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Ferroptosis is a non-apoptotic mode of programmed cell death characterized
by iron dependence and lipid peroxidation. Since the ferroptosis was
proposed, researchers have revealed the mechanisms of its formation and
continue to explore effective inhibitors of ferroptosis in disease. Recent
studies have shown a correlation between ferroptosis and the pathological
mechanisms of neurodegenerative diseases, as well as diseases involving
tissue or organ damage. Acting on ferroptosis-related targets may provide
new strategies for the treatment of ferroptosis-mediated diseases. This article
specifically describes the metabolic pathways of ferroptosis and summarizes
the reported mechanisms of action of natural and synthetic small molecule
inhibitors of ferroptosis and their efficacy in disease. The paper also describes
ferroptosis treatments such as gene therapy, cell therapy, and
nanotechnology, and summarises the challenges encountered in the
clinical translation of ferroptosis inhibitors. Finally, the relationship between
ferroptosis and other modes of cell death is discussed, hopefully paving the
way for future drug design and discovery.
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1 Introduction

Ferroptosis was first observed in 2003 and officially named by Dixon et al., in 2012.
Ferroptosis is a programmed cell death characterized by iron dependence and lipid
peroxidation (Chen et al., 2021). Ferroptosis is morphologically and biochemically
distinct from traditional modes of cell death such as necrosis, apoptosis, and autophagy.
Morphologically, ferroptosis is mostly characterized by smaller mitochondria,
increased membrane density, reduced or absent mitochondrial ridges, and normal
cell size but a lack of chromatin cohesion (Sun et al., 2023). Biochemically, large
amounts of unsaturated fatty acids in the cell membrane undergo lipid peroxidation in
response to Fe2+ or lipoxygenase (LOX), triggering ferroptosis (Tang et al., 2021).
Ferroptosis mainly involves three pathways: iron metabolism, lipid metabolism, and
antioxidants system. Disturbed iron metabolism triggers the Fenton reaction and
induces the accumulation of ROS, accumulation of lipid peroxides, and insufficient
Glutathione Peroxidase 4 (GPX4) leading to the difficult conversion of lipid
hydroperoxides are at the core of the ferroptosis induced by iron metabolism disorders.
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With the proposal of ferroptosis, ferroptosis has been found
to mediate the pathogenesis of many diseases. In recent years, it
has been found that ferroptosis inhibitors also play an
important role in neurodegenerative diseases (e.g., stroke
(Millán et al., 2021), Alzheimer’s disease (AD) (Jakaria et al.,
2021), spinal cord injury (SCI) (Yu et al., 2023)), Acute kidney
injury (AKI) (Guerrero-Mauvecin et al., 2023). Intervening in
ferroptosis may therefore lead to new therapeutic strategies for
the disease. Several drugs have been reported to play an
inhibitory role in iron-death-mediated diseases. This review
systematically describes the metabolic pathways of ferroptosis
and summarizes the mechanisms of action of natural and
synthetic small-molecule inhibitors of ferroptosis as well as
their applications in disease. Non-traditional therapeutic
approaches such as gene therapy, cell therapy, drug
combinations and nano-delivery in ferroptosis-mediated
diseases are also presented. In addition, the challenges
encountered in the preclinical experimental stage and clinical
translation of ferroptosis inhibitors are summarised. Finally,
the relationship between ferroptosis and other modes of cell
death is discussed in the hope of providing new ideas for future
drug design and development and clinical translational
applications.

2 Small molecule ferroptosis inhibitors

2.1 Inhibition of ferroptosis via the iron
metabolism pathway

Iron is one of the important trace elements in the human body
and is a key causative factor in ROS accumulation and ferroptosis.
Under normal conditions, Fe3+ is found in serum transferrin (TF),
The membrane protein Transferrin Receptor1 (TFR1), Six-
Transmembrane Epithelial Antigen of Prostate 3 (STEAP3)
enzyme, Divalent Metal Transporter 1 (DMT1), Nuclear
Receptor Co-Activator 4 (NRC4), and the serum transferrin (TF)
enzyme, and in the serum transferrin (TF) and TFR1 enzymes.
Epithelial Antigen of Prostate 3 (STEAP3) enzyme, Divalent Metal
Transporter 1 (DMT1), and Nuclear receptor coactivator 4
(NCOA4) (Gryzik et al., 2021), Membrane iron transport protein
1 (Ferroportin1, FPN1), Ferritin, Promimin 2, Ceruloplasmin (CP),
etc. are involved in the transport to cells and participate in the
reaction in vivo (Scarpellini et al., 2023; Zhang et al., 2024a).
However, the excess of Fe2+ in the organism under certain
pathological conditions, on the one hand, induces the
accumulation of ROS in the body through the Fenton reaction;
on the other hand, iron participates in the catalytic process of
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metabolic enzymes, such as LOX, as a cofactor of various
phospholipid peroxidases, which in turn accelerates lipid
peroxidation and induces ferroptosis (Du and Guo, 2022; Sun
et al., 2023) (e.g., Figure 1). Therefore, regulating Fe2+ levels in
the body could potentially inhibit ferroptosis and aid in
disease treatment.

2.1.1 Iron chelators
Deferoxamine (DFO) has been approved by the Food and Drug

Administration (FDA) for subcutaneous injection to mitigate
elastin-induced ferroptosis in an in vitro ferroptosis model
(Abdul et al., 2021). DFO inhibits ferroptosis by chelating free
intracellular Fe3+, down-regulating ROS, and up-regulating
intracellular levels of GPX4, the ferritin heavy chain (FTH1), and
Cystine/glutamic acid reverse transporter (System Xc-) (Zhang et al.,
2020; Zeng et al., 2021). Moreover, DFO has been shown to inhibit

ferroptosis in SCI (Yao et al., 2019), but whether it directly protects
neurons from ferroptosis is unclear. At the same time, DFO also
plays a role in ischemic stroke (IS), which significantly reduces the
area of cerebral infarction (Millán et al., 2021), and plays a certain
neuroprotective role against the damage of neurological function
after cerebral ischemia (Jones et al., 2022). However, a short DFO
half-life was found during treatment. At the same time, two oral
drugs, Deferiprone (DFP) and Deferasirox (DFX), have been
developed to address the short half-life of DFO, but side effects
such as granulocyte deficiency (Lecornec et al., 2022)and renal
failure (Kattamis, 2019)are still present during treatment. To
address the limitations of DFO, DFP, and DFX such as low oral
activity, low efficacy, and side effects, Chen et al. introduced a
sacrificial site for glucuronidation and designed and synthesized a
novel oral iron chelator, CN128, and found that CN128 was more
effective and efficacious orally (Chen et al., 2020), and it has been

FIGURE 1
Ironmetabolism pathways and their associated inhibitors of ferroptosis Serum Transferrin (TF); Themembrane protein Transferrin Receptor1 (TFR1);
Six-Transmembrane Epithelial Antigen of Prostate 3 (STEAP3); Ceruloplasmin (CP); Divalent Metal Transporter 1 (DMT1); Polyunsaturated fatty acids
(PUFAs); Phosphatidyl Ethanolamine-Polyunsaturated Fatty Acids (PE-PUFA); Lipoxygenase (LOX); Ferritin; Membrane iron transport protein 1
(Ferroportin1, FPN1); Nuclear receptor coactivator 4 (NCOA4); Lipid hydroperoxide (PL-PUFA-OOH); Promimin 2.
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used in clinical trials in β-thalassemia patients after regular blood
transfusions.

Deferric Amine Compounds DFA1 bind iron through two
molecules of oxygen in the phenolic hydroxyl group and one
molecule of nitrogen in the amine. Research has shown that
DFA1 efficiently chelates iron in vivo and ex vivo, outperforming
DFO. It has also been observed to alleviate iron overload-induced
ferroptosis and reduce cytotoxicity in a mouse model of iron
overload when administered orally and intravenously (Feng et al.,
2022). Furthermore, DFA1 shows promise as a lead compound due
to its high oral (Feng et al., 2022).

DFP was shown to have nephroprotective effects in a glycerol-
induced AKI mouse model. Zhang et al. synthesized 25 novel iron
chelator cinnamamide-hydroxypyridone derivatives by combining
the iron chelating properties ofDFP with the free radical scavenging
capabilities of phenolic acids. Their assessment included assays for
ABTS radical scavenging, Fe3+ affinity, oxygen radical absorbance
capacity (ORAC), and the inhibition of Erastin-induced ferroptosis
in HT22 cells. It was shown that compound 9c has both chelating
iron ions and antioxidant properties. Compound 9c exhibited the
strongest inhibition of ferroptosis, almost 10 times more potent than
DFP (EC50 = 14.89 μM). Additionally, the researchers observed that
compound 9c significantly alleviated cisplatin (CP)-induced AKI in
the HEK293T cell model (Rayatpour et al., 2022).

Dexrazoxane (DXZ) is the only drug approved by the FDA that
can be used to prevent doxorubicin (DOX)-induced cardiotoxicity.
DXZ has been reported to reverse DOX-induced ferroptosis mainly
by chelating mitochondrial iron, and its co-administration with
Ferrostatin-1 (Fer-1) increased survival in cardiomyopathic rats.
Moreover, DOX upregulated GPX4 as well as FTH1 in H9c2 cells
(Zhang et al., 2021; Huang et al., 2024). Meanwhile, studies have
reported that 2,29-Bipyridine exerts ferroptosis inhibition by
chelating intra-mitochondrial iron (Chen et al., 2020). 1,10-
Phenanthroline resembles and downregulates mitochondrial ROS
accumulation and inhibits ferroptosis induced by zero-valent iron
nanoparticles in vitro with 2,29-Bipyridine (Huang et al., 2019;
Chen et al., 2020). Furthermore, the N, N-dimethylaniline structure
of the novel iron chelator GIF-2197-r is crucial for ferrous ion
coordination and ferritin resistance (Hirata et al., 2023). In addition,
Yael Avramovich-Tirosh et al. reported that the synthetic iron
chelator [5-(N-methyl-N-propargylaminomethyl)-8-
hydroxyquinoline] (M-30), which permeates the BBB and
reduces cellular APP and Aβ production levels, was shown to
alleviate the intellectual disability in mice after AD in an in vivo
animal model (Avramovich-Tirosh et al., 2007; Zhang et al., 2022).

In addition, studies have shown that natural compounds also
can chelate iron. The flavonoid baicalein significantly reverses
elastin-induced downregulation of iron accumulation, GSH, and
GPX4 in cells (Xie et al., 2016). Experimental screening yielded
Hinokitiol, a natural molecule carrying an α-hydroxy ketone
skeleton with strong iron chelating properties, which can activate
nuclear factor red factor 2-related factor 2 (Nrf2), providing a basis
for further neuroprotection (Sridharan and Sivaramakrishnan,
2018). Tannins (TA), which complex with iron without binding
to endogenous iron-containing molecules, are also an effective
measure for the treatment of diseases associated with iron
overload (Phiwchai et al., 2018). BMS536924 a dual inhibitor of
insulin-like growth and insulin receptor protects against the

induction of iron-dead cells and can act as an iron chelator to
block ferroptosis (Kuganesan et al., 2021). Thymus β4 is an
endogenous iron chelator that regulates ferroptosis by affecting
free iron ions and ROS (Lachowicz et al., 2022). Ciclopirox
(CPX) (Eberhard et al., 2009; Lin J. et al., 2021; Lu et al., 2022)
has been approved by the FDA for antifungal therapy, and in recent
years it has been found that intraperitoneal injection can
significantly inhibit the growth of non-small cell lung cancer
(NSCLC). Therefore, the use of iron chelation therapy in clinical
practice still holds great promise.

2.1.2 Non-iron chelators
In addition to iron chelators, several compounds have been

found to inhibit ferroptosis by modulating iron metabolism and are
used in disease treatment.

Yang et al. screened a non-classical inhibitor of ferroptosis, YL-
939, from chemical libraries. They found that YL-939 binds to its
target inhibitor 2PHB2 and promotes ferritin expression to reduce
iron levels to inhibit ferroptosis and alleviate ferroptosis-mediated
liver injury (Yang et al., 2022). Compound YL-939 provides a new
intervention strategy for diseases associated with ferroptosis.

Phenotypic screening and structural modification identification
of benzimidazole derivatives and discovery of a novel ferroptosis
inhibitor compound 9a by Fang et al. They found that compound 9a
inhibited ferroptosis mainly by stabilizing intracellular Fe2+. In the
middle cerebral artery occlusion (MCAO) model, compound 9a was
found to significantly alleviate neurological impairment after IS. In
addition, compound 9a can bind to NCOA4 and break the NCOA4-
FTH1 interaction (Fang et al., 2021).

A National Cancer Institute screen found that the polycyclic
aromatic compoundNSC306711 blocked iron uptake by the Tf-TfR
pathway and inhibited ferroptosis. At the same, unlike classical
lattice protein-mediated endocytosis of Tf receptors, this drug is also
known as ferritin due to its different previous endocytosis pathway
that induces internalization and degradation of unoccupied Tf
receptors (Horonchik and Wessling-Resnick, 2008).

Study demonstrates that DMT1 inhibitors reduce DMT1-
mediated non-transferrin bound iron (NTBI) and play a role in
ferroptosis-mediated disease (Sun et al., 2023). These include
inhibitors such as pyrrolidine dithiobarbamate (PDTC) (Wetli
et al., 2006) and benzylisothiourea (Zhang et al., 2012).

The complex Chinese herb Naotai formula extract (NTE) has
been reported to modulate FPN-1, downregulate TFR1 and
DMT1 levels, and reduce ROS and MDA accumulation (Yang T.
et al., 2021). NTE was found to upregulate rat Recombinant Solute
Carrier Family 7, Member 11 (SLC7A11), GPX4, and GSH levels in
the MCAOmodel (Lan et al., 2020; Qiu et al., 2022). Meanwhile, the
flavonoid compound Carthamin yellow (CY) has been shown in ex
vivo and in vivo experiments to be useful in myocardial ischemia-
reperfusion (MIRI) injury and to reduce ROS. In recent years, Guo
et al. found downregulation of Fe2+, ROS, reverse transcription of
Acyl-CoA Synthetase Long-Chain Family Member 4 (ACSL4), Fe2+,
TFR1, Glutathione (GSH), SOD, and MDA levels in the brain and
improvement of infarct size in the rat brain after administration of
the drug inMCAOmodels (Guo et al., 2021; Chen G. et al., 2022). In
addition, the natural flavonoid Farrerol (FA) may alleviate
ferroptosis by inhibiting iron accumulation and lipid
peroxidation (Wu et al., 2022).

Frontiers in Pharmacology frontiersin.org04

Zhang et al. 10.3389/fphar.2024.1407335

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1407335


2.2 Inhibition of ferroptosis via the lipid
metabolism pathway

Lipid peroxidation is central to triggering ferroptosis.
It was shown that Polyunsaturated fatty acids (PUFA) of
arachidonic acid (AA)/adrenaline (AdA) were acylated and
esterified to AdA-Phosphatidyl Ethanolamine (AA-PE) and
AA-PE with the participation of ACSL4, coenzyme A, and
lysophosphatidylcholine acyltransferase-3 (LPCAT3). Ultimately,
PE-PUFA leads to lipid peroxidation and induces ferroptosis
through both non-enzymatic and enzymatic reactions
(Naowarojna et al., 2023; Pope and Dixon, 2023). The non-
enzymatic reaction that requires the participation of ROS
generated by Fe2+ mediated Fenton reaction. In contrast,
enzymatic reactions may be more complex. The enzymatic
reaction generally catalyzes the oxidation of PUFAs with the
involvement of LOX to produce PE-PUFA-OOH and its
derivatives and reactive aldehydes, including Malondialdehyde
(MDA) and 4-hydroxynonenal (4HNE), which in turn induce
ferroptosis, but these aldehydes, in turn, lead to impaired nucleic
acid and protein functions (Pope and Dixon, 2023). Cytochrome
P450 oxidoreductase (POR) also promotes lipid peroxidation and
induces ferroptosis with the involvement of two cofactors, Flavin
mononucleotide (FMN) and Flavin adenine dinucleotide (FAD)
(Koppula et al., 2021). In addition, iron can also catalyze the
metabolic activity of two enzymes, LOX and POR (Zou et al.,
2020) (e.g., Figure 2).

2.2.1 Free radical trapping antioxidants
Free radical trapping antioxidants (RTAs) inhibit ferroptosis

and protect hydrocarbon systems by trapping lipid peroxyl radicals.
Fer-1 and Liproxstatin-1 (Lip-1) (Zilka et al., 2017), both obtained
by high-throughput screening of small molecule libraries, rapidly
transfer H atoms from their arylamine portions to lipid radicals to
inhibit lipid peroxidation and prevent free radical chain reactions in
membrane PUFA lipids (Bayır et al., 2020; Scarpellini et al., 2023).
Current researchers have identified quite a few other exogenous
RTAs and many endogenous RTAs that play a role in iron-death-
mediated diseases (e.g., Table 1).

2.2.1.1 Endogenous free radical trapping antioxidants
Vitamin E and the trace mineral selenium (Se) form a

complementary antioxidant system (Saito, 2021). Vitamin E
inhibits lipid peroxide production by reducing Fe3+ in LOX-15
(Tavakol and Seifalian, 2022), but it acts less potently than Fer-1
and Lip-1. Furthermore, it was found that neurological damage
caused by vitamin E deficiency in COVID-19 patients was strongly
associated with ferroptosis. (Tavakol and Seifalian, 2022).

Melatonin (MLT) is different from vitamin E (Zhang et al.,
2023). It can regulate ferritin, lipid peroxidation, and antioxidant
capacity (Kajarabille and Latunde-Dada, 2019). MLT was found to
inhibit ferroptosis in subarachnoid haemorrhage-mediated
neuronal injury by activating genes such as Nrf2 and Heme
oxygenase-1 (HO-1) (Ma et al., 2023). Furthermore, MLT
alleviates retinal damage and retinal ganglion cells (RGC) death
by inhibiting p53-mediated ferroptosis (Zhang et al., 2023). Thus
MTL is expected to be a potential therapeutic agent for the treatment
of ferroptosis-mediated diseases.

Vitamin K (VK) is a redox-active naphthoquinone, including
chlorophyll quinone, menaquinone-4 (MK-4), and menaquinone
in three forms (Hirschhorn and Stockwell, 2022). VK is
converted to hydroquinone (VKH2) by VK epoxide reductase
(VKOR) (Shearer and Okano, 2018). And in a mouse model with
a genetic deletion of GPX4, MK-4 showed a protective effect on
tissues (Mishima et al., 2022). At the same time, VK reductase
Ferroptosis Inhibitory Protein 1 (FSP1) inhibits ferroptosis by
reducing VK to VKH2 and prevents lipid peroxidation by
depleting NAD(P)H (Li et al., 2023). In addition, recently
Kolbrink et al. reported that VK1 may act as a potent
endogenous antioxidant to ameliorate AKI (Kolbrink
et al., 2022).

2.2.1.2 Exogenous free radical trapping antioxidants
Fer-1, the first synthetic inhibitor of ferroptosis, stabilises

free radicals, reduces ROS, and has been strongly implicated in a
variety of diseases (Skouta et al., 2014; Wang et al., 2023),
including acute lung injury (ALI) (Liu et al., 2020). In
structure-activity relationship (SAR) analysis (Saito, 2021), it
was found that N-cyclohexyl acts as a lipophilic anchor playing
an important role in maintaining Fer-1 activity (Scarpellini et al.,
2023). Moreover, both amine groups and lipophilic anchors are
essential for maintaining Fer-1 activity. Studies have reported
that Fer-1 inhibits ferroptosis both in vivo and in vitro with
significant in vitro inhibition. Structural analysis of Fer-1 by
researchers yielded the structurally stable compound SRS11-92,
but it is less active and less stable in plasma metabolism
(Linkermann et al., 2014). Further researchers used elastin-
induced HT-1080 cells as a model of ferroptosis, using SRS11-
92 as a starting point for optimization. They first introduced a
sulfonamide instead of the unstable ester and introduced a benzyl
ring 2 on the NH to obtain the sulfonamide analogue compound
38 (UAMC-2418). Compound 38 has high stability but low
solubility. Thus, the researchers introduced solubility-
enhancing groups into compound 38 to obtain compound 39
(UAMC-3203). Compound 39 showed stronger solubility,
stability, and pharmacokinetic values than 38, was protective
against multiple organ damage in mice showed no toxicity, and
was overall superior to Fer-1 (Scarpellini et al., 2023).
Meanwhile, the nanomaterial poly(2-oxazoline)-Fer-1
significantly improved the potency of Fer-1 (Morrow et al.,
2022), providing a new idea for the treatment of ferroptosis.

Lip-1 is a newly discovered ferroptosis inhibitor that contains
a spiroquinoxaline amine scaffold, functioning similarly to Fer-1
without affecting other cell death pathways. It is both active and
soluble, and was introduced around the same time as the Fer-1
derivative UAMC-3203. Various research studies have
highlighted the significance of Lip-1 in treating different
neurological disorders and cancers. A recent study revealed
that a Lip-1 analog, Lip-2, successfully prevented ferroptosis
induced by serum in human proximal tubular epithelial cells
from patients with lupus nephritis (Class IV), while also
exhibiting improved pharmacokinetics (Alli et al., 2023).

To obtain more potent inhibitors, Yang et al. screened the
phenothiazine derivatives isoprozine as well as phenothiazine
from the Selleck (USA) library of biologically active compounds
and they further explored the structure–activity of phenothiazine
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derivatives (Shah et al., 2017). By substituting different
functional groups, they found that compound 51 with
methylcytosine had better activity and exerted its antioxidant
capacity mainly by trapping free radicals, thus protecting against
elastin-induced cellular ferroptosis. It is worth noting that the
compound has good pharmacokinetics as well as good BBB
penetration, which is essential for the treatment of CNS
diseases. Compound 51 was further evaluated in the MCAO
model, which showed a significant reduction in lesion volume
(Yang et al., 2021). However, it has a high hERG activity, so they
further optimized the structure based on the antioxidant and
ferroptosis inhibition properties of compounds with
phenothiazine scaffolds to obtain 2-vinyl-10H-phenothiazine
derivatives. Compound 7J was found to have the best

ferroptosis inhibitory activity by SAR study, 7J showed good
ROS scavenging ability and could alleviate DOX-induced
cardiotoxicity with a good pharmacokinetic profile and no
significant toxicity in vitro and ex vivo (You et al., 2022).

Edaravone (EDA), a free radical scavenger approved for treating
ischemic stroke (IS) and amyotrophic lateral sclerosis (ALS)
(Rothstein, 2017). Recent studies have reported that EDA
predominantly activates the Nrf2-FPN pathway, upregulates Nrf2,
FPN, and GPX4, and downregulates inflammatory factors to inhibit
ferroptosis and alleviate cerebral ischemia-reperfusion injury
(CIRI). In addition, it was found that EDA upregulated
GPX4 and xCT, downregulated ACSL4 and LOX-5, and inhibited
neuronal cell ferroptosis during the acute phase of SCI (Pang
et al., 2022).

FIGURE 2
Lipid metabolic pathways and their associated inhibitors of ferroptosis. Acyl-CoA Synthetase Long-Chain Family Member 4 (ACSL4); Recombinant
Solute Carrier Family 3, Member 2 (SLC3A2); Malondialdehyde (MDA); 4-hydroxynonenal (4HNE); Cytochrome P450 oxidoreductase (POR); Flavin
mononucleotide (FMN); Flavin adenine dinucleotide (FAD).
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TABLE 1 Small molecule ferroptosis inhibitors.

Sort Inhibitors Mechanism of action Clinical diseases Experimental models Ref

Iron
metab-
olism

Deferoxamine (DFO) Iron chelator (Fe3+); Upward
revision of GPX4, FTH1, xCT

Myocardial ysfunction, Ischemia
Reperfusion njury in the retina,
Stroke, Spinal cord injury, etc.

SCI mice model, MCAO mice
model

Yao et al. (2019), Zhang et al.
(2020), Millán et al. (2021), Zeng
et al. (2021), Guo et al. (2022b)

Deferiprone (DFP) Iron chelator Multiple sclerosis, Beta-
thalassaemia, Alzheimer’s

disease, etc.

AD mice model, Beta-thalassaemia
patients

Olivieri et al. (2019), Rayatpour
et al. (2022)

Deferasirox (DFX) Iron chelator (Fe3+) Cardiac iron overload, Ulcerative
colitis, Beta-thalassaemia etc.

A mouse model with ulcerative
colitis; Beta-thalassaemia patients

Olivieri et al. (2019), Wu et al.
(2023)

CN128 Iron chelator Beta-thalassaemia, Parkinson’s
disease

Thalassaemia beta-mouse model Chen et al. (2020a)

Dexrazoxane (DXZ) Iron chelator; Upward revision of
GPX4, FTH1

Cardiomyopathies Rat model with cardiomyopathy;
H9c2 cell model

Popelová et al. (2009), Zhang et al.
(2021), Huang et al. (2024)

Compound 9c Iron chelator, Radical scavenger Acute kidney injury HT22 cell model; AKI model Rayatpour et al. (2022)

Ciclopirox (CPX) Iron chelator non-obese diabetic/severe
combined immunodeficiency

Nonobese diabetic/severe
combined immunodeficient murine

xenograft model

Eberhard et al. (2009), Lin et al.
(2021a), Lu et al. (2022)

Baicalein Iron chelator; Inhibit 12/15-LOX Myocardial I/R Injury,
Osteoarthritis, Acute kidney

injury

Osteoarthritis mouse model; Mouse
Myocardial I/R Injury model

Scarpellini et al. (2023)

Hinokitiol Iron chelator; Activate Nrf2;
Upward revision of SLC7A11,
GPX4, HO-1

Traumatic brain injury, Ischemic
stroke, Parkinson’s disease

MCAO mice model; PD model Jayakumar et al. (2013), Xi et al.
(2022)

Tannins Iron chelator Diseases related to iron overload HepG2 cell model Phiwchai et al. (2018)

BMS536924 Iron chelator — — Kuganesan et al. (2021)

M-30 Iron chelator Alzheimer’s disease AD mice model Avramovich-Tirosh et al. (2007),
Zhang et al. (2022a)

2,2′-Bipyridine Iron chelator (Fe2+) — — Chen et al. (2020b)

1,10-Phenanth-roline Iron chelator — — Huang et al. (2019), Chen et al.
(2020b)

GIF-2197-r Iron chelator — HT22 cell model Hirata et al. (2023)

Deferric Amine Compounds (DFA1) Iron chelator — — Feng et al. (2022)

AKI-02 Iron chelator Acute kidney injury HK-2 cells model Zhu et al. (2023b)

YL-939 YL-939 binds to its target inhibitor
2PHB2 to promote ferritin
expression and reduce iron
content

Liver injury ES-2 and HT-1080 cell model Yang et al. (2022a)

Compound 9a Stabilisation of Fe2+ Ischemic stroke HT22 cell model; HT1080 cell
model

Fang et al. (2021)

NSC306711 Induction of internalisation and
degradation of unoccupied Tf
receptors

— — Horonchik and Wessling-Resnick
(2008)

Pyrrolidine dithiobarbama-te Inhibition of DMT1 — HEK293T cell model Wetli et al. (2006)

Benzylisothiou-rea Inhibition of DMT1 — An acute rat model of iron
overabsorption

Zhang et al. (2012)

Benzimidazole compounds Inhibition of NCOA4-FTH1
interaction

— HT-22 cell model Mallais et al. (2023)

Carthamin yellow (CY) Downward revision of Fe2+, ROS;
Reverse transcription of ACSL4,
Fe2+, TFR1, GSH, SOD, MDA
expression

Myocardial I/R Injury, Ischemic
stroke, etc.

MCAO rat model Guo et al. (2021)

Farrerol (FA) Reduces lipid peroxidation and
iron accumulation

Hypoxic-ischemic
encephalopathy (HIE)

Tendinopathy rat model Wu et al. (2022)
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TABLE 1 (Continued) Small molecule ferroptosis inhibitors.

Sort Inhibitors Mechanism of action Clinical diseases Experimental models Ref

Lipid
metabo-
lism

Vitamin E Radical scavenging; Reduction of
Fe3+ to Fe2+

Seizures, Acute lung injury,
Alzheimer’s disease, etc.

Chronic epilepsy rat model Saito (2021), Zhang et al. (2022c),
Tavakol and Seifalian (2022)

Melatonin (MLT) Radical scavenging; Activate Nrf2,
HO-1; Downward revision of ROS

Myocardial injury, Ischemic
stroke, Subarachnoid

Hemorrhage, Retinal damage,
Apoptotic Retinal Ganglion Cell

Death, etc.

Mouse retinal ischemia-reperfusion
injury model; Rat subarachnoid

haemorrhage model

Kajarabille and Latunde-Dada
(2019), Ma et al. (2023a), Zhang

et al. (2023b)

Vitamin K (VK) Radical scavenging Acute kidney injury GPX4 gene deletion mice model;
AKI mice model

Shearer and Okano (2018),
Hirschhorn and Stockwell (2022),
Kolbrink et al. (2022), Mishima
et al. (2022), Li et al. (2023a)

Ferrostatin-1 (Fer-1) Radical scavenging Cardiomyopathies, Stroke, Acute
kidney injury, Acute Liver

injury, etc.

HT-1080 cell model Yang et al. (2021b), Scarpellini
et al. (2023)

Compound 37(SRS11-92) Radical scavenging — HT-1080 cell model Linkermann et al. (2014), Yang
et al. (2021b)

Compound 38 (UAMC-2418) Radical scavenging — HT-1080 cell model Linkermann et al. (2014), Yang
et al. (2021b)

Compound 39 (UAMC-3203) Radical scavenging — HT-1080 cell model Linkermann et al. (2014), Yang
et al. (2021b)

Liproxstatin-1 (Lip-1) Radical scavenging Myocardial I/R Injury, Acute
kidney injury, Acute lung injury,

Stroke

Renal tubular epithelium and
hepatocyte-specific GPX4-deficient

mice model

Alli et al. (2023)

Compound 51 Radical scavenging Ischemic stroke MCAO rat model Yang et al. (2021b)

7J Radical scavenging — HT-1080 cell model You et al. (2022)

XJB-5-131 Radical scavenging Osteoarthritis, Renal I/R injury HT-1080 cell model Krainz et al. (2016), Charaschanya
et al. (2022a)

JP4-039 Radical scavenging — HT-1080 cell model Krainz et al. (2016), Charaschanya
et al. (2022a)

(S)-6c Radical scavenging — HT-1080 cell model; RAW
264.7 macrophage model

Charaschanya et al. (2022a),
Charaschanya et al. (2022b)

Copper complex diacetylbis (N (4)-
methylthio- semicarbazonato) copper

(II) (CuATSM)

Radical scavenging Myocardial ischemic, Ischemic
stroke, Amyotrophic lateral

sclerosis

tMCAO model; ALS patient (Kuo et al., 2019; Shi et al., 2021;
Yang et al., 2023)

CuATSP Radical scavenging — PFA1 and HT-22 cells model Zilka et al. (2021)

Compound 25 Radical scavenging — HT-1080 cell model Ying et al. (2024)

Olanzapine (OLZ) Radical scavenging — HT22 cell model Jiang et al. (2023a)

Phenoxazine Radical scavenging — PFA1 cell model Shah et al. (2017), Zilka et al.
(2017), Farmer et al. (2022)

Phenothiazine Radical scavenging — PFA1 cell model Yang et al. (2021b)

Trolox Radical scavenging Cortical neuronal injury HT-1080 cells model Dixon et al. (2012)

Pentamethylchromanol (PMC) Radical scavenging — PFA1 cell model Zilka et al. (2017), Shah et al.
(2018b)

SKI II (SphK-I2) Sphingosine kinase (SphK) RTA — HT-1080 cells model Conlon et al. (2021)

Edaravone (EDA) Activation of the Nrf2-FPN
pathway predominantly;
Upregulates Nrf2, FPN, GPX4,
xCT; Downregulation of
inflammatory factors, ACSL4 and
LOX-5

Myocardial atrophy, Stroke,
Spinal cord injury, Amyotrophic

lateral sclerosis

CIRI, ICH and SCI mice model Pang et al. (2022)

BRD4770 Downregulates LPO and MDA;
Upregulates SLC7A11, SLC3A2,
GPX4, 4-HNE and FSP1

Aortic dissection AD mice model Chen et al. (2022b), Chen et al.
(2022c)

Zileuton Inhibition of LOX-5; Attenuates
lipid peroxidation; Blocking
ALOX-5-mediated glutamate
toxicity

Acute retinal demege ARPE-19 cell model, Acute retinal
injury mice model, HT22 cell mocel

Liu et al. (2015), Lee et al. (2022)
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TABLE 1 (Continued) Small molecule ferroptosis inhibitors.

Sort Inhibitors Mechanism of action Clinical diseases Experimental models Ref

PD146176 Selective inhibition of ALOX-15;
Reduction of PLO and 4-HNE
production

Alzheimer’s disease Gamete mice model Walters et al. (2018)

MK-886 Inhibition of ALOX-5 Myocardial I/R Injury Mouse Myocardial I/R Injury
model

Shi et al. (2023)

BWA4C Inhibition of ALOX-5 Inflammatory bowel diseases Rat bone remodelling model Franchi-Miller and Saffar (1995)

AA-861 Inhibition of ALOX-5/12 Ischemic stroke Transient brain I/R gerbil model Scarpellini et al. (2023)

ML351 Specific inhibition of ALOX-15 Embolic stroke A7r5 cell model, Murine Left
Anterior Descending (LAD)
Coronary Artery model

Cai et al. (2023a), Horinouchi
et al. (2024)

Troglitazone (TRO) Inhibition of ACSL4 — Rat model Kim et al. (2001), Doll et al.
(2017), Xiao et al. (2019)

Rosiglitazone (ROSI) Inhibition of ACSL4 — Rat model Kim et al. (2001), Doll et al.
(2017), Xiao et al. (2019)

Pioglitazone (PIO) Inhibition of ACSL4 — Rat model Kim et al. (2001), Doll et al.
(2017), Xiao et al. (2019)

Silibinin Inhibition of ACSL4 — HepG2 cell model Ghadi et al. (2023)

PBSs7 Inhibition of ferroptosis — HT-1080 cell model Li et al. (2023b)

Gossypol acetic acid Upregulates GPX4;
Downregulates ACSL4 and Nrf2

Myocardial I/R injury,
Osteoarthritis

Mouse Myocardial I/R Injury
model

Lin et al. (2021b)

Calycosin Reduced accumulation of lipid
peroxides

Diabetic nephropathy HK-2 cell model, tubular damage
mice model

Huang et al. (2022)

Antiox-
idant

Metformin (Met) Upregulates Nrf2/ARE, GPX4;
Downregulates MDA

Spinal cord injury, Non-alcoholic
fatty liver disease

SCI mice model Wang et al. (2020b), Ma et al.
(2021), Cai et al. (2023b)

Paeoniflorin Downregulates Fe2+, MDA, ROS,
SLC7A11; Upregulates SOD

Cardiomyopathies, Alzheimer’s
disease, Acute kidney injury

APP/PS1, AKImice model Zhai et al. (2023a), Ma et al.
(2023b)

Carvacrol Upregulates GPX4 Ischemic stroke MCAO-I/R mice model Abdul Ghani et al. (2023)

Galangin Upregulates SLC7A11, GPX4/
Nrf2; Downregulates Iron, Ferritin

Cerebral I/R Injury, Myocardial I/
R Injury

Cerebral I/R; MIRI mice model;
Wistar rats model

Salama and Elshafey (2021)

Ginkgolide B Upregulates Nrf2/GPX4; Reversal
of TFR1, NOCA4

Alzheimer’s disease AD mice model Wang et al. (2020a), Hébert et al.
(2022)

Kaempferol (KF) Activation of the Nrf2/SLC7A11/
GPX4 signalling pathway

Myocardial I/R Injury, Diabetic
nephropathy, Ischemic stroke

OGD/R mice model Holland et al. (2020), Kim et al.
(2023)

Glycyrrhizin Adjustment of the HMGB1/
GPX4 pathway; Upregulates
GPX4

Myocardial I/R Injury, Cerebral I/
R Injury

Neonatal hypoxic-ischemic brain
damage (HIBD)

Jitrangsri et al. (2022), Zhu et al.
(2022)

Icaritin (ICT) Upregulates GSH-Ps, SOD Myocardial injury,
Atherosclerosis, Ischemic stroke,

Alzheimer’s disease

HIBD; OGD; APP/PS1mice model Angeloni et al. (2019), Choi et al.
(2023b), Zheng et al. (2023)

Total flavonoids Upregulates GSH;
Downregulates ROS

Parkinson’s disease PD mice model Gao et al. (2024)

Fisetin Activation of the SIRT1/
Nrf2 pathway; Promotion of
FTH1 and HO-1 expression

Myocardial injury, Fibrosis
Kidney Disease

Mouse Myocardial Injury model;
H9c2 cell model

Goujon et al. (2024)

A-lipoic acid Adjust the Xc-GSH-GPX4 axis;
Downregulates ROS; Iron chelator

Myocardial Infarction, Acute
kidney injury, Liver injury

AKI model Cho et al. (2022)

Berberine (BBR) Upregulates GPX4;
Downregulates Fe2+, ROS

Cardiomyopathies, Cardiotoxic,
Cerebral I/R Injury, Liver fibrosis

pancreatic beta-cell Manogaran et al. (2023)

Gastrodin (GAS) Regulating the GPX4 pathway Cardiac hypertrophy, Kidney
injury, Alzheimer’s disease

AKI mice model Berezutsky et al. (2022)

Ajudecunoid C Interference with the Keap1-Nrf2
pathway and activation of the
Nrf2-AREs pathway

Neuronal damage Animal models of neurological
diseases

Tan et al. (2021)

Dehydroabietic Acid Activation of the Nrf2-AREs
pathway

Non-alcoholic fatty liver disease NAFLD mice model Gonçalves et al. (2018)
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TABLE 1 (Continued) Small molecule ferroptosis inhibitors.

Sort Inhibitors Mechanism of action Clinical diseases Experimental models Ref

Withaferin A Activation of the Nrf2/HO-
1pathway

Cerebral hemorrhage ICH mice model Zhou et al. (2023)

Proanthocyanidins (PACs) Upregulates GSH, GPX4,
SLC7A11, Nrf2, HO-1;
Downregulates TFR1, ACSL4;
Activation of the Nrf2/HO-
1pathway

Spinal cord injury, Cerebral I/R
Injury, Acute lung injury

SCI, CIRI mice model Zhou et al. (2020), Chen et al.
(2023)

Irisin Activation of the Nrf2/HO-
1pathway

Lung I/R injury Lung I/R Injury mice model Wang et al. (2022b)

Aloe-emodin (AE) Activate Nrf2; Upregulates
SLC7A11, GPX4

Cardiac toxicity H9c2 rat model He et al. (2023b)

Pachymic Acid Downregulates MDA, ROS, Fe2+;
Upregulates GSH, SLC7A11,
GPX4

Myocardial injury, Ischemic
stroke

OGD/R mice model; MI cell model Liu et al. (2024)

Geraniin Upregulates Nrf2, HO-1 Kidney injury MCAO/R and OGD/R model Chumboatong et al. (2020)

β-Caryophyllene Activates the NRF2/HO-
1 pathway; Downregulates ROS
and iron accumulation

Myocardial infarction, Cardiac
hypertrophy, Ischemic stroke

MCAO/R; ODG/R rat model Hu et al. (2022a)

Forsythoside A (FA) Activates the Nrf2/
GPX4 pathway; Upregulates GSH;
Downregulates MDA, ROS

Alzheimer’s disease APP/PS1 mice model; HT22 cell
model

Zhang et al. (2024b)

15, 16-Dihydrotanshinone I (DHT) Upregulates GPX4 expression and
GSH/GSSG ratio; Activate Nrf2;
Downregulates ROS

Ischemic stroke pMCAO rat model; PC12 cell
model

Roth et al. (2023)

Puerarin Downregulates Fe2+, COX2;
Upregulates Nrf2, SLC7A11,
GPX4, HO-1

Myocardial injury, Retinal injury,
Cerebral I/R Injury

OGD/R model Yuan et al. (2017), Zhang et al.
(2024a), Li and Liu (2024), Song

et al. (2024)

Eriodictyol Upregulates Nrf2/HO-1;
Downregulates ROS, MDA,
Creatinine

Alzheimer’s disease ALK mice model; APP/PS1 mice
model

Li et al. (2022a), Zhang et al.
(2022a), Badi et al. (2024)

Dihydromyricetin Regulation of Nrf2/HO-1, MAPK
and NF-κB signalling pathways

Acute kidney injury, Cerebral I/R
Injury

AKI mice model; HK-2cell
model9C

Liang et al. (2014), Xu et al.
(2023c)

Naringenin Adjustment of Nrf2/system Xc-/
GPX4 axis, Nrf2-HO-1

Myocardial I/R Injury, Lung
Fibrosis

MIRI rat model; H2 cell model Shamsi et al. (2021), Zhang et al.
(2022b)

Hesperidin Upregulates Nrf2 Cardiomyopathies, Parkinson’s
disease

Intervertebral disc degeneration
(IVDD) mice model

Zhu et al. (2023a)

Nuciferine Upregulates GPX4, SLC7A11 and
FSP1; Downregulates iron

Acute kidney injury AKI mice model; HK-2 and
HEK293T cell model

Manogaran et al. (2023)

(+)-Clausenamide Activation of the Keap1/Nrf2 axis Liver injury Liver injury mice model Wang et al. (2020c)

Naringin Regulation of the Nrf2/
GPX4 pathway

Myocardial I/R Injury Diabetic Mellitus rat model Tang et al. (2022)

Tectorigenin Influence on NADPH oxidase
4 expression

Kidney injury unilateral ureteral obstruction rat
model

Li et al. (2022b)

Biochanin A Regulating the Nrf2/system Xc-/
GPX4 pathway; Downregulates
TFR1 and Ferritin levels

Osteoarthritis Chondrocyte arthritis mouse model He et al. (2023a)

Isoiquiritin apioside Upregulates HIF-α and HO-1 — ALI mice model Zhongyin et al. (2022)

Polydatin Downregulates iron, ROS;
Upregulates GSH, GPX4

Acute kidney injury Cis-AKI mice model; HK-2c ell
model

Karami et al. (2022)

Leonurine Activate Nrf2; Downregulates
iron, ROS; Upregulates GSH,
GPX4

Myocardial injury, Acute kidney
injury

AKI model Hu et al. (2022b), Salama et al.
(2022)

Quercetin (QCT) Activation of the Nrf2-HO-
1 signalling pathway; Upregulates
SLC7A11, SLC3A2, GSH;
Downregulates MDA, ROS

Cardiomyopathies, Acute kidney
injury, Chronic lung injury, etc.

AKI-I/R model Cruz-Gregorio and
Aranda-Rivera (2023), Feng et al.
(2023), Kato et al. (2023), Ding

et al. (2024)

Resveratrol Regulation of the Nrf2/
GPX4 pathway; Regulation of
SLC7A11/GPX4

Myocardial injury, Heart failure,
Myocardial I/R Injury, Spinal

cord injury, Ischemic stroke, etc.

SCI model Li et al. (2023c), Huang et al.
(2023), Ni et al. (2023)
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TABLE 1 (Continued) Small molecule ferroptosis inhibitors.

Sort Inhibitors Mechanism of action Clinical diseases Experimental models Ref

Arbtuin Regulation of Nrf2/HO-1;
Downregulates MDA, ROS;
Upregulates GSH

Myocardial injury, Nalcoholic
Fatty Liver Disease, etc.

NAFLD mice model; HepG2 cell
model

Jiang et al. (2023c)

3-n-butylphthalide Downregulates iron, ROS, TFH;
Upregulates Nrf2

Stroke, Alzheimer s disease,
Ischemic diseases, Spinal cord

injury

SH-SY5Y cell model Ye et al. (2023)

Tetrahydroxy stilbene
glycoside (TSG)

Regulation of Nrf2/HO-1;
Activation of GSH/GPX4/ROS
and Keap1/Nrf2/ARE signalling
pathways

Alzheimer’s disease AD rat model; APP/PS1mice model Pan et al. (2016); Zhao et al.
(2023)

Cardamonin Regulation of the p53/SLC7A11/
GPX4 signalling pathway

Osteochondral injury,
Enterocolitis

Rat cartilage degeneration model Gong et al. (2023)

Ginsenoside Rg1 Downregulates iron, FTL, FTH
and MDA; Upregulates GPX4,
FSP1 and GSH

Kidney injury Rats model of sepsis Guo et al. (2022a), Guo et al.
(2023a)

Ruscogenin Activation of the Keap1/Nrf2/
HO-1 pathway

Myocardial ischemic, Acute
kidney injury

MI mice model Fu et al. (2022)

Astaxanthin Activates Nrf2, HO-1 Myocardial injury, Acute lung
injury, Osteoarthritis, etc.

Neuroblastoma Human Cell Model Rizzardi et al. (2022)

2-amino-5-chloro-N,3-
dimethylbenzamide (CDDO)

Inhibition of GPX4 degradation,
lipid peroxidation;
Downregulates ROS

Liver injury HT-22 cell model Wu et al. (2019)

ADA-409–052 Inhibits tert-butyl hydroperoxide
(TBHP)-induced lipid
peroxidations; Prevention of
ferroptosis due to GSH as well as
GPX4 deficiency

Embolic stroke A Murine Model of
Thromboembolic Stroke

Keuters et al. (2021)

Disulfiram Disruption of GPX4 interaction
with HSC70 and consequent
inhibition of GPX4 degradation

— mice model Liu et al. (2022)

Fursultiamine Disruption of GPX4 interaction
with HSC70 and consequent
inhibition of GPX4 degradation

— mice model Liu et al. (2022)

Mitoglitazone Upregulates GPX4; Reduction of
lipid peroxidation and alleviation
of AKI in mice after I/R

Renal I/R injury renal I/R injury mice model Qi et al. (2023)

PKUMDL-LC-101 Activation of GPX4 to reduce the
production of pro-inflammatory
lipid mediators

— human polymorphonuclear
leucocytes

Li et al. (2018), Li et al. (2019),
Scarpellini et al. (2023)

PKUMDL-LC-101-D04 Activation of GPX4 to reduce the
production of pro-inflammatory
lipid mediators

— human polymorphonuclear
leucocytes

Li et al. (2018), Li et al. (2019),
Scarpellini et al. (2023)

Dopamine (DA) Enhanced stability of
GPX4 protein; Upregulates GPX4,
FTH1; Downregulates ROS

Myocardial I/R Injury,
Parkinson’s disease, Ischemic

stroke

PD model; MCAO model Costa and Schoenbaum (2022),
Ding et al. (2023)

Seratrodast Regulation of the Xc - GSH-GPX4
pathway; Enhanced
GPX4 expression;
Downregulates ROS

Seizures Seizures in Mouse Models Noack et al. (2017)

Uridine Activation of the Nrf2 signalling
pathway SLC7A11, GPX4 and
HO-1; Activation of the
Nrf2 signalling pathway

Acute kidney injury ALI model Lai et al. (2023)

3H-1, 2-dithiole-3-thione (D3T) Upregulates xCT, GSH, Nrf2-
mediated ferritin and FPN1, HO-1

Alzheimer’s disease AD mice model Cui et al. (2018), Kulkarni et al.
(2023)

5- amino-3-thioxo 6- 3H-(1,2)
dithiole-4-carboxylic acid ethyl ester

(ACDT)

Upregulates xCT, GSH, Nrf2-
mediated ferritin and FPN1, HO-1

Alzheimer’s disease AD mice model Ansari et al. (2018)

Propofol Adjustment Nrf2/GPX4 Access Myocardial I/R Injury, Cerebral I/
R Injury

CIRI mice model Fan et al. (2023)

Compound 3f Upregulates FSP1 Ischemic stroke Rat MCAO model Fang et al. (2022)
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A novel ferroptosis inhibitor, olanzapine (OLZ), was found to
trap free radicals and inhibit ferroptosis in RSL3-induced
hippocampal neuronal cells of HT22 mice (EC50 = 1.18 μM)
(Jiang et al., 2023; Drabczyk et al., 2023). To improve its
inhibitory effect, the researchers optimized its structure. Forty-
two thiophene benzodiazepine derivatives (compounds 4–45)
were first designed and synthesized and seven compounds
(compound 21 and compounds 31–36) were selected by
analyzing their tectonic relationships for better ferroptosis
inhibition activity (Jiang et al., 2023). After HT22 cytotoxicity
evaluation compound 36 was found to have low cytotoxicity
(CC50 = 18.8 μM) and its inhibitory activity was 16 times higher
than that of OLZ (EC50 = 0.074 μM). Thus, the discovery of OLZ
derivatives solves the problem of easymetabolism and low efficacy of
Fer-1 and offers hope for ferroptosis-mediated diseases (Jiang
et al., 2023).

Recent studies have reported that mitochondria-targeted
nitrogen oxide RTA has an effective inhibitory effect on
ferroptosis. Nitrogen oxides catalyze the cross-disproportionation
of alkyl peroxyl and hydroperoxyl radicals, allowing them to form
two substances in unsaturated hydrocarbons as uniquely effective
RTAs. Ability of Targeted Nitrogen Oxides XJB-5-131 and JP4-039
to prevent the Occurrence of Cytosolic ferroptosis in HT-1080 Cells
as Olefinic Peptide Isoforms (Krainz et al., 2016). Optimisation of
JP4-039 by Manwika Charaschanya et al. found compound (S)-6c
to be the most potent inhibitor of ferroptosis in HT-1080 cells
(approximately 30 times more active than JP4-039) (Charaschanya
et al., 2022a; Charaschanya et al., 2022b).

In recent years, copper complex diacetylbis (N(4)-methylthio-
semicarbazonato) copper(II) (CuATSM) (Kuo et al., 2019) has
been an efficient RTA. The study reports that CuATSM reduces the
area of murine cerebral infarction and oxidative stress and exerts
antioxidant and neuroprotective effects in acute IS in a transient
MCAO (tMCAO) model (Shi et al., 2021). CuATSM can be used in
combination with EDA to upregulate this effect (Shi et al., 2021). In
addition, CuATSM also exerts a neuroprotective effect in ALS, but
the pathological mechanism is currently unknown (Kuo et al., 2019;
Yang et al., 2023).

The investigators phenotypically analyzed a new 4-hydroxyl
pyrazole scaffold for ferroptosis inhibitor 4-hydroxyl pyrazole
derivatives (HW-3) (EC50 = 120.1 ± 3.5 nM) and synthesized a
series of 4-hydroxyl pyrazole derivatives based on the backbone
structure of HW-3. And it was found that compound 25 exhibited
the strongest inhibition of ferroptosis (EC50 = 8.6 ± 2.2 nM). In
addition, cellular-level studies have found that compound 25
exhibits more potent inhibition of ferroptosis than Fer-1 (Ying
et al., 2024), offering hope for ferroptosis-mediated diseases.

2.2.2 Lipoxygenase inhibitors
Lipoxygenase (LOX) is thought to be a central player in

ferroptosis. It induces lipid peroxidation by reacting with ROS
and catalysing PUFA, which in turn induces ferroptosis. It has
been found that humans have six LOX isoforms, ALOX5, ALOX12,
ALOX12B, ALOX15, ALOX15B, and ALOXE3, and there are
already some cells that can be rescued by LOX inhibitors. LOX
inhibitors inhibit LOX primarily by trapping free radicals (Shah
et al., 2018a), which in turn inhibits lipid peroxidation. The most
relevant inhibitors reported in the article are LOX-5 inhibitors,

including zileuton (Liu et al., 2015; Lee et al., 2022), MK-886 (Shi
et al., 2023), BWA4C (Franchi-Miller and Saffar, 1995), PD146176
(Walters et al., 2018) and others. Furthermore, it was found that the
LOX-5 inhibitor Zileuton is involved in oxidative stress in retinal
pigment epithelium (RPE) cells and regulates retinal ROS. It
provides an effective solution for the treatment of retinal diseases
(Liu et al., 2015; Lee et al., 2022). LOX-5 expressed during
inflammation uptakes apoptotic cells, activates resident
macrophage populations, and thus maintains apoptotic cell
tolerance (Kapralov et al., 2020). Also, ML351 specifically
inhibits ALOX-15 and alleviates erastin-induced cardiac
ischemia/reperfusion (I/R) injury (Cai et al., 2023; Horinouchi
et al., 2024). In addition, the LOX-5/12 inhibitor docebenone
(AA-861), and the LOX-12/15 inhibitor baicalein have all been
found to inhibit lipid peroxidation (Scarpellini et al., 2023) and play
a role in ferroptosis-mediated diseases.

2.2.3 Acyl-CoA Synthetase Long-Chain Family
Member 4 inhibitors

The insulin sensitising drugs thiazolidinediones (TZD) are a
class of peroxisome proliferator activatedreceptor γ (PPARγ)
activators. Troglitazone (TRO), rosiglitazone (ROSI) and
pioglitazone (PIO) were found to effectively and specifically
inhibit ACSL4 (Kim et al., 2001), and TRO being TZD-protective
due to its 6-chromophoranol structure (Doll et al., 2017).
Pharmacological evaluation of ACSL4 revealed that GPX4KO
mice treated with ROSI showed better inhibition of ferroptosis
(Doll et al., 2017). In addition, thrombin inhibitors also inhibit
ACLS4 and ferroptosis (Zhang et al., 2024a).

2.2.4 Other inhibitors
Histone methyltransferase inhibitors (BRD4770) is

comparable to Fer-1 inhibition at optimal concentrations (Chen
et al., 2022b; Chen et al., 2022c) and may be useful in the treatment
of stenosis. The researchers screened and found that BRD4770
exhibited significant ferroptosis inhibition. They further found that
BRD4770 inhibited lipid peroxidation by down-regulating PLO and
MDA levels and increasing 4-HNE expression. And BRD4770
upregulated the mRNA levels of ferroptosis regulators SLC7A11,
Recombinant Solute Carrier Family 3, Member 2 (SLC3A2), GPX4,
and FSP1. Furthermore, it was found that BRD4770 alleviated
cognitive impairment and downregulated aortic lipid
peroxidation in a mouse model of AD (Chen et al., 2022b).
Thus, BRD4770 is expected to be an effective molecular drug for
the treatment of AD.

Recently Florencio Porto Freitas et al. identified 7-
dehydrocholesterol (7-DHC), an endogenous ferroptosis
inhibitor, as one of the lipid components susceptible to
autotrophication in vivo. They prepared soybean
phosphatidylcholine (PC) monolayers loaded with 7-DHC and
found that 7-DHC is preferentially oxidised in vitro and that the
oxidation of 7-DHC in vitro is critical for the inhibition of
(phospho)lipid peroxidation. Subsequently, using the iron/
ascorbate couple as a model for oxidative sources, they found
that 7-DHC accumulation protects (phosphoric acid) lipids from
autoxidation and subsequent rupture and is different from previous
lipid peroxidation, mainly due to its better reactivity to peroxyl
radicals. In addition, 7-DHC accumulation significantly reduces
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metabolic stress in the body (Angeli et al., 2021; Freitas et al., 2024).
Thus, 7-DHC regulates ferroptosis in an easily overlooked manner
by inhibiting lipid peroxidation and bringing new therapeutic ideas
to ferroptosis-mediated diseases.

In recent years, researchers have isolated seven abolane-type
sesquiterpenoids (PBSs) from the deep sea fungus Aspergillus
floridus YPH1 (Li et al., 2023b), with compound 7 showing a
selective inhibitory effect on Erastin/RSL3-induced ferroptosis

FIGURE 3
Antioxidant pathways and their associated inhibitors of ferroptosis Recombinant Solute Carrier Family 7, Member 11 (SLC7A11); Recombinant Solute
Carrier Family 3, Member 2 (SLC3A2); Glutamate-cysteine ligase (GCL); Glutathione Synthase (GSS); Glutathione (GSH); Glutathione Peroxidase 4 (GPX4);
Oxidized glutathione, GSSG; Glutamic acid (Glu); Cystine (Cys); Nuclear factor E2-related factor 2 (Nrf2); p53 (tumor suppressor); Recombinant Kelch-like
ECH Associated Protein 1 (Keap1); Antioxidant response element (ARE); Heme oxygenase-1 (HO-1); Ferroptosis Inhibitory Protein 1 (FSP1);
CoenzymeQ10 (CoQ10); Panthenol (CoQ10H2); Nicotinamide Adenine Dinucleotide Phosphate (NADPH); Dihydroorotate dehydrogenase (DHODH); GTP
Cyclohydrolase-1 (GCH1); Tetrahydrobiopterin (BH4); GTP Cyclohydrolase-1-Tetrahydrobiopterin (GCH1-BH4); Mevalonate (MVA); Heat Shock Protein
Beta-1 (HSPB1); Heat shock factor (HSF1); 6-hydroxy-FAD; p53-iPLA2β axis; p21; Acetyl-coenzyme A (Acetyl-CoA).
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similar to Fer-1. However, unlike Fer-1, compound 7 exhibited
negligible radical scavenging activity in 2,2-diphenyl-1-
picrylhydrazyl (DPPH) assays (Li et al., 2023b). Additionally,
PBSs25 gossypol acetic acid (GAA) was found to protect
cardiomyocytes from ferroptosis in vitro by reducing chelated
iron and lipid peroxidation. In vivo studies showed that GAA
significantly upregulated GPX4 (Lin et al., 2021).

2.3 Inhibition of ferroptosis via
antioxidant action

The antioxidant system is central to impeding ferroptosis by
stabilizing or extinguishing free radicals and thereby inhibiting lipid
peroxidation (Tan et al., 2023) (e.g., Figure 3.). System Xc-is an
important antioxidant system involved in the regulation of
ferroptosis. System Xc-passes through a heterodimer of the light-
chain subunit SLC7A11 and the heavy-chain subunit SLC3A2, and
glutamate-cysteine ligase (GCL) and glutathione synthase (GSS)
transfer cystine to the cell and synthesise glutathione (GSH). Then,
GSH is converted to Oxidized glutathione (GSSG) with the
participation of glutathione peroxidation GPX4 to eliminate toxic
lipid peroxides (Dar et al., 2024). Moreover, in the presence of GSH
GPX4 converts toxic lipid peroxides into non-toxic lipocalciferol,
which protects cells from lipid peroxidation and thus inhibits
ferroptosis (Dar et al., 2024).

The anti-oxidative stress transcription factor Nrf2 and the
tumor protein p53 are the two most studied transcription factors
in ferroptosis. Nrf2 regulates a variety of antioxidant enzymes and
proteins to exert antioxidant effects and inhibit ferroptosis,
including Superoxide Dismutases (SODs), HO-1, NAD(P)H-
associated enzymes, GPX4, catalase (CAT), FPN, TFR, TF,
System Xc-, ferrochelatase (FECH), etc. (Punziano et al., 2024).
p53, as an effective oncogene, promotes ferroptosis mainly through
the canonical and non-canonical pathways (Dixon et al., 2012).
However, recent studies have found that the p53-GPX4 axis
eliminates lipid peroxidation, the p53-iPLA2β axis eliminates free
radicals, and p53 transactivates iPLA2β and inhibits ferroptosis
when cells are low in damage from lipid peroxidation
(Gnanapradeepan et al., 2022). In addition, p53 induces GSH
production by P21 (also known as cell cycle protein-dependent
kinase inhibitor 1A, CDKN1A), which in turn upregulates
GPX4 thereby inhibiting ferroptosis (Tarangelo and Dixon, 2018;
Tarangelo et al., 2018; Tarangelo et al., 2022) (e.g., Figure 3).

FSP1 can inhibit ferroptosis by generating H2O2 in the presence
of O2 and NADPH and then converting FAD to 6-hydroxy-FAD (Lv
et al., 2023; Nakamura et al., 2023). Meanwhile, FSP1 can reduce
Coenzyme Q10 (CoQ10) to panthenol (CoQ10H2) with the
involvement of NADPH and thus inhibit ferroptosis (Li et al.,
2023; Zhang et al., 2023). CoQ10 is a lipophilic RTA (Li et al.,
2023; Zhang et al., 2023). Furthermore, the NADPH-FSP1-CoQ10

pathway is independent of the Xc-GSH-GPX4 pathway and
cooperates with it to inhibit lipid peroxidation and ferroptosis
(Bersuker et al., 2019). Dihydroorotate dehydrogenase (DHODH)
can also independently reduce CoQ10 to CoQ10H2, thereby
protecting cells from lipid peroxidation (Amos et al., 2023a;
Amos et al., 2023b) (e.g., Figure 3).

Other antioxidant pathways involved in ferroptosis include GTP
Cyclohydrolase-1-Tetrahydrobiopterin (GCH1-BH4), Heat shock
factor-Heat Shock Protein Beta-1 (HSF1-HSPB1), the mevalonate
(MVA) pathway, Sulfur transfer pathway, the glutaminolysis
pathway, and so on. Overexpression of the ferroptosis regulator
GCH1 inhibits lipid peroxidation and promotes BH4 synthesis (Xu
et al., 2023). BH4 is a potent endogenous RTA and participates in
CoQ10H2 formation. The GCH1-BH4 pathway has endogenous
antioxidant effects and is independent of the Xc-GSH-GPX4 axis
and the NADPH-FSP1-CoQ10 axis (Akiyama et al., 2023).
Transcription factor HSF1 promotes HSPB1 transcription and
forms the HSF1-HSPB1 pathway (Sun et al., 2015). HSPB1 is a
negative regulator of ferroptosis that upregulates GPX4, SLC7A11,
and G6PD and HSPB1 overexpression attenuates ischemic-hypoxic
brain damage in neonatal rats (Doshi et al., 2010; Liang et al., 2023).
MVA plays a regulatory role in ferroptosis. On the one hand, by
regulating selenocysteine tRNA which in turn promotes
GPX4 synthesis. And on the other hand, MVA can synthesize
CoQ10 in the presence of acetyl coenzyme A, which in turn
participates in the Xc-GSH-GPX4 axis and the NADPH-FSP1-
CoQ10 pathway and is involved in the regulation of ferroptosis
(Xing et al., 2023). The Sulfur transfer pathway plays a role in the
maintenance of redox homeostasis and oxidative stress, mainly due
to the upregulation of intracellular Cys, GSH, and GSSG and the
inhibition of ROS as a result of Cys-tRNA synthetase (CARS)
deficiency (Floros et al., 2022; Sun et al., 2023). Glutamine
catabolism provides sufficient GSH and ATP for ferroptosis and
also plays a supporting role in ferroptosis-mediated diseases
(Durante, 2019; Shin et al., 2020; Gagliardi et al., 2023; Xiao
et al., 2023) (e.g., Figure 3). Several ferroptosis inhibitors have
been reported to inhibit ferroptosis by modulating the
antioxidant pathway.

2.3.1 The System Xc-GSH-GPX4 axis
The heat shock protein 90 (HSP90) plays an important role in

protein maturation, stabilisation, and activation (Wickramaratne
et al., 2023). A triterpenoid compound 2-amino-5-chloro-N, 3-
dimethylbenzamide (CDDO) was identified by Wu et al. It inhibits
HSP90, which in turn inhibits GPX4 degradation and lipid
peroxidation, and downregulates ROS, protecting cells from
damage caused byferroptosis (Wu et al., 2019). Furthermore, in
2022 Liu et al. found that a series of disulfide compounds, such as
disulfiram (DSF) and fursultiamine, could disrupt the interaction
of GPX4 with HSC70, which in turn inhibited GPX4 degradation
and protected cells from ferroptosis (Liu et al., 2022).

In 2021 Meike Hedwig Keuters et al. found that the novel
ferroptosis inhibitor arylthiazyne derivative small molecule
(ADA-409-052) inhibited tert-butyl hydroperoxide (TBHP)-
induced lipid peroxidation and prevented ferroptosis induced by
GSH, as well as GPX4 deficiency. It is rapidly absorbed after oral
administration in a mouse model. In addition, administration of the
drug in a thrombotic mouse model revealed a significant decrease in
the area of cerebral edema, the area of cerebral infarction, and the
expression of pro-inflammatory factors in mice (Keuters et al.,
2021). Thus, small molecule inhibitors such as ADA-409-052
offer new therapeutic strategies for neurological disorders as well
as acute brain injury.
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In 2023, Qi et al., 2023 reported that the antidiabetic drug
mitoglitazone (MGZ) upregulated GPX4 and reduced lipid
peroxidation, thereby significantly alleviating renal injury in mice
after I/R, providing a new therapeutic strategy to ameliorate renal
I/R injury. In addition,MGZ can also exert a nephroprotective effect
by maintaining the normal morphology of mitochondria.

The catecholamine neurotransmitter Dopamine (DA) plays a
role in human cognitive functions. It was shown that DA enhances
the stability of GPX4 protein (Costa and Schoenbaum, 2022).
Increased survival of DA ergic neurons and reversal of ROS,
GPX4, and FTH1 levels in SNpc after moxibustion application in
a Parkinson’s disease (PD) model and improvement of motor
deficits in it. And DA agonists reduce the risk of side effects
during recovery (Ding et al., 2023). In addition, levodopa is
approved for use in patients with early or late stroke and can be
used in combination with physiotherapy (Obi et al., 2018). DA-
mediated ferroptosis has been mentioned in other diseases and is
expected to lead to new research directions in ferroptosis-
mediated diseases.

The study reports that Se inhibits ferroptosis and protects
neurons by enhancing GPX4 expression. Se acts in the
antioxidant pathway mainly by containing selenoproteins
(Ramakrishnan et al., 2022; Choi et al., 2023). The study reports
that Se inhibits ferroptosis and protects neurons by enhancing
GPX4 expression (Alim et al., 2019). Inadequate levels of
organismal Se downregulate GPX4 and antioxidant enzymes and
upregulate ROS, MDA, and LPO (Xu et al., 2023). Se alleviates
cerebral ischemia-induced neurological damage by activating
GPX4 in IS (Alim et al., 2019). Iron, MDA and 4-HNE were
found to be downregulated and promote the FSP1/
GPX4 pathway after sodium selenite injection in a rat model of
SCI, which in turn improved motor function in rats (Chen et al.,
2022). In addition, injection of double selenium nanospheres
(CLNDSe) in an AD mouse model revealed abnormal microglia
protofibrils or tau protein-targeted aggregation outside of Aβ42, and
its crossing of the BBB into the brain significantly downregulated
ROS, ACSL4, and COX-2, and upregulated FTH1, GPX1, and
GPX4, ultimately inhibiting ferroptosis and ameliorating
cognitive deficits in APP/PS1 mice (Solovyev et al., 2018).
Overall, the trace element Se has been found to play a role in a
variety of diseases by mediating ferroptosis.

Recently Li et al., 2019 identified a potent GPX4 metastable site
and obtained eight GPX4metastable activators by structural analysis
and computational design (Scarpellini et al., 2023). They inhibit
ferroptosis by activating GPX4 enzyme activity (IC50 > 100 μM).
Compound PKUMDL-LC-101 and its analogue PKUMDL-LC-
101-D04 most efficiently activated and increased GPX4 activity
in intact cells while inhibiting ferroptosis in a cellular model
(Scarpellini et al., 2023). These compounds provide an effective
strategy for the future development of activators for other protein
targets and also lead to new therapeutic strategies for lipid
peroxidation-related diseases such as neurodegenerative diseases
(Li et al., 2018; Li et al., 2019).

Upregulation of GPX4 levels and downregulation of lipid ROS in
neurons after treatment with the thromboxane A2 receptor
antagonist Seratrodast and consequent inhibition of neuronal
cell ferroptosis in erastin-induced hippocampal HT22 cells. And
Seratrodast increased GPX4 expression and shortened seizure

duration and prolonged seizure latency in a mouse model of
epilepsy (Noack et al., 2017). Thus Seratrodast could play a role
in several diseases by inhibiting ferroptosis.

Using APP/PS1 mice as subjects, researchers found that the
monoterpene glycoside paeoniflorin (PF) improved cognitive
performance and downregulated the levels of Fe2+, MAD, and
ROS in brain tissue, which reduced oxidative damage and thus
alleviated the neurological damage in AD mice (Zhang and Wei,
2020; Zhai et al., 2023). And PF can reverse AKI by inhibiting
SLC7A11-mediated ferroptosis (Ma et al., 2023). In 2019, Guan et al.
found that the monoterpene oenol carvacrol (CAR) (Abdul Ghani
et al., 2023) reduced PLO levels in ischemic gerbil brain tissue and
inhibited ferroptosis by up-regulating GPX4, which exerted
neuroprotective effects in both in vivo and ex vivo models of IS.
Thus, CAR has the potential to be an effective therapeutic agent for
IS. In 2021, Li et al. found that injection of Ginkgolide B (GB), the
active ingredient of terpene lactones (Wang et al., 2020), in an
animal model of AD reversed the levels of TFR1 and NOCA4 and
upregulated the expression of Nrf2 and GPX4 in the brains of
SAMP8 mice, which exhibited neuroprotective effects in AD mice
(Hébert et al., 2022).

The lanolin-type triterpenoid Pachymic Acid (PA) has a variety
of pharmacological properties. Liu et al. established a cellular
myocardial infarction (MI) model after administration of 20 μg/
mL and found that the inhibitory effect of oxygen-glucose
deprivation/reperfusion (OGD/R) on cell viability was reversed
and the levels of MDA, ROS, and Fe2+ were downregulated, and
the expression of GSH, SLC7A11, and GPX4 was increased.
Meanwhile, PA inhibits cardiomyocyte ferroptosis in a dose-
dependent manner and attenuates MIRI injury in mice (Liu
et al., 2024).

Flavonoids are an important class of phenolic metabolites in
plants with good antioxidant effects. The bioflavonoid Kaempferol
(KF) has shown neuroprotective effects in neurological disorders
such as IS and AD. Recently, it was found thatKF activated the Nrf2/
SLC7A11/GPX4 signalling pathway and enhanced antioxidant
capacity, which in turn reversed OGDR-induced ferroptosis
(Holland et al., 2020; Kim et al., 2023) and alleviated neuronal
cell damage. The natural flavonoid compound Icaritin (ICA) plays a
role in a variety of diseases such as IS, AD, depression, and others. It
directly binds to Nrf2 and promotes GPX4 transcription, which in
turn inhibits ferroptosis after IRI and ameliorates brain damage
(Choi et al., 2023). In recent years, ICA compounds significantly
enhanced GSH-Ps, SOD activities and alleviated oxidative stress
injury in mouse brain tissue after gastric administration of ICA
compounds in APP/PS1 double transgenic mice. In addition, ICA
was found to alleviate cognitive deficits in AD mice in a dose-
dependent manner in the Morris water maze (VWM) (Angeloni
et al., 2019; Zheng et al., 2023).

Total flavonoids from Aspergillus membranaceus (TFA) play
a role in neurodegenerative diseases. Gao et al., 2024 found that TFA
prevented SH-SY5Y cell neurotoxicity by increasing GSH and GSH/
GSSG ratios and decreasing ROS, and showed significant
neuroprotection in MPTP/MPP-induced in vitro and in vivo PD
mouse models. Simultaneous injection of the flavonoid galangin
(Gal) after I/R injury in VWM revealed a significant reduction in
lipid peroxidation levels and an upregulation of SLC7A11 and
GPX4 expression in the gerbil brain, which resulted in the
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inhibition of ferroptosis and the protection of hippocampal neurons
in the gerbil brain after I/R (Guan et al., 2021; Hassanein et al., 2023).
At the same time, gerbils showed significant improvement in the
area of learning memory. Recently, Yang et al. found that Gal
prevented iron overload and lipid peroxidation in a MIRI model
and significantly attenuated myocardial fiber damage, reduced
cerebral infarct size, and improved cardiac function by targeting
the GPX4/Nrf2 signalling pathway in mice after MIRI (Salama and
Elshafey, 2021). Thus flavonoids are a promising inhibitor of
ferroptosis.

A-lipoic acid (LA) reverses folic acid (FA)-induced AKI. In
2021, Xue et al. found that LA upregulated GSH, GPX4, and
downregulated ROS as well as lipid peroxidation, and that
supplementation with LA reversed the low expression of
SLC7A11 (Li et al., 2021). In addition, LA also inhibits
ferroptosis and attenuates fluoride-induced liver injury by
modulating the Xc-GSH-GPX4 axis and chelating iron (Cho
et al., 2022).

In addition to the above-mentioned small molecule drugs, many
herbal medicines have also been found to play a role in herbal
medicines have also been found to play a role in ferroptosis-
mediated diseases. For example, Lv et al. established a diabetic
nephropathy (DN) mouse model and found that Fe2+ was
downregulated and SLC7A11, GPX4 content, and GSH/GSSG
content, and GSH/GSSG were upregulated in the renal tissues of
mice after San-Huang-Yi-Shen capsule (SHYS) administration and
that it alleviated renal injury (Su et al., 2021; Lv et al., 2023). At the
same time, Modified Shoutai Pill, also known as Jianwei Shoutai

Pill (JSP), upregulated GSH, GPX4, downregulatedMDA levels, and
ACSL4 protein expression in the placenta of Recurrent Pregnancy
Loss (RPL) mice, and was shown to protect against RSL3-induced
lipid metabolism (Zhang et al., 2023; Lai et al., 2024). Futhermore,
Angong Niuhuang Wan (AGNHW) has recently been found to
exert neuroprotective effects by modulating GPX4-related signaling
pathways and inhibiting ferroptosis (Bai et al., 2024).

2.3.2 Nrf2
Uridine, composed of uracil and ribose, exhibits anti-

inflammatory (Jeengar et al., 2017), antioxidant (Adant et al.,
2022), and anti-aging (Krylova et al., 2021) properties. Kai Lai
et al. (2023) discovered an increase in uridine phosphorylase 1
(UPP1) in an ALI model induced by lipopolysaccharide (LPS),
leading to elevated uridine levels and the upregulation of
SLC7A11, GPX4, and HO-1 expression. Moreover, Uridine was
found to inhibit macrophage ferroptosis by activating the
Nrf2 signaling pathway, with the protective effect enhanced by
Fer-1. Therefore, supplementing with Uridine may offer potential
therapeutic benefits for ALI (Lai et al., 2023).

Dithiolethiones, lipophilic organosulfur compounds (Ansari
et al., 2018), such as 3H-1,2-dithiole-3-thione (D3T) and 5-
amino-3-thioxo-3H-(1,2)dithiole -4-carboxylic acid ethyl ester
(ACDT), activate Nrf2 and increase system Xc- and GSH levels
in the erastin-induced ferroptosis model, demonstrating antioxidant
effects and significant inhibition of ferroptosis akin to Fer-1
(Kulkarni et al., 2023). Treatment with D3T and ACDT
upregulated Nrf2-mediated expression of ferritin and FPN1,

TABLE 2 Alternative approaches to targeted inhibition of ferroptosis.

Methods of control Mechanism of action Ref

Gene regulation
method

Reversal of BPD by miR-134-5p inhibitors Inhibition of ROS, Fe2+ accumulation; Upregulates
GPX4

Lan et al. (2023)

MiR-3587 inhibitor protects renal tissue from IR
injury

Upregulates HO-1, GPX4 expression and cellular
activity

Tao et al. (2021)

LncRNA-N1LR protects against brain damage
after IS-I/R

Inhibits p53 phosphorylation and inactivates p53 Wu et al. (2017)

Inhibition of ferroptosis by lncRNA-SNHG14 Downregulation of miR-206, upregulation of
SLC7A11 expression

Li et al. (2023d)

LncRNA-MEG3 alleviates ferroptosis in
chondrocytes

Regulation of miR-885-5p-SLC7A11 signalling
pathway and upregulation of GPX4

Zhu et al. (2024a)

Prominin2 inhibits ferroptosis Transporting iron out of the cell Yan et al. (2022)

PII inhibitor K-181 mitigates IS Inhibition of p53 transcription Yan et al. (2022)

Silencing of ELAVL1 alleviates ischemic Brain
damage in rats

Upregulates GSH, GPX4, SLC7A11 expression and
cell viability and reduces Fe2+, ROS, MAD levels

Du et al. (2022)

SEC24B Alteration of iron regulatory proteins or transferrin to
maintain iron homeostasis

Ryan et al. (2023)

CDGSH iron-sulfur structural domain 2 (CISD2) Activation of the Nrf2/HO-1 signalling pathway and
downregulation of Fe2+

Hu et al. (2023)

Cell therapy Neural stem cells transplanted to obtain NSCs-
NRG1β

Upregulation of GPX4, SLC7A11 levels and
downregulation of p53 expression

(Chen et al., 2021c; Zhai et al., 2022; Zhai
et al., 2023b)

“ neutrophil piggybacking” strategy Neutrophil therapy in combination with Se targets
delivery of antioxidant enzymes and upregulates

GPX4

(Wang et al., 2022a; Xu et al., 2024)
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while also protecting U-87MG cells from iron overload-induced
cytotoxicity (Kulkarni et al., 2023). Additionally, D3T upregulates
silent information regulator 1 (SIRT1), Nrf2, and HO-1,
ameliorating cognitive deficits in the Tg2576 AD mouse model
(Cui et al., 2018). Notably, D3T exhibits neuroprotective effects in
neuroinflammation and IS, suggesting its potential as a treatment
option for ferroptosis-related diseases.

In 2022, Fan et al., 2023 discovered that the anaesthetic Propofol
(Islam et al., 2020) could have a strong antioxidant effect by
modulating Nrf2/GPX4 through protein blotting, transmission
electron microscopy, and glutathione assays. Furthermore, in a
mouse model of CIRI, Propofol was shown to effectively prevent
ferroptosis and protect against neuronal damage in the brain after
cerebral ischemia/reperfusion.

Metformin (Met), a biguanide derivative commonly used in the
first-line treatment of type 2 diabetes, has also shown promise in
various other conditions such as cancer, cardiovascular disease, and
neurological disorders (Ala and Ala, 2021). Recent research has
unveiledMet’s potential role in spinal cord injury (SCI) by inhibiting
oxidative stress through the Nrf2/ARE pathway (Wang et al., 2020)
and promoting neural regeneration post-SCI, offering new

therapeutic possibilities. Additionally, studies have indicated that
Met upregulates GPX4 (Ma et al., 2021), reduces MDA levels, and
provides protection against neurological impairments following
cerebral ischemia (Cai Z. et al., 2023).

The novel chlorane diterpenoid analogue Ajudecunoid C
(ADC) is more effective in ferroptosis inhibition. It has been
shown that ADC mainly acts on the Nrf2-AREs pathway and
scavenges free radicals to exert an ferroptosis inhibitory effect,
and ADC may interfere with the Keap1-Nrf2 pathway and
activate the Nrf2-AREs pathway (Tan et al., 2021). In addition,
the diterpenoid Dehydroabietic Acid activates the Keap1/Nrf2-ARE
signalling pathway and attenuates non-alcoholic fatty liver disease
(NAFLD). Therefore, researchers have proposed that diterpenoids
may be effective compounds for inhibiting ferroptosis (Tan
et al., 2021).

Biopolyphenolics Proanthocyanidins (PACs) are effective free
radical scavengers. PACs have been reported to also have the ability
to regulate LOX (Zhou et al., 2020). PACs have been found to inhibit
ferroptosis and play a role in a variety of diseases by altering the
expression of iron-related factors. For example, PACs upregulate the
expression of GSH, GPX4, SLC7A11, Nrf2, and HO-1 and

TABLE 3 Comparing the advantages and disadvantages of different ferroptosis inhibition methods.

Sorts Advantages Disadvantages Ref

Small molecule
inhibitors

DFO Tartaglione et al.
(2020)

DFX 1. Short half-life

Fer-1 1. Lower cost and easy to carry 2. Poor patient adherence

Lip-1etc. 2. High oral availability 3. Structural instability

Gene regulation
method

MiR-134-5p, MiR-3587, etc. 1. Expression stabilization and less
likely to be damaged

1. Off-target effects Akbari Moqadam
et al. (2013)

2. Associated with the pathological
process of malignant tumors

2. Selectiveness

3. High detection accuracy

LncRNA-N1LR, LncRNA-SNHG14, etc. 1. Carrying more information, more
diverse and more specific

1. Low exon levels Chowdhury et al.
(2024)

2. High correlation with
neighboring genes

2. Low level of expression

3. Obstruction of miRNA function 3. Subject to epigenetic influences

Cell therapy Neural stem cells transplanted to obtain
NSCs-NRG1β etc.

1. Time-saving, simpler testing
procedures

1. High costs, separation and purification
operations are difficult

Park et al. (2024)

2. Long-lasting and sustaining
action

2. Easily and abnormally differentiated
themselves

3. Can grow and transform to
replace damaged cells

3. Uncertainty

4. Good organizational adaptation
to the body

Nanoparticles Pulmonary drug-delivery system (PDDS),
PCC-R8-ROS@miR-134-5p, SOD-PLGA-

NPs etc.

1. Well-targeted 1. Limited knowledge of interactions
between nanomaterials and human cells

Naskar and Kim
(2019)

2. Prolongation of drug Circular
time or half-life

2. Difficulty in controlling the toxicity of
nanomaterials

3. Easily penetrating biobarriers

4. Less side effects
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downregulate the expression of TFR1, ACSL4 and regulate SCI,
thereby promoting ferroptosis-mediated functional recovery in SCI
mice (Zhou et al., 2020). In addition, a large number of studies have
shown that PACs activate the Nrf2-HO-1 pathway and ameliorate
CIRI, bringing a new direction for CIRI treatment (Chumboatong
et al., 2020). In 2022, Yuan et al. found downregulation of oxidative
stress and neuronal death after injection of the phenolic substance
geraniin by the middle cerebral artery occlusion-reperfusion
(MCAO/R), and OGD/R models, as well as by neurological
scoring assays, CCK8 assessment, TUNEL staining, detection of
cells by flow cytometry, and Western blotting assessment (Chen
et al., 2021). Meanwhile, they found that the infarcted portion of
brain tissue upregulated ex vivo and in vivo Nrf2, HO-1 protein
expression in a concentration-dependent manner in the tMCAO
model (Chumboatong et al., 2020). Thus, the neuroprotective effect
of geraniin may be closely related to the Nrf2/HO-1 signalling
pathway, but further experimental elucidation is needed in
the future.

Flavonoids have been implicated in ferroptosis-related diseases
through their interaction with Nrf2. For example, quercetin (QCT),
a natural flavonoid, has been shown to alleviate renal injury by
activating the Nrf2-HO-1 signaling pathway (Kato et al., 2023).
Studies using an AKI-I/R model demonstrated that QCT
administration led to increased cell viability, upregulation of
ALC7A11, SLC3A2, and GSH expression, as well as a reduction
inMDA and lipid ROS content inmice (Cruz-Gregorio and Aranda-
Rivera, 2023). QCT also shows promise in the treatment of
neurological disorders such as Parkinson’s disease (PD) (Jiang
et al., 2023). Eriodictyol, another flavonoid, was found to
upregulate Nrf2/HO-1 and reduce ROS levels in a renal injury
model, providing protection against CP-induced AKI (Badi et al.,
2024). Furthermore, Eriodictyol has been shown to inhibit
ferroptosis and improve cognitive deficits in APP/PS1 mice
through activation of the Nrf2/HO-1 pathway (Li et al., 2022;
Zhang et al., 2022). Naringenin, a flavonoid derivative from
citrus extract, has demonstrated efficacy in alleviating myocardial
injury by modulating the Nrf2/system Xc-/GPX4 axis (Shamsi et al.,
2021). It also shows potential in mitigating ferroptosis induced by
silver nanoparticles in human bronchial epithelial BEAS-2B cells
through the Nrf2/HO-1 axis (Zhang et al., 2022b). Hesperidin and
naringin have both been found to inhibit ferroptosis by
upregulating the Nrf2 pathway, offering protection to human
myeloid cells (Tang et al., 2022; Zhu et al., 2023).

The isoflavone tectorigenin protects against unilateral ureteral
obstruction and renal injury in rats by affecting NADPH oxidase 4
(NOX4) expression (Li et al., 2022). Biochanin A, an active
isoflavone of Astragalus membranaceus, inhibits ferroptosis by
modulating the Nrf2/system Xc-/GPX4 signalling pathway,
decreasing TFR1 and ferritin levels, and relieves knee
osteoarthritis (KOA) (He et al., 2023). Licorice extract chalcone
isoiquiritin apioside inhibits ferroptosis mediated ALI through
upregulation of HIF-α and HO-1 proteins (Zhongyin et al.,
2022). Puerarin, a natural isoflavone extracted from Pueraria
Mirifica, was found to be protective against neuronal cell damage
in mice by modulating Nrf2 in the OGD/Rmodel (Li and Liu, 2024).
It was also demonstrated to downregulate Fe2+, cyclooxygenase 2
(COX2), and upregulate Nrf2 and its downstream related ferritin
(including SLC7A11, GPX4, HO-1) expression to reduce lipid

peroxidation and inhibit retinal ferroptosis (Song et al., 2024). In
addition, Puerarin was found to downregulate p53 and effectively
improve neurological impairments in patients with ischemic brain
injury in combination with conventional treatment in the clinic
(Hou et al., 2024).

The non-flavonoid polyphenolic compound Resveratrol (RES)
was found to promote ferroptosis-mediated recovery of motor
function in SCI mice by modulating the Nrf2/GPX4 pathway in
an SCI model (Ni et al., 2023). Meanwhile, RES protects human
bronchial epithelial cells (BEAS-2B) from ferroptosis by acting on
the ferroptosis pathway and inhibits diabetic periodontitis-induced
ferroptosis in alveolar osteoblasts (Li et al., 2023c), which offers the
possibility of disease treatment. Furthermore, Kosuke Kato et al.
showed that quercetin and RES inhibit ferroptosis by inhibiting
iron-catalyzed hydroxyl radicals and are independent of the Nrf2-
ARE pathway (Kato et al., 2023).

The natural molecule Hinokitiol has a stronger iron chelating
ability thanDFO. Platycodone activates Nrf2, upregulates SLC7A11,
GPX4, heme oxygenase-1 (HO-1) and exerts antioxidant effects
(Abeydeera et al., 2022; Xi et al., 2022). The study demonstrated that
the injection of flatulin in the rat MCAO model significantly
inhibited ferroptosis and reduced the size of cerebral infarcts and
alleviated the neurological damage after cerebral ischemia in rats,
providing new insights into the IS (Jayakumar et al., 2013).
Meanwhile, Hinokitiol alleviates neurological aspects of
behavioural disorders caused by the neurotoxin 6-hydroxy DA
(6-OHDA), providing a new treatment option for PD (Xi et al.,
2022). Thus Hinokitiol holds promise for more diseases.

The natural anthraquinone derivative aloe-emodin (AE)
attenuates adriamycin (the doxorubicin, DOX)-induced
cardiomyocyte toxicity in H9c2 rats (He Y. et al., 2023). The
researchers assessed the molecular mechanism of action of
Nrf2 by Western blot, luciferase reporter gene assay, and qRT-
PCR analysis, and detected the changes of intracellular ROS, and
lipids by fluorescence assay. The results showed that AE could
activate Nrf2, upregulate the expression of SLC7A11 and GPX4, and
exhibit significant antioxidant capacity, thus reducing oxidative
stress (He et al., 2023).

The bioactive steroid ester Withaferin A (WFA) modulates
endothelial cell apoptosis after traumatic brain injury (Şeker
Karatoprak et al., 2022). In recent years, WFA has been
experimentally found to have the ability to inhibit ferroptosis and
to play a role in many diseases associated with ferroptosis. It has
been shown that WFA can activate the Nrf2/HO-1 pathway and
reduce oxidative stress to inhibit neuronal cell injury after ICH, thus
exerting neuroprotective effects. Meanwhile, the combination of
WFA with Fer-1 increased this neuroprotective effect (Zhou et al.,
2023), bringing new hope for ICH treatment.

Arbutin (ARB) was found to reduce ROS, and MAD
accumulation, upregulate GSH, and exert a mitigating effect on
alcoholic fatty liver disease (ALD) and liver injury bymodulating the
Nrf2/HO-1 pathway and oxidative stress. In addition, ARB can
promote m6Amethylation of SLC7A11 by inhibiting FTO, which in
turn inhibits ferroptosis and exerts a mitigating effect on NAFLD
in vitro and in vivo (Jiang et al., 2023).

Dl-3-n-butylphthalide (NBP), an extract of celery, has been
widely used in stroke, dementia, and ischemic diseases. In 2022 Ye
et al. suggested that injection of NBP inhibited erastin-induced
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accumulation of iron and ROS, downregulated TFH, and
upregulated Nrf2, which in turn inhibited ferroptosis and
reversed the damage to DAergic neurons (MES23.5 cells) (Ye
et al., 2023).

Tetrahydroxy stilbene glycoside (TSG), an active ingredient of
Polygonum tigrinum, enhances memory and locomotor activity in
aged rats mainly by restoring mitochondrial function and plays a
role in AD (Gao et al., 2023). In an AD rat model, TSG
administration modulates the Nrf2-HO-1 pathway and protects
against hippocampal neuronal damage in mice. Also TSG
enhanced antioxidant capacity by activating GSH/GPX4/ROS and
Keap1/Nrf2/ARE signalling pathways (Zhao et al., 2023). Recent
studies have shown that BFT, a fat-soluble derivative of vitamin
B1 synthesis, can also rescue cognitive deficits in mice in the APP/
PS1 mouse model through activation of the Nrf2/ARE pathway (Pan
et al., 2016).

In addition to the above drugs, small molecule drugs such as
Dihydromyricetin (DHM) (Liang et al., 2014; Xu et al., 2023), β-
Caryophyllene(BCP) (Hu et al., 2022), Forsythoside A (FA) (Zhang
et al., 2024b), 15, 16-Dihydrotanshinone I (DHT) (Roth et al.,
2023) (Table 1) have been demonstrated to play a role in
neurological impairment-related disorders by modulating the
signalling factors associated with the Nrf2 pathway. However,
their specific mechanisms still need to be verified more further.

2.3.3 Other antioxidant pathways
Phenotypic analysis of the HT22 cell model revealed that the

diphenylbutene derivative DPT could inhibit ferroptosis (EC50 =
12.0 mM) and was non-toxic. Researchers have designed and
synthesised 14 DPT analogues (Fang et al., 2022) using DPT as a
backbone and chemically to enhance the inhibitory activity. By
analysis, it was found that 3f, 3m, and 3n exhibited stronger
inhibition of ferroptosis. Next, scaffolding analysis was carried
out and it was found that R1 of compound 3f was substituted
with 3-OCH3 and 4-OH on the A ring, and R1 of compounds 3m
and 3nwas substituted with 3-OCH3 and 4-OH on both the A and B
rings. A comparison of activities revealed that compound 3f was
significantly more active than the latter two mentioned above. Also,
the stronger ferroptosis inhibition ability and superior biological
activity of compound 3f were demonstrated by morphological
analysis. Further DPPH assay DPT was found to be different
from RTAs such as Fer-1 and DFO but inhibited ferroptosis by
up-regulating FSP1 protein levels (Fang et al., 2022). In addition,
compound 3f was found to alleviate the impairment of neurological
function after cerebral ischemia to a certain extent in a rat MCAO
model (Fang et al., 2022), which is expected to be a new prospect for
the treatment of neurological disorders.

Ginsenoside Rg1, an active component of ginseng, has been
shown to protect the kidney from damage by reducing oxidative
stress. Following Rg1 treatment, iron content, FTL, FTH, and MDA
levels in renal tissues were significantly reduced, while GPX4, FSP1,
and GSH levels were elevated (Guo et al., 2022). Recent studies have
demonstrated that knocking down FSP1 eliminates the inhibitory
effect of ginsenosides on ferroptosis, and the administration of
ginsenosides effectively alleviates Sepsis-induced Acute Kidney
Injury (SI-AKI) (Guo et al., 2023).

In vivo experiments have shown that the natural chalcone
cardamonin (CAD) inhibits ferroptosis and improves cartilage

damage in rats by modulating the p53/SLC7A11/GPX4 signaling
pathway. Additionally, CAD has been found to have a similar effect
as DFO in osteoarthritis (OA), with CAD being more effective in
improving cartilage damage in OA (Gong et al., 2023).

3 Alternative approaches to targeting
ferroptosis

In addition to the small molecule ferroptosis inhibitors
traditionally used to inhibit ferroptosis that can play a role in
ferroptosis-mediated diseases, gene regulatory approaches, cellular
therapies, and nano-targeted delivery can also exhibit ferroptosis
inhibition by all along the correlates of ferroptosis (Table 2), and
there are some differences in treatment efficiency between
them (Table 3).

3.1 Gene regulation method

MicroRNAs (miRNAs) are small non-coding RNAs that
negatively regulate gene expression and are implicated in various
diseases. In a study by Huang et al., in 2022, miR-134-5p was found
to be upregulated in bronchopulmonary dysplasia (BPD) in preterm
infants, leading to ROS and Fe2+ accumulation and
GPX4 downregulation in these patients. Conversely, inhibiting
miR-134-5p reversed these effects and significantly improved
BPD (Lan et al., 2023). Another key miRNA, miR-3587, regulates
HO-1 and is involved in renal ischemia-reperfusion injury. Tao et al.
demonstrated in 2022 that injecting a miR-3587 inhibitor post-
establishment of an ex vivo IR model enhanced HO-1 and
GPX4 expression and cellular activity, thus safeguarding renal
tissues from IR injury (Tao et al., 2021).

lncRNAs are long-stranded non-coding RNAs, more than
200 nt in length, which can affect downstream miRNAs but
cannot be converted into proteins. In 2017, Wu et al. found that
lncRNA-N1LR was neuroprotective in IS-I/R by inhibiting
p53 phosphorylation on serine 15 and inactivating p53 (Wu
et al., 2017). lncRNA-SNHG14 was significantly upregulated in
the nutlin3a-resistant osteosarcoma (OS) cell line NR-SJSA1,
which resulted in downregulation of miR-206, upregulation of
SLC7A11 expression and inhibition of ferroptosis (Li et al.,
2023). lncRNA-MEG3 overexpression modulates miR-885-5p-
SLC7A11 signalling pathway, upregulates GPX4, and thereby
alleviates erastin-induced ferroptosis in chondrocytes (Zhu
et al., 2024).

Prominin2, a pentameric transmembrane protein, plays a
crucial role in mediating iron efflux. It facilitates the formation
of multivesicular bodies (MVBs) and exosomes containing iron-rich
proteins, allowing the removal of excess intracellular iron via these
exosomes, thus preventing cellular ferroptosis. Additionally, Fer-1
has been shown to mitigate the decline in cellular function resulting
from prominin2 depletion (Brown et al., 2019). In a study conducted
in 2017, Yan et al., 2022 discovered that the small molecule protein-
protein interaction (PPI) inhibitor K-181 could suppress
p53 transcription and ameliorate neurological impairments post-
ischemic stroke (IS) by increasing the expression of the
p53 repressor Mdmx, consequently inhibiting p53 transcription
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in the brains of mice following IS. Embryonic lethal-abnormal vision
like protein 1 (ELAVL1) is an RNA-binding protein that enhances
mRNA stability and regulates translation, thereby influencing gene
expression (Du et al., 2022). ELAVL1 is notably upregulated in the
I/R model. Research has shown that silencing ELAVL1 leads to an
increase in GSH, GPX4, and SLC7A11 expression, while decreasing
Fe2+, ROS, and MAD levels in rat brain tissues, ultimately
preventing ferroptosis and reducing ischemic brain damage in
rats (Du et al., 2022).

In addition, several other genes have been discovered to
influence ferroptosis-related diseases by regulating factors
associated with ferroptosis. For instance, in 2022, Sean K. Ryan
et al. identified the ferroptosis susceptibility gene SEC24B through a
comprehensive gene screening process. This gene inhibits
ferroptosis and is implicated in neurological disorders by
modulating iron-regulated proteins such as transferrin, thus
maintaining iron homeostasis within cellular iron pools (Ryan
et al., 2023). In a separate study in 2023, Hu et al., 2023
demonstrated that CDGSH iron-sulfur domain 2 (CISD2) was
upregulated and activated the Nrf2/HO-1 signaling pathway in
both the MCAO mouse model and the OGD/R HT22 cell model,
mimicking in vivo and ex vivo conditions of cerebral ischemia and
reperfusion. This activation led to increased survival rates of
HT22 cells, while also reducing Fe2+ content and exhibiting
antioxidant properties. Furthermore, CISD2 was found to be
effective in conditions such as IS-I/R and ICH (Yeh et al., 2022).

3.2 Cellular therapy

3.2.1 Neuregulin1β
With the development of stem cell research, the use of neural

stem cells (NSCs) in the treatment of diseases is now of great
interest. It has been found that exogenous NSCs can repair
damaged tissues and play a role in neurological diseases such as
IS (Calabrese et al., 2022). In 2022, Zhai et al. introduced human
umbilical cord mesenchymal stem cells (hUC-MSCs) obtained by
growth factor induction into NSCs and added NSCs by adding
growth factor and neuregulin1β (NRG1β) to obtain NSCs-NRG1β.
They found improved neurological function and reduced area of
cerebral infarction in the rats injected with NSCs-10 nM NRG1β
group in the rat MCAO/R model, and they also found an increase in
the levels of GPX4 and SLC7A11 and a downregulation of
p53 expression (Zhai et al., 2022). 2023, they obtained the same
results with NSCs-10 nM NRG1β intervention in oxygen OGD/
R-injured PC12 cells (Zhai et al., 2023). Thus NSCs provide a new
direction for the future treatment of neurological diseases. However,
many issues including ethical issues, therapeutic efficacy, and safety
of exogenous NSC transplantation remain to be resolved.

3.2.2 Neutrophils therapy
To address the problems of antioxidant enzymes in IS therapy,

in 2022, Wang et al. designed an albumin-conditioned nanoparticle
based on co-encapsulation with antioxidases catalase (CAT) and
superoxide dismutase 1 (SOD1) in a “neutrophil piggybacking”
strategy. In the MCAO model, Neutrophil therapy delivered
SOD1/CAT and Se to the site of brain injury in mice and
significantly alleviated the area of cerebral infarction in mice after

IS (Wang et al., 2022). In addition, the delivery of Se successfully
upregulated GPX4 expression. At the same time, in addition to
Neutrophil therapy, macrophages and monocytes also have this
delivery capacity (Wang et al., 2022). Therefore, this neutrophil
piggybacking strategy holds the promise of facilitating the
application of nanomedicines in the central nervous system.

3.3 Relationship between nanoparticles-
mediated ferroptosis and disease

The nanodelivery system is a sub-particulate carrier drug
delivery system that modulates drug release rate and increases
biofilm permeability. Numerous studies have reported that
targeted ferroptosis nanomedicines can improve the low targeting
and low solubility of conventional ferroptosis inhibitors (Żur and
Farajpour, 2022). Also, several ferroptosis nanocarrier drugs have
been used for ferroptosis-mediated diseases such as AKI, stroke, etc.

3.3.1 Individual use of nanoparticles in ferroptosis-
mediated disease

The injection of DFO in a model of Idiopathic pulmonary
fibrosis (IPF) was found to increase survival (from 50% to 90%)
and reverse the IPF phenotype in mice. However, low solubility and
low targeting during drug delivery remain an insurmountable gap in
DFO therapy. To solve this problem, the researchers prepared DFO
nanomedicines and used a pulmonary drug-delivery system (PDDS)
instead of oral administration or injection, and the biological effect
of the drugs was significantly improved (Devkota et al., 2021).

The miR-134-5p inhibitor proposed by the investigators for the
treatment of bronchopulmonary dysplasia (BPD) achieves a certain
therapeutic effect, but it still suffers from the problems of
conventional drugs such as drop targeting and low solubility. To
better improve drug utilisation, the investigators further designed
and synthesised the targeted ROS-responsive nanocarrier PCC-R8-
ROS@miR-134-5p inhibitor (Lan et al., 2023), which more
efficiently delivered the miR-134-5p inhibitor to the alveolar
epithelial cells, providing a more efficient therapeutic strategy for
BPD. However, in the future, improving encapsulation efficiency
may remain a major challenge for delivering miRNAs.

AKI, a severe syndrome of renal insufficiency, was the focus of a
study by Wang et al., 2021. They developed ultrasmall KCa(H2O)2
[FeIII(CN)6]-H2O nanoparticles, known as CaPB nano-enzymes, to
function as a multienzymatic mimic. These nano-enzymes were
effective in inhibiting ferroptosis by scavenging reactive oxygen/
nitrogen species (RO/NSs) and treating AKI. The study found that
CaPB nano-enzymes upregulated GPX4 both in vivo and ex vivo
post intravenous administration, leading to kidney protection from
oxidative damage and improved drug efficiency and targeting.
Furthermore, the potential clinical application of CaPB nano-
enzymes in AKI and other RO/NSs-related kidney diseases was
highlighted. Xie et al., 2022 also contributed to the field by
introducing gallic acid-gallium polyvinyl pyrrolidone
nanoparticles (GGP NPs) as iron removers that could reduce
intracellular free iron and mitochondrial dysfunction. These
nanoparticles were able to downregulate iron-death-related
substances like NADPH, GSH, GPX4, and ferritin, effectively
suppressing ferroptosis-mediated AKI. Additionally, GGP NPs
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showed promise in ameliorating renal tubular injury and
mitochondrial damage.

ICH remains an important cause of morbidity and mortality
worldwide. Wang et al. presented a magnetically targeted
nanocarrier loaded with the PPARγ agonist 15d-PGJ2-MNPs,
which, when administered intravenously, activated PPARγ
receptors on macrophages around haematomas, attenuated brain
damage, and improved sensory and motor functions in mice after
ICH (Wang et al., 2023). In addition, Yang et al. found that
curcumin nanoparticles (Curcumin-NPs, Cur-NPs) could be
effective in Cur delivery and provide ideas for the treatment of
neurological impairment after ICH (Yang et al., 2021).

IS, a prevalent clinical neurological disorder, constitutes 85% of
all strokes globally. Li et al., 2022 demonstrated that poly (lactic
acid)-glycolic acid copolymerization-nanoparticles (SOD-PLGA-
NPs) possess potent free radical scavenging capabilities, reducing
cerebral infarct size in mice post-IS and ameliorating neurological
deficits resulting from cerebral ischemia in the MCAO mouse
model. Moreover, the nano delivery system enhances drug
penetration through the blood-brain barrier.

Acute Liver Injury, a rare and life-threatening condition, was
addressed by Shan et al. through the synthesis of ultrasmall poly
(acrylic) acid coated Mn3O4 nanoparticles (PAA@Mn3O4-NPs,
PMO), which effectively scavenge ROS, inhibit lipid peroxidation
and ferroptosis, and mitigate Acute Liver Injury induced by
acetaminophen and ischemia/reperfusion in mice. Furthermore,
intravenous administration of PMO exhibits superior
biocompatibility (Shan et al., 2023).

Myocardial Injury is a common complication of sepsis. Liu et al.
designed and synthesised small biocompatible and MRI-visible
melanin nanoparticles (MMPP) that could attenuate myocardial
Injury. In ex vivo experiments, the investigators found that MMPP
scavenges ROS and inhibits ferroptosis-mediated cardiomyocyte
injury. In addition, MMPP downregulates oxidative stress
induced by inflammatory factors (Alcalá-Alcalá et al., 2023).

Retinal pigment epithelial cells (RPE) are essential for
maintaining the normal function and survival of photoreceptor
cells. Oxidative stress and ferrous ion accumulation play a role in
retinal degenerative diseases. Tang et al. found that a potent iron-
conjugated nanoscale Prussian blue analogue, KCa [FeIII(CN)6]
(CaPB), rescued retinal structure and visual function by preventing
RPE degradation and was effective in preventing RPE lesions in
mouse models (Tang et al., 2021).

3.3.2 Targeted nanotechnology in combination
with other drugs

The current use of targeted nanotechnology has to some extent
improved the problems of traditional drug targeting, solubility, and
time window. Recent studies have reported that targeted
nanotechnology in combination with conventional drugs has
improved drug targeting even further. In a rat model of cerebral
ischemia-induced neurological impairment, the co-administration
of tissue plasminogen activator (tPA) with nanoliposomal Fasudil-
Lip showed better neuroprotection, and prolonged therapeutic time
window (TTW) and improved drug targeting (Fukuta et al., 2017).
Therefore, we can speculate whether ferroptosis inhibitors could also
better address issues such as drug targeting by combining them with
nanoliposome-encapsulated drugs.

4 Clinical diseases mediated by
ferroptosis

Ferroptosis, a newly discovered form of cell death, has been
found to have strong links with pathophysiological processes in
neurological disorders, organ damage, and cardiovascular diseases.

AD is the most prevalent type of dementia, characterized by
amyloid-β (Aβ) deposition in senile plaques (SPs) and intracellular
neurofibrillary tangles (NFTs) formed due to hyperphosphorylation
of tau proteins (Aggleton et al., 2016). Clinical research indicates
that iron accumulation and oxidative stress are the primary
pathological changes in the brains of AD patients. Aβ has been
reported to convert intracellular iron to ferrous iron, leading to
increased Aβ plaque formation, elevated ferritin expression, and
worsening oxidative damage and cognitive impairments (Lane et al.,
2023; Singh et al., 2024). Moreover, high levels of iron in the brain
trigger the production of free radicals and induce oxidative stress.
Studies have shown increased levels of HNE and acrolein, as well as
upregulation of lipid peroxidation-related enzymes in the brains of
individuals with AD. Additionally, reduced levels of GSH and
inactivation of GPX4 have been observed in both animal models
of AD and postmortem brain specimens (Yoo et al., 2010). Therefore,
targeting ferroptosis inhibition could serve as a promising
therapeutic approach for AD.

PD is characterized by the loss of dopaminergic neurons in the
Substantia Nigra (SN) (Bae et al., 2021). The pathogenic
mechanisms are multifaceted and involve α-synuclein
accumulation, lipid peroxidation damage, iron deposition,
oxidative stress, and inflammation. Among these, the production
of lipid peroxides by α-synuclein within the cell membrane to induce
ferroptosis plays a crucial role in the development of PD. Both iron
accumulation and oxidative stress have long been linked to the
progressive loss of dopaminergic neurons in PD patients, with
dopaminergic neuron loss potentially further triggering
ferroptosis (Thapa et al., 2022). Studies have shown that
following the onset of PD, levels of DMT1 were elevated, leading
to increased intracellular iron input, subsequently promoting
dopaminergic neuronal death and α-syn accumulation.
Additionally, a decrease in GSH levels post-PD activated 12-
LOX, resulting in LOOH accumulation in the brain and
worsening PD symptoms (Shibu et al., 2021). Furthermore, the
use of ferroptosis inhibitors like DFP has shown promise in
mitigating PD-related damage (Lin et al., 2022; Ding et al., 2023).
Overall, exploring the relationship between ferroptosis and PD
pathomechanisms may provide effective treatment options for
patients with PD.

IS is associated with various pathological changes including ROS
accumulation, ion metabolism disorders, and oxidative stress.
Following cerebral ischemia, lipid peroxidation and iron
accumulation are common characteristics of ferroptosis. Research
has demonstrated that altered blood-brain barrier permeability post
cerebral ischemia exacerbates ischemic injury, leading to disruptions
in iron metabolism within brain tissues (Yang et al., 2022). This
disruption induces the production of ROS through the Fenton
reaction, along with an increase in ferritin, TFR1, and
DMT1 expression in the brain. The accumulation of iron in the
brain triggers ROS production via the Fenton reaction, worsening
brain damage (DeGregorio-Rocasolano et al., 2019). Moreover, the
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brain contains high levels of unsaturated lipids that generate excess
ROS, activating Nrf2 and p53, which further exacerbates oxidative
stress and brain damage. Studies in rat MCAO models have shown
elevated lipid peroxidation levels and reduced GSH levels (Millán
et al., 2021). Thus, amelioration of neurologic impairment after IS
may be facilitated by inhibiting relevant targets of ferroptosis.

SCI is a severe traumatic neurological disorder characterized by
high levels of polyunsaturated fatty acids in the spinal cord, leading
to oxidative stress. Studies have shown that rats with SCI exhibit iron
overload in the motor cortex, resulting in the accumulation of
Reactive Oxygen Species (ROS) and the induction of ferroptosis.
Pathological changes such as iron deposition, lipid peroxide
accumulation, and downregulation of GPX4 are commonly
observed in both SCI patients and animal models (Wei et al.,
2021). The activation of neuroglia after SCI results in the
secretion of inflammatory factors, contributing to iron overload
in the motor cortex (Li et al., 2023). Furthermore, the use of
ferroptosis inhibitors like DFO and Fer-1 has been found to
enhance motor function recovery following SCI (Li and Jia, 2023).

AKI is a common renal disease in clinical practice, and recent
research suggests that ferroptosis may play a crucial role in IRI-AKI.
During ischemia, AKI is exacerbated by elevated levels of free iron in the
kidney, downregulation of GPX4 and SLC7A11, and depletion of blood
GSH, leading to the activation of ferroptosis and subsequent tubular
necrosis (Borawski andMalyszko, 2020). Zhao et al., 2020 demonstrated
that iron deficiency worsened rhabdomyolysis (RM)-induced AKI.
Additionally, ferroptosis inhibitors like Fer-1 and pioglitazone have
been shown to reverse AKI damage in a mouse model by targeting
ferroptosis, offering promising avenues for AKI treatment (Hosohata
et al., 2022). Acute liver injury is another condition with high clinical
mortality rates, and recent studies have highlighted the potential of
Nrf2 activation in mitigating liver injury (Zhu et al., 2024). Furthermore,
research by Yamada et al., 2020 indicated that upregulation of ferroptosis
markers (iron ions, lipid peroxide levels) exacerbated liver injury in
hepatic IRI models, but treatment with ferroptosis inhibitors like Fer-1
significantly reduced injury severity.

Studies have shown that ferroptosis is associated with MIRI, heart
failure, atherosclerosis, myocardial infarction, and other cardiovascular
diseases. Iron metabolism and lipid metabolism play important roles in
the regulation of cardiovascular disease. Of these, iron ion disorders are
the most common. TFR1 expression was found to be upregulated
duringMIRI (Miyamoto et al., 2022). In contrast, TFR1 inhibitors such
as DMT1i are protective against ferroptosis-mediated heart disease. In
cardiovascular disease, LOX expression is upregulated, which in turn
promotes lipid peroxidation and ferroptosis (Fratta Pasini et al., 2023).
Meanwhile, inhibition of ACSL4 improves cardiac function and
prevents heart failure (Ito et al., 2021). Furthermore, Upregulation of
SLC7A11 and GPX4 Downregulates the Mouse Lipid Peroxidation and
Iron Levels in the Endothelium of Mouse Aorta and Attenuates
Atherosclerotic Injury (Bai et al., 2020).

5 Challenges encountered in the
clinical translation of ferroptosis
inhibitors

There have always been several problems in the development of
drugs. In general, new drugs tend to face many difficulties and

challenges before they are launched on the market. Since ferroptosis
was proposed, the development of ferroptosis inhibitors as well as
their clinical application has also become a topic of increasing
interest for researchers. Although many small-molecule
ferroptosis inhibitors have been developed and continuously
optimised, most of them are still difficult to use successfully in
the clinic.

5.1 Challenges encountered in
preclinical trials

Several drugs have been shown to inhibit ferroptosis in animal
experiments, but they mostly suffer from low stability, low solubility,
low targeting, low safety, toxicity, poor pharmacokinetics, and low
activity (Guo et al., 2023), so very few of them have entered clinical
studies. For example, Fer-1, the first synthetic inhibitor of
ferroptosis, has been shown to play a role in many diseases in
animal models (Skouta et al., 2014; Wang et al., 2023), but is still in
the experimental stage, making it difficult to cross over to clinical
trials. Mainly due to its low stability and low solubility, the
researchers designed and synthesised compound 39 based on
Fer-1, compound 39 can significantly improve its ferroptosis
inhibition potency (Linkermann et al., 2014; Scarpellini et al.,
2023). Meanwhile, phenothiazine-based derivatives compound
51, although it has shown neuroprotective effects in IS animal
models, still has high hERG inhibitory activity (Yang et al., 2021;
You et al., 2022). Se has long been shown to alleviate diseases such as
iron-death-mediated stroke by enhancing adaptive transcription,
but Ishraq Alim et al. found a parabolic dose curve after Se
supplementation in vitro and in vivo experiments, raising
concerns about the mode of Se delivery as well as its safety.
Moreover, Se-mediated GPX4 regulation and neuronal protection
are extremely complex and therefore difficult to successfully
translate into the clinic (Alim et al., 2019). Although DFO
reversed the survival of IPF mice, it still suffers from low
solubility and targeting during delivery (Guo et al., 2023). In
addition, the natural substance RES is still in the preclinical
experimental stage and is difficult to translate because of its
problems such as low water solubility, easy degradation, low
activity, and poor pharmacokinetics (Pharmacokinetics, PK)
(Chung et al., 2020; Ni et al., 2023). Therefore, there is a need
for further improvement of the drug thus better marketing of the
drug to clinical studies.

5.2 Challenges encountered in
clinical studies

After a drug has gone through the preclinical phase of
experimentation, the drug needs to be tested in clinical trials
(Moujalled et al., 2021; Iasonos and OQuigley, 2021). Several
ferroptosis inhibitors have also made it to the clinical
translational stage in recent years, but they still present
challenges in clinical studies.

Vitamin E was found to significantly reduce cognitive
performance in patients with mild to moderate AD in a
multicentre, randomised, double-blind, placebo-controlled trial of
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AD from 2007 to 2012. However, some studies claim that vitamin E
supplementation does not reduce the risk of AD and slows down its
pathogenesis (Dysken et al., 2014; Kryscio et al., 2017; Ashraf and
So, 2020).

In 2013, DFP significantly improved motor function in patients
with PD in a 12-month phase II clinical trial of PD, but patients who
continued to take DFP showed diminished improvement in motor
function as well as reduced Neutrophils and granulocyte deficiencies
(Devos et al., 2014; Martin-Bastida et al., 2017). In addition, Mohsen
Saleh Elalfy et al. conducted a clinical trial onDFP for the treatment
of transfusion-dependent thalassemia children in 2016. They found
that the safety and efficacy of the drug was improved whenDFP was
administered to thalassemia patients, but adverse effects such as
diarrhea, vomiting, colic, neutropenia, and elevated liver enzymes
were still present (Elalfy et al., 2018).

In 2019, an injection of Edaravone dexborneol in phase II
multicentre, randomised, double-blind, multi-dose, active-
controlled clinical trial in patients with IS found that patients
experienced a reduction in acute brain injury, but continued to
have itching and AKI side effects (Xu et al., 2019).

Copper compound CuII(ATSM) exhibits neuroprotective
effects in phase I clinical trials in ALS and PD (Southon et al.,
2020). Meanwhile, CuII (ATSM) has completed phase I trials in
ALS patients and entered phase II clinical trials, but it has been
found to exhibit spinal cord immunocompromise in patients in the
clinical trial phase (Liddell et al., 2023).

In recent years, it has been found that ferroptosis-mediated
neurological impairment can be significantly alleviated by thrombin
inhibition. Meanwhile, the thrombin inhibitor Dabigatran is
currently in Phase III clinical trial in IS (NCT03961334) (Tuo
et al., 2022). In April 2023, the thrombin inhibitor Argatroban
concluded a Phase IV clinical trial in IS (NCT03740958) and was
found to significantly reduce adverse prognosis when used in
combination with Aspirin (Peng, 2023).

Therefore, there is a need for researchers to further optimise
drugs to improve drug utilisation, reduce side effects and treat
ferroptosis-mediated diseases.

6 Ferroptosis in relation to other modes
of cell death

Ferroptosis is a type of programmed cell death that is
distinguished from apoptosis, necrotic apoptosis, autophagy,
pyroptosis and cuproptosis in both morphological changes and
biochemical functions. However, a growing body of research
suggests that there is a link between ferroptosis and all of the
above modes of cell death.

6.1 Ferroptosis and apoptosis

Apoptosis, the first identified regulatory cell death modality, is
governed by apoptosis-related genes. The initiation of apoptosis is
often characterized by morphological alterations such as cell
shrinkage, chromatin fragmentation, and membrane blistering
and disintegration. Apoptosis encompasses caspase-dependent
intrinsic apoptosis, death receptor-mediated extrinsic apoptosis,

and receptor-dependent extrinsic apoptosis. Research indicates
that Tumor Necrosis Factor-α (TNF-α) plays a crucial role as an
inflammatory factor that triggers ferroptosis. Additionally, Kai et al.
(2020) reported the induction of chondrocyte apoptosis through the
upregulation of TNF-α (Yang et al., 2021). Furthermore, Ma et al.,
2022 demonstrated that Fer-1 mitigates noise-induced hearing loss
by targeting TFR1-mediated ferroptosis and the p53-AIFM2
apoptosis pathway.

6.2 Ferroptosis and necroptosis

Necroptosis is a type of regulatory necrosis that is often caused
by a variety of physicochemical stimuli, such as inflammatory
factors and ATP depletion and is not dependent on caspases.
Necrotic apoptosis is followed by morphological changes such as
rupture of cell membranes, translucent cytoplasm, swollen
organelles, increased cell volume, and chromatin condensation.
Iron overload was found to affect cellular redox homeostasis and
activate necrotic apoptosis and ferroptosis. In recent years, the
ferroptosis inhibitor Lip-1 was found to be effective in inhibiting
necrotic apoptosis during cerebral ischemia-reperfusion.
Meanwhile, the necrotic apoptosis inhibitor Necrostatin-1
effectively inhibited the activation of proteins associated with
ferroptosis (Yuk et al., 2021). In addition, Nigratine (also known
as 6E11) was found to inhibit both necrotic apoptosis and ferroptosis
in human bronchial-like organs (Delehouzé et al., 2022). Thus,
ferroptosis and apoptosis have complex interactions and are
closely related.

6.3 Ferroptosis and autophagy

Autophagy is the process of removing and degrading
intracellular material through lysosomes, which includes
macroautophagy, microautophagy, and chaperone-mediated
autophagy. This process plays a vital role in maintaining cellular
homeostasis and preventing cell overgrowth. Studies have shown a
close relationship between ferroptosis and ferritin autophagy,
adipose autophagy, and chaperone-mediated autophagy (Lee
et al., 2023). Moreover, ROS accumulation, p53 activation, and
Nrf2 signaling pathway activation all induced autophagy and
ferroptosis. Autophagy-dependent ferroptosis has been implicated
in kidney-related diseases and cardiovascular diseases. Additionally,
research by Du et al., 2023 demonstrated that rapamycin injection
enhanced autophagy, leading to the downregulation of TFR1, which
inhibited ferroptosis and reduced cognitive deficits in a Sepsis-
associated encephalopathy (SAE) model in mice.

6.4 Ferroptosis and pyroptosis

Pyroptosis, also known as cellular inflammatory necrosis, is
programmed cell death induced by activation of inflammatory
vesicles and is mainly regulated by cysteinyl asparagine-1, -4, -5,
and -11-dependent signaling pathways (Teng et al., 2023).
Pyroptosis was accompanied by morphological changes such as
cell swelling, membrane rupture, and leakage of cytoplasmic
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components. It has been shown that high intracellular ROS
accumulation promotes pyroptosis and that severe oxidative
stress induces upregulation of pyroptosis. In recent years, it has
been found that a mixed form of cell death, “PAN apoptosis”,
consisting of TNF-α and interferon gamma (IFNγ) or
Proadrenomedullin N-terminal 20 peptide (PAMP), can activate
pyroptosis and apoptosis at the same time. IFNγ can form an
important anti-ferroptosis system with SLC3A2 (Ai et al., 2024).

6.5 Ferroptosis and cuproptosis

Cuproptosis is defined as the aggregation of proteins,
proteotoxic stress, and eventual cell death triggered by copper
binding to the lipolytic enzymes of the tricarboxylic acid (TCA)
cycle. This form of regulated cell death, dependent on copper, was
termed “copper tumor” in 2022, and has been linked to the
metabolic pathways of ferroptosis. Similar to ferroptosis,
cuproptosis leads to notable alterations in mitochondrial
structure, such as shrinkage and membrane rupture. The
mitochondrial TCA cycle serves as a crucial nexus between
ferroptosis and copper tumors, playing a pivotal role in
cuproptosis (Jhelum and David, 2022). Furthermore, GSH has
been identified as a key player in both ferroptosis and
cuproptosis. GSH binds copper, reducing protein aggregation in
cuproptosis. Moreover, iron-sulfur cluster proteins, essential
cofactors for maintaining redox balance and iron levels, are
produced as auxiliary enzymes in cuproptosis, with their levels
significantly decreasing following cuproptosis initiation. Notably,
protein aggregates can interfere with the function of iron-sulfur
clusters (Prasad Panda and Kesharwani, 2023).

7 Discussion and conclusion

Ferroptosis inhibitors have displayed some efficacy in ferroptosis-
related diseases, yet face significant challenges in making a substantial
impact. These obstacles stem from the limitations of current small
molecule drugs, characterized by poor selectivity, targeting, solubility,
pharmacokinetic properties, adverse reactions, efficacy, in vivo toxicity,
and side effects. On the other hand, some of the ferroptosis mechanisms
themselves are unclear, and some of the mechanisms have been
proposed but are still unknown (e.g., GCH1-BH4 pathway, HSF1-
HSPB1 pathway, sulfur-transfer pathway, MVA pathway, etc.), which
has become an important obstacle in the development of smallmolecule
drugs. In addition, the complexity of the pathological mechanisms of
some diseases is unclear, and the controversial relationship between
ferroptosis and othermodes of cell death is also an issue that needs to be
addressed for the application of ferroptosis inhibitors to disease.

Overall, this review specifically describes the metabolic pathways
of ferroptosis. A comprehensive summary of natural and synthetic
small molecule drugs that treat ferroptosis-mediated diseases by

acting on targets of ferroptosis and their therapeutic efficacy in
disease. Meanwhile, this paper describes the mechanism of action of
therapeutic approaches such as gene regulatory approaches, cell
therapy, and nanodelivery in ferroptosis-mediated diseases. And it
summarizes the problems encountered during the clinical
translation of ferroptosis inhibitors and drugs that are currently
in clinical translation. Finally, the relationship between ferroptosis
and other forms of cell death modalities such as apoptosis is
discussed. It is hoped that this will provide new ideas for the
development of future ferroptosis inhibitors and provide effective
therapeutic options for future ferroptosis-mediated diseases.
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