
Editorial: Combinational therapy
and nanotechnologies in
combating pathogenic microbes
and antibiotic resistance

Kwang-sun Kim*

Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University,
Busan, Republic of Korea

KEYWORDS

multidrug-resistant pathogens, combinational therapy, nanocomposites, infectious
diseases, tuberculosis

Editorial on the Research Topic
Combinational therapy and nanotechnologies in combating pathogenic
microbes and antibiotic resistance

While antibiotics have significantly reduced bacterial infections and deaths, their
indiscriminate use and environmental factors have resulted in multidrug resistance
(MDR), which limits the effectiveness of current therapies. MDR is estimated to cause
700,000 deaths annually and could rise to 10 million by 2050 without immediate
intervention (O’Neill, 2016). Developing new antibiotics is a potential solution, but the
development pipeline is limited, andMDR evolves rapidly. To overcome these limitations, a
comprehensive understanding of the limitations of current antibiotic therapy and new
combinatorial strategies with multiple antibiotics and antimicrobials (Tyers and Wright,
2019) are needed.

The current topic explores the comparative pharmacokinetics (PK) of polymyxin B
(PMB), a last-resort antibiotic for MDR Gram-negative bacterial infections, and a meta-
analysis of high-dose isoniazid therapy for MDR or XDR Mycobacterium tuberculosis
(MTB). Additionally, it introduces new combination therapies involving glutathione (GSH)
and nanocomposites.

Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a major contributor to
nosocomial infections in humans, particularly those leading to hospital-acquired
urinary, pneumonia, and bloodstream infections (Pendleton et al., 2013) and has been
regarded as one of the critical-priority bacteria by the WHO (Tacconelli et al., 2018; Zhen
et al., 2021). This drug-resistant bacterium is challenging to treat due to its resistance to
multiple antibiotics like β-lactams, fluoroquinolones, and aminoglycosides. However,
exogenous GSH, with its antibacterial properties and ability to clear biofilms, could be a
potential solution (Das et al., 2019). GSH supports antibiotics like quinolones and
aminoglycosides and enhances bacterial killing and impacts antibiotic effectiveness
(Goswami et al., 2006; Goswami and Jawali, 2007). The study by Yi et al. (2023)
demonstrated that GSH increases the potency of meropenem, a commonly used
antibiotic for severe MDR Gram-negative pathogens, including CRKP (Truong et al.,
2022). The authors determined the minimum inhibitory concentration (MIC) and
minimum bactericidal concentration (MBC) of GSH against 30 CRKP isolates and
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found that 9 mg/mL of GSH effectively eradicated 99.9% of CRKP.
Additionally, the synergy between GSH and meropenem was
evaluated by determining the fractional inhibitory concentration
index (FICI), and it was found that 86.7% of the isolates showed
significant antagonism of bacterial growth after 24 h of exposure to
the synergistic combination. The GSH-induced potency of
meropenem was found to be concentration-dependent, and the
underlying mechanisms were assessed by analyzing common
antimicrobial mechanisms, including ROS generation and
metabolite analysis. The study found that the increase in
membrane permeability due to alterations in
glycerophospholipids is the plausible mechanism of the synergy,
which could potentially provide a new route for CRKP treatment.

Polymyxins are typically considered last-resort antibiotics
against extensively drug-resistant (XDR) Gram-negative bacteria,
with PMB being associated with a high rate of nephrotoxicity,
believed to originate from its accumulation in the renal proximal
tubule (Manchandani et al., 2015; Yun et al., 2015; Liu et al., 2023).
While international guidelines recommend calculating the dose of
PMB based on the patient’s weight, regardless of age (Tsuji et al.,
2019), the relationship between age, illness status, and polymyxin-
related nephrotoxicity remains controversial. To investigate PMB
exposure in elderly and young critically ill patients and determine
the covariates of PK for PMB in critically ill patients, Zeng et al.
(2024) measured plasma PMB concentrations over a 24-hour period
at steady state. Their results showed that total body weight, rather
than age, was the primary factor affecting PMB clearance, consistent
with prior studies. However, this study also revealed that elderly
patients exhibited delayed PMB clearance and metabolism
compared to young critically ill patients. This research is
noteworthy as it is the first to compare PMB exposure and

individual PK parameters in critically ill patients of different
ages, given standard PMB dosing, and contributes to optimizing
PMB use in clinical practice for critically ill patients. A limitation of
this study, however, is its small sample size of critically ill patients
with varying renal functions, ages, and body weights.

Mycobacterium tuberculosis continues to be a significant
challenge as it is the leading cause of mortality globally (WHO,
2023). Despite its simplicity, the action mechanism of isoniazid
(INH), the most efficient prophylactic drug against MTB infections
since 1952 (Fernandes et al., 2017), is complicated (Unissa et al.,
2016). Its continuous use can result in the emergence of MDR and
XDR MTB due to acquired genetic mutations (Dominguez et al.,
2023). Although the WHO previously recommended high-dose
INH as an MDR and XDR MTB regimen (WHO, 2019), it was
removed from standard treatment in recent WHO guidelines
(WHO, 2020) due to insufficient efficacy data. However, high-
dose INH is still indicated for children, patients without
sufficient alternatives, and special mutants caused by low-level
INH resistance (Dominguez et al., 2023). Some studies have
reported the clinical efficacy of the regimen (Cambau et al., 2015;
Lempens et al., 2018), but no recent systematic reviews and meta-
analyses have been published on the clinical efficacy and safety
outcomes of high-dose INH therapy. A study by Zhou et al. (2024)
found that high-dose INH administration for MDR-MTB treatment
is associated with excellent efficacy and a favorable outcome, with an
acceptable adverse-event profile. However, more research is needed
to investigate the impact of high-dose INH on long-term outcomes
and its role in specific subpopulations.

Nanocomposites, made up of matrix materials and nanofillers,
are a promising alternative to conventional antibiotics, as per a
comprehensive review by Saravanan et al. (2023). These
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nanocomposites, including metal/metal oxides, chitosan-metals,
titanium-based nanoparticles, graphene-based materials, and
multi-walled carbon nanotubes with or without polymers, can
serve as effective antibacterial agents when tailored to enhance
treatment efficacy and reduce the risk of MDR. Furthermore,
combining these nanocomposites with existing antibiotics can
create novel antimicrobials that increase the efficacy of current
antibiotics or enable the use of abandoned antibiotics due to
resistance. However, challenges such as toxicity, safety, scalability,
selectivity, and bioavailability need to be addressed before clinical
application.

The studies discussed in this Research Topic will offer
insights into current drug usage against MDR or XDR
bacterial infections, materials for targeted bacterial killing, and
the development of biocompatible and modality-specific
antimicrobials.
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