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Our lab is investigating the efficacy profiles of tropine analogs against opioid-
induced respiratory depression. The companionmanuscript reports that the cell-
permeant tropeine, tropine ester (Ibutropin), produces a rapid and sustained
reversal of the deleterious actions of fentanyl on breathing, alveolar-arterial (A-a)
gradient (i.e., index of alveolar gas exchange), and arterial blood-gas (ABG)
chemistry in freely-moving male Sprague Dawley rats, while not
compromising fentanyl analgesia. We report here that in contrast to Ibutropin,
the injection of the parent molecule, tropine (200 μmol/kg, IV), worsens the
adverse actions of fentanyl (75 μg/kg, IV) on ventilatory parameters (e.g.,
frequency of breathing, tidal volume, minute ventilation, peak inspiratory and
expiratory flows, and inspiratory and expiratory drives), A-a gradient, ABG
chemistry (e.g., pH, pCO2, pO2, and sO2), and sedation (i.e., the righting
reflex), while not affecting fentanyl antinociception (i.e., the tail-flick latency)
in freely-moving male Sprague Dawley rats. These data suggest that tropine
augments opioid receptor-induced signaling events that mediate the actions of
fentanyl on breathing and alveolar gas exchange. The opposite effects of
Ibutropin and tropine may result from the ability of Ibutropin to readily enter
peripheral and central cells. Of direct relevance is that tropine, resulting from the
hydrolysis of Ibutropin, would combat the Ibutropin-induced reversal of the
adverse effects of fentanyl. Because numerous drug classes, such as cocaine,
atropine, and neuromuscular blocking drugs contain a tropine moiety, it is
possible that their hydrolysis to tropine has unexpected/unintended
consequences. Indeed, others have found that tropine exerts the same
behavioral profile as cocaine upon central administration. Together, these data
add valuable information about the pharmacological properties of tropine.
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Introduction

Tropine ring structures (Trautner and McCallum, 1950; Zeile and
Heusner, 1959; Issekutz, 1963) are vital components of many bioactive
drugs, such as cocaine, atropine, and a variety of neuromuscular
blockers, such as decamethylene bis N,N′ atropinium and bis [N
(3,4-diacetoxybenzyl) tropaninium (alpha-yl) glutarate] dibromide
(Gyermek, 2002; Kohnen-Johannsen and Kayser, 2019). Our
companion manuscript (Getsy et al., 2024) details evidence that
intravenous injection of the cell-permeant tropeine, tropine ester
(Ibutropin), also known as isobutyric tropine ester; butropine; tropine
isobutyrate, iisobutyroyl tropine, elicits a rapid and sustained reversal of
the adverse actions of fentanyl on breathing, alveolar-arterial (A-a)
gradient (i.e., index of alveolar gas exchange), and arterial blood-gas
(ABG) chemistry (i.e., pH, pCO2, pO2, and sO2), while not reducing
fentanyl-induced analgesia in unanesthetized male Sprague Dawley rats.
Although we do not have direct information about Ibutropin, we expect
that it will be highly cell-penetrant like other tropeines (Gyermek, 2002;
Kohnen-Johannsen and Kayser, 2019). The actions of Ibutropin are
likely to involve effects on functional proteins in the plasma membrane
(e.g., ion-channels and receptors) and functional proteins within cells.
Previous research has shown that tropeines exert direct effects on
serotonin, acetylcholine, and histamine receptor subtypes (Gyermek,
1953a; b, Gyermek, 1953, 2002; Zaĭtseva and Gerchikov, 1969;
Mashkovskiĭ and Shvarts, 1979; Gyermek and Lee, 2009a; b), and
allosterically regulate glycine ion-channel receptor activity (Macksay
et al., 2004; 2008; 2009a; b; SanMartin et al., 2019) alongwith the activity
of other ion channels, such as Na+ and K+-channels (Friess et al., 1961a;
b; 1963; 1964a; b, 1965a; b; 1966; 1968; 1969; Blaustein, 1968; Thron
et al., 1963). All the receptors and ion-channels mentioned above have
important roles in the central regulation of breathing (Richter et al., 2003;
Shao and Feldman, 2009; Manzke et al., 2011). Nonetheless, to date, no
information has been reported as to whether tropine has any effects on
ventilatory control systems.

At present, there is little direct information about the actual
metabolites of Ibutropin or their pharmacological actions in vivo.
However, the potential desterification of Ibutropin to tropine
(Supplementary Figure S1) by nonspecific carboxyesterases within
blood plasma (Butterworth et al., 1993; Nishida et al., 1996;
Hemmings and Egan, 2018) may be a factor in the ability of
Ibutropin to exert its potent effects against opioid-induced
respiratory depression (OIRD) (Getsy et al., 2024). This is
especially possible because tropine exerts the same behavioral
profile as cocaine upon central administration to rats (Zakusov
et al., 1978). As such, the objectives of this study were to
determine the effects an injection of tropine (200 μmol/kg, IV) has
on the deleterious actions of fentanyl (75 μg/kg, IV) on breathing by
looking at changes in ventilatory parameters, A-a gradient, ABG
chemistry, antinociception and sedation (i.e., righting reflex) in freely-
moving (unanesthetized) adult male Sprague Dawley rats. The data
collected in this study provides evidence that in contrast to Ibutropin,
the administration of tropine largely exacerbates the opioid receptor
signaling events that mediate the effects of fentanyl on breathing,
alveolar gas exchange, and sedation, while not affecting fentanyl-
induced antinociception. Therefore tropine, when liberated by the
hydrolysis of Ibutropin, appears to combat the Ibutropin-induced
reversal of the adverse effects of fentanyl on breathing. Whether the
ability of tropine to exacerbate the effects of fentanyl is due to allosteric

modulation of opioid receptors and/or modulation of intracellular
cascades elicited by fentanyl will be the focus of future studies.

Material and methods

Permissions, rats, and surgical procedures

All studies were carried out in accordance with the NIH Guide for
Care and Use of Laboratory Animals (NIH Publication No. 80-23)
revised in 2011, and in compliance with the ARRIVE (Animal Research:
Reporting of In Vivo Experiments) guidelines (https://arriveguidelines.
org/). All protocols involving rats were approved by the Animal Care and
Use Committees of Galleon Pharmaceuticals, Case Western Reserve
University, and the University of Virginia. Adult male Sprague Dawley
rats were purchased from Harlan Industries (Madison, WI,
United States). After 4 days of recovery from transportation, rats were
implanted with a jugular vein catheter only or with a jugular vein catheter
and a femoral artery catheter under 2%–3% isoflurane anesthesia
(Henderson et al., 2014; Gaston et al., 2021). The rats were given
4 days to recover from surgery before use in any experiment. All
catheters were flushed with a heparin solution (50 units of heparin in
0.1 M, pH 7.4 phosphate-buffered saline) immediately after surgery and
again 8 h later. The catheters were also flushed twice-daily at 8 a.m. and
4 p.m. on recovery days 2–4 and again 3–4 h before starting a study on
post-surgery day 5 (therefore, nine flushes in total). Injectable (liquid)
fentanyl citrate and tropine powder were obtained from Sigma-Aldrich
(St. Louis,MO,United states). The pHof all stock solutions of vehicle and
tropine was adjusted to 7.0 with 0.25M NaOH. All studies were
performed in a quiet room with a relative humidity of 49% ± 2% and
room temperature of 21.3°C ± 0.2°C. The ABG chemistry and
antinociception studies were done in separate groups of rats so as not
to compromise the ventilatory recording studies. The plethysmography,
antinociception recording sessions and arterial blood sampling studies
(used forABGmeasurements)were performedby an investigatorwhowas
blinded to the study protocol and thus used syringes with the opioid,
vehicle or test drugs that were prepared by another investigator who was
not involved in the study protocol. In every case, the data files resulting
from each study were collated and analyzed by yet another investigator in
the groupwhodidnotmakeup the syringes or perform the studyprotocol.

Whole body plethysmography
measurement of ventilatory parameters

Ventilatory parameters were recorded continuously in
unrestrained, freely-moving rats by whole body plethysmography
(PLY3223; Data Sciences International, St. Paul, MN), as detailed
previously (Getsy et al., 2022a; b). The directly recorded and
calculated (derived) parameters are defined in Supplementary
Table S1. The ventilatory parameters and abbreviations are
frequency of breathing (Freq), tidal volume (TV), minute
ventilation (MV), inspiratory time (Ti), expiratory time (Te), Ti/
Te, end inspiratory pause (EIP), end expiratory pause (EEP), peak
inspiratory flow (PIF), peak expiratory flow (PEF), PIF/PEF,
expiratory flow at 50% expired TV (EF50), relaxation time (RT),
inspiratory drive (TV/Ti), expiratory drive (TV/Te), expiratory
delay (Te-RT), non-eupneic breathing index (NEBI), and NEBI
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corrected for Freq (NEBI/Freq). A diagram, adapted from Lomask
(2006), showing relationships between some directly recorded
parameters is shown in Supplementary Figure S2. On the day of
the study, each rat was placed in an individual plethysmography
chamber and allowed at least 60 min to acclimatize so that resting
(baseline, Pre) ventilatory parameter values could be accurately
defined. Two groups of rats (see Supplementary Table S2 for
numbers, ages, weights, and baseline ventilatory parameters)
received an injection of fentanyl (75 μg/kg, IV). After 5 min, one
group was injected with vehicle (saline, 100 μL/100 g body weight,
IV), and the other group was injected with tropine (200 μmol/kg,
IV). Ventilatory parameters were monitored for 60 min after these
injections. The body weights of both groups were similar to one
another (p > 0.05), therefore, ventilatory parameters related to
volumes (e.g., TV, PIF, and PEF) are presented without body
weight corrections. The FinePointe (DSI) software constantly
corrected digitized ventilatory values originating from actual
waveforms for alterations in chamber humidity and chamber
temperature. Pressure changes associated with respiratory
waveforms were converted to volumes (e.g., TV, PIF, and PEF)
using the algorithms of Epstein and Epstein (1978) and Epstein et al.
(1980). Factoring in the chamber humidity and temperature, cycle
analyzers filtered the acquired signals, and FinePointe algorithms
generated an array of box flow data that identified a waveform
segment as an acceptable breath. From this array, minimum and
maximum box flow values were obtained and multiplied by a
compensation factor provided by the selected algorithm, thereby
producing TV, PIF, and PEF values used to determine non-eupneic
breathing events expressed as non-eupneic breathing index (NEBI,
% of non-eupneic breathing events per epoch) (Getsy et al., 2014).
Apneic pause was calculated by the formula (Expiratory time/
Relaxation time) − 1 (Gaston et al., 2021).

Protocols for blood-gas measurements and
determination of arterial-alveolar gradient

Changes in ABG chemistry values (pH, pCO2, pO2, and sO2) and
A-a gradients were determined as detailed previously (Getsy et al.,
2022e; f). The A-a gradient defines differences between alveolar and
arterial blood O2 concentrations (Stein et al., 1995; Story, 1996). For
example, a decrease in PaO2 without a concomitant alteration in the
A-a gradient is the result of hypoventilation, whereas a decrease in
PaO2 with a concomitant increase in A-a gradient indicates an
ongoing mismatch in ventilation–perfusion in alveoli. A-a
gradient = PAO2 – PaO2, where PAO2 is the partial pressure (p)
of alveolar O2, and PaO2 is pO2 in sampled arterial blood. PAO2 =
[(FiO2 × (Patm – PH2O) − (PaCO2/respiratory quotient)], where FiO2

is the fraction of O2 in inspired air; Patm is atmospheric pressure; PH2O

is the partial pressure of H2O in inspired air; PaCO2 is the pCO2 in
arterial blood; and respiratory quotient (RQ) is the ratio of (CO2

eliminated)/(O2 consumed). We took FiO2 of room-air to be 21% =
0.21, Patm to be 760 mmHg, and PH2O to be 47 mmHg (Gaston et al.,
2021). We took the RQ value of our adult male rats to be 0.9 (Stengel
et al., 2010; Chapman et al., 2012). Briefly, on the day of the study, an
arterial blood sample (100 μL) was taken from two groups of rats to
determine pre-drug (baseline) ABG and A-a gradient values. Thirty
minutes later, both groups received a bolus injection of fentanyl

(75 μg/kg, IV), and an arterial blood sample (100 μL) was taken
post 5 min. Immediately afterward, one group (83.7 ± 0.7 days of
age; 339 ± 2 g body weight) received a bolus injection of vehicle, and
the other group (83.3 ± 0.9 days of age; 336 ± 2 g body weight)
received a bolus injection of tropine (200 μmol/kg, IV). Arterial blood
samples were taken from both groups 5 min, 10 min, and 15 min later
for determination of ABG values. All ABG chemistry values were
determined by a radiometer blood-gas analyzer (ABL800 FLEX).

Antinociception assessment by tail-flick
latency assay

The antinociceptive actions of fentanyl and tropine were
determined by tail-flick latencies (TFL) via the use of a Tail-Flick
Analgesia Meter (IITC Life Science Inc., United States) as detailed
previously (Lewis et al., 1991; Meller et al., 1991; Getsy et al., 2022a;
g). This involved a minor degree of manual restraint while
positioning the tail to apply a thermal beam sufficient to induce
a latency of tail withdrawal of approximately 2.5 s. Baseline TFL
were tested in all rats 30–60 min prior to drug injection. Next, all rats
received an injection of fentanyl (75 μg/kg, IV), and TFL were
recorded at 5 min. One group of rats (83.3 ± 0.9 days of age;
336 ± 1 g body weight, n = 6) then received an injection of vehicle
(saline, 100 μL/100 g body weight, IV), and the second group (83.0 ±
0.8 days of age; 335 ± 2 g bodyweight, n = 6) received a bolus injection
of tropine (200 μmol/kg, IV). TFLwere then recorded 10 min, 25 min,
40 min, and 55 min after these injections.

Sedation—righting reflex

Separate groups of rats were used to evaluate the effects of
tropine (200 μmol/kg, IV) on the duration of fentanyl (75 μg/kg, IV)
impairment of the righting reflex (i.e., the inability to stand on all
four legs) as described previously (Jenkins et al., 2021). Each rat was
placed in an open plastic chamber to allow the duration of loss of
righting reflex to be accurately assessed. The time when the rat
spontaneously stood on all four paws and remained so for at least
10 s was taken as the point of recovery of the righting reflex (Ren
et al., 2015; 2020; Yu et al., 2018). One group of rats (80.0 ± 0.5 days
of age; 333 ± 1 g, n = 9) received an injection of fentanyl and, after
5 min, an injection of vehicle. A second group of rats (79.7 ± 0.4 days
of age; 332 ± 1 g, n = 9) received an injection of fentanyl and, after
5 min, an injection of tropine. The duration of the effect of fentanyl
was defined as the time interval from the time of injection of fentanyl
administration to the recovery of the righting reflex.

Data analyses

All data are presented asmean± SEMandwere analyzed by one-way
and two-way ANOVA with Bonferroni corrections for multiple
comparisons between means using the error mean square terms from
the ANOVAs (Getsy et al., 2022a—c). A p < 0.05 value was taken as the
initial significance level and was modified by the number of between-
mean comparisons. The modified t-statistic for two groups, for instance,
is t = (mean group 1 − mean group 2)/[s × (1/n1 + 1/n2)

1/2], where
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s2 = mean square within groups term from the ANOVA analysis, and n1
andn2 are the number of rats in each group. Statistical analyses were done
with GraphPad Prism software (GraphPad Software, Inc., La Jolla, CA).

Results

Ventilatory parameters

The ages, body weights, and baseline ventilatory parameters of the
two groups of rats used in the ventilatory studies are provided in

Supplementary Table S2. There were no between-group differences
for any of the ventilatory parameters (p > 0.05 for all comparisons).
As detailed below, two groups of rats received an injection of fentanyl
(75 μg/kg, IV), and, after 5 min, one group received an injection of vehicle
(VEH), and the other group received an injection of tropine
(200 μmol/kg, IV). Summaries of frequency of breathing (Freq), tidal
volume (TV), andminute ventilation (MV) before (Pre), after injection of
fentanyl (75 μg/kg, IV), and after subsequent injection of vehicle or
tropine (200 μmol/kg, IV) are given in Figure 1. Fentanyl elicited
pronounced decreases in Freq (Panel A), TV (Panel B), and,
consequently, MV (Panel C) in both groups of rats. Tropine elicited a

FIGURE 1
A summary of the values for frequency of breathing (A), tidal
volume (B), and minute ventilation (C) before (Pre), following injection
of fentanyl (75 μg/kg, IV), and subsequent injection of vehicle or
tropine (200 μmol/kg, IV) in freely-moving adult male rats. The
data are presented as mean ± SEM. There were six rats in each group.

FIGURE 2
A summary of the values for inspiratory time (A), expiratory time
(B), and inspiratory time/expiratory time (Ti/Te) (C) before (Pre),
following injection of fentanyl (75 μg/kg, IV), and subsequent injection
of vehicle or tropine (200 μmol/kg, IV) in freely-moving adult
male rats. The data are presented as mean ± SEM. There were six rats
in each group.
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prompt worsening of Freq, TV, andMV that remained for about 20 min
post injection. Values for inspiratory time (Ti), expiratory time (Te), and
Ti/Te before (Pre), following injection of fentanyl (75 μg/kg, IV), and after
subsequent injection of vehicle or tropine (200 μmol/kg, IV) are
summarized in Figure 2. The injection of fentanyl elicited pronounced
increases in Ti (Panel A) and Te (Panel B), with the relative changes
resulting in brief increases in Ti/Te (Panel C) in both groups. The
injection of tropine did not affect Ti, whereas it elicited a prompt increase
in Te of about 10 min in duration before declining to similar levels
observed in the vehicle-injected rats. As such, tropine markedly
diminished the fentanyl-induced increases in Ti/Te. Values for end-
inspiratory pause (EIP) and end-expiratory pause (EEP) before (Pre),
following the injection of fentanyl (75 μg/kg, IV), and after subsequent
injection of vehicle or tropine (200 μmol/kg, IV) are shown in Figure 3.
The injection of fentanyl elicited pronounced increases in EIP (Panel
A) and EEP (Panel B) in both groups of rats. EIP remained elevated for
about 30 min after the injection of vehicle, whereas EEP fell back to
baseline within 5 min. The injection of tropine elicited a prompt and
relatively sustained decrease in EIP, whereas it lengthened the time of
increase in EEP compared to vehicle-injected rats.

The values for peak inspiratory flow (PIF), peak expiratory flow
(PEF), and PIF/PEF before (Pre), following the injection of fentanyl
(75 μg/kg, IV), and after subsequent injection of vehicle or tropine
(200 μmol/kg, IV) are summarized in Figure 4. Fentanyl elicited a

pronounced and sustained decrease in PIF (Panel A) and a
pronounced decrease in PEF (Panel B). PEF levels gradually
returned to baseline and then rose above pre-fentanyl values with
injection of vehicle (Panel B). The injection of tropine further
diminished the fentanyl-induced decrease in PIF and prevented
the baseline overshoot in PEF. Taken together, these changes in PIF
and PEF resulted in sustained decreases in PIF/PEF that were similar
in both groups of rats (Panel C). The values for relaxation time (RT)
and expiratory delay (Te-RT) before (Pre), following the injection of
fentanyl (75 μg/kg, IV), and after subsequent injection of vehicle or

FIGURE 3
A summary of the values for end-inspiratory pause (A) and end-
expiratory pause (B) before (Pre), following injection of fentanyl
(75 μg/kg, IV), and subsequent injection of vehicle or tropine
(200 μmol/kg, IV) in freely-moving adult male rats. The data are
presented as mean ± SEM. There were six rats in each group.

FIGURE 4
A summary of the values for peak inspiratory flow (A), peak
expiratory flow (B), and peak inspiratory flow/peak expiratory flow
(PIF/PEF) (C) before (Pre), following injection of fentanyl (75 μg/kg, IV),
and subsequent injection of vehicle or tropine (200 μmol/kg, IV)
in freely-moving adult male rats. The data are presented as mean ±
SEM. There were six rats in each group.
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tropine (200 μmol/kg, IV) are summarized in Figure 5. The injection of
fentanyl elicited transient increases and then sustained decreases in RT
in both groups of rats that were minimally affected by the injection of
tropine (Panel A). Fentanyl elicited pronounced increases in expiratory
delay that gradually fell to below pre-injection levels in the rats that
received an injection of vehicle (Panel B). The injection of tropine
caused an immediate and relatively sustained increase in expiratory
delay before the values fell to values equal to those of the vehicle-injected
rats. The values for inspiratory drive (TV/Ti) and expiratory drive (TV/
Te) before (Pre), following the injection of fentanyl (75 μg/kg, IV), and
after subsequent injection of vehicle or tropine (200 μmol/kg, IV) are
shown in Figure 6. Fentanyl elicited a pronounced and sustained
decrease in inspiratory drive (Panel A), and a pronounced decrease
in expiratory drive (Panel B) that gradually rose to values above pre-
fentanyl injection in vehicle-injected rats. The injection of tropine
minimally affected inspiratory drive, but augmented the fentanyl-
induced decrease in expiratory drive and thus delayed the
subsequent overshoot to above pre-fentanyl levels as seen in the
vehicle-injected group. The values for NEBI and NEBI corrected for
frequency of breathing (NEBI/Freq) before (Pre), after injection of
fentanyl (75 μg/kg, IV), and subsequent injection of vehicle or tropine
(200 μmol/kg, IV) are shown in Figure 7. Fentanyl elicited a substantial
increase in NEBI (Panel A) and NEBI/Freq (Panel B) that eventually

returned to and remained below pre-fentanyl injection values in vehicle-
injected rats. The injection of tropine did not affect either parameter.

The total (cumulative) changes in ventilatory parameters elicited by
fentanyl (75 μg/kg, IV) over the 0 to 5 min period prior to injection of
vehicle or tropine are summarized in Supplementary Figure S3. Fentanyl
elicited significant decreases in Freq, TV, and MV that were associated
with increases in Ti, Te, Ti/Te, and EIP (Panel A). Fentanyl elicited
substantial decreases in PIF, PEF, PIF/PEF, inspiratory drive (TV/Ti),
and expiratory drive (TV/Te), with a substantial increase in expiratory
delay (Te-RT) (Panel B). Fentanyl also elicited substantial increases in
EEP, NEBI, andNEBI/Freq (Panel C). The total (cumulative) changes in
ventilatory parameters over the 0 to 5 min period following injection of
vehicle or tropine are summarized in Figure 8. As seen in Panel A,
fentanyl elicited decreases in Freq, TV, and MV in vehicle-injected rats
that were associated with increases in Ti, Te, Ti/Te, and EIP. The
decreases in Freq and MV were greater in tropine-treated rats, whereas
the increases in Ti/Te and EIP were diminished in the tropine-treated
rats. Additionally, the increases in Te were greater in the tropine-treated
rats compared to the vehicle-treated rats. As seen in Panel B, fentanyl
elicited substantial decreases in PIF, PIF/PEF, and TV/Ti, but not PEF,
RT, or TV/Te in vehicle-treated rats. Tropine-treated rats displayed
exaggerated decreases in PIF, PEF, and TV/Te. As seen in Panel C,
fentanyl elicited marked increases in EEP, but minimal changes in

FIGURE 5
A summary of the values for relaxation time (A) and expiratory delay
(expiratory time–relaxation time, Te-RT) (B) before (Pre), following
injection of fentanyl (75 μg/kg, IV), and subsequent injection of vehicle
or tropine (200 μmol/kg, IV) in freely-moving adult male rats. The
data are presented as mean ± SEM. There were six rats in each group.

FIGURE 6
A summary of the values for inspiratory drive (A) and expiratory
drive (B) before (Pre), after injection of fentanyl (75 μg/kg, IV), and
subsequent injection of vehicle or tropine (200 μmol/kg, IV) in freely-
moving adult male rats. The data are presented as mean ± SEM.
There were six rats in each group.
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Te-RT, NEBI, or NEBI/Freq in vehicle-treated rats. The fentanyl-
induced increases in EEP and Te-RT were markedly greater in the
tropine-treated rats compared to the vehicle-treated rats. The total
(cumulative) changes in ventilatory parameters over 6 to 10 min
period after the injection of vehicle or tropine are shown in Figure 9.
The injection of tropine prevented the effects of fentanyl from fully
resolving and instead enhanced the adverse effects of fentanyl on Freq,
TV,MV, and Te, while reducing the effects of fentanyl on Ti/Te and EIP
(Panel A). Tropine enhanced the adverse effects of fentanyl on PIF, PEF,
and TV/Te (Panel B), and EEP and Te-RT (Panel C). The total (overall
cumulative) changes in ventilatory parameters over the 0 to 30 min
period following the injection of vehicle or tropine are summarized in
Figure 10. The effects of fentanyl on Freq, TV, MV, Te, Ti/Te, and EIP
(Panel C), TV/Te (Panel B), and EEP and Te-RT (Panel C) were
markedly affected by the administration of tropine.

ABG chemistry and A-a gradient

As summarized in Figure 11, the injection of fentanyl (75 μg/kg,
IV) elicited substantial decreases in arterial blood pH, pO2, and sO2

and substantial increases in pCO2 and A-a gradient in both groups
of rats. All of these deleterious fentanyl responses, except for the

increases in A-a gradient, were augmented following the injection of
tropine (200 μmol/kg, IV).

Tail-flick latencies

As shown in Figure 12, the injection of fentanyl (75 μg/kg, IV)
elicited a pronounced antinociception (i.e., increase in tail-flick
latencies) that was maintained during the 60-min recording
period in rats that received the vehicle injection. Moreover, these
antinociceptive effects of fentanyl were identical in magnitude and

FIGURE 7
A summary of the values for non-eupneic breathing index (NEBI)
(A) and NEBI corrected for frequency of breathing (NEBI/Freq) (B)
before (Pre), following injection of fentanyl (75 μg/kg, IV), and
subsequent injection of vehicle or tropine (200 μmol/kg, IV) in
freely-moving adult male rats. The data are presented as mean ± SEM.
There were six rats in each group.

FIGURE 8
Total (cumulative) changes in ventilatory parameters elicited by
fentanyl (75 μg/kg, IV) over the 0–5 min period following the injection
of vehicle or tropine (200 μmol/kg, IV). (A) Frequency of breathing
(Freq), tidal volume (TV), minute ventilation (MV), inspiratory time
(Ti), expiratory time (Te), Ti/Te, and end-inspiratory pause (EIP). (B)
Peak inspiratory flow (PIF), peak expiratory flow (PEF), PIF/PEF,
relaxation time (RT), inspiratory drive (TV/Ti), and expiratory drive (TV/
Te). (C) End-expiratory pause (EEP), expiratory delay (Te-RT), non-
eupneic breathing index (NEBI), and NEBI/Freq (NEBI/F). The data are
presented as mean ± SEM. There were six rats in each group. *p <
0.05 indicates a significant response from Pre-values. †p < 0.05 for
tropine versus vehicle.
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duration to the vehicle-treated rats in the rats that received tropine
(200 μmol/kg, IV).

Sedation—righting reflex

The injection of fentanyl (75 μg/kg, IV) caused rapid sedative
effects in all of the rats studied. More specifically, the rats become
immobile with evident chest-wall rigidity. They usually remained on
their side with their eyes closed. Full return of the righting reflex (i.e.,
the ability to stand on four legs) in the tropine (200 μmol/kg, IV)-
treated rats (80.1. ± 7.0 min) occurred more slowly than in vehicle-
treated rats (57.1 ± 5.6 min) (p > 0.05). The injection of tropine did

not induce any obvious behavioral differences in the fentanyl-treated
rats, except that the fentanyl-induced rigidity appeared to be
enhanced, both in strength and duration, in the tropine-treated
rats. Upon establishing steady positioning on all four paws, no
differences in the normal behaviors of the rats, such as exploring,
sniffing, rearing, or grooming, were noted between the vehicle-treated
or tropine-treated rats.

Discussion

This study confirms that the intravenous injection of fentanyl
elicits a series of rapid and deleterious effects on ventilatory

FIGURE 9
Total (cumulative) changes in ventilatory parameters elicited by
fentanyl (75 μg/kg, IV) over the 6–10 min period following injection of
vehicle or tropine (200 μmol/kg, IV). (A) Frequency of breathing (Freq),
tidal volume (TV), minute ventilation (MV), inspiratory time (Ti),
expiratory time (Te), Ti/Te, and end-inspiratory pause (EIP). (B) Peak
inspiratory flow (PIF), peak expiratory flow (PEF), PIF/PEF, relaxation
time (RT), inspiratory drive (TV/Ti), and expiratory drive (TV/Te). (C)
End-expiratory pause (EEP), expiratory delay (Te-RT), non-eupneic
breathing index (NEBI), and NEBI/Freq (NEBI/F). Data are presented as
mean ± SEM. There were six rats in each group. *p < 0.05 indicates a
significant response from Pre-values. †p < 0.05 for tropine
versus vehicle.

FIGURE 10
Total (cumulative) changes in ventilatory parameters elicited by
fentanyl (75 μg/kg, IV) over the 0–30 min period following injection of
vehicle or tropine (200 μmol/kg, IV). (A) Frequency of breathing (Freq),
tidal volume (TV), minute ventilation (MV), inspiratory time (Ti),
expiratory time (Te), Ti/Te, and end-inspiratory pause (EIP). (B) Peak
inspiratory flow (PIF), peak expiratory flow (PEF), PIF/PEF, relaxation time
(RT), inspiratory drive (TV/Ti), and expiratory drive (TV/Te). (C) End-
expiratory pause (EEP), expiratory delay (Te-RT), non-eupneic breathing
index (NEBI), and NEBI/Freq (NEBI/F). Data are shown as mean ± SEM.
There were six rats in each group. *p < 0.05 indicates a significant
response from Pre-values. †p < 0.05 for tropine versus vehicle.
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parameters in unrestrained adult male Sprague Dawley rats
(Henderson et al., 2014; Jenkins et al., 2021; Seckler et al., 2022;
Getsy et al., 2022a; b). These responses are summarized in Table 1
and described in detail in our companion manuscript (Getsy et al.,
2024). These responses included (a) reductions in Freq associated
with a sustained elevation of Ti and EIP accompanied by a
transient elevation of Te and EEP followed by a sustained
reduction in Te and EEP, (b) sustained reductions in TV, MV,
and PIF, and more transient decreases in PEF, (c) sustained
decreases in RT associated with an initial increase followed by a
sustained decrease in expiratory delay (Te-RT), (d) large and
sustained decreases in inspiratory drive (TV/Ti) and equally
pronounced but more transient decreases in expiratory drive
(TV/Te), and (e) substantial increases in NEBI and NEBI/Freq.
The ventilatory effects of fentanyl in these rats, including the
destabilization of breathing (i.e., increase in NEBI), were
expressed when they were heavily sedated and non-moving. As
such, it appears that all of these effects of fentanyl were a result of
intrinsic mechanisms of action, rather than being caused indirectly

by fentanyl-induced behaviors. Several structurally different
opioid analgesics, such as fentanyl, morphine oxymorphone,
butorphanol, buprenorphine, and methadone, elevate A-a
gradients in rats (May et al., 2013a; b; Henderson et al., 2014;
Getsy et al., 2022a; b,c; d; e; f; g), goats (Meyer et al., 2006), dogs
(Jacobson et al., 1994), rabbits (Shafford and Schadt, 2008), impala
(Meyer et al., 2010), and humans (Goetz et al., 1994; Teichtahl
et al., 2004; Wang et al., 2005). As was expected, fentanyl elevated
the A-a gradient by direct mechanisms involving impairment of
alveolar gas exchange or by indirect mechanisms, such as
atelectasis (Henderson et al., 2014; Jenkins et al., 2021; Seckler
et al., 2022; Getsy et al., 2022a; b). The fentanyl-induced
impairment in gas exchange, together with reduced ventilation,
resulted in decreases in pH, pO2, and sO2, and an increase in pCO2.
The mechanisms responsible for the effects of fentanyl on
breathing, alveolar gas exchange, and ABG chemistry involve
central and peripheral mechanisms (Henderson et al., 2014). As
expected, fentanyl caused robust and long-lasting antinociception
and sedation in these rats that has been thoroughly documented

FIGURE 11
Tropine exacerbates the effects of fentanyl on ABG chemistry and A-a gradient. Values of pH, pCO2, pO2, sO2, and A-a gradient before (Pre) and after
injectionof fentanyl (75 μg/kg, IV) and thenan injectionof tropine (200 μmol/kg, IV) given 5 min after fentanyl in freely-moving rats. Thedata are shownasmean±
SEM. There were six rats in each group. *p < 0.05 indicates a significant change from Pre-values. †p < 0.05 indicates a significant difference from vehicle.
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and explored (Henderson et al., 2014; Jenkins et al., 2021; Getsy
et al., 2022a; b).

This study shows that the injection of tropine augmented the
adverse effects of fentanyl on ventilatory parameters in male
Sprague Dawley rats and augmented the deleterious changes in
A-a gradient and ABG chemistry produced by the synthetic opioid.
In addition, tropine increased the duration of fentanyl-induced
sedation, but did not alter fentanyl-induced analgesia. The
question arises as to where and how tropine exerts these effects
on fentanyl. The effects of fentanyl on ventilatory parameters, A-a
gradient, ABG chemistry, and analgesia are mediated by central
and peripheral opioid receptors (Henderson et al., 2014). As such,
the ability of tropine to worsen the effects of fentanyl on ventilation
and ABG chemistry may be due to actions in the brain, spinal cord,
and peripheral sites (e.g., carotid bodies and chest-wall/
diaphragmatic structures). The absence of the effect of tropine
on the adverse effects of fentanyl on alveolar gas exchange (A-a
gradient) argues against a peripheral site of action of tropine
within the lungs. Opioids elevate A-a gradients by impairing
ventilation–perfusion ratios in the lungs, known as
ventilation–perfusion mismatch (Meyer et al., 2006; Henderson
et al., 2014). Opioids diminish pulmonary perfusion via
hypoxemia-mediated pulmonary vasoconstriction (Nun, 1993)
and by pulmonary vasoconstriction (Santiago and Edelman,
1985; Hakim et al., 1992) via central activation of the
sympathetic drive into lung structures (Roquebert and
Delgoulet, 1988) and by histamine release in the lungs (Hakim
et al., 1992; Mather, 1994). As will be discussed below, Ibutropin
may reverse fentanyl-induced increases in A-a gradient via an
increase in TV (thereby preventing atelectasis) and/or by
modulating the other mechanisms detailed above. The lack of
effect of tropine on the A-a gradient suggests that it cannot interact
with peripheral and/or central mechanisms by which Ibutropin
elicits its effects. In contrast, the ability of tropine to enhance the
duration of fentanyl sedation also points to the likelihood that
tropine enters and acts within the brain (e.g., cortical) sites
responsible for the sedative actions of opioids (Young-

McCaughan and Miaskowski, 2001a; b). Importantly, the
apparent lack of effect of tropine on the antinociceptive actions
of fentanyl suggests that the tropine does not directly block central
or peripheral opioid receptors or their cell-signaling pathways that
engender analgesia (Henderson et al., 2014; Jenkins et al., 2021).
These results suggest that tropine modulates several of the
pharmacological effects of fentanyl by actions within the central
nervous system and periphery.

As mentioned, our findings with tropine contrast starkly with
those obtained with tropine ester, Ibutropin (Getsy et al., 2024).
As summarized in Table 1, Ibutropin beneficially reversed and
tropine worsened the adverse effects of fentanyl on ventilatory
parameters, A-a gradient, and ABG chemistry while not affecting
the antinociceptive actions of the opioid. Ibutropin shortened
and tropine lengthened the duration of fentanyl-induced
sedation. Although sedation is known to be a common effect
of opioid analgesics, the mechanisms and behavioral
characteristics of sedation are poorly understood (Young-
McCaughan and Miaskowski, 2001a; b). However, on the basis
of our findings here and in Getsy et al. (2024), we assume that
tropine and Ibutropin enter the central nervous system, but exert
opposite effects on opioid receptor signaling events. We
hypothesize that the effects of Ibutropin involve its ready
entry into cells, whereas the effects of tropine may be
restricted to modulating functional proteins (e.g., receptors,
ion-channels, and enzymes) on the extracellular surface of
plasma membranes. Moreover, regarding the different
molecular mechanisms of opioid effects on ventilation and
antinociception, it has been established that the tropeine-
mediated glycine receptor α3-5-HT1A–receptor complex
initiates subcellular events that overcome fentanyl-induced
respiratory depression but not fentanyl-induced analgesia
(Manzke et al., 2011). As such, one possibility is that tropine
inhibits, whereas Ibutropin activates this receptor complex.
Although we do not know whether tropine or Ibutropin
differentially modulate the glycine receptor α3-5-HT1A-
receptor complex or down-stream signaling pathways as do
other tropeines (Macksay et al., 2004; 2008; 2009a; b; San
Martin et al., 2019; Gallagher et al., 2022), it appears that
activation of discrete signaling pathways differentially
modulates the ventilatory and analgesic actions of opioids
(Manzke et al., 2011). An important difference between
Ibutropin and tropine was that Ibutropin, but not tropine,
immediately diminished the fentanyl-induced elevation of
both NEBI and NEBI/Freq. Considering the evidence as to
how opioids affect ventilatory patterns, most non-eupneic
breathing events are likely to be apneas, abnormal breaths
(mismatch between inspiratory and expiratory phases), and,
less often, type 1 and type 2 sighs (Zutler, 2011; Nagappa
et al., 2017). The ability of fentanyl to elicit apneas in humans
and experimental animals is well established (Willette et al., 1987;
Yeadon and Kitchen, 1990; Ren et al., 2009; Zhang et al., 2012a; b;
Zhuang et al., 2012; Haouzi et al., 2020; Saunders and Levitt,
2020). The mechanisms by which opioids induce apneas involve
opioid receptor-induced signaling events in the Kölliker–Fuse-
parabrachial nucleus complex (Saunders and Levitt, 2020),
ventrolateral medulla (Willette et al., 1987), and nucleus
tractus solitarius (Zhang et al., 2012a; Zhuang et al., 2012). In

FIGURE 12
Tropine does not diminish the antinociceptive actions of
fentanyl. Tail-flick latency values before (Pre) and after injection of
fentanyl (75 μg/kg, IV) and subsequent injections of vehicle or tropine
(200 μmol/kg, IV) given 5 min afterward in freely-moving rats.
There were six rats in each group. *p < 0.05 indicates a significant
change from Pre-values.
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addition, it has been established that opioids suppress ventilatory
responses to hypoxic, hypercapnic, and hypoxic–hypercapnic
challenges (Berkenbosch et al., 1997; May et al., 2013a, b). As
such, the abilities of fentanyl to depress breathing and elicit
apneas may also involve depression of breathing responses to
fentanyl-induced alterations in ABG chemistry. The precise sites
and mechanisms by which Ibutropin improves the fentanyl-
induced increases in NEBI and NEBI/Freq have not been
established, but it is evident that tropine cannot mimic the
actions of the tropeine. In summary, the processes by which
tropine modulates the effects of fentanyl may be multi-factorial
and may involve altering the opioid receptor signaling
transduction processes triggered by fentanyl acting as a
biased-ligand at opioid receptors (Grim et al., 2020a; b).
Excitatory–inhibitory interactions between neurons within

brainstem respiratory networks provide the basis for steady
rhythmic breathing. The rhythmic activity of these networks is
maintained by tonic 5HT1-receptor-mediated signal
transduction processes that maintain synaptic glycine
α3 receptors in the active/dephosphorylated state (Manzke
et al., 2010). Accordingly, reduced inhibitory glycinergic cell-
signaling negatively impacts breathing rhythms (Schmid et al.,
1991; Pierrefiche et al., 1998; Busselberg et al., 2001), which may
lead to immediate fatalities (Busselberg et al., 2001; Markstahler
et al., 2002; Harvey et al., 2008). Moreover, drugs that selectively
activate glycine a3 receptors may be beneficial for ventilatory
disorders, including those caused by opioids (Lynch et al., 2016).
As such, a tropine-mediated inhibition of glycine a3 receptors or
their signaling events may be an important factor in the ability of
tropine to worsen fentanyl-induced suppression of breathing.

TABLE 1 Comparison of the effects of Ibutropin and tropine on fentanyl-induced responses.

Parameter Fentanyl Ibutropin Tropine

A. Ventilatory parameters

Frequency of breathing (Freq) ↓ Reversed Worsened

Inspiratory time (Ti) ↑ Slight reversal No effect

Expiratory time (Te) ↑↓ No effect/augment Worsened/no effect

Ti/Te ↑ Augmentation Augmentation

End-inspiratory pause (EIP) ↑ Reversed **Improved/reversed

End expiratory pause (EEP) ↑ Reversed Worsened

Relaxation time (RT) ↓ Slight augmentation No effect

Expiratory delay (Te-RT) ↑ Minimal effect Worsened

Tidal volume (TV) ↓ Reversed/overshoot Worsened

Minute ventilation (MV) ↓ Reversed/overshoot Worsened

Peak inspiratory flow (PIF) ↓ Reversed/overshoot Worsened

Peak expiratory flow (PEF) ↓ Reversal/overshoot Worsened

PIF/PEF ↓ Slight reversal No effect

Inspiratory drive (TV/Ti) ↓ Reversed/overshoot No effect

Expiratory drive (TV/Te) ↓ Reversed/overshoot Worsened

Non-eupneic breathing index (NEBI) ↑ Reversed No effect

NEBI/Freq ↑ Reversed No effect

B. Arterial Blood-Gas Chemistry/Alveolar-arterial Gradient

pH ↓ Reversed Worsened

pCO2 ↑ Reversed Worsened

pO2 ↓ Reversed Worsened

sO2 ↓ Reversed Worsened

Alveolar-arterial gradient ↑ Reversed Worsened

C. Antinociception (tail-flick latency) ↑ No apparent effect No apparent effect

D. Sedation (Righting reflex) ↑ Shorter duration Longer duration
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Study limitations

An important limitation is that we have not performed
dose–response relationships with tropine against lower and higher
doses of fentanyl in order to maximize our understanding of the
efficacy profile of tropine. Additionally, because the effects of opioids
can often be quantitatively and qualitatively different in female
compared to male rats (Dahan et al., 1998; Sarton et al., 1998;
Hosseini et al., 2011), it is imperative to determine the effects of
tropine on the pharmacological actions of fentanyl in female rats. It is
also imperative to determine whether tropine can prevent the latent
deleterious actions of opioids on ventilatory responses elicited by
hypoxic–hypercapnic stimuli. Another key limitation of our work is
the lack of knowledge about the cellular and molecular mechanisms
by which tropine modulates the effects of fentanyl. Based on previous
research, we are currently performing receptor binding experiments
to establish if tropine directly binds to glycine receptors as do parent
tropeine molecules (Macksay et al., 2004; 2008; 2009a; b; Manzke
et al., 2010; 2011; San Martin et al., 2019; Gallagher et al., 2022).
Finally, we must gather information about the pharmacokinetic
profiles of tropine and its potential metabolites in order to better
understand the sites of action of these compounds. We are presently
modifying our liquid chromatography-mass spectrometry method
(Altawallbeh et al., 2019) to establish the distribution of tropine in rats
that received the vehicle and those that received fentanyl.

Conclusion

This study demonstrates that the injection of tropine causes an
immediate worsening of the adverse effects produced by fentanyl on
ventilatory parameters, alveolar gas exchange (A-a gradient), and ABG
chemistry in male Sprague Dawley rats. Additionally, although tropine
did not affect fentanyl-induced antinociception, it did lengthen the
duration of fentanyl-induced sedation, as assessed by the righting reflex.
Taken together, it appears that tropine may not directly block opioid
receptors, but rather may modulate the opioid receptor-induced
signaling events triggered by fentanyl. Because tropine and Ibutropin
have opposing effects on fentanyl-induced changes in ventilatory
parameters and ABG chemistry (Getsy et al., 2024), it is possible
that the actions of tropine involve interactions with the extracellular
domains of functional proteins in plasmamembranes, whereas those of
Ibutropinmay involve interactions with intracellular signaling cascades.
The opposing effects of tropine and Ibutropin on the sedative effects of
fentanyl suggest that both compounds enter the central nervous system
but that the sites and/or mechanisms of action are clearly different. As
such, the conversion of Ibutropin to tropine in the body would lead to
diminished efficacy of the tropeine. If conversion of Ibutropin to tropine
occurs via the hydrolytic actions of blood plasma carboxylesterases, then
preventing this hydrolysis by inhibitors, such as bis(4-nitrophenyl)
phosphate (Boyce et al., 1976; Butterworth et al., 1993; Nishida et al.,
1996), may indeed augment the potency of Ibutropin.
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