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Introduction: As a new discipline, network pharmacology has been widely used
to disclose the material basis and mechanism of Traditional Chinese Medicine in
recent years. However, numerous researches indicated that the material basis of
TCMs identified based on network pharmacology was the mixtures of beneficial
and harmful substances rather than the real material basis. In this work, taking the
anti-NAFLD (non-alcoholic fatty liver disease) effect of Bai Shao (BS) as a case, we
attempted to propose a novel bioinformatics strategy to uncover the material
basis and mechanism of TCMs in a precise manner.

Methods: In our previous studies, we have done a lot work to explore TCM-
induced hepatoprotection. Here, by integrating our previous studies, we
developed a novel computational pharmacology method to identify
hepatoprotective ingredients from TCMs. Then the developed method was
used to discover the material basis and mechanism of Bai Shao against Non-
alcoholic fatty liver disease by combining with the techniques of molecular
network, microarray data analysis, molecular docking, and molecular
dynamics simulation. Finally, literature verification method was utilized to
validate the findings.

Results: A total of 12 ingredients were found to be associated with the anti-
NAFLD effect of BS, including monoterpene glucosides, flavonoids, triterpenes,
and phenolic acids. Further analysis found that IL1-β, IL6, and JUN would be the
key targets. Interestingly, molecular docking and molecular dynamics simulation
analysis showed that there indeed existed strong and stable binding affinity
between the active ingredients and the key targets. In addition, a total of
23 NAFLD-related KEGG pathways were enriched. The major biological
processes involved by these pathways including inflammation, apoptosis, lipid
metabolism, and glucosemetabolism. Of note, there was a great deal of evidence
available in the literature to support the findings mentioned above, indicating that
our method was reliable.
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Discussion: In summary, the contributions of this work can be summarized as two
aspects as follows. Firstly, we systematically elucidated the material basis and
mechanism of BS against NAFLD from multiple perspectives. These findings
further enhanced the theoretical foundation of BS on NAFLD. Secondly, a novel
computational pharmacology research strategy was proposed, which would assist
network pharmacology to uncover the scientific connotation TCMs in a more
precise manner.

KEYWORDS

bioinformatics, Bai Shao, non-alcoholic fatty liver disease, Traditional Chinese Medicine,
hepatoprotection, network pharmacology, active ingredient, molecular mechanism

1 Introduction

Non-alcoholic fatty liver disease (NAFLD) is defined as unusual
hepatic fat accumulation in the absence of excessive alcohol
consumption and any other conditions that may lead to hepatic
steatosis (Chalasani et al., 2012). Patients suffered from NAFLD
always presented liver dysfunction and are confronted with higher
risk of liver-relatedmorbidity (Mantovani et al., 2020). It was reported
that NAFLD has been a leading cause of cirrhosis, hepatocellular
carcinoma, and some other irreversible liver diseases (Powell et al.,
2021). In addition, NAFLD also increased the risk of cardiovascular
diseases (Yoshitaka et al., 2017), chronic kidney diseases (Mantovani
et al., 2022), and malignancy (Rinella and Sanyal, 2016) significantly.
In fact, NAFLD is a newly discovered disease. It has not been
described until 1980s. However, in just a couple of decades, it has
become a global health issue because of its high prevalence (Siegel
et al., 2012; Perumpail et al., 2017). Epidemiological research showed
that the morbidity of NAFLD in many countries was already close to
30% (Younossi et al., 2016; Estes et al., 2018). Although the liver
disease specialists have made a tremendous amount of effort to seek
effective therapeutic drugs for NAFLD during the past decades, there
is no approved therapy until now. Therefore, scientific researches
focused on exploring the candidate drugs of NAFLD deserve to be
paid a great deal of attention.

Paeoniae Radix Alba, the dried roots of Paeonia lactiflora Pall., is
a well-known herbal medicine and widely used in Asia for a long
history. Owning to it presented very obvious effect on some complex
diseases, it has been recorded in the Pharmacopoeias of many
countries, including but not limit to China and Japan. In China,
Paeoniae Radix Alba is known as Bai Shao (BS) and mainly used to
regulate menstruation, antiperspirant, relieve pain and protect liver
(Chinese Pharmacopeia Commission, 2020). In recent years, with
the social and economic burdens caused by NAFLD increasing
continually, the hepatoprotective effect of BS gradually gained
more and more attention. It has been demonstrated that BS and
its extracts have multiple beneficial effects on liver, including drug/
chemical-induced liver injury attenuation, anti-fatty liver, anti-
hepatitis, anti-hepatic fibrosis, cholestasis alleviation, and
hepatocellular carcinoma inhibition (Ma et al., 2020). Especially
for the action of preventing and treating NAFLD, a great deal of
evidence has been provided in previous publications. Sun et al.
established fatty liver model by intervening HepG2 cells with oleic
acid and explored the anti-fatty liver action of BS. As a result, they
found that compared with the model group, the levels of TC, TG,
ALP, and ALT of the pretreatment group and the treatment group

were decreased significantly (Sun et al., 2022). The anti-fatty liver
effect of BS in animal models has also been confirmed (Zhang et al.,
2015; Ma et al., 2016). For example, Ma et al. found that BS treatment
can obviously ameliorate the histopathological and biochemical changes
in NAFLD rats induced by high-fat diet via inhibiting lipid ectopic
deposition (Ma et al., 2017). In addition, some clinical scholars have
attempted to treat NAFLD by combining polyene phosphatidylcholine
and the total glycosides of BS. Excitedly, the total effective rates of the
combination group increased by 47.06% in comparison with the
polyene phosphatidylcholine treatment group. Besides, more
significant improvements on clinical symptoms, liver function, and
blood lipids were also observed in the combination group (Tian et al.,
2014). In summary, the anti-NAFLD effect of BS has been well
documented. However, which compounds are the active ingredients
and how they produce these beneficial effects have not been fully
elucidated. Therefore, more research focused on revealing the
mechanisms of BS against NAFLD is needed.

Different from the western medicine of “one target, one drug,” as
complex mixtures of many bioactive ingredients, Traditional
Chinese Medicines (TCMs) always produce their effects via
multi-component and multi-target, making it to be a challenging
work to unveil the material basis and mechanism of TCM
systemically (Li, 2016). In 2007, network pharmacology, a new
discipline, was proposed by Hopkins AL (Hopkins, 2008). Unlike
the reductionism research strategies which treat both drugs and
targets in isolation, network pharmacology attempts to illustrate the
interactions between drugs and biological systems in a systematic
manner (Kibble et al., 2015). The perspective of network
pharmacology is in accord with the holistic theory of TCM,
making it possible to deeply understand the scientific
connotation of TCM. Furthermore, compared with the
conventional methods, network pharmacology has the advantages
of high-efficacy, effort-saving, and low cost. During the past decade,
network pharmacology has attracted increasing attention and has
become a popular tool in the field of TCM research (Li and Zhang,
2013). However, in the current state of the art, there still existed
some problems in the field of network pharmacology. For example,
in a research from Henan University of Traditional Chinese
Medicine, the authors attempted to illustrate the material basis of
Psoraleae Fructus-induced liver injury. Network pharmacology
analysis indicated that a total of 25 compounds were associated
with the hepatotoxicity of Psoraleae Fructus (Cao et al., 2022).
However, we found that not all of these substances were harmful
to the liver. Inversely, quite a few of them were liver-friendly and
considered to be promising hepatoprotectors, such as daidzein,
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biochanin A, and delphinidin. Numerous data showed that these
compounds have the effects of anti-NAFLD (Kim et al., 2011; Fan
et al., 2021), anti-hepatic fibrosis (Domitrović and Jakovac, 2010;
Breikaa et al., 2013b), anti-hepatocellular carcinoma (Xiao et al.,
2020; Zakaria et al., 2021; Sun et al., 2023) and attenuating liver
injury induced by multiple chemical agents or drugs (Domitrović
and Jakovac, 2010; Breikaa et al., 2013a; Yu et al., 2020). In addition,
both in-vivo and in silico toxicity studies indicated that daidzein is a
safe natural substance without hepatotoxicity (Laddha et al., 2022).
In another network pharmacology study from the University of
Hong Kong, kaempferol and thymol exhibited the largest number of
liver injury targets connections and considered to be play a crucial
role in Xiao Chai Hu Tang-induced liver injury (Hong et al., 2017).
However, both kaempferol (Ren et al., 2019; Xiao et al., 2022;
Akiyama et al., 2023) and thymol (Jafari et al., 2018; Guo et al.,
2023; Lahmi et al., 2023) are promising and safe agents for treating
multiple liver diseases. They have never been implicated in the

adverse events of drug-induced liver injury. In fact, the similar
phenomena were broadly existed in network pharmacology
researches (Wang et al., 2017; Zheng et al., 2020; Li et al., 2021).
Cases mentioned above suggested that not all of the compounds
connected with liver injury targets were hepatotoxic substances.
Inversely, they could be liver-friendly substances. Likewise, we
speculated that the compounds connected with liver disease
targets were the mixtures of hepatotoxic and hepatoprotective
substances. Therefore, in the network pharmacology researches
focused on revealing the material basis and mechanism of TCM-
induced hepatoprotection, establishing a method to identify the
hepatoprotective ingredients may help to improve the precision of
the results.

In our previous studies, a great deal of efforts have been paid to
TCM-induced hepatoprotection (He et al., 2022). Firstly, a large
scale of dataset, including 677 hepatoprotective phytoconstituents
and 205 hepatoprotective TCMs, was established by conducting a

FIGURE 1
Flowchart of the overall methodology. BS, Bai Shao; DL, drug likeness; OB, oral bioavailability; NAFLD, non-alcoholic fatty liver disease; PPI, protein-
protein interaction. CPM-TCMIHP indicated the computational pharmacology method for identifying the material basis of TCM-induced
hepatoprotection which were detailed in Figure 15.
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TABLE 1 Potential hepatoprotective ingredients in BS.

ID Compound (structural classification)
(DL, OB)

2D structure Literature verfication Potential hepatoprotective ingredients

M1 M2 M3

1 Gallic Acid (Phenolic acids) Girish and Pradhan (2012) √

2 Astragalin (Flavonoids) Ghosh et al. (2011) √

3 Oleanolic Acid (Triterpenes) (Girish and Pradhan, 2012) √

4 Betulinic Acid (Triterpenes) Yao et al. (2016) √

5 Benzoylpaeoniflorin (Monoterpene glucosides)
(0.54, 31.14%)

Kaur et al. (2018) √ √

6 Paeonol (Phenolic acids)
(Good, 0)

Hu et al. (2016) √ √

7 Kaempferol (Flavonoids)
(0.24, 41.88%)

Hu et al. (2016) √ √

(Continued on following page)
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TABLE 1 (Continued) Potential hepatoprotective ingredients in BS.

ID Compound (structural classification)
(DL, OB)

2D structure Literature verfication Potential hepatoprotective ingredients

M1 M2 M3

8 Paeoniflorin (Monoterpene glucosides)
(0.79, 53.87%)

Kaur et al. (2018) √ √

9 Albiflorin (Monoterpene glucosides)
(0.77, 30.25%)

Jeong et al. (2017) √ √

10 Progallin A (Phenolic acids)
(Moderate, 0)

Ezhilarasan et al. (2024) √

11 (+)-Catechin
(Flavonoids)
(0.24, 54.83%)

(Girish and Pradhan, 2012) √

12 β-Sitosterol (Triterpenes)
(0.75, 36.91%)

(Girish and Pradhan, 2012) √

13 Epigallocatechin (Flavonoids)
(Moderate, 0)

Musial et al. (2020) √

(Continued on following page)
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TABLE 1 (Continued) Potential hepatoprotective ingredients in BS.

ID Compound (structural classification)
(DL, OB)

2D structure Literature verfication Potential hepatoprotective ingredients

M1 M2 M3

14 Oxypeucedanin (Coumarins)
(Moderate, 0)

Oh et al. (2002), Park et al. (2020) √

15 Benzoic acid (Phenolic acids)
(Moderate, 0)

Van Puyvelde et al. (1989) √

16 α-Cedrene (Volatile oils)
(Moderate, 0)

Vinholes et al. (2014) √

17 Palbinone (Monoterpene glucosides)
(0.53, 43.56%)

Li et al. (2023) √

18 Paeonoside (Phenolic acids)
(Moderate, 1)

Wang et al. (2023b) √

19 Lactiflorin (Monoterpene glucosides)
(0.80, 49.12%)

No report √

20 11alpha,12alpha-epoxy-3beta-23-dihydroxy-30-norolean-20-en-28,12beta-olide (Triterpenes)
(0.38, 64.77%)

No report √
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TABLE 1 (Continued) Potential hepatoprotective ingredients in BS.

ID Compound (structural classification)
(DL, OB)

2D structure Literature verfication Potential hepatoprotective ingredients

M1 M2 M3

21 Eugenitin (Naphthalenones)
(Good, 0)

No report √

22 α-Cedrol (Volatile oils)
(Moderate, 0)

Chang et al. (2020) √

23 1-Hydroxydodecane (Alcohols)
(Moderate, 0)

No report √

24 Paeoniflorigenone (Monoterpenes)
(0.37, 87.59%)

No report ×

25 Paeonilactone A (Monoterpenes)
(Moderate, 0)

No report ×

26 (+)-Trans-myrtanol
(Volatile oils)
(Moderate, 0)

No report ×

27 Paeonilactone C (Monoterpenes)
(Good, 0)

No report ×

M1, M2, and M3 were the abbreviations of module 1, module 2, and module 3, respectively. The potential hepatoprotective ingredients identified by each module were marked with “√,” and the unique hepatoprotective ingredients identified by each module were

highlighted in red. In addition, those compounds which were predicted as non-hepatoprotective ingredients by module three were marked with “×.” The substructures highlighted in red were the representative substructures for hepatoprotective activity.
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comprehensive literature retrieval. Then molecular network technique
was adopted to construct a hepatoprotective “TCM-ingredient”
network. In addition, by incorporating the use of multiple machine
learning algorithms, an in silicomodel for predicting the liver protecting
activity of phytoconstituents was developed for the first time. All of
these studies mentioned above laid a foundation for identifying the
material basis of TCM-induced hepatoprotection. In present study, we
attempted to establish a computational pharmacology method to
identify hepatoprotective ingredients from TCMs by integrating our
previous studies. Then, the proposedmethod was utilized to explore the
material basis andmechanism of BS against NAFLDby combining with
network pharmacology, molecular docking, and molecular dynamics

simulation techniques. We hope this work would be helpful to
understand the scientific connotation of Bai Shao on NAFLD in a
more precise manner. The detailed research project was displayed
in Figure 1.

2 Results

2.1 Candidate compounds of BS

A total of 97 unduplicated compounds were extracted from
TCMSP, ETCM, and TCMID databases. After investigating the

FIGURE 2
Structural classification of the potential hepatoprotective
ingredients in BS.

FIGURE 3
NAFLD-related targets.

FIGURE 4
The common targets between BS and NAFLD.

FIGURE 5
Tissue-specific expression pattern analysis of the common
targets between BS and NAFLD. If a gene expressed highest in the liver
among the 84 organs, it was ranked 1. Inversely, if it expressed lowest
in the liver, it was ranked 84.
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pharmacokinetic parameters of DL and OB, twenty-three
compounds were found to satisfy the inclusion criteria (Table 1,
Compound 5—Compound 27). These compounds were defined as
candidate compounds and further analyzed.

2.2 Identification of the potential
hepatoprotective ingredients in BS

As shown in Table 1, a total of 23 potential hepatoprotective
ingredients (Compound 1—Compound 23) were identified by
the computational pharmacology method proposed. Module 1,
module 2, and module 3 separately identified 12, 6, and
10 potential hepatoprotective ingredients. The unique
hepatoprotective ingredients provided by these three modules
were 7, 1, and 10 in number, respectively. Such a phenomenon
indicated that there existed complementary effects among
module 1, module 2, and module 3. In other words, it was
necessary to adopt a multi-module fusion strategy to clarify
the material basis of TCM-induced hepatoprotection. In fact, we
also attempted to collect the hepatoprotective ingredients in BS
by retrieving concerned literature. As a result, only three
hepatoprotective ingredients, including paeoniflorin (Kaur
et al., 2018), albiflorin (Jeong et al., 2017), and palbinone (Li
et al., 2023), were collected. Obliviously, compared with the
method of retrieving literature, the computational
pharmacology method proposed in the current study was able
to identify the material basis of TCM-induced hepatoprotection
more comprehensively.

Considering that the data included in module one and module
2 has been well documented in previous studies, the reliability of the
results provided by these two modules was not discussed here. To
investigate the reliability of the results provided by module 3, we
have attempted to find some important evidence from the literature.

As a result, among those 10 potential hepatoprotective ingredients
identified by module 3, a total of six ingredients (compound
14—compound 18 and compound 22) have been confirmed to be
liver-friendly substances. A range of liver-protecting activities were
involved, including against chemical and drug induced liver injury
(Van Puyvelde et al., 1989; Oh et al., 2002; Chang et al., 2020; Wang
F. et al., 2023), anti-proliferation (Park et al., 2020), anti-lipid
peroxidation (Vinholes et al., 2014), and anti-hepatic fibrosis (Li
et al., 2023). For those four non-hepatoprotective ingredients
(compound 24—compound 27) identified by module 3, although
there was no clear evidence that they are non-hepatoprotective
ingredients, no one of them was reported to be potential liver
protective drugs. In addition, in our prior study (He et al., 2022),
we identified a series of representative substructures (RSs) for the
hepatoprotective activity of phytoconstituents. Here, structure
matching between the RSs and the potential hepatoprotective
ingredients was performed. In consequence, among those
10 potential hepatoprotective ingredients identified by module 3,
a total of 3 (compound 14, 17, and 21) ingredients were found to
contain RSs. Conversely, for those four non-hepatoprotective
ingredients identified by module 3, no one of them was found to
contain RSs. In summary, both the literature retrieval and the RSs
matching results demonstrated that the data provided by module
three was highly reliable. The structural classification of the potential
hepatoprotective ingredients in BS was also investigated. As
illustrated in Figure 2, monoterpene glucosides, phenolic acids,
flavonoids, and triterpenes were found to be the major
structure types.

2.3 NAFLD-related targets

As shown in Figure 3, we collected 70, 86, and 306 NAFLD-
related targets from DisGeNET, CTD, and NCBI-gene database
(https://www.ncbi.nlm.nih.gov/gene/), respectively. After removing
the duplicates, a total of 362 NAFLD-related targets were obtained.

2.4 BS-related targets

By searching STITCH, CTD, Swiss Target Prediction, and
DrugBank databases, we collected 773 BS-related targets. Of
note, a total of eight potential hepatoprotective ingredients were
found to lack of the target data, including albiflorin,
oxypeucedanin, paeonoside, lactiflorin, eugenitin, α-cedrene,
palbinone, and 11alpha,12alpha-epoxy-3beta-23-dihydroxy-30-
norolean-20-en-28,12beta-olide. For the other 15 potential
hepatoprotective ingredients, the number of targets ranged
between 1 and 501.

2.5 “Ingredient-target” network of BS
on NAFLD

Firstly, Venn diagram analysis was performed to identify the
shared targets between BS and NAFLD. As demonstrated in
Figure 4, a total of 78 common targets were identified. Tissue-
specific expression pattern analysis showed that there were

FIGURE 6
Subcellular localization analysis of the common targets between
BS and NAFLD.
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36 targets that have the liver expression levels ranked in the top
10 among the 84 organs of human. Fifty-one targets have the liver
expression levels ranked among the top 20 (Figure 5). In summary,
most of the shared targets were highly expressed in the liver tissue,
which may lay a foundation for BS alleviate NAFLD. To further
explore the potential biological function of the common targets,
subcellular localization analysis was performed. As shown in
Figure 6, the common targets were enriched in a variety of
cellular compartments, and the top five cellular compartments
were nucleoplasm, cytosol, vesicles, plasma membrane, and golgi
apparatus, respectively. In fact, all of these five cellular
compartments have been demonstrated to be closely related to
the development of NAFLD (Qiu et al., 2013; Wang Y. et al.,
2023; Lu et al., 2023; Sherman et al., 2023). For example, Lipin
proteins, including Lipin1, Lipin2, and Lipin3, play crucial roles in
lipid metabolism. It has been reported that Lipin3 heterozygous
knockout mice was more easily to suffered from NAFLD. Further
mechanistic study suggested that such a situation was associated

with the abnormal distribution of Lipin1 in cytosol and nucleoplasm
(Wang F. et al., 2023).

Finally, the “ingredient-target” network of BS on NAFLD was
constructed by inputting the common targets and the common
targets related compounds into the network visualization tool
Gephi (version 0.9.2). As shown in Figure 7, the network
consisted of 90 nodes and 147 edges. A total of 12 potential
hepatoprotective ingredients were involved, including four
flavonoids (kaempferol, (+)-catechin, epigallocatechin, and
astragalin), three triterpenes (oleanolic acid, β-sitosterol, and
betulinic acid), three phenolic acids (gallic acid, benzoic acid,
and paeonol), and two monoterpene glucosides (paeoniflorin
and benzoylpaeoniflorin). The anti-NAFLD effect of BS may be
largely attributed to these ingredients. In addition, a total of
78 NAFLD-related targets were included in the “ingredient-
target” network. To distinguish the known targets from the
putative targets, we highlighted the edges by grey and yellow,
respectively. It is not difficult to find that more than 90% of the

FIGURE 7
“Ingredient-target” network of BS on NAFLD. The red nodes represented the potential hepatoprotective ingredients in BS, and the green nodes
represented the NAFLD-related targets. In addition, the known targets and the putative targets were connected with the potential hepatoprotective
ingredients by grey and yellow edges, respectively.
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edges were showed in grey, indicating that the “ingredient-target”
network developed has a high reliability.

2.6 PPI network analysis

By mapping the 78 common targets identified in Section 2.5 into
the STRING database, we acquired the PPI network of BS on
NAFLD (Figures 8A). This network consisted of 76 nodes and
1,111 edges. The red, purple, and green nodes represented the targets
that have the liver expression levels ranked in the top 10, top 20, and
top 84 among the 84 organs of human, respectively. Of note, the
tissue-specific expression data of CD274 was unavailable. Therefore,
here, we highlighted it by blue. Modular analysis found that the PPI
network can be divided into three functional modules
(Figure 8B–D). As the major functional module of BS on
NAFLD, functional module one consisted of 34 nodes and
494 edges. Functional module three is the minimal functional
module which consisted of three nodes and three edges. In
addition, functional module two including 11 nodes and 32 edges.

2.7 KEGG pathway enrichment analysis

In the previous section, we identified three functional modules
of BS on NAFLD. Herein, by mapping the targets included in each
functional module into the DAVID platform, we obtained
23 NAFLD-related KEGG pathways in total. All of these
23 pathways have been well documented to be associated with
the development of NAFLD.

As shown in Figure 9A–C, a total of 12 KEGG pathways were
enriched by functional module 1. Functional module two and
functional module 3 separately enriched nine and 2 KEGG
pathways. Then we sorted these pathways based on the adjusted
p-value. In consequence, we found that the top five pathways were
IL-17 signaling pathway, TNF signaling pathway, Non-alcoholic
fatty liver disease, NF-kappa B signaling pathway, and Insulin
resistance, respectively. Interestingly, the pathway of Non-
alcoholic fatty liver disease was enriched significantly with the
adjusted p-value ranked third, confirming the moderating effect
of BS on NAFLD to a great extent. In addition, it’s worth noting that
all of the top four pathways were enriched by functional module 1,

FIGURE 8
PPI network (A) and functional modules (B–D) of BS on NAFLD.
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suggesting that it may be the major functional module of BS
on NAFLD.

To elucidate the regulation effects of those three functional
modules on NAFLD from the perspective of biological process.
Firstly, we summarized the major biological processes associated
with NAFLD by conducting a systematical literature retrieval. As
showed in Figure 9F, we collected 12 NAFLD-related biological
processes in total. Then, for each KEGG pathway enriched above,
the related biological processes were annotated based on KEGG
pathway database. In addition, we also retrieved the scientific
literature database, by which we attempted to obtain the latest
and most complete biological process data. Finally, Chord Plot
was plotted to display the interactions between the KEGG

pathways and the NAFLD-related biological processes
(Figure 9E,F). As a result, we found that the major biological
processes regulated by functional module one were inflammation,
apoptosis, and lipid metabolism. For functional module 2, a total of
four major NAFLD-related biological processes were observed,
including glucose metabolism, lipid metabolism, mitochondrial
dysfunction, and apoptosis. Functional module three was found
to involve in the biological process of glutathione metabolism. It is
not difficult to found that these three functional modules regulated
NAFLD through different biological processes in a
synergetic manner.

By mapping the BS-related targets into the Non-alcoholic fatty
liver disease pathway, we attained a detailed mechanism map of BS

FIGURE 9
KEGG pathway enrichment analysis of the major functional modules of BS on NAFLD. Figures (A–C) displayed the KEGG pathways enriched by
functional modules 1, 2, and 3, respectively. In Figure (F), F1-F12 were the major biological processes which were involved in the occurrence and
development of NAFLD. Figure (D) displayed the NAFLD-related biological processes enriched by functional module 1. The NAFLD-related biological
processes enriched by functional module two and three were showed in Figure (E).
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against NAFLD. As illustrated in Figure 10, BS may relieve NAFLD
through three major paths listed as follows. Firstly, it’s well known
that abnormal glucose and lipid metabolism was one of the major
inducements of NAFLD (Chao et al., 2019). IRS-1/2, PPAR-α, and
PPAR-γ have been proved to be essential regulatory factors of
glucose and lipid metabolism (Chao et al., 2019). Therefore,
ameliorating glucose and lipid metabolism via regulating IRS-1/2,
PPAR-α, and PPAR-γmay be one of the major mechanisms of BS on
NAFLD. Secondly, as one promising therapeutic strategy of NAFLD,
decreasing hepatocyte apoptosis has gained increasing attention in
recent years (Canbay et al., 2005). The significant positive regulatory
effect of TNF-α on hepatocyte apoptosis has been well documented
by many pharmacologists (Ezquerro et al., 2019). Thus, inhibiting
the pro-apoptosis effect of TNF-α and decreasing hepatocyte injury
may be another important mechanism of BS on NAFLD. Thirdly,
inflammation is an important pathological change from steatosis to
hepatitis (Patel and Mueller, 2024). This pathological change was
significantly associated with the increase of expression levels of pro-
inflammatory cytokines and inflammatory cytokines (Rao et al.,
2018). Therefore, inhibiting the overexpression of IL-1, IL-6, IL-8
and TNF-α may be the third path of BS on NAFLD. In addition, it
has been reported that TGFβ1 is a powerful fibrogenic cytokine (He
et al., 2016). Depending on the data displayed in Figure 10, we
speculated that some ingredients in BS may be TGFβ1 agonists
which can alleviate liver fibrosis to a certain extent. In summary, we

believed that the anti-NAFLD effect of BS should be attributed to
multi-target, multi-pathway, and multi-biological process.

In addition, we investigated the reliability of the mechanisms of
BS on NAFLD attained above via a literature-based method. Firstly,
we summarized the molecular mechanisms of BS extracts induced
hepatoprotection by conducting a systemic literature retrieval
(Table 2). After that, consistency estimate between our results
and the literature reports was performed. As a result, in the level
of pathway, among those 23 pathways enriched by the DAVID
platform, at least 11 pathways have been proved to be associated
with BS-induced hepatoprotection, including P4, P6, P7, P11, P12,
P13, P14, P15, P17, P18, and P22. Besides, at least five pathways (P4,
P7, P13, P14, and P17) were reported to play essential roles in the
process of BS alleviates NAFLD. In the level of biological process,
among those 12 biological processes identified in Figure 9D,E, at
least eight biological processes (F1, F3, F4, F5, F6, F7, F9, and F11)
have been demonstrated to be significantly associated with the anti-
NAFLD effect of BS. In the level of gene, among the pathway of
NAFLD, a total of nine genes were found to be the potential targets
of BS (Figure 10). According to the available literature, we found that
eight out of these nine genes can be significantly regulated by BS,
including IL-6, TNF-α, IRS1, PPAR-γ, IL-1β, JUN, TGF-β1, and
PPAR-α (Table 2). To be specific, PPAR-α can be upregulated by BS,
and the other seven genes can be downregulated by BS. All of above
mentioned indicated that our results were highly in accord with the

FIGURE 10
The mechanism map of BS relieve NAFLD. The genes regulated by BS were highlighted in pink explosive shape. FFAs, free fatty acids.
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data recorded in the literature, suggesting a higher reliability of
our method.

2.8 Key targets of BS on NAFLD

Here, we ranked the genes in the PPI network based on
CytoHubba. A total of three algorithms were adopted, including
Degree, MCC, and EPC. For each algorithm, the top 10 genes were
extracted, and the common genes among these three algorithms
were defined as hub genes. As demonstrated in Figure 11A–D, a total

of seven genes were identified as hub genes, including hypoxia-
inducible factor 1-alpha (HIF1A), interleukin-1 beta (IL1-β),
interleukin-6 (IL6), proto-oncogene c-Jun (JUN), peroxisome
proliferator-activated receptor gamma (PPAR-γ), toll-like
receptor 4 (TLR4), and tumor necrosis factor (TNF).

To further investigate the relationship between the hub genes
and NAFLD, microarray data analysis was performed
(Figure 11E,F). Consequently, a total of 637 differentially
expressed genes were identified in the group of nonalcoholic
steatohepatitis, including 271 downregulated and 366 upregulated
genes. In the simple steatosis group, we observed 197 downregulated

TABLE 2 Molecular mechanisms of BS extracts-induced hepatoprotection.

Liver disease BS extracts Pathway Biological process Gene expression References

NAFLD TGP – F5, F11 – Zheng et al. (2008)

– F3 – Sun et al. (2022)

– F5, F11 – Zheng et al. (2008)

P7 F5, F7, F11 – Yang et al. (2017)

– F1, F4, F5, F6 IL-6↓, TNF-α↓ Ji (2022)

Paeoniflorin – F4, F5, F7, F11 PPAR-α↑, PPAR-γ↓, TNF-α↓, IL-1↓, IL-6↓ Zhang et al. (2015)

P13, P14 F5, F11 IRS1↓ Ma et al. (2017)

P14, P17 F5, F7, F11 – Li et al. (2018)

P17 F5, F11 – Chen et al. (2013)

Palbinone P4 F4, F9 IL-1β↓, TGF-β1↓ Li et al. (2023)

Hepatic fibrosis TGP P12 F1, F4, F9 TNF-α↓, IL-1β↓, TGF-β1↓ Wang (2005)

Paeoniflorin P6, P15 F9 HIF-1α↓ Zhao et al. (2014)

P4, P6 F4, F9 HIF-1α↓, IL-1β↓, TGF-β1↓, IL-6↓, TNF-α↓ Liu et al. (2023)

– F4, F9 IL-1β↓, TNF-α↓ Zhang et al. (2022b)

Cholestasis TGP P14 F1, F12 - Ma et al. (2015)

WEP P4 F4 IL-1β↓ Ma et al. (2018)

Paeoniflorin P14, P22 F1, F12 – Chen et al. (2015b)

– F6 – Zhou et al. (2017)

P4 F4 IL-1β↓ Zhao et al. (2017)

DILI TGP – F1, F4, F5 TNF-α↓ Qin and Tian (2011)

– F4 IL-1β↓, TNF-α↓, IL-6↓ Peng et al. (2023)

WEP P4, P17 F4, F6 IL-6↓, TNF-α↓ Shin et al. (2022)

Paeoniflorin P4 F4 IL-1β↓, TNF-α↓ Chen et al. (2021)

P18 F1, F3, F4 IL-1β↓, TNF-α↓ Li et al. (2022)

– F4, F6 JUN↓ Deng et al. (2022)

Cirrhosis TGP – F4, F6, F9 IL-1β↓, TNF-α↓, IL-6↓ Zhang et al. (2022a)

Hepatitis Paeoniflorin P4, P7 F4 IL-6↓, TNF-α↓ Chen et al. (2015a)

Liver injury Paeoniflorin P17 F1, F4, F5 IL-1β↓, TNF-α↓, IL-6↓ Liu et al. (2022)

HCC Paeoniflorin P11 - STAT3↓ Gao et al. (2023)

ID, of the pathway and biological process corresponded to the ID, in Figure 9. DILI, drug-induced liver injury; TGP, total glucosides of paeony; WEP, water extract of paeony; HCC,

hepatocellular carcinoma.
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and 407 upregulated genes, respectively. These differentially
expressed genes may play critical roles in the occurrence and
development of NAFLD. Further analysis found that only three
hub genes named IL1-β, IL6, and JUN were included in the
datasets of differentially expressed gene. These three hub genes
were defined as the key genes of BS on NAFLD and further
analyzed. In fact, it has been demonstrated that inflammation and
apoptosis were important pathogenesis of NAFLD which can be
activated by the overexpression of IL1-β, IL6, and JUN (Li et al.,
2013; Zhang J. et al., 2022; Deng et al., 2022). Interestingly, as
shown in Table 2, the inhibitory effect of BS on these three genes
has been well documented in previous studies, suggesting the
importance of these three genes in the process of BS
against NAFLD.

To answer the question that whether there exists significant
interaction between the key genes identified above and the potential
hepatoprotective ingredients in BS, molecular docking analysis was
carried out. Here, the index of binding energy was calculated to
evaluate the binding capacity between the ligand and the receptor.
The specific docking parameters were provided in Table 3.
Generally, a lower value of binding energy indicates a stronger
interaction between the ligand and the receptor. It has been
demonstrated that there may exist significant binding capacity
between the ligand and the receptor when the binding energy
between them is less than −1.2 kcal/mol (Ma et al., 2022). As
shown in Figure 12, the binding energies between the potential
hepatoprotective ingredients and the key genes ranged
from −9.7 kcal/mol to −4.3 kcal/mol. Obviously, the binding
energies of all studied docking complexes were within the
acceptable range. Therefore, we can claim that the
hepatoprotective ingredients have great potential to bind with the
key genes and affect their biological effects. Among all of the
potential hepatoprotective ingredients, monoterpene glucosides,
triterpenes, flavonoids, and coumarins were found to have lower
values of binding energy with the key genes, indicating that there
may exist stronger binding affinity between these ingredients and
the key genes. In addition, compared with the genes of IL1-β and

FIGURE 11
Identification of the key targets of BS on NAFLD. Figure (A) Venn diagram analysis. Figures (B–D) showed the top 10 genes in the PPI network
identified by Degree, Stress, and EPC algorithms, respectively. The node size was proportional to the gene score. Higher score indicated a higher ranking.
Figures (E, F) displayed the differentially expressed genes related to NAFLD. HC, healthy controls; SS, simple steatosis; NASH, non-alcoholic
steatohepatitis.

TABLE 3 Molecular docking parameters.

Target PDB ID (Resolution) Coordinate

IL6 1ALU (1.90 Å) x = 2.688, y = −19.9, z = 8.838

IL1β 5R8K (1.47 Å) x = 38.561, y = 13.365, z = 68.653

JUN 3PZE (2.00 Å) x = 15.723, y = 15.996, z = 23.498
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IL6, JUN exhibited stronger binding affinity with the
hepatoprotective ingredients. So, we speculated that JUN may
play a non-negligible role in the process of BS alleviate NAFLD.

The stability of the protein-ligand complexes formed by the
hepatoprotective ingredients and the key genes were investigated
based on the method of MD simulation. Here, for each key gene, the
docking complexes with the lowest binding energy was selected to
perform MD simulation (Figures 13A,C,E). Considering that
paeoniflorin is the major active ingredient of BS. Therefore, the
docking complexes containing paeoniflorin were also subjected to
MD simulation (Figures 13B,D,F). As a result, although there
existed some small fluctuations, the RMSD profiles of all studied
complexes were stable in nature (Figure 14A–C)). Specifically for
the complexes of JUN-benzoylpaeoniflorin and JUN-paeoniflorin,
the RMSD always kept at the value of around 2 Å over the entire
course of MD simulation. For the RMSF profiles (Figure 14D–F),
except for the end regions and several loop regions, the RMSF
values for most of the amino acid residue of the studied genes were
within acceptable range with fluctuation range less than 3 Å.
Furthermore, we also calculated binding free energy for each
selected docking complex by utilizing the method of MMPBSA.
As shown in Table 4, the binding free energy of the docking
complexes were found to lie between −31.66 and −17.15 kcal/
mol. In summary, all of the results of the MD simulations
mentioned above demonstrated that the studied docking
complexes has higher stability.

3 Discussion

In this work, an advanced network pharmacology approach was
proposed to uncover the scientific connotation of BS against
NAFLD. Compared with the method of conventional network
pharmacology, the research strategy adopted in the current study

has the advantages of more precision. Generally, network
pharmacology identifies the material basis of drugs based on the
connections between the components and the disease targets, and
the components exhibited higher number of disease targets
connections were defined as the potential material basis.
However, numerous network pharmacology research cases
showed that the components connected with the disease targets
were the mixtures of beneficial and harmful substances rather than
the real material basis. Herein, taking TCM-induced
hepatoprotection as a case, we established a novel computational
pharmacology-based method to identify the material basis of TCMs,
by which we attempted to improve the precision and actual
application value of network pharmacology. The proposed
computational pharmacology method consisted of three modules.
These three modules were developed based on molecular network,
database retrieval, and structure activity relationship techniques,
respectively. They possess different characteristics and complement
each other. Compared with the method of literature retrieval, our
computational pharmacology-based method could identify the
material basis of TCM-induced hepatoprotection more
comprehensively and more efficiently. Based on the
computational pharmacology method proposed, a total of
23 ingredients in BS were identified as liver-friendly substances,
among which 19 ingredients have been demonstrated to benefit to
the liver by animal or cell experiments. For the other four
ingredients, although direct evidence focused on their liver-
protecting effect was not found, no one of them was implicated
by drug-induced liver injury. In addition, RSs analysis found that
there existed abundant hepatoprotection-related RSs among the
potential hepatoprotective ingredients identified. Data mentioned
above indicated that our computational pharmacology method was
highly reliable. We believed that our method would provide a strong
technical support to disclose the material basis of TCM-induced
hepatoprotection. Then based on the hepatoprotective ingredients

FIGURE 12
Molecular docking score of the protein–ligand complexes. Compound 20: 11alpha, 12alpha-epoxy-3beta-23-dihydroxy-30-norolean-20-en-
28,12beta-olide.
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discovered above, we investigated the material basis and mechanism
of BS against NAFLD comprehensively.

Consistency analysis between the NAFLD-related targets and
BS-related targets identified 78 common targets. Both the tissue-

specific expression pattern analysis and subcellular localization
analysis indicated that these common targets were significantly
correlated with NAFLD. Molecular network analysis found that
at least 12 ingredients in BS could regulate these common targets.

FIGURE 13
Docking modes of the protein-ligand complexes which were selected to perform MD simulation. Figures (A, C, and E) separately represented the
docking complexes with the lowest binding energy for IL6, IL1β, and JUN. The docking complexes containing paeoniflorin were display in figures (B, D,
and F), respectively.
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Flavonoids, triterpenes, monoterpene glucosides, and phenolic acids
were found to be the major structure types. Our prior studies
suggested that phenolic acids, flavonoids, and triterpenes were
important natural sources of liver protectants (He et al., 2022). In
addition, monoterpene glucosides were reported to be the major
active components of BS (Jiang et al., 2020). Therefore, we
speculated that these 12 ingredients may be the major material
basis of BS against NAFLD. Interestingly, it seemed that
molecular docking analysis also verified such a speculation.
Compared with the other structure types, flavonoids,
triterpenes, monoterpene glucosides exhibited stronger
binding affinity with the key targets of BS on NAFLD.

Obviously, molecular docking analysis further indicating the
importance of these ingredients in the process of BS against
NAFLD. In fact, oxypeucedanin, eugenitin, α-cedrene and α-
cedrol also showed stronger binding affinity with the key targets.
We speculated that the lack of target data may be an important
reason for these ingredients escaped from the identification of
molecular network analysis. After all, for these four ingredients,
only two targets were collected.

Focused on the PPI network of BS on NAFLD, modular analysis
identified three functional modules in total. By mapping the targets
included in each functional module into the DAVID platform, a
total of 23 NAFLD-related KEGG pathways were enriched, among

FIGURE 14
MD simulation. RMSD (A–C) and RMSF (D–F) profiles of the selected docking complexes.
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which not less than 11 pathways have been reported to be associated
with BS-induced hepatoprotection. Besides, at least five pathways
have been demonstrated to play essential roles in the process of BS
alleviates NAFLD. Further analysis found that a total of 12 NAFLD-
related biological processes were involved by the KEGG pathways
enriched. It’s worth noting that not less than eight out of these
biological processes have been proved to be involved in the process
of BS against NAFLD. Except for identifying the key pathways and
the major biological processes, we also identified the key targets
based on hub gene analysis and microarray data analysis. As a result,
a total of three genes, including IL1-β, IL6, and JUN, were identified.
Through retrieving previously published literature, we found that
these three key genes indeed can be significantly
downregulated by BS.

In summary, our findings were highly consistent with reports
in the literature, indicating that the bioinformatics strategy
adopted in the current study were reasonable and reliable.
However, we must acknowledge that there still existed some
limitations in our research. Although we have validated our
results through molecular docking analysis, molecular
dynamics simulation analysis and literature analysis, but more
in-depth experimental verification is required to further confirm
our findings. In addition, the incomplete and missing of BS-
related targets may also affect our results. After all, some
potential hepatoprotective ingredients were found to lack of
the target data when we collected BS-related targets. With the
constant perfection of relevant data in the future, we believed that
our bioinformatics strategy would achieve a more satisfactory
performance.

4 Materials and methods

4.1 Collection of candidate compounds
of BS

The chemical components of BS were extracted from three
typical TCM databases, including TCMSP (Ru et al., 2014),
TCMID (Xue et al., 2013), and, ETCM (Xu et al., 2019). The
duplicates and the compounds without structures were removed.
For the remaining components, the pharmacokinetics parameters,
including drug likeness (DL) and oral bioavailability (OB),
were investigated. Those components satisfy at least one of the

following two conditions were defined as candidate compounds: (1)
OB ≥ 30%, DL ≥ 0.18 (data from TCMSP database), (2) both QED
(quantitative estimate of DL) and OB are good or moderate classes
(data from, ETCM database).

4.2 A computational pharmacology method
to identify the material basis of TCM-
induced hepatoprotection

In this section, a computational pharmacology method was
proposed to screen hepatoprotective ingredients from TCMs, by
which we attempted to provide valuable clues for elucidating the
material basis of TCM-induced hepatoprotection. The
computational pharmacology method consisted of three modules
detailed as follows.

Module 1: Module one is a hepatoprotective “TCM-ingredient”
network which consisted of 638 nodes and 2,262 edges. A total of
433 hepatoprotective ingredients and 205 hepatoprotective TCMs
were involved. This network intuitively displayed which compounds
were associated with the liver protection of the TCMs existed in
the network.

Module 2: Module two is a large scale dataset of TCM-induced
hepatoprotection, including 677 hepatoprotective
phytoconstituents. For each phytoconstituent, we provided the
English name and the simplified molecular input line entry
system (SMILES) information, which enables researchers to
retrieve this dataset by the method of name or structure matching.

Module 3: Module three is an in silicomodel which aimed at
predicting the hepatoprotective activity of phytoconstituents
derived from TCMs. This in silico model was established based
on 709 phytoconstituents by integrating seven types of
machine learning algorithms. Both the 5-fold cross-
validation and the external validation produced accuracy
greater than 85%, indicating that this model is reasonably
successful.

Details on these three modules mentioned above can be found
in our prior published work (He et al., 2022). It’s worth noting
that the hepatoprotective ingredients identified by the
computational pharmacology method can be classified into
two categories, including the known hepatoprotective
ingredients and the putative hepatoprotective ingredients. The
former was provided by module one and module 2, and the latter
was provided by module 3. They constitute together the material
basis of TCM-induced hepatoprotection. The detailed workflow
of the computational pharmacology method was provided
in Figure 15.

4.3 Collection of targets for the potential
hepatoprotective ingredients in BS

For each ingredient, the targets consisted of the known targets
and the putative targets. We obtained the known targets by
searching DrugBank (Wishart et al., 2008) and CTD (Wishart
et al., 2008) databases using the ingredient name as input.
Generally, data from DrugBank and CTD databases was highly
reliable, because it always has been well documented by experiments.

TABLE 4 Binding free energies of the selected docking complexes. All of the
energies were provided in the format of average ± standard deviation.

ID Docking
complexes

Binding free energy
(kcal/mol)

1 IL6-Oleanolic Acid −17.15 ± 3.57

2 IL6-Paeoniflorin −26.74 ± 3.77

3 IL1β-Benzoylpaeoniflorin −26.01 ± 4.96

4 IL1β-Paeoniflorin −18.99 ± 4.11

5 JUN-Benzoylpaeoniflorin −30.77 ± 2.99

6 JUN-Paeoniflorin −31.66 ± 4.39
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The putative targets were extracted from two frequently used
database platforms, STITCH (Szklarczyk et al., 2016) and Swiss
Target Prediction (Gfeller et al., 2014). The reliability of the putative
targets is often evaluated by the index of confidence (range from 0 to
1). The closer the confidence score is to 1, the more reliable the
putative target is. However, if the threshold of the confidence is set
too high, it is difficult to obtain sufficient data. Therefore, here, to
make a better compromise between the quality and quantity of the
data, we set the threshold values of data from STITCH and Swiss
Target Prediction as 0.70 and 0.85, respectively. After removing the
duplicates and those non-human targets, the remaining targets were
further analyzed.

4.4 Collection of NAFLD-related targets

The NAFLD-related targets were collected from three existing
resources, including DisGeNET (Piñero et al., 2017), CTD (Davis
et al., 2009), and NCBI-gene (https://www.ncbi.nlm.nih.gov/gene/).
We searched these databases by the keyword of “Non-alcoholic Fatty
Liver Disease,” and only those human-related and non-repeated
targets were taken into consideration. In addition, to improve the
reliability of the data from CTD, only those targets curated by the
experts were extracted.

4.5 Construction of the “ingredient-
target” network

Firstly, consistency analysis between the NAFLD-related targets
and BS-related targets was conducted based on the online analysis
tool Venn Diagram (http://bioinformatics.psb.ugent.be/webtools/

Venn/), by which we aimed at identifying the common targets
between NAFLD and BS. Then network visualization tool Gephi
(version 0.9.2) was utilized to construct the “ingredient-target”
network by taking the common targets and the common targets-
related compounds as input.

4.6 Tissue-specific expression
pattern analysis

The tissue-specific pattern of mRNA expression can indicate
important clues about gene function. BioGPS (Wu et al., 2016) is a
centralized gene-annotation portal. One of its most important
function is that enables researchers to access the mRNA
expression data of genes in 84 organs. Herein, to investigate the
distribution of the common targets attained in Section 4.5 within the
liver, we ranked the target expression patterns based on their
expression levels in the liver. To be specific, for certain target, if
it expressed highest in the liver among the 84 organs, it was ranked 1.
Inversely, if it expressed lowest in the liver, it was ranked 84.

4.7 Subcellular localization analysis

As we all known that protein activities are tightly linked to the
cellular compartment and microenvironment where they are
present. Elucidating the subcellular localization of proteins
contributes to deeply understand their biological functions. Here,
The Human Protein Atlas (Pontén et al., 2008), a large-scale
biological database aiming at mapping the entire human
proteome, was utilized to perform the subcellular
localization analysis.

FIGURE 15
Workflowof the computational pharmacologymethod for identifying thematerial basis of TCM-induced hepatoprotection. HISG, hepatoprotective
ingredient subgroup; HIG, hepatoprotective ingredient group.
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4.8 Construction of the protein-protein
interaction (PPI) network

Protein-protein association network is of great value to understand
the biological phenomena. As a free and publicly available source,
STRING (Szklarczyk et al., 2023) database providing a comprehensive
and objective global networkwhere both the direct (physical) and indirect
(functional) interactions between proteins were included. In the current
study, the protein-protein interaction (PPI) information was extracted
from this global network by using the common targets between NAFLD
and BS as input. The PPI information with confidence score <0.4 was
removed, and the remaining data was input into the network
visualization tool Gephi (version 0.9.2) to obtain the PPI network map.

4.9 Identification of the hub genes

The importance of nodes in a network was often inferred based on
their network topological features. As a powerful Cytoscape plugin,
CytoHubba (Chin et al., 2014) provides at least 11 algorithms to rank
nodes in a network, among which the Degree algorithm is most
commonly used. Similar to the Degree algorithm, the Maximal Clique
Centrality (MCC) algorithm was also proposed based on the local
network topological features of nodes. Chin et al. have attempted to
identify the essential proteins from the yeast PPI network by
implementing multiple algorithms. As a consequence, the MCC
algorithm was found to exhibit a better performance on the precision
in comparison with other algorithms (Chin et al., 2014). To integrate the
advantages of different algorithms, both Degree and MCC algorithms
were adopted. Besides, Edge PercolatedComponent (EPC) algorithmwas
also implemented. Different from the Degree andMCC algorithms, EPC
algorithmwas a global network topological features-based algorithm. For
each algorithm, the top 10 geneswere collected, and the commongenes of
those three algorithms mentioned above were defined as hub genes.

4.10 Microarray data analysis

Firstly, hepatic gene expression data (GSE89632) in patients with
NAFLD and in healthy donors were downloaded fromGene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). Chip
GSE89632 was from platform GPL14951 and contained 24 healthy
controls (HC), 20 simple steatosis samples (SS), and 19 nonalcoholic
steatohepatitis (NASH) samples. Then GEO2R analysis (https://www.
ncbi.nlm.nih.gov/geo/geo2r/) was performed to identify genes that are
differentially expressed between the NAFLD patients and the healthy
controls. The detailed screening criteria were set as p < 0.05 and |
log(FC)| > 1. Finally, we compared the differentially expressed genes
with the hub genes obtained in Section 4.9, and the common genes
between these two datasets were further analyzed.

4.11 Molecular docking analysis

To investigate the interactions between the active compounds and
the key targets, molecular docking analysis was performed based on
AutoDock Vina (version 1.1.2). Here, the 2D structures of the active
compounds were obtained from PubChem database, and the X-ray
crystallography-based structures of the key targets were downloaded
from RCSB Protein Data Bank.When we implemented the AutoDock
program, the size of the Grid Box was set to 40 × 40 × 40, and the
exhaustiveness value was set as 100. Finally, the docking complexes
with the lowest binding energy were selected for further analysis.

4.12 Molecular dynamics (MD) simulations

MDsimulation is an efficientmethod to evaluate the stability of the
protein-ligand complexes. In present study, MD simulation was
carried out based on AMBER 18 software package with the force

TABLE 5 A summary of the databases and analysis tools utilized in the current study.

ID Data/analysis type Source/tool

1 Chemical component of BS TCMSP, TCMID, ETCM

2 DL and OB of chemical component TCMSP, ETCM

3 BS-related targets DrugBank, CTD, STITCH, Swiss Target Prediction

4 NAFLD-related targets DisGeNET, CTD, NCBI-gene

5 Tissue-specific expression pattern analysis BioGPS

6 Subcellular localization analysis The Human Protein Atlas

7 Protein-protein interaction STRING

8 Identification of the hub genes CytoHubba

9 Microarray data analysis Gene Expression Omnibus, GEO2R

10 Molecular docking analysis AutoDock Vina (version 1.1.2)

11 Molecular Dynamics Simulations AMBER 18 software package

12 Modular analysis Cytoscape, MCODE algorithm

13 KEGG pathway enrichment analysis DAVID

14 Network visualization Gephi (version 0.9.2)
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fields of FF14SB andGAFF. For each studied docked complex, a 100 ns
MD simulation was performed under the condition of constant
temperature. Finally, several important indices, including Root
Mean Square Deviation (RMSD), Mean Square Fluctuation (RMSF)
and binding free energy were calculated, by which we attempted to
evaluate the stability of the docked complexes comprehensively. Of
note, here, the binding free energywas calculated based on the last 50ns
trajectories by utilizing the MMPBSA. py module.

4.13 Modular analysis of the PPI network

Molecular network is a biological system which consisted of a
large number of nodes and edges. The characteristic of high
complexity making it to be a challenging work to elucidate its
scientific connotation. Network module theory holds the view
that biological system network has modularity, and the nodes in
the same module always perform some biological functions
cooperatively (Lorenz et al., 2011). Therefore, modular analysis is
considered to be an effective method to analyze the complex
biological network. During the past decade, dozens of modular
analysis methods have been proposed. To solve the problem with
optimization of the network module division, Gu et al. proposed a
network structure entropy-based method to evaluate the effect of
11 commonly used module division methods. As a result, Molecular
Complex Detection (MCODE) algorithm was found to be superior
to other algorithms (Gu et al., 2018). Therefore, in present study, the
MCODE algorithm was implemented to identify the functional
modules of BS on NAFLD.

4.14 Kyoto Encyclopedia of genes and
genomes (KEGG) pathway
enrichment analysis

To identify the pathways involved in BS on NAFLD, the
platform of Database for Annotation, Visualization and
Integrated Discovery (DAVID) (Dennis et al., 2003) was utilized
to perform Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis, and only those pathways of which adjusted
p-values <0.05 were taken into consideration. In addition, for each
pathway attained, we annotated its biological functions
systematically by summarizing the related information recorded
in literature and databases.

All of the databases utilized in the current study were listed in
Table 5 in detail, which would assist the reader to understand our
research methods more easily and quickly.

5 Conclusion

In present study, to clarify the material basis and mechanism of BS
against NAFLD in a precise manner, an original computational
pharmacology method for identifying the hepatoprotective
ingredient group of TCMs was proposed. Then by incorporating
with the techniques of network pharmacology, molecular docking,
and molecular dynamics simulation, the proposed computational
pharmacology method was utilized to reveal the scientific

connotation of BS on NAFLD from multiple perspectives, including
active ingredients, key targets, key pathways and the major biological
processes involved. As a result, a total of 12 ingredients, mainly
including monoterpene glucosides, flavonoids, triterpenes, and
phenolic acids, were found to be associated with the anti-NAFLD
effect of BS. Hub gene analysis and microarray data analysis indicated
that IL1-β, IL6, and JUN were the key targets of BS on NAFLD. The
findings mentioned above were then further validated via molecular
docking analysis, molecular dynamics simulation analysis, and
literature analysis. In addition, the key KEGG pathways and the
major biological processes of BS on NAFLD were also identified. It’s
worth noting that the NAFLD pathway was significantly enriched.
Further analysis found that there was a great deal of evidence available
in the literature to support the regulatory effect of BS on NAFLD
pathway. In addition, inflammation, apoptosis, lipid metabolism, and
glucose metabolismwere found to play critical roles in the process of BS
alleviate NAFLD. In summary, a novel and effective bioinformatics
strategy was proposed to uncover the material basis and mechanism of
TCM in this work, based on which the anti-NAFLD effect of BS was
systematically investigated from multiple perspectives.
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