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Phosphodiesterase 4 (PDE4) inhibitors are effective therapeutic agents for various
inflammatory diseases. Roflumilast, apremilast, and crisaborole have beendeveloped
and approved for the treatment of chronic obstructive pulmonary disease psoriatic
arthritis, and atopic dermatitis. Inflammation underlies many vascular diseases, yet
the role of PDE4 inhibitors in these diseases remains inadequately explored. This
review elucidates the clinical applications and anti-inflammatory mechanisms of
PDE4 inhibitors, as well as their potential protective effects on vascular diseases.
Additionally, strategies to mitigate the adverse reactions of PDE4 inhibitors are
discussed. This article emphasizes the need for further exploration of the
therapeutic potential and clinical applications of PDE4 inhibitors in vascular diseases.
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1 Introduction

Phosphodiesterase 4 (PDE4) is primarily present in immune cells, epithelial cells, and
brain cells, acting as an intracellular non-receptor enzyme that regulates inflammation and
epithelial integrity. Inhibiting PDE4 increases cyclic adenosine monophosphate (cAMP)
levels, thereby regulating various genes and proteins to exert multiple effects and functions.
Currently, PDE4 is regarded as a promising and effective therapeutic target for pulmonary
diseases, skin diseases, and neurological disorders. Over the past few decades, numerous
PDE4 inhibitors have been designed and synthesized. Roflumilast, apremilast, and crisaborole
are approved for treating inflammatory airway diseases, psoriatic arthritis, and atopic
dermatitis, respectively. However, the efficacy of these drugs is often accompanied by
adverse reactions, including nausea, vomiting, and gastrointestinal disturbances. With the
continuous development of drugs, PDE4 inhibitor have partially mitigated adverse reactions
and achieved improved efficacy. It is well established that PDE4 inhibitors play a crucial role in
inflammation. Inflammation underlies the pathogenesis of many vascular diseases. However,
the mechanism of PDE4 inhibitors in vascular diseases remains unclear. This review
summarizes the roles of PDE4 inhibitors in inflammation and vascular diseases, and
discusses prospects for mitigating the adverse reactions of these inhibitors.

2 The PDE4 subfamily

Phosphodiesterases (PDEs) comprise 11 subfamilies (PDE1-PDE11), responsible for
degrading cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate
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(cGMP) (Zuccarello et al., 2023). cAMP and cGMP are second
messengers that regulate numerous cellular pathways. They open
cyclic nucleotide-gated ion channels and stimulate protein kinases
(PKA and PKG) activated by cAMP or cGMP (Gutierrez-Rodelo
et al., 2023). Downstream targets of PKA and PKG comprise
receptors, ion channels, cytoskeletal proteins, and transcription
factors. These components regulate various functions such as
neuronal excitability, cellular metabolism, and gene expression.
Therefore, PDEs play a critical role in cellular function.

The PDE4 subfamily, including four isoforms (PDE4A, PDE4B,
PDE4C, and PDE4D), is the largest among the 11 PDE families.
PDE4 selectively degrades cAMP and is widely distributed in various
tissues and cells of the human body. These tissues and cells include
the brain, kidneys, cardiac myocytes, endothelial cells, and immune
cells. PDE4 is involved in pathophysiological processes, including
monocyte and macrophage activation, neutrophil infiltration,
vascular smooth muscle proliferation, vasodilation, and
myocardial contraction. These show PDE4 impacts the central
nervous system, cardiovascular function, and immune-
inflammatory systems.

The distribution of PDE4A, PDE4B, PDE4C, and PDE4D in the
brain and peripheral tissues is determined by Viktor Lakics et al.
Their findings reveals that PDE4A expression is higher in the brain
compared to peripheral tissues. However, in peripheral tissues,
PDE4A exhibits the highest content in muscles, thyroid, stomach,
lungs, and spleen. PDE4B is the most strongly expressed isoform of
PDE4, with the highest expression in the brain, followed by spleen,
lungs, bladder, thyroid, muscles, and heart. PDE4C is detected in the
spleen, lungs, stomach, heart, and brain, but expression is always
minimal. PDE4D is highest in bladder and muscle tissues, followed
by thyroid, heart, kidneys, lungs, and stomach (Lakics et al., 2010).
Understanding the distribution of PDE4 in the human body is
essential for identifying potential targets of PDE4 inhibitors in
different diseases (Goonathilake et al., 2022).

3 Clinical applications of
PDE4 inhibitors

Targeted inhibiting PDE4 has been demonstrated as an effective
therapeutic strategy for treating diseases such as asthma, chronic
obstructive pulmonary disease (COPD), psoriasis, atopic dermatitis
(AD), inflammatory bowel disease (IBD), rheumatoid arthritis (RA),
lupus, neuropathy, depression, memory enhancement, and emesis
(Schick and Schlegel, 2022). Nonetheless, the clinical application of
PDE4 inhibitors has been consistently hindered by their
adverse reactions.

Rolipram, a first-generation PDE4 inhibitor, was initially
discovered by Schering AG in the early 1990s. It is considered to
have potential in treating neurological disorders such as depression
and cognitive dysfunction. Despite its potential pharmacological
effects, it has a narrow therapeutic window. Adverse reactions
frequently occur during clinical trials, such as nausea, vomiting,
and headache (Crocetti et al., 2022). The adverse reactions of
rolipram have restricted its clinical use.

Roflumilast, the second-generation PDE4 inhibitor, became the
first marketed PDE4 inhibitor. It gained approval for treating severe
COPD and asthma in 2010 and 2011, respectively. Although

roflumilast demonstrates improved performance in clinical trials
compared to rolipram, gastrointestinal adverse reactions still occur
9.5% of cases, manifesting as diarrhea, nausea, headache, weight loss,
urinary tract infections, and psychiatric disorders (Asfaw, 2020).
Considering the relative equilibrium between efficacy and safety,
along with proper dosing strategy and comprehensive assessment of
drug safety, roflumilast undeniably confers greater benefits than
risks to patients.

Apremilast, the third-generation PDE4 inhibitor, received
approval in 2014 for treating psoriatic arthritis (PsA) and
moderate to severe plaque psoriasis in adults. Nonetheless,
patients encounter adverse reactions, such as headache (5.9%),
abdominal pain (2%), depression (1%), weight loss (10%), nausea
(8.9%), diarrhea (7.7%), vomiting (3.2%), nasopharyngitis (2.6%),
and upper respiratory tract infections (3.9%) (Gooderham and
Papp, 2015). Moreover, further clinical data are necessary to
sufficiently demonstrate its therapeutic efficacy in children and
adolescents with moderate to severe psoriasis (Paller et al., 2020).
Apart from PsA and psoriasis, apremilast is utilized for treating
various inflammatory diseases such as IBD, Behcet’s syndrome (BS),
ankylosing spondylitis (AS), RA, frontal fibrosing alopecia, atopic
dermatitis (AD), and discoid lupus erythematosus. Moreover, it is
currently undergoing clinical trials (Honma and Hayashi, 2021).

Crisaborole was approved for topical treatment of atopic
dermatitis (AD) in 2016 (Kailas, 2017). Local treatment with
crisaborole does not cause gastrointestinal adverse reactions
compared to systemic treatment. Pharmacokinetic studies have
shown that crisaborole, when applied locally, is rapidly absorbed
and metabolized into two main inactive metabolites (AN-7602 and
AN-8323), thereby reducing the risk of systemic adverse reactions
(Zane et al., 2016). Although current study indicates that 2%
crisaborole is a safe and effective medication for patients with
atopic dermatitis (AD), its longterm efficacy and safety for AD
patients under 2 years old remain unclear. Additionally, there is
insufficient evidence to prove its safety or efficacy superiority over
other existing topical treatment medications. Overall, these drugs
represent breakthroughs and achievements in PDE4 inhibitors.

4 Anti-inflammatory effects of
PDE4 inhibitors

Our understanding of PDE4 function comes primarily from
experimental studies involving PDE4 inhibitors. These small-
molecule compounds, such as the first-generation inhibitor
rolipram, and the second-generation inhibitor roflumilast and
cilomilast, have shown extensive pharmacological effects in vitro
and in vivo. These include anti-inflammatory and
immunomodulatory effects (Kim et al., 2021), antidepressant and
antipsychotic effects (Martinez et al., 2021), and cognitive
enhancement (Wei et al., 2023). These findings clearly
demonstrate the critical functions of PDE4 in cells and
physiology. Among them, PDE4 has been studied most
extensively in inflammation. In fact, PDE4 is the major subtype
of PDE enzyme expressed in immune and inflammatory cells.
Studies have shown that inhibiting PDE4 effectively suppresses
various inflammatory responses in vitro and in vivo (Xu et al.,
2020). More importantly, many PDE4 inhibitors under
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development are effective in animal models of inflammatory
diseases, including asthma, COPD, psoriasis, IBD, and
rheumatoid arthritis (Peng et al., 2020).

4.1 Anti-inflammatory effects of rolipram

In pneumococcal pneumonia mice, rolipram inhibits lung
injury. It reduces the levels of the proinflammatory cytokines
(tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6)) by
increasing proresolving protein annexin A1 (AnxA1) expression
(Tavares et al., 2016). Furthermore, rolipram suppresses
inflammation and sepsis induced by Escherichia coli though
inhibiting the MAP kinase and nuclear factor κB (NF-κB)
signaling pathway. It increases the production of anti-
inflammatory factor (IL-10), and reduces the production of pro-
inflammatory factors (IL-1β, IL-5, IL-6, IL-12, TNF-α) (Lu et al.,
2020). Additionally, a study has shown that rolipram improves
endotoxin-induced cardiac dysfunction by upregulating the
expression of dual specificity phosphatase 1 (DUSP1), which
suppresses the secretion of TNF-α and IL-6 (Ji et al., 2020). The
report by Maier C et al. has demonstrated that rolipram and
apremilast decrease the differentiation of M2 macrophages, and
reduce skin fibrosis by interfering with the release of IL-6 from
macrophages (Maier et al., 2017).

4.2 Anti-inflammatory effects of roflumilast

Roflumilast is still considered an effective anti-inflammatory
drug for regulating airway inflammation (Kawamatawong, 2017). It
induces heme oxygenase-1 (HO-1) expression and inhibits NF-κB,
p38mitogen-activated protein kinases (MAPK), and JNK activation,
thereby suppressing the production of TNF-α and inflammation in
macrophages (Kwak et al., 2005). Meanwhile, the results from
ovalbumin (OVA)-induced airway inflammation model in guinea
pigs suggest that roflumilast reduces specific airway resistance. It
decreases numbers of circulating leukocytes and eosinophils, which
associated with reducing the concentrations of IL-4, IL-5 and TNF-α
(Urbanova et al., 2017). It is well known that irreversible or partially
reversible airway obstruction in asthma is associated with airway
remodeling. Roflumilast in OVA-induced asthmatic mice inhibits
airway inflammation, airway remodeling, airway hyperreactivity
(AHR). It reduces the levels of IL-4, IL-5 and IL-13 from
Th2 cells in bronchoalveolar lavage fluid, which may be related
to the stem cell factor (SCF)/c-kit pathway (Kim et al., 2016).
Additionally, roflumilast improves bladder dysfunction in
diabetic rats, and decreases inflammation and the expression of
TNF-α, IL-6 and IL-1β in detrusor smooth muscle (Ding
et al., 2019).

4.3 Anti-inflammatory effects of apremilast

In preclinical models of psoriasis and arthritis, apremilast
reduces the epidermal thickness of lesional skin. It suppresses the
abnormal proliferation and expression of TNF-α, IL-12, IL-23 and
ICAM-1 (Schafer et al., 2010). Additionally, within 10 days after

arthritis onset, apremilast significantly inhibits spontaneous release
of TNF-α, and reduces the severity of arthritis in mice without
apparent side effects (McCann et al., 2010). Apremilast alleviates
murine ulcerative colitis by modulating mucosal immunity though
inhibiting the secretion of TNF-α, IFN-γ, IL-1β, IL-2, and IL-6. It
also activates PKA-CREB and Epac-Rap1 pathways and
subsequently suppressed MAPK, NF-κB, PI3K-mTOR, and JAK-
STAT-SOCS3 activation (Li et al., 2019). Furthermore, apremilast
suppresses pulmonary inflammation and acute lung injury by
reducing myeloperoxidase activity, TNF-α levels, and the
infiltration of alveolar cells (Imam et al., 2019). Apremilast
inhibits the expression and secretion of pro-inflammatory
cytokines, chemokines, and adhesion molecules, including
granulocyte-macrophage colony-stimulating factor (GM-CSF),
CXC motif chemokine ligand 10 (CXCL10), chemokine (C-C
motif) ligand 2 (CCL2), vascular cell adhesion molecule 1
(VCAM-1), E-selectin, and matrix metalloproteinase-9 (MMP9),
in TNF-α-induced human umbilical vein endothelial cells (HUVEC)
(Otto et al., 2022).

4.4 Anti-inflammatory effects of ibudilast

Ibudilast, a well-tolerated oral PDE4 inhibitor, is currently used
to treat asthma and stroke. Ibudilast reduces TNF and IL-12
expression in synovial fibroblasts of rheumatoid arthritis. It also
inhibits Th17 cell responses and exhibits immunomodulatory
activity in experimental arthritis (Clanchy and Williams, 2019).
Moreover, ibudilast alleviates acute respiratory distress syndrome in
neonatal mice by reducing inflammatory factors (TNF-α, IL-1ß, IL-6
and monocyte chemotactic protein-1 (MCP-1)) and inhibiting
apoptosis (Yang et al., 2020). Additionally, ibudilast mitigates
Alzheimer’s disease by targeting inflammation and Toll-like
receptor signaling and the ubiquitin/proteasome pathway. Thus,
it improves hippocampal-dependent spatial memory deficits and
microgliosis (Oliveros et al., 2023).

4.5 Anti-inflammatory effects of cilomilast

The report by Xu Man et al. demonstrates that cilomilast
improves renal dysfunction in cisplatin-induced acute kidney
injury. Cilomilast inhibits inflammation by reducing the
expression of IL-6, IL-1β, TNF-α and MCP-1, which associated
with sirtuin 1, PI3K, and phosphorylated AKT (Xu et al., 2020).
Cilomilast suppresses IL-1β and TNF-α, and neutrophilic
inflammation, thereby alleviating acute lung injury induced by
lipopolysaccharide in mice (Liu et al., 2018).

In conclusion, this data strongly supports the effectiveness and
promise of PDE4 as a drug target for various inflammatory diseases.

5 Effects of PDE4 inhibitors on vascular

Inflammation serves as the foundation for many diseases,
particularly cardiovascular diseases. Currently, our understanding
of cAMP signaling almost originates from its role in the
cardiovascular system. PDE4, a key hydrolyzing enzyme of
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cAMP, plays a pivotal role (Colombe and Pidoux, 2021). Extensive
study has shown that PDE4 influences numerous complex signaling
pathways that regulate cardiac functions (Kamel et al., 2023). In
cardiomyocytes, cAMP activates PKA, phosphorylates myofilament
proteins, drives β-adrenergic, and enhances cardiac function
(Rampersad et al., 2010). Moreover, PDE4 exerts varying effects
on large vascular, small vascular, microvascular, and
cerebral vascular.

5.1 PDE4 inhibitors delay large vascular
remodeling

Rolipram inhibits smooth muscle cell apoptosis through the
cAMP-PKA-pBad axis, thereby improving vascular remodeling and
attenuating abdominal aorta aneurysm formation induced by Ang II
in mice (Gao et al., 2022). In a mouse model of femoral artery
endothelial injury, rolipram significantly decreases platelet-
mediated neutrophil recruitment at the site of vascular injury. It
is primarily mediated by downregulation of P-selectin-induced
activation of Mac-1 (Totani et al., 2014). Furthermore,
roflumilast reduces neointimal formation after femoral artery
vascular injury, which involves the Epac-dependent manner by
inhibiting the expression of VCAM-1 and histone methylation
(Lehrke et al., 2015). Izikki M et al. found that roflumilast
reduces IL-6 and MCP-1 expression, inhibits cell proliferation,
and alleviates pulmonary vascular remodeling and pulmonary
hypertension induced by chronic hypoxia or monocrotaline
(Izikki et al., 2009). In addition, apremilast has the protective
effects in atherosclerosis via SIRT1 by reducing scavenger
receptors, LOX-1 and CD36 levels (Sui and Yu, 2022).

5.2 PDE4 inhibitors promote vasodilation of
small and medium vascular

Rolipram increases retinal vascular diameter in a dose-dependent
manner, leading to retinal vasodilation, with no significant effects on
systemic blood pressure, heart rate, or retinal blood flow (Miwa et al.,
2009). Moreover, rolipram alleviates Ang II-induced smooth muscle cell
contraction and hypertension in mice by activating the PKA-AMPK
signaling pathway and inhibiting MYPT1-MLC phosphorylation (Fan
et al., 2022). Apremilast alleviates vascular leakage and inflammatory cell
infiltration in the retina by regulating Th17 and Treg through the PI3K/
AKT/FoxO1 pathway, thereby improving autoimmune uveitis (Chen
et al., 2020). Results from Cheng Dongmei et al. indicate that the
hypotensive effect of RO 20-1724 (a selective PDE4 inhibitor) on
hypertensive rats is mediated by renal vascular smooth muscle cells
rather than endothelial cells (Cheng et al., 2010). Ro-20-1724 also
attenuates relaxant response to β-adrenergic stimulation and vascular
tone inmesenteric arteries from ratswith heart failure (Wang et al., 2023).

5.3 PDE4 inhibitors improve microvascular
circulation

Rolipram reduces microvascular complications,
microcirculatory disturbances, capillary leakage, renal injuries,

and pulmonary injuries in a rodent animal model of in vitro
resuscitation (Wollborn et al., 2019). Additionally, rolipram
effectively regulates the total cAMP hydrolytic activity in
pulmonary microvascular endothelial cells, which is modulated
by the intracellular cAMP content via both post-translational and
synthetic mechanisms (Zhu et al., 2004). In sepsis and systemic
inflammation, rolipram or roflumilast increase endothelial cAMP
levels, leading to stabilize the endothelial barrier, increase
microcirculatory flow in mesenteric venules and block capillary
leakage (Schick et al., 2012). Roflumilast diminishes histamine-
induced microvascular permeability, and reduces leukocyte-
endothelial cell interactions in rat mesenteric postcapillary
venules. Mechanically, roflumilast inhibits neutrophil adhesion in
TNF-α-treated HUVEC, and reduces CD11b expression in
N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced
neutrophils (Sanz et al., 2007).

5.4 PDE4 inhibitors reduce inflammation in
cerebral vascular

Rolipram improves the memory and learning abilities of rats
with dementia induced by sodium arsenite-induced cerebral
vascular endothelial dysfunction. Additionally, rolipram
suppresses the activity of brain acetylcholinesterase, brain
oxidative stress, and neutrophil count in dementia rats (Virk
et al., 2021). In subarachnoid hemorrhage mice, roflumilast
reduces the levels of IL-1β, IL-6, and TNF-α in the brains,
decreases the number of apoptotic neurons, and improves neural
functional damage and cerebral inflammation (Wu et al., 2017).
FCPR16, a novel PDE4 inhibitor, inhibits TNF-α, IL-6 and IL-1β

FIGURE 1
Effects of PDE4 inhibitors on vascular dysfunction.
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expression, and cell apoptosis via the cAMP/CREB pathway. It
improves neural function and reduces cerebral infarction volume
in brain ischemia-reperfusion injury rats, with lower emetic
potential (Chen et al., 2018). In addition, a novel PDE4 inhibitor
α-mangostin derivatives have the potential to treat vascular
dementia and do not cause emesis to beagle dogs (Liang et al., 2020).

In conclusion, PDE4 inhibitors play a crucial role in conditions
stemming from various vascular dysfunctions and exhibit a certain
alleviative effect (Figure 1).

PDE4 inhibitors increase intracellular cAMP levels.
PDE4 inhibitors delay large vascular remodeling by regulating
Mac1/Epac-VCAM1/LOX1. PDE4 inhibitors promote the
vasodilation of small and medium vascular through the PKA-
AMPK/MYPT1-MLC/PI3K-FoxO1 pathway. PDE4 inhibitors
improve microvascular circulation by inhibiting CD11b.
PDE4 inhibitors inhibit cerebrovascular inflammation by
reducing IL-1β/IL-6/TNF-α expression.

6 Discussion

Currently, roflumilast, apremilast, and crisaborole have been
sequentially approved for treating inflammatory airway and skin
diseases. Additionally, an increasing number of clinical trials are
exploring the potential applications of PDE4 inhibitors for other
indications, thereby expanding their clinical use. Recently, the
topical roflumilast has been studied in several skin diseases. In
clinical trial phase 3, 457 patients with seborrheic dermatitis are
randomly assigned to roflumilast foam 0.3% (n = 304) or vehicle (n =
153) for 8 weeks 79.5% of roflumilast-treated and 58.0% of vehicle-
treated patients meet the primary endpoint (p < 0.001) (Blauvelt
et al., 2024). Furthermore, 39 patients with Behcet’s syndrome are
treated with apremilast (n = 19) and placebo (n = 20) for 12 weeks in
a clinical trial. 57.9% patients in the apremilast group achieves
complete resolution of oral ulcers, compared to 25.0% in the placebo
group. Clinical benefits were sustained over 28 weeks of continued
apremilast treatment (Takeno et al., 2022). In a recent clinical trial,
the efficacy and safety of crisaborole in treating stasis dermatitis
(SD) are evaluated. 65 patients receive crisaborole or vehicle (1:1) for
6 weeks. Central reader (dermatologist) photograph assessments
show significant improvement (−52.5% vs. −10.3%, p = .0004).
Crisaborole effectively ameliorates the signs and symptoms of SD
(Silverberg et al., 2024).

Despite the increasing number of clinical trials on
PDE4 inhibitors, their clinical use is largely hindered by adverse
reactions such as nausea, vomiting, and gastrointestinal reactions.
Future research should aim to reduce these side effects while
maintaining or enhancing the drugs’ efficacy. To minimize the
adverse reactions of PDE4 inhibitors, the following three
improvement strategies are currently under consideration.

6.1 Design effective isoform-specific
inhibitors or allosteric modulators

Study indicates that PDE4D regulates the activity of α2-
adrenergic receptors and is the isoform most associated with side
effects like vomiting (Schepers et al., 2023). Therefore, isoform-

specific PDE4 inhibitors may offer more effective therapeutic
approaches (Paes et al., 2021). Phenylalanine is located at
position 196 of the upstream conserved region 2 (UCR2) in
PDE4D, whereas tyrosine is found at position 274 in PDE4A,
PDE4B, and PDE4C. Allosteric modulators targeting
UCR2 reduce interaction with the active site, partially inhibiting
cAMP hydrolysis. This results in a maximum inhibition rate
exceeding 50%, potentially reducing side effects like vomiting in
humans and animals (Gurney et al., 2011).

A clinical trial from New England in 2022 reported the efficacy
and safety of PDE4B inhibitor (BI 1015550) in patients with
idiopathic pulmonary fibrosis (IPF). 147 IPF patients underwent
12 weeks of treatment with BI 1015550 (n = 98) or placebo (n = 49).
The results show that the median change in forced vital capacity
(FVC) in the BI 1015550 group is an increase of 5.7 mL, while it
decreases by 81.7 mL in the placebo group. This indicates that BI
1015550 is superior to placebo. Although the overall safety of BI
1015550 is acceptable, diarrhea remains the most common adverse
reaction. And 13 patients discontinues treatment due to adverse
events. PDE4B inhibitors BI 1015550 have anti-fibrotic effects,
preventing the decline in lung function in IPF patients, but still
have gastrointestinal side effects.

Although the active sites of various PDE4 isoforms share
significant similarities, this remains a major challenge. However,
isoform-specific inhibitors may be discovered in the future based on
existing structural information.

6.2 Combination therapy

In COPD treatment, roflumilast combining
bronchodilators—long-acting β2-adrenergic receptor agonists
(LABA) and long-acting antimuscarinic agents (LAMA)—is
significantly more effective than monotherapy. In clinical trial
phase IV, 2,354 patients with COPD are randomized 1:1 to
receive roflumilast or placebo, plus inhaled corticosteroid/LABA
fixed-dose combination (FDC), for 52 weeks. Compared to placebo,
roflumilast reduces the rate of COPD acute exacerbations by 18%.
The combination therapy of roflumilast and FDC improved lung
function and health status in COPD patients. In addition, Parikh
et al. discovered that combining PDE4 inhibitors with adenylyl
cyclase (AC) inhibitors, β-adrenergic receptor agonists,
glucocorticoids, calcium channel blockers, oligonucleotides,
cytokine inhibitors, nitric oxide synthase inhibitors, and
cyclooxygenase-2 (COX-2) inhibitors is effective in treating
inflammatory airway diseases. This combination therapy shows
efficacy comparable to LABA and LAMA combination therapy
(Parikh and Chakraborti, 2016).

6.3 Altering the route of administration

GSK256066 is a highly specific inhalable PDE4B inhibitor.
Studies have shown that rats treated with GSK256066 experience
milder gastrointestinal adverse reactions (Tralau-Stewart et al.,
2011). Moreover, in clinical trial phase IIa, 104 patients with
COPD are randomized. GSK256066 increases post-
bronchodilator Forced Expiratory Volume 1 (FEV1). There are
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no serious adverse events in patients receiving GSK256066. The
overall incidence of gastrointestinal adverse events was low in all
treatment groups. Thus, it is utilized for inhalation therapy in the
treatment of inflammatory airway diseases. Furthermore,
crisaborole is topically applied to treat skin inflammation.
Clinical trials have demonstrated that unlike systemic treatment,
the local application of 2% crisaborole ointment significantly
improves safety and does not cause notable gastrointestinal
adverse reactions (Paller et al., 2016).

7 Conclusion

In summary, PDE4 inhibitors represent a significant
advancement in the treatment of inflammatory diseases,
particularly in pulmonary and skin diseases. They increase cAMP
levels and regulate cellular processes involved in inflammation,
making them particularly suitable for treating diseases
characterized by vascular dysfunction. Studies indicates that
PDE4 inhibitors inhibits large vascular remodeling, promote
small and medium vascular vasodilation, improve
microcirculation, and alleviate inflammation in cerebral vascular.
Increasing evidence suggests the potential of PDE4 inhibitors in
alleviating vascular inflammation and remodeling, implying their
broader therapeutic significance. However, the precise mechanisms
by which PDE4 inhibitors act in vascular diseases remain unclear.
Although roflumilast, apremilast, and crisaborole have achieved
considerable success, their clinical application is still limited by
gastrointestinal adverse reactions. Designing isoform-specific
inhibitors, exploring combination therapies, and altering routes
of administration provide promising avenues for reducing
adverse reactions to PDE4 inhibitors. Although these strategies
partially address the limitations of current therapies, maximizing
or retaining the efficacy of PDE4 inhibitors while minimizing
adverse reactions remains an urgent issue. Future research efforts
should focus on improving the safety and efficacy of
PDE4 inhibitors, elucidating their mechanisms of action in

vascular diseases, expanding their clinical utility, and providing
new treatment strategies for inflammation and vascular diseases.
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