Li2CO3 Reducing the levels of IL-1β and TNF-α;
reversing the decreased levels of IL-4

Aβ1-42 oligomers-induced Wistar rats Oral treatments with memantine
(5 mg/kg), lithium (5 mg/kg), or both
drugs in combination for 17days

Budni et al. (2017)

Lithium diet Reducing tau phosphorylation; altering the
neuroinflammatory phenotype and
lowering inflammatory response

APPSwDI/NOS2−/−mouse model Diet chow containing of 2 g lithium/kg
diet for 8 months

Sudduth et al. (2012)

Lithium
benzoate

Inhibiting ROS production; improving
mitochondrial function; promoting
neurogenesis; improving spatial memory

APP/PS1 mice and primary rat
hippocampal neuronal

Injected intraperitoneally once daily,
LiBen at 256 mg/kg/day (Li: 14 mg/kg/
day) were applied initially for 5 months
and the dose was lower to 200 mg/kg/day
(Li: 10.9 mg/kg/day) to prevent toxicity
for 3 months

Lu et al. (2022)

NP03 Reversing object recognition impairments;
protecting against cholinergic bouton loss;
reducing soluble and aggregated Aβ1-42 in
brain and plasma; lowering oxidative stress
marker 4-hydroxynonenal; reducing pro-
inflammatory mediators

McGill-R-Thy1-APP transgenic rats 40 μg Li/kg; 1 mL/kg body weight on
rectal mucosa 5 days per week for
12 weeks

Wilson et al. (2020)

NP03 Decreasing cerebral 4-hydroxynonenal
and 3-nitrotyrosine; reducing production
of pro-inflammatory cytokines, expression
of microglia surface receptor Trem2, and
microglial recruitment to Aβ-loaded
neurons

McGill-R-Thy1-APP transgenic rats 40 μg Li/kg; 1 mL/kg body weight on
rectal mucosa 5 days per week for
8 weeks

Wilson et al. (2018)

NP03 Inhibiting GSK-3β; restoring native β-
catenin; reducing BACE1 expression and
activity and Aβ levels; reversing memory
impairments; rescuing adult hippocampal
neurogenesis and synaptic plasticity

McGill-R-Thy1-APP transgenic rats 40 μg Li/kg; 1 mL/kg body weight on
rectal mucosa 5 days per week for
8 weeks

Wilson et al. (2017)

(Continued on following page)
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thus inhibiting GSK-3 activity (Ryves and Harwood, 2001; Ryves
et al., 2002). Moreover, lithium enables the phosphorylation of
specific serine residues, specifically serine-21 for GSK-3α and
serine-9 for GSK-3β, within its regulatory amino-terminal
domain by activating the phosphatidylinositol 3-kinase (PI 3-K)/
serine/threonine kinase Akt-1 signaling pathway (Chalecka-
Franaszek and Chuang, 1999; Zhang et al., 2003). Additionally,
lithium inhibits the mRNA transcription of GSK-3, which reduces
its expression level (Mendes et al., 2009).

Lithium has several neuroprotective mechanisms in AD related
to GSK-3. In particular, lithium inhibits GSK-3β, which interferes
with Wnt/β-catenin signaling pathway and modulates several
downstream pathological processes (Sang et al., 2001; Sun et al.,
2002; Ly et al., 2013). Research indicates that lithium inhibits the
phosphorylation and subsequent degradation of β-catenin by
inhibiting GSK-3β. This leads to the intracellular accumulation of
β-catenin, which facilitates its entry into the nucleus where it
interacts with T-cell factor/lymphoid enhancer-binding factor
(TCF/LEF), regulating the transcription of target genes (Cadigan
and Nusse, 1997; Toledo and Inestrosa, 2010). Ultimately, this
reduces Aβ deposition, enhances neurogenesis, and improves
mitochondrial bioenergetics (Lie et al., 2005; Fiorentini et al.,
2010; Wilson et al., 2017; Martin et al., 2018). Furthermore,
lithium regulates the activation of the nuclear factor erythroid 2-
related factor (NRF2)/heme oxygenase-1 (HO-1) pathway through
GSK-3β, which helps prevent oxidative damage (Chen et al., 2016).
It also reduces neuroinflammation by inhibiting nuclear factor
kappa-B (NF-κB) and signal transducer and activator of
transcription 3 (STAT-3) (Beurel and Jope, 2008; Sakrajda and
Szczepankiewicz, 2021). These effects are essential for
maintaining nervous system health and play a significant role in
the treatment of AD.

3.2 Lithium suppresses amyloid-
beta pathology

According to the amyloid cascade hypothesis, abnormal
deposition of Aβ is a crucial step leading to neuronal loss and
death. Amyloid precursor protein (APP) can produce several
bioactive fragments via both amyloidogenic and non-
amyloidogenic pathways (Müller et al., 2017). In the
amyloidogenic pathway, APP undergoes sequential cleavage by β-
secretase (BACE1, β-site APP cleaving enzyme 1) and γ-secretase to
produce Aβ. Aβ is released extracellularly, with Aβ1-42 being the
most toxic form. Aβ can aggregate from monomeric forms into

oligomers, protofibrils, and plaques, ultimately leading to neuronal
death. In the non-amyloidogenic pathway, APP is initially cleaved
by α-secretase into the non-toxic APP-derived C-terminal fragments
(APP-CTFs), which are subsequently cleaved by γ-secretase into
P3 and the APP intracellular domain (AICD), neither of which is
associated with AD pathology (O’Brien and Wong, 2011). The
amyloid and the non-amyloid pathways compete, and increased
α-secretase activity significantly reduces Aβ production. Mutations
in the APP, BACE1, presenilin 1 (PS1), and presenilin 2 (PS2) genes
can affect Aβ production and aggregation in AD (Haass et al., 2012).
Research suggests that lithium can reduce Aβ accumulation in the
brain through various mechanisms, such as inhibiting Aβ synthesis
and enhancing Aβ efflux across the blood-brain barrier (BBB)
(Rockenstein et al., 2007; Sofola-Adesakin et al., 2014; Pan et al.,
2018). Studies on transgenic animal models of AD indicate that
lithium therapy can reduce Aβ1-42 levels and decrease the size and
number of senile plaques in brain regions (Table 1). Figure 3A
illustrates the mechanism by which lithium regulates Aβ.

BACE1 is essential for producing monomeric forms of Aβ that
can aggregate and potentially trigger AD toxicity (Hampel et al.,
2021). Therefore, BACE1 is a significant drug target for slowing early
Aβ production in AD (Vassar, 2002). The Wnt/β-catenin pathway
regulates the expression of BACE1 (Jia et al., 2019). Lithium inhibits
GSK-3β activity, increasing nuclear β-catenin levels and activating
the Wnt/β-catenin pathway. The translocation of β-catenin into the
nucleus leads to its interaction with TCF4, which binds to the
BACE1 promoter. This results in the inhibition of BACE1
transcription and ultimately leads to decreased Aβ production
(Parr et al., 2015; Wilson et al., 2017). In addition, lithium can
block the production of Aβ by interfering with the cleavage of APP
by γ-secretase, while leaving Notch processing unaffected (Phiel
et al., 2003). Specifically, in human brain and mammalian cells, PS1,
the catalytic subunit of the γ-secretase complex, has mutations in
AD brains that increase its binding capacity to GSK-3β (Takashima
et al., 1998). Lithium can inhibit GSK-3β and decrease γ-secretase
activity, which can interfere with APP cleavage and result in reduced
Aβ production (Su et al., 2004). To summarize, lithium can regulate
the production of Aβ by interfering with β- and γ-secretase during
APP cleavage mediated by GSK-3β. Furthermore, GSK-3β is
involved in the phosphorylation and maturation of APP, crucial
processes for Aβ production (Zhang et al., 2019). The
phosphorylation of APP by GSK-3β promotes its cleavage by β-
and γ-secretase, leading to an increase in Aβ production (Aplin et al.,
1996). Lithium, by inhibiting GSK-3β, reduces the phosphorylation
level of APP, which in turn decreases Aβ production (Rockenstein
et al., 2007). Additionally, a quantitative proteomics study showed

TABLE 1 (Continued) Summary of experimental studies on lithium treatment for Alzheimer’s Disease.

Drug Results AD models Lithium level/dosage References

LISPRO Preventing spatial cognitive decline,
depression-like behavior, hippocampus-
dependent associative memory decline and
irritability

APP/PS1 mice Orally treated with low-dose Li2CO3, or
lithium salicylate at 2.25 mmol
lithium/kg/day for 9 months

Habib et al. (2019)

Aβ, amyloid-beta; AD, Alzheimer’s disease; AMPK, adenosine 5-monophosphate (AMP)-activated protein kinase; APP, amyloid precursor protein; ATP, adenosine triphosphate; BACE1, β-site
APP, cleaving enzyme 1; ChAT, choline acetyltransferase; CSF, cerebrospinal fluid; GSH-Px, glutathione peroxidase; GSK-3β, glycogen synthase kinase-3β; HO-1, heme oxygenase-1; IL-1β,
interleukin-1β; IP3R, inositol 1,4,5-trisphosphate (IP3) receptor; LiCl, lithium chloride; LRP1, low-density lipoprotein receptor-related protein-1; MDA, malondialdehyde; nAChR, neuronal

nicotinic acetylcholine receptors; NFTs, neurofibrillary tangles; nNOS, neuronal nitric oxide synthase; NRF2, nuclear factor E2 related factor; PS1, presenilin-1; ROS, reactive oxygen species;

SOD, superoxide dismutase; TNF-α, tumor necrosis factor-alpha; VGCC, voltage gated calcium channel; 3×Tg-AD, triple-transgenic AD.
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that lithium’s inhibition of GSK-3 led to alterations in membrane
proteins that are involved in APP processing. These changes
included a reduction in lamin B1 and lamin B receptor, as well
as an increase in several endosome-regulating rab proteins (rab5,
rab7, and rab11) (Thompson et al., 2009). This suggests an
alternative regulatory pathway for Aβ production.

Enhancing the efflux of Aβ across the BBB represents a potential
therapeutic strategy. The BBB is a unique structure in the central
nervous system (CNS) composed of brain microvascular endothelial
cells, pericytes, astrocytes, and basement membranes. It is critical for
molecular exchange and maintaining the relative stability of the
brain’s internal environment (Zlokovic, 2008). At the BBB, Aβ
clearance is facilitated by Aβ-trafficking proteins, such as
P-glycoprotein and low-density lipoprotein receptor-related
protein-1 (LRP1), which are essential for maintaining low levels
of Aβ in the healthy brain (Cirrito et al., 2005; Storck et al., 2016).
The administration of lithium leads to the upregulation of the BBB
microvessel efflux transporter LRP1 and an increase in cerebrospinal
fluid (CSF) bulk-flow. This enhancement promotes the clearance of
Aβ by facilitating Aβ efflux and improves cognitive function in
mouse models (Pan et al., 2018). Therefore, lithium has the potential
to be a valuable therapeutic agent for AD as it impacts multiple
stages of Aβ production and clearance.

3.3 Lithium suppresses tau pathology

Tau is a microtubule-binding protein that stabilizes axonal
structures and participates in axonal nutrient transport and
signaling (Baker and Götz, 2016). Most tau isoforms undergo
post-translational modifications, primarily phosphorylation and
dephosphorylation (Li and Götz, 2017; Lauretti and Praticò, 2020).
Dephosphorylated tau promotes microtubule assembly, which is
essential for cytoskeletal stability and the maintenance of healthy
neuronal structure and function (Gong et al., 2005). Maintaining a
balance between tau phosphorylation and dephosphorylation is
critical for neuronal homeostasis under normal physiological
conditions (Martin et al., 2013). In AD, tau
hyperphosphorylation leads to the formation of intra-neuronal
paired helical filaments and NFTs, which disrupt normal axonal
messaging and ultimately cause cell death (Gendron and Petrucelli,
2009; Rudrabhatla et al., 2011). Several protein kinases, such as
calmodulin-dependent protein kinase II, cyclic adenosine
monophosphate (cAMP)-dependent protein kinase (PKA),
GSK-3β, and cyclin-dependent protein kinase 5, can
phosphorylate tau (Wang et al., 2007). Protein phosphatase-2A
is considered the primary dephosphorylating enzyme for P-tau
(Chang et al., 2018). Preclinical research indicates that lithium

FIGURE 3
Potential mechanisms of lithium treatment for Alzheimer’s disease. (A) Lithiummodulates the production and clearance of Aβ by inhibiting BACE-1
expression, reducing APP phosphorylation levels, decreasing γ-secretase activity, upregulating the BBB microvessel efflux transporter LRP1, and
increasing CSF bulk-flow. (B) Lithium reduces total tau levels by decreasing tau mRNA levels and promoting tau ubiquitination, and reduces tau
phosphorylation levels by inhibiting GSK-3β. (C) Lithium enhances autophagy through the phosphatidylinositol signaling pathway. (D)Mechanisms
of lithium regulation of inflammation. (E)Mechanism of lithium regulating mitochondrial function. (F) Lithium affects downstream pathological events by
promoting BDNF transcription. (G) Lithium regulates glucose metabolism, cholinergic metabolism, and telomere length. Created with BioRender.com.

Frontiers in Pharmacology frontiersin.org08

Shen et al. 10.3389/fphar.2024.1408462

http://BioRender.com
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1408462


primarily attenuates tau phosphorylation by inhibiting GSK-
3β (Table 1).

In primary neuronal cultures, lithium treatment reduces tau
phosphorylation, enhances tau binding to microtubules, and
facilitates microtubule assembly by inhibiting GSK-3 (Hong et al.,
1997; Muñoz-Montaño et al., 1997; Lovestone et al., 1999; Takahashi
et al., 1999). These results are consistent with in vivo studies.
Treatment with lithium in transgenic mice overexpressing
mutant human tau significantly inhibited GSK-3 activity, reduced
tau phosphorylation, and significantly decreased the levels of
aggregated insoluble tau (Pérez et al., 2003; Noble et al., 2005;
Shimada et al., 2012). Long-term low-dose lithium treatment has
been found to reduce P-tau levels and alleviate cognitive impairment
in APP/PS1 transgenic mice (Liu M. et al., 2020). In a 12-month
double-blind trial of lithium therapy, targeting serum lithium levels
of 0.25–0.5 mmol/L, there was a significant decrease in cerebrospinal
fluid P-tau concentrations (Forlenza et al., 2011). Although these
findings support the potential of lithium to suppress tau pathology,
several studies have reported inconsistent findings. In a 10-week
multicenter randomized single-blind placebo-controlled trial,
lithium therapy was administered with target serum levels of
0.5–0.8 mmol/L. The results showed no significant effects on
cerebrospinal fluid Aβ, P-tau concentrations, or cognitive
performance (Hampel et al., 2009). Variability in clinical trial
results may be due to differences in the timing of administration
and target serum concentrations. Furthermore, research has shown
that extended lithium administration in mice overexpressing FTDP-
17 tau and GSK-3β inhibited the hyperphosphorylation of tau and
the formation of NFTs. However, it was unable to reverse pre-
existing NFTs (Engel et al., 2006). This indicates that early
intervention with lithium may impede the advancement of tau
pathology in AD.

In addition, reducing total tau levels is being considered as a
potential therapeutic approach for AD. It has been reported that
lithium may modulate tau expression at the mRNA level. Cortical
neuronal cultures exposed to lithium exhibited reduced levels of tau
mRNA and protein expression (Rametti et al., 2008; Martin et al.,
2009). In a mouse model of tauopathies, chronic lithium
administration was observed to attenuate tau pathology by
increasing tau ubiquitination, instead of suppressing tau
phosphorylation (Nakashima et al., 2005). These findings propose
an alternative mechanism through which lithium modulates tau
pathology, separate from the GSK3β-mediated inhibition of tau
phosphorylation. However, prolonged inhibition of tau may present
challenges. Tau typically collaborates with APP to transport iron to
the neuronal surface and promote iron efflux, thereby reducing
neuronal iron levels (Lei et al., 2012). Prolonged inhibition of soluble
tau results in the accumulation of iron in neurons to toxic levels,
leading to a range of diseases related to iron deposition (Lei et al.,
2017). Therefore, modest reductions in tau levels may be a more
viable therapeutic strategy. Figure 3B illustrates the mechanism by
which lithium modulates tau pathology.

3.4 Lithium activates autophagy

Autophagy is a cellular process in eukaryotic cells that degrades
long-lived proteins, misfolded proteins, and damaged organelles

(Klionsky and Emr, 2000). There are three primary types of
autophagy: chaperone-mediated autophagy, microautophagy, and
macroautophagy. Macroautophagy, also known as autophagy, is the
most extensively studied and highly dynamic form of autophagy in
eukaryotic cells (Zhang et al., 2021). Figure 3C illustrates the four
stages of autophagy, including initiation and phagophore,
autophagosome formation, autolysosome formation, and
degradation (Kiriyama and Nochi, 2015). Each stage is tightly
regulated. Autophagy plays an important role in AD
pathogenesis by facilitating the degradation of Aβ, P-tau, and
damaged mitochondria (Zhang et al., 2023). The study identified
an accumulation of autophagic vacuoles in certain neuronal regions
of the brain affected by AD, suggesting a potential impairment of the
autophagic process (Boland et al., 2008). Another study
demonstrated that enhancing mitochondrial autophagy improved
cognitive function in AD (Fang et al., 2019). Therefore, enhancing
autophagy may be a critical strategy for treating AD. The
mammalian target of rapamycin (mTOR) is a well-known
inhibitor of autophagy. It works by inhibiting the activity of the
ULK1 complex, which is hyperactivated in MCI/AD brains and
associated with the accumulation of Aβ and P-tau. Inhibition of
mTOR signaling can activate autophagy and improve cognitive
function in AD by reducing Aβ and P-tau deposition (Zhang
et al., 2021).

Lithium enhances autophagic substrate clearance through
mTOR-independent pathways (Sarkar et al., 2005). Specifically,
IMPase catalyzes the hydrolysis of inositol monophosphate (IP1)
to produce free inositol, which is necessary for the
phosphatidylinositol signaling pathway (Sarkar and Rubinsztein,
2006). The autophagy-enhancing effects of lithium are a result of
inhibiting IMPase and inositol polyphosphate-1-phosphatase
(IPPase), which leads to a depletion of free inositol and
decreased levels of inositol 1,4,5-trisphosphate (IP3) and
diacylglycerol (DAG) (Serretti et al., 2009; Motoi et al., 2014).
This autophagic effect of lithium promotes the clearance of
aggregation-prone proteins and has potential for treating
neuropsychiatric disorders (Damri et al., 2020). Inhibition of
GSK-3β may actually decrease autophagy through the activation
of the mTOR pathway (Sarkar et al., 2008). Notably, inhibition of the
phosphatidylinositol signaling pathway by lithium and inhibition of
the mTOR pathway by rapamycin, can work together to activate
autophagy. Therefore, combination therapy with lithium and
rapamycin has the potential to enhance the clearance of mutant
aggregation-prone proteins and provide protection against their
aggregation and toxicity (Sarkar and Rubinsztein, 2006).
However, further confirmation of this mechanism in the context
of AD is necessary.

3.5 Lithium suppresses inflammation

Neuroinflammation is a crucial factor in the development of AD.
Evidence suggests that the overactivation of microglia, and
astrocytes, as well as the inflammatory molecules they produce,
can disrupt the neuronal microenvironment and lead to cognitive
impairment (Uddin et al., 2020). Neuroinflammation is a double-
edged sword for the brain. On one hand, it activates the immune
system by initiating phagocytosis by glial cells to eliminate potential
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pathogens, which is beneficial. On the other hand, overactivation of
neuroinflammation can lead to detrimental effects on neurons
(Triviño and Von Bernhardi, 2021; Twarowski and Herbet,
2023). Microglia represent the primary immune cells responsible
for maintaining homeostasis within the CNS (Bennett and Bennett,
2020). In response to immune stimulation or tissue injury, microglia
undergo a morphological shift from a resting state of ramified
morphology to an activated amoeboid morphology (Cai et al.,
2022). Reactive microglia can be classified into two distinct
categories, M1 pro-inflammatory and M2 anti-inflammatory,
based on their role in neuroinflammation (Hristovska and
Pascual, 2015). M1 microglia are activated by interferon-γ, tumor
necrosis factor-alpha (TNF-α), or lipopolysaccharide and express
pro-inflammatory cytokines such as interleukin-1β (IL-1β), IL-6, IL-
18, and TNF-α, nitric oxide (NO), and reactive oxygen species
(ROS), which are closely related to the inflammatory response
and increased neurotoxicity (Block et al., 2007). M2 microglia are
induced by IL-4 and IL-13 and are characterized by the production
of anti-inflammatory cytokines (IL-4, IL-10, IL-13, and
transforming growth factor-β), neurotrophic factors-1, and the
promotion of phagocytosis of cellular debris and misfolded
proteins and neuronal survival (Colton, 2009). In the early stages
of AD, activated microglia are capable of phagocytosing and clearing
Aβ and insoluble tau inclusion bodies (Takata et al., 2010; Brelstaff
et al., 2018). However, as the disease progresses, elevated levels of
proinflammatory cytokines induce a shift in microglia phenotype
from M2 to M1, thereby reducing their phagocytic capacity (Tang
and Le, 2016). In the presence of endogenous stimuli, such as Aβ and
P-tau, which can interact with astrocytes to produce a
proinflammatory phenotype and elevate proinflammatory levels,
a sustained inflammatory response ultimately results in neuronal
loss (Tang and Le, 2016). Consequently, the reduction of neuronal
damage resulting from the inflammatory response represents a
crucial aspect of AD treatment.

Lithium treatment attenuated the inflammatory responses of
microglia and astrocytes and reduced the production of the pro-
inflammatory factors IL-1β and TNF-α in the brains of AD animal
models (Toledo and Inestrosa, 2010; Budni et al., 2017). In the
McGill-R-Thy1-APP transgenic rat model, treatment with the new
microdose lithium formulation, NP03, resulted in a reduction of
neuroinflammatory markers. This included a decrease in chemokine
(C-X-C motif) ligand 1 (CXCL1), IL-6, the expression of the
microglial surface receptor Trem2, and microglial recruitment to
Aβ-loaded neurons in the CA1 region of the hippocampus (Wilson
et al., 2018; Wilson et al., 2020). In summary, while many studies
suggest that lithium treatment reduces pro-inflammatory cytokine
levels in AD models, the exact mechanism behind this modulation
remains unclear. NF-κB, a pro-inflammatory transcription factor
implicated in promoting neurodegeneration, is critical for innate
immune responses. Its activation stimulates the transcription of pro-
inflammatory genes and cytokine production (Sun et al., 2022).
GSK-3β affects several transcription factors, including NF-κB
(Steinbrecher et al., 2005). As a GSK-3β inhibitor, lithium
reduces the transcriptional activity of NF-κB, leading to a
decrease in the release of pro-inflammatory factors and glial cell
activation (Yuskaitis and Jope, 2009; Sakrajda and Szczepankiewicz,
2021). Additionally, GSK-3β may regulate inflammation through
STAT-3, which is also downregulated by lithium treatment,

resulting in reduced secretion of pro-inflammatory cytokines
(Beurel and Jope, 2008; Beurel and Jope, 2009). In summary,
lithium’s inhibition of GSK-3β may regulate downstream
inflammation through both the NF-κB and STAT-3 pathways.
Figure 3D illustrates the mechanism by which lithium inhibits
inflammation.

3.6 Lithium regulates mitochondrial
function, oxidative stress, and apoptosis

Under physiological conditions, healthy mitochondria support
neuronal activity by providing adequate energy to neurons and
facilitating other related mitochondrial functions (Bélanger et al.,
2011; Wang et al., 2020). Mitochondrial dysfunction in AD is
characterized by decreased activities of mitochondrial complexes
I (NADH: ubiquinone oxidoreductase), IV (cytochrome c oxidase),
and V (adenosine triphosphate synthase), as well as the pyruvate and
α-ketoglutarate dehydrogenase complexes. This is accompanied by
an increased production of ROS (Johri, 2021). In AD, mitochondria
are affected in both quantity and morphology (Tyumentsev et al.,
2018). There is a correlation between reduced activity of enzymes
involved in energy metabolism and cognitive performance in
patients with AD (Pérez et al., 2017; Fišar et al., 2019).
Mitochondrial dysfunction, and associated oxidative stress,
cerebral metabolic failure, deregulation of calcium signaling, and
cell death events (apoptosis) are all significant factors in the
pathogenesis of AD (Perez Ortiz and Swerdlow, 2019; Ashleigh
et al., 2023). While Aβ can disrupt mitochondrial function, leading
to caspase-dependent neuronal apoptosis and the release of ROS
(Zhang H. et al., 2012). Lithium has been found to play an important
role in regulating mitochondrial function. The peroxisome
proliferator-activated receptor gamma coactivator 1-α (PGC-1α)
is a crucial regulator of mitochondrial function (Olson et al.,
2008). Lithium may help maintain metabolic integrity by
modulating NAD(P)H metabolism through GSK-3β inhibition.
This enhances PGC-1α protein stability, nuclear localization, and
transcriptional coactivation, elevating mitochondrial respiration
and membrane potential (Martin et al., 2018). Figure 3E
illustrates the mechanism by which lithium regulates
mitochondrial function.

Additionally, dysfunction of mitochondria can lead to an
increase in ROS production. Lithium benzoate can reduce ROS
levels in cells, enhance spare respiratory capacity for the
mitochondrial function, and protect against apoptosis (Lu et al.,
2022). The cellular antioxidant network, which comprises catalase
(CAT), superoxide dismutase (SOD), and glutathione peroxidase
(GPx), plays an important role in scavenging ROS (Ashleigh et al.,
2023). NRF2 is a crucial regulator of oxidative stress as it controls the
expression of several genes, including NAD(P)H-quinone
oxidoreductase 1 (NQO1), HO-1, and GPx, through the KEAP1-
NRF2 pathway (Buendia et al., 2016; Sun et al., 2016). The regulation
of NRF2 is dependent on GSK-3β (Chen et al., 2016). A study
showed that lithium treatment decreased the protein levels of
phospho-GSK3β (ser9), increased the protein levels of NRF2 and
HO-1, enhanced the activity of SOD and GSH-Px, and reduced
MDA levels in the brains of APP/PS1 mice compared to wild type
mice (Xiang et al., 2020). The GSK-3β/NRF2/HO-1 pathway is
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primarily responsible for lithium’s ability to attenuate oxidative
stress (Sotolongo et al., 2020; Xiang et al., 2020).

Apoptosis is a type of programmed cell death that occurs both
physiologically and pathologically (Tuzlak et al., 2016). Failure of
apoptosis may contribute to several forms of cancer, while excessive
apoptosis is associated with neurodegenerative diseases, including
AD (Kumari et al., 2023). The mitochondria-associated apoptotic
process primarily involves an endogenous pathway with key factors
such as cytochrome c and the pro- and anti-apoptotic proteins Bax
and Bcl-2. The pro-apoptotic protein Bax initiates the
permeabilization of the outer mitochondrial membrane, enabling
cytochrome c to exit from the intermembrane space (Jourdain and
Martinou, 2009). In the presence of adenosine triphosphate (ATP),
cytochrome c binds to apoptotic protease activating factor-1 (Apaf-
1) to form the Apaf-1/cytochrome c complex. The activation of
procaspase-9 is initiated by this complex, leading to the formation of
apoptotic bodies and the activation of caspase-9 and caspase-3 (Zou
et al., 1999; Elena-Real et al., 2018). A study was conducted to
investigate the neuroprotective effects of lithium against glutamate
excitotoxicity. The study found that long-term treatment of
cerebellar granule cells with lithium chloride resulted in
decreased mRNA and protein levels of the pro-apoptotic Bax.
Additionally, it significantly increased the mRNA and protein
expression of the anti-apoptotic Bcl-2 (Chen and Chuang, 1999).
In patients with bipolar disorder who are treated with lithium, there
is an increase in the expression of Bcl-2 and a decrease in the
expression of several pro-apoptotic protein, including Bcl-2-
antagonist/killer 1 (BAK1) and Bcl-2-associated agonist of cell
death (BAD), as detected in peripheral blood (Lowthert et al.,
2012). However, a study found that chronic lithium treatment
significantly improved memory deficits but did not modulate
caspase-3 activity (Gelfo et al., 2017). Therefore, additional
studies are necessary to clarify the mechanism by which lithium
regulates apoptosis.

3.7 Neurotrophic and other effects of lithium

Brain-derived neurotrophic factor (BDNF) is critical for
maintaining synaptic plasticity in learning and memory processes
and has high expression levels in the cerebral cortex and
hippocampus (Dwivedi, 2009). In postmortem AD samples,
BDNF mRNA levels and protein expression were found to be
lower in the cerebral cortex compared to controls (Phillips et al.,
1991; Connor et al., 1997). Similar observations were also discovered
in animal models of AD (Peng et al., 2009). Furthermore, patients
with AD who had higher levels of BDNF in their serum showed a
slower rate of cognitive decline (Laske et al., 2011). In a clinical pilot
study, researchers observed significant increases in serum BDNF
levels and notable reductions in Alzheimer’s Disease Assessment
Scale - Cognitive Subscale (ADAS-Cog) scores were observed in AD
patients treated with lithium compared to those receiving a placebo
(Leyhe et al., 2009). In addition, chronic lithium treatment has been
shown to increase BDNF expression in primary neuronal cultures
and rat brains (Fukumoto et al., 2001; De-Paula et al., 2016). Lithium
can activate Akt through PI3K phosphorylation, leading to the
phosphorylation and activation of cAMP-responsive element
binding protein (CREB), which ultimately increases BDNF

expression (Meffre et al., 2015; Rosa and Fahnestock, 2015). In
AD, depletion of BDNF is associated with tau phosphorylation, Aβ
accumulation, neuroinflammation, autophagy, and apoptosis
(Smith et al., 2014; Wang et al., 2019; Gao et al., 2022). BDNF
and its receptor, TrkB, are involved in neuronal survival,
neurogenesis, and synaptic plasticity (Grimes and Jope, 2001a;
Huang and Reichardt, 2001; Hashimoto et al., 2002; Lu et al., 2013).

Other mechanisms contribute to the neuroprotective effects of
lithium therapy, including glucose metabolism, cholinergic
hypothesis, the synaptic plasticity, neurogenesis, and telomere
length. Treatment of APP/PS1 mouse models with lithium
carbonate stimulates neuronal glucose uptake and replenishes
ATP levels by preferentially oxidizing glucose via glycolysis. The
mechanism involves the upregulation of glucose transporter 3
(Glut3), a major carrier of glucose uptake in neurons, and the
activation of adenosine 5′-monophosphate (AMP)-activated
protein kinase (AMPK) (Gherardelli et al., 2022). Additionally,
the ‘cholinergic hypothesis’ plays a significant role in the
pathogenesis of AD, with the progressive loss of cholinergic
innervation contributing to cognitive decline (Hampel et al.,
2018). Neuronal nicotinic acetylcholine receptors (nAChRs) play
a critical role in cognitive, learning, and memory processes. In AD,
the expression of nAChRs is decreased (Lombardo and Maskos,
2015). Treatment with lithium has been shown to alleviate impaired
learning and memory function in APP/PS1 mice by promoting the
expression of α7 nAChRs (Xiang et al., 2021). Moreover, lithium
therapy can affect cholinergic metabolism by inducing proteasomal
degradation of overexpressed acetylcholinesterase and modulating
cholinesterase activity, thereby exerting neuroprotective effects (Jing
et al., 2013; Zanandrea et al., 2018).

Neurogenesis is the process through which neural stem cells
generate new neurons. Its dysregulation may be associated with
cognitive deficits related to AD (Babcock et al., 2021). Studies
indicate that lithium treatment may enhance neurogenesis in the
adult hippocampus (Chen et al., 2000; Fiorentini et al., 2010;
Wilson et al., 2017). This enhancement may be associated with
the inhibition of GSK-3β and activation of the Wnt/β-catenin
pathway (Contestabile et al., 2013). There is also an association
between hippocampal synaptic plasticity and memory and
cognitive function (Cuestas Torres and Cardenas, 2020).
Research has shown that microdose lithium treatment can
improve learning and memory in McGill R-Thy1-APP
transgenic rats by restoring CREB regulated transcription
coactivator 1 (CRTC1) promoter occupancy within synaptic
plasticity genes, thereby increasing hippocampal synaptic
plasticity (Wilson et al., 2017). In addition, telomere length is a
biomarker of cellular senescence, and telomere shortening is
implicated in age-related diseases, including AD (Scarabino
et al., 2017). Chronic lithium treatment has been shown to
increase telomere length in the brains of the triple-transgenic
(3×Tg-AD) mouse model (Cardillo et al., 2018). Telomerase
plays a critical role in maintaining telomere length and
ensuring genomic integrity (Shim et al., 2021). Telomerase
reverse transcriptase (TERT) is the catalytic subunit within the
telomerase complex that regulates and limits telomerase activity
(Zhang Y. et al., 2012). According to recent studies, lithium
activates the Wnt/β-catenin pathway by inhibiting GSK-3β,
which subsequently activates TERT transcription. This
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activation may affect telomere elongation (Zhang Y. et al., 2012).
Further research is needed to fully understand these mechanisms.

4Clinical studies of lithium treatment in
Alzheimer’s disease

Preclinical studies support the protective effects of lithium in
AD, and have elucidated its mechanism of action, providing
favorable support for clinical trials. Significant progress has been
achieved in clinical research on lithium in AD, including
observational studies and clinical trials. Lithium therapy has been
shown to reduce the incidence of dementia in patients with bipolar
disorder (Nunes et al., 2007; Kessing et al., 2010; Velosa et al., 2020).
A study discovered that patients with AD and MCI had significantly
lower total serum lithium levels compared to healthy controls
(González-Domínguez et al., 2014). An epidemiological study,
which used a Japanese national database, suggested that elevated
lithium levels in drinking water may be associated with reduced AD
prevalence in women, but not in men (Muronaga et al., 2022).
Research from the United States demonstrated a negative
correlation between trace lithium levels in water and AD
mortality (Fajardo et al., 2018). The observational studies indicate
a possible link between lithium and cognitive function in
patients with AD.

Several clinical trials have shown beneficial effects of lithium
supplementation in the treatment of AD (Matsunaga et al., 2015).
Although results have been inconsistent, it is worth noting that
lithium has shown promise in treating AD. In a 10-week
randomized controlled trial, AD patients treated with lithium
showed a significant reduction in ADAS-Cog scores and a
significant increase in serum BDNF levels compared to those
who received a placebo (Leyhe et al., 2009). Two separate
randomized clinical trials conducted on patients with amnestic
MCI (aMCI) have shown that chronic lithium treatment (with
serum levels of 0.25–0.5 mmol/L) can reduce cognitive decline.
Additionally, it can decrease CSF levels of P-tau and increase CSF
levels of Aβ1-42 (Forlenza et al., 2011; Forlenza et al., 2019). A
longitudinal analysis of cognitive and functional status conducted
recently, 13 years after enrollment in a trial of lithium therapy,
revealed that older adults with aMCI who were treated with lithium
had better long-term cognitive outcomes than a matched sample
without treatment (Damiano et al., 2023). The study suggests that
lithium treatment may provide long-term and sustained
neuroprotective benefits. However, a clinical trial evaluated the
effects of short-term lithium treatment in patients with mild AD
and found that the intervention did not improve cognitive
performance or reduce GSK-3 activity and P-tau expression,
despite achieving target serum lithium levels of 0.5–0.8 mmol/L
(Hampel et al., 2009). Patients with AD often present with
psychiatric symptoms such as agitation and aggression, which
can be challenging to treat and distressing for both patients and
caregivers (Zhao et al., 2016; Devanand, 2023). Lithium, a
medication commonly used to treat bipolar disorder, and the
combination of lithium with AD medications may improve
cognitive function and behavioral symptoms in patients with AD.
A case series involving three agitated patients with AD showed that
lithium administration (initiating at 150 mg and increasing to

300 mg daily after 2 weeks) significantly reduced agitation
symptoms, although with limited efficacy in improving cognitive
function (Devanand et al., 2017). Conversely, some studies have
suggested that low-dose lithium treatment is ineffective in treating
agitation, but correlates with overall clinical improvement and a
remarkable safety profile (Devanand et al., 2022). The variability in
results may be due to the timing and dosage of lithium
administration, and more extensive studies are needed to
elucidate the effects of the lithium. Table 2 summarizes
completed and ongoing clinical trials of lithium for the
treatment of AD.

Nanolithium is an experimental product that encapsulates
lithium citrate within Aonys, utilizing the innovative Aonys®

drug delivery technology. This encapsulation optimizes the
bioavailability of the compound and reduces its toxicity by
providing it with unique absorption and distribution
characteristics (Mouri et al., 2014; Guilliot et al., 2024). After
absorption through the oral mucosa, lithium nanoparticles attach
to high-density lipoproteins (HDL) in the bloodstream, where they
are transported as protected lipids. HDL then facilitates the
intracellular release of lithium through lipoprotein receptors,
particularly the scavenger receptor class B type I (SR-B1), which
is widely expressed in the BBB (Saddar et al., 2013; Mouri et al.,
2016). This cell-penetrating mechanism enables pharmacologically
active concentrations of lithium to be effective at lower doses,
reducing the toxic effects of higher doses (Guilliot et al., 2024).
Research on animal models of AD indicates that treatment with
nanolithium (40 μg Li/kg) inhibits GSK-3β, reduces
BACE1 expression and activity, lowers amyloid levels, enhances
hippocampal neurogenesis and synaptic plasticity, and improves
memory function (Wilson et al., 2017). In addition, NP03 reduces
markers of neuroinflammation and cellular oxidative stress and
shows efficacy both pre- and post-Aβ plaque formation (Wilson
et al., 2018; Wilson et al., 2020). The ongoing clinical trial for
NanoLithium® NP03 is a prospective, multi-center, randomized (1:
1), placebo-controlled, double-blind, parallel-group study, followed
by an open-label study, designed to evaluate the clinical safety and
efficacy of NanoLithium® NP03 in patients with mild to severe AD.
Sixty-eight subjects were enrolled and randomized to receive either
the study drug (NanoLithium® NP03) or a placebo, with 34 subjects
in each group. The study consisted of a 12-week double-blind phase
followed by a 36-week open-label phase. Throughout the follow-up
period, biomarkers, imaging assessments, and questionnaires will be
used to evaluate the safety, efficacy, and potential for AD
improvement of NanoLithium® NP03. This study will provide
additional insight into the treatment of AD patients with
NanoLithium® NP03 (ClinicalTrials.gov ID: NCT05423522).

AL001, an ionic cocrystal (ICC) consisting of lithium salicylate
proline (LISPRO), represents a novel class of ICCs synthesized from
lithium salts and organic anions through a crystal engineering
approach. This compound retains the bioactivities of lithium and
shows superior performance compared to lithium carbonate and
lithium salicylate in preventing hippocampus-dependent associative
memory decline and reducing irritability without affecting the body
weight or internal organ growth of the mice (Habib et al., 2019). A
Phase 1/2a multicenter, double-blind, randomized, placebo-
controlled, multiple ascending dose (MAD) clinical trial is
ongoing to evaluate the safety and maximum tolerated dose of
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AL001 in patients with mild to moderate AD and healthy adult
subjects. Seventy-two participants were enrolled and randomized to
receive either the study drug (active AL001) or a placebo. The study
consisted of a 4-week screening period, a 14-day treatment period,
and a 42-day follow-up period (ClinicalTrials.gov ID:
NCT05363293). Another clinical trial investigating lithium is the
LATTICE study. The study enrolled eighty MCI patients aged
60 years and older who were randomized to receive either
lithium (lithium carbonate) or a placebo (oral capsule) for
2 years. Participants received annual neurocognitive assessments,
measurements of AD biomarkers, and magnetic resonance imaging
(MRI) scans to evaluate the effectiveness of lithium in preventing
AD-related MCI and its impact on cognitive and brain changes in
elderly patients (ClinicalTrials.gov ID: NCT03185208).

In summary, the available evidence supports the therapeutic
potential of lithium in the treatment of AD. However, further
clinical trials with larger sample sizes are needed to determine its
effects conclusively. It is hoped that the three ongoing clinical
trials will provide new insights into the treatment of AD with
lithium. Recent meta-analyses support the efficacy of lithium in
improving cognitive function in patients with MCI and AD
(Matsunaga et al., 2015; Singulani et al., 2024). Furthermore,
lithium may be more effective than aducanumab in improving
cognitive function and low-dose lithium may be safer than
aducanumab, lecanemab, donanemab in patients with AD
(Terao et al., 2022; Terao and Kodama, 2024). These findings
highlight the potential usefulness of lithium in the
treatment of AD.

TABLE 2 Summary of clinical trials of lithium in Alzheimer’s disease.

Drug Study design Subject
number

Length of
study

Lithium
level/
dosage

Type of
dementia

Outcome References/
identifier no

Li2CO3 Single-blind, cross-
sectional

36 13 years after a
clinical trial

0.2–0.5 mmol/L aMCI Having a better long-term
global cognitive outcome

Damiano et al.
(2023)

Li2CO3 Double-blind,
placebo-controlled

77 12 weeks 150–600 mg/day AD with agitation Did not have a significant
effect on the treatment of
agitation, but was
associated with global
clinical improvement and
excellent safety

Devanand et al.
(2022)

Li2CO3 Double-blind,
placebo-controlled

61 24-month
treatment period
and 24-month
follow-up period

0.25–0.5 mEq/L aMCI Attenuating cognitive
functional decline (24-
month), and increasing in
CSF Aβ1-42 (36-month)

Forlenza et al.
(2019)

Li2CO3 Double-blind,
placebo-controlled

45 12months 0.25–0.5 mmol/L aMCI Decreasing CSF P-tau
concentrations; having
better performance of
cognitive subscale in
attention tasks

Forlenza et al.
(2011)

Microdose
lithium

Double-blind,
placebo-controlled

113 15 months 300 μg/day AD Preventing cognitive loss;
no kidney or thyroid
dysfunction or any other
organic disorder

Nunes et al. (2013)

Lithium sulfate Single-blind,
placebo-controlled

71 10 weeks 0.5–0.8 mmol/L Mild AD Did not have a significant
effect on cognitive
performance and reduction
of P-tau

Hampel et al.
(2009)

Lithium sulphate Single-blind,
placebo-controlled

27 10 weeks 0.5–0.8 mmol/L Mild AD Increasing serum BDNF
levels and decreasing
ADAS-Cog scores

Leyhe et al. (2009)

NanoLithium®
NP03 (lithium
citrate)

Double-blind,
placebo-controlled;
followed by open-
label trial period to
evaluate clinical
safety and efficacy

68 Double blind 12-
week -period;
open-label 36-
week period

3 mL per day
(1.8 mg/day)

Mild-to-
severe AD

Ongoing studies NCT05423522

AL001 (lithium
salicylate)

Double-blind,
placebo-controlled

72 A 14-day
treatment period
and a 42-day
follow-up period

9 cohorts
multiple
ascending doses

Mild to moderate
AD and healthy
adult subjects

Ongoing studies NCT05363293

Li2CO3 Double-blind,
placebo-controlled

80 2 years 0.5–0.8 mEq/L MCI due to AD Ongoing studies NCT03185208

Aβ, amyloid-beta; AD, Alzheimer’s disease; ADAS-Cog, Alzheimer’s Disease Assessment Scale - Cognitive Subscale; aMCI, amnestic mild cognitive impairment; BDNF, brain-derived

neurotrophic factor; CSF, cerebrospinal fluid; Li2CO3, lithium carbonate.
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5 Potential side effects and safety
concerns with lithium

Lithium remains the most effective long-term treatment for
bipolar disorder and shows considerable clinical promise for treating
neurodegenerative diseases (Geddes et al., 2004; Chiu and Chuang,
2010). Despite its marked benefits, the use of lithium is associated
with a number of potential side effects and safety concerns that
require vigilance in clinical practice (McKnight et al., 2012). When
taken orally, lithium is absorbed through the gastrointestinal tract
and subsequently reaches brain concentrations that are
approximately half of those in the serum. The kidneys primarily
excrete lithium as free ions by the kidneys, and lithium clearance
decreases with age. Therefore, renal function is critical for lithium
metabolism and excretion (Grandjean and Aubry, 2009a).
Consequently, any condition that affects circulating
concentrations, such as dehydration, can lead to lithium toxicity.
This toxicity usually reversible by dose reduction or discontinuation
of treatment (Guilliot et al., 2023). However, prolonged high-dose
lithium therapy can cause damage to the thyroid, parathyroid
glands, and kidneys (Boivin et al., 2023). Figure 4 summarizes a
summary of the potential side effects, organ damage, and
management strategies associated with lithium therapy. The
optimal plasma lithium concentration range for the treatment of
bipolar disorder is relatively narrow, ideally between 0.6 and
1.2 mmol/L (Severus et al., 2008; Fountoulakis et al., 2017).
Recent recommendations suggest a target serum lithium
concentration range of 0.5–0.8 mmol/L for most patients with

bipolar disorder, which is also the target concentration expected
in AD clinical trials (Wijeratne and Draper, 2011). However, a lower
therapeutic range of 0.5–0.6 mmol/L is generally recommended for
elderly patients aged 50 years and older, and for those requiring
concomitant medications that may interact with lithium in the
presence of cardiac, renal, or thyroid disease (Wijeratne and
Draper, 2011). Lithium therapy is associated with common side
effects such as thirst, polyuria, nausea, diarrhea, tremor, weight gain,
and cognitive impairment (Grandjean and Aubry, 2009b;
Gitlin, 2016).

Symptoms of thirst and polyuria may be related to lithium’s
inhibition of the G-protein-coupled pathway. Antidiuretic hormone
activates this pathway, enhancing water reabsorption by aquaporin-
2 (AQP2) in renal collecting duct cells. Lithium impairs renal
concentrating ability by inhibiting the G-protein-coupled
pathway and decreasing AQP2 expression, resulting in excessively
diluted urine and indirectly inducing thirst (Marples et al., 1995).
Tremor, primarily hand tremor, is one of the most common side
effects of lithium, affecting approximately one quarter of patients,
usually at the initiation or during dose adjustment, and decreasing
over time (Gelenberg and Jefferson, 1995). Relief may be provided
by reducing the dose of lithium, while beta-blockers, primaquine,
and gabapentin may be used in patients with moderate to severe
lithium-induced tremor (Baek et al., 2014). Severe tremor may be a
sign of lithium toxicity and requires vigilance (Gelenberg and
Jefferson, 1995). Nausea and/or diarrhea are also relatively
common side effects of lithium treatment. Nausea affects 10%–

20% of patients treated with lithium, typically early in treatment

FIGURE 4
Potential side effects, organ damage, and management strategies associated with lithium therapy. Created with BioRender.com.
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(Schou et al., 1970). Diarrhea affects approximately 10% of patients
treated with lithium, with the incidence correlating with serum
lithium levels above 0.8 mmol/L (Vestergaard et al., 1988). In
addition, lithium administration resulted in weight gain of
approximately 10 kg in 20% of patients, but the exact mechanism
is unknown and may be related to increased intake of high-calorie
beverages due to thirst (Vestergaard et al., 1980). Furthermore,
about one in ten patients treated with lithium reported memory
problems and poor concentration, although it is uncertain whether
these effects are directly attributable to the drug (Vestergaard et al.,
1980; Frisch et al., 2017). Lithium treatment may cause side effects
such as exacerbation of psoriasis, nonspecific maculopapular rash,
acne, and hair loss (Yassa, 1986; Yeung and Chan, 2004; McKnight
et al., 2012). Proper education and monitoring can minimize these
side effects in most cases. However, caution is advised in certain
scenarios, such as pregnancy, even when the risk appears to be
minimal (Oruch et al., 2014).

Long-term lithium treatment may increase the risk of chronic
kidney disease, hyperthyroidism, hyperparathyroidism, and
hypercalcemia (Czarnywojtek et al., 2020; Boivin et al., 2023).
The risk associated with long-term lithium therapy may be twice
that of non-lithium treatments and may increase with the duration
of treatment (Van Alphen et al., 2021; Schoretsanitis et al., 2022).
Therefore, it is necessary to monitor serum creatinine and estimated
glomerular filtration rate (eGFR) at intervals of 6 months to 1 year
during lithium therapy (Gitlin, 1993). Reduced lithium dose is
recommended in patients with eGFR <60 mL/min (Boivin et al.,
2023). Lithium has the potential to cause conditions such as goiter,
hypothyroidism, or hyperthyroidism. The accumulation of lithium
in the thyroid gland is 3–4 times higher than that in plasma
(Czarnywojtek et al., 2020). Studies have shown significant
correlations between long-term lithium treatment and several
thyroid-related changes, including elevated TSH and fT4 levels,
decreased fT3, increased thyroid volume, and nodular goiter,
without affecting thyroid structure (Kraszewska et al., 2019).
Therefore, it is essential to measure thyroid-stimulating hormone
levels and thyroid ultrasound in patients on long-term lithium
therapy before initiating treatment and then at 6- to 12-month
intervals (Czarnywojtek et al., 2020). Additionally, lithium-induced
hyperparathyroidism and hypercalcemia may result from its effects
on the calcium-sensing receptor pathway and GSK-3 (Mifsud et al.,
2020; Kovacs et al., 2022). Therefore, it is critical to regularly
monitor calcium levels in patients on long-term lithium therapy
(Mifsud et al., 2020). While lithium treatment may be linked to
sexual and erectile dysfunction, the exact mechanisms behind this
association remain unclear (Blay et al., 1982; Sheibani et al., 2022).
According to research, indomethacin, aspirin, and sildenafil may be
effective in treating sexual and erectile dysfunction caused by
lithium (Gopalakrishnan et al., 2006; Sadeghipour et al., 2007;
Saroukhani et al., 2013). Additionally, recent research indicates
that serum lithium concentrations exceeding 1.5 mmol/L may
have adverse effects on the myocardium and myocardial
development in patients with bipolar disorder. This may result in
arrhythmias, fetal cardiac malformations, and reduced contractile
responses to adrenergic signaling (Mehta and Vannozzi, 2017;
Patorno et al., 2017; Moradi et al., 2019; Hamstra et al., 2023).
Animal studies have shown that treatment with lithium carbonate at
a dose of 45 mg/kg for 12 weeks causes myocardial histopathologic

damage (L’Abbate et al., 2023). Therefore, electrocardiograms
should be monitored in patients undergoing long-term lithium
therapy due to the associated prolonged QTc intervals (Mamiya
et al., 2005).

Lithium overdose and toxicity can occur due to accidental or
intentional consumption of excessive amounts of lithium, or
increased lithium accumulation from ongoing chronic therapy
(Oruch et al., 2014). Mild toxicity may result from lithium
concentrations of 1.5–2.5 mmol/L, while moderate toxicity is
associated with 2.5–3.5 mmol/L, and levels above 3.5 mmol/L can
be fatal (MacLeod-Glover and Chuang, 2020). Recent data suggests
that the mortality rate from lithium toxicity is less than 1% (Baird-
Gunning et al., 2017). Symptoms of mild lithium toxicity include
weakness, increased tremor, mild ataxia, poor concentration, and
diarrhea. Symptoms such as vomiting, severe tremors, slurred
speech, confusion, and drowsiness may occur when plasma levels
exceed 1.5 mmol/L (Gadallah et al., 1988; MacLeod-Glover and
Chuang, 2020). Lithium poisoning can be classified into acute,
acute-on-chronic, and chronic forms. The latter two are more
likely to involve the nervous system (Baird-Gunning et al., 2017;
Hlaing et al., 2020). Clinical manifestations of CNS lithium toxicity
range from asymptomatic to confusion, ataxia, and seizures (Baird-
Gunning et al., 2017). Lithium toxicity can cause a chronic cerebellar
disorder known as Syndrome of Irreversible Lithium-Effectuated
Neurotoxicity (SILENT). This syndrome is characterized by
persistent ataxia, nystagmus, and gait irregularities that last for
more than 2 months after lithium exposure. Early recognition
and intervention can prevent SILENT (Marmol et al., 2024). To
prevent lithium toxicity, it is crucial to lower serum lithium
concentrations, correct fluid and electrolyte imbalances, and
prevent potential neurologic complications caused by the toxicity,
especially in the elderly (Meltzer and Steinlauf, 2002). There is no
antidote for lithium toxicity. To prevent side effects of lithium
therapy, it is important to educate and assess various parameters
such as serum lithium concentration, renal and thyroid function,
serum calcium concentration, and body weight (Ng et al., 2009;Won
and Kim, 2017). Education for physicians, patients, and caregivers,
particularly for older adults taking lithium regularly, should include
standardized administration of lithium salts and recognition of the
signs and early symptoms of lithium toxicity (Schaub et al., 2001).
Additionally, prompt management of lithium poisoning is essential,
including maintenance of vital signs (airway, breathing, and
circulation), and performing gastric lavage, and dialysis, if
necessary (Haussmann et al., 2015).

Research on the role of lithium in AD therapy has primarily been
limited to preclinical studies. Clinical trials are still in their early
stages, and there is little research on potential side effects in AD.
However, lessons learned from the use of lithium in studies of
bipolar disorder may guide its future use in the treatment of AD
(McKnight et al., 2012). A study on the feasibility and tolerability of
low-dose lithium for the treatment of AD found that administering
it to older patients resulted in fewer side effects compared to other
treatments. These side effects were mild and resolved upon
discontinuation of the drug, but the treatment was not
completely safe (Macdonald et al., 2008). Clinical evidence
indicates that low-dose lithium therapy (typically serum
concentrations ≤0.5 mM) can improve cognitive function and
behavioral symptoms in AD. These findings support the
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therapeutic value of low-dose lithium administration (Nunes et al.,
2013; Mauer et al., 2014; Burhanullah and Rosenberg, 2022;
Devanand et al., 2022; Hamstra et al., 2023). Therefore, low-dose
lithium may reduce the side effects associated with higher doses.
However, studies on the treatment of AD with trace lithium are
currently limited. Further randomized controlled trials are needed to
determine its therapeutic efficacy. Additionally, the identification of
the optimal lithium salt form is essential for the development of
long-term lithium therapies for AD. Novel lithium formulations,
such as NanoLithium® NP03 and AL001, which are in clinical trials,
are expected to reduce side effects, improve safety, and show
promise for AD therapy. Recent studies have also shown that the
combining of the natural food Momordica charantia with lithium
chloride reduces toxicity and improves cognitive function in patients
with AD (Huang et al., 2018). Therefore, combination therapy may
be an effective and safe approach to using lithium in AD treatment.

6 Conclusion and future

Lithium has been shown to have multiple protective effects in
preclinical studies of AD. These effects include inhibiting GSK-3
activity, reducing Aβ deposition and tau phosphorylation, regulating
autophagy, inflammation, oxidative stress, cholinergic and glucose
metabolism, enhancing neurogenesis and synaptic plasticity,
maintaining mitochondrial homeostasis, and improving cognitive
function. Understanding these mechanisms is crucial to realizing the
therapeutic potential of lithium and serves as the basis for its clinical
application in the treatment of AD. The protective effects of lithium
make it a promising candidate for AD treatment. Clinical studies
have demonstrated that lithium treatment leads to significant
cognitive improvements in AD patients compared to those who
received a placebo. These preclinical and clinical studies provide
preliminary support for the clinical use of lithium in AD. Although
several studies support the efficacy of lithium in the treatment of
AD, a few studies suggest that it may not be effective. This observed
variability may be due to differences in lithium dosage and treatment
duration between the studies. The efficacy of lithium in treating AD
may be compromised if the dose administered is subtherapeutic or
the duration of treatment is inadequate. Future studies should aim to
determine the optimal drug concentration for lithium treatment of
AD. Additionally, the reliability of the findings may be affected by
the absence of large sample clinical trial data. Therefore, it is crucial
to conduct larger multicenter clinical trials to validate the long-term
effectiveness of lithium in treating AD.

Furthermore, while research suggests that lithium affects various
therapeutic targets, the exact upstream molecular mechanisms have
yet to be fully understood. Therefore, further in-depth research is
needed to elucidate the molecular mechanisms and pathways by
which lithium affects AD pathology. Additionally, long-term use of
lithium may induce various side effects, such as impaired kidney
function, thyroid and parathyroid abnormalities, and neurological
damage. The balance between the side effects associated with
lithium, safety concerns, and its clinical benefits is a significant
issue for its clinical application. Lithium treatment has been

associated with several side effects, most of which have been
identified in patients with bipolar disorder. Research into its use
in AD is still in its infancy. Appropriate lithium doses for AD are
usually lower than those used for bipolar disorder. Although there is
still a risk of side effects, it is expected to be lower. Regular
monitoring can help mitigate this risk. It is anticipated that
future research in lithium therapy will provide more effective and
personalized therapeutic strategies for patients with AD, which can
delay disease progression and improve quality of life.
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