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Objective: Biological studies have elucidated that phosphoglycerate dehydrogenase
(PHGDH) is the rate-limiting enzyme in the serine synthesis pathway in humans that is
abnormally expressed in numerous cancers. Inhibition of the PHGDH activity is
thought to be an attractive approach for novel anti-cancer therapy. Thedevelopment
of structurally diverse novel PHGDH inhibitors with high efficiency and low toxicity is
a promising drug discovery strategy.

Methods: A ligand-based 3D-QSAR pharmacophore model was developed using
the HypoGen algorithm methodology of Discovery Studio. The selected
pharmacophore model was further validated by test set validation, cost analysis,
and Fischer randomization validation and was then used as a 3D query to screen
compound libraries with various chemical scaffolds. The estimated activity, drug-
likeness, molecular docking, growing scaffold, and molecular dynamics simulation
processes were applied in combination to reduce the number of virtual hits.

Results: The potential candidates against PHGDH were screened based on
estimated activity, docking scores, predictive absorption, distribution, metabolism,
excretion, and toxicity (ADME/T) properties, and molecular dynamics simulation.

Conclusion: Finally, an all-in-one combination was employed successfully to
design and develop three potential anti-cancer candidates.

KEYWORDS

PHGDH, cancer, 3D-QSAR pharmacophore model, ADME/T, molecule docking,
molecular dynamics simulation

1 Introduction

As the primary source of a single carbon unit and the third-largest metabolite,
serine is taken up by cancer cells to fuel their unregulated and rapid proliferation. The
glycolytic intermediate 3-phosphoglycerate (3-PG), as the substrate for three
consecutive enzymatic reactions, makes up an intracellular material for de novo
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serine production. Phosphoglycerate dehydrogenase (PHGDH)
catalyzes the first stage of the reactions that convert 3-PG to 3-
phosphohydroxypyruvate (3-PPyr) (Figure 1) (El-Hattab, 2016).
PHGDH is abnormally expressed in various malignant tumor
cells, including hepatocellular carcinoma, breast cancer,
melanoma, lung cancer, glioma, colon carcinoma, Ewing
sarcoma, pancreatic cancer, leukemia, thyroid carcinoma,
multiple myeloma, lymphoma, and gastric and bladder cancer
(Zhao et al., 2021). PHGDH dysregulation is a prevalent feature

in a significant portion of malignancies with respect to their
generation, proliferation, differentiation, and metastatic
progress, which suggests that targeting PHGDH is a very
promising direction in anti-cancer drug discovery (Rohde
et al., 2018; Zhang et al., 2022; Gao et al., 2023).

Over the past decade, numerous potential inhibitors have
been reported (Figure 2). Weinstabl et al. (2019) reported a
highly potent and selective PHGDH inhibitor, BI-4924, which
achieved ~100 μM hits and was optimized to single-digit

FIGURE 1
The serine synthesis pathway.

FIGURE 2
Structures of representative potential PHGDH inhibitors that have been reported.
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nanomolar potency. Prior to this, a series of pyrazole-5-
carboxamides analogs representing compound 2 were
identified (Zhao et al., 2021). CBR-5884, reported by Mullarky
et al. (2016), contained functional groups that targeted the
sulfhydryl moiety and could decrease de novo serine synthesis
by reacting with the PHGDH cysteine residue. NCT-503
selectively affected the PHGDH oligomerization state in
PHGDH-dependent cell lines and xenograft tumors (Rohde
et al., 2018). Natural PHGDH inhibitors, such as Azacoccone
E and Withangulatin A, were isolated from food and
microorganisms (Guo et al., 2019; Zheng et al., 2019). Even
though these emerging PHGDH inhibitors have not yet been
employed in clinical trials, the rapid discovery of structurally
novel potential PHGDH inhibitors with safety profiles is
particularly urgent. Therefore, 3D-QSAR-pharmacophore-
based virtual screening was performed in this study to identify
novel PHGDH inhibitors.

2 Materials and methods

2.1 3D-QSAR pharmacophore model
generation

We performed a literature search and collected 31 compounds
with corresponding IC50 values ranging from 0.002 µM to 68 µM
(Supplementary Figures S1, S2) (Spillier and Frederick, 2021; Zhao
et al., 2021; Zhang et al., 2022; Gao et al., 2023). The Generate
Training and Test Data of Discovery Studio (version 4.0, Biovea Inc.,
Omaha, NE, United States) protocol offered a random way to split a
data set into 22 training set compounds and nine test set compounds
by setting the training set percentage to 80. The training set was used
to create a 3D-QSAR pharmacophore model, and the test set was
reserved to assess the quality of the model. The Feature Mapping
protocol computed all possible pharmacophore features, including
hydrophobic (HYB), hydrogen bond donor (HBD), hydrogen bond

TABLE 1 Statistical parameters of the ten pharmacophore hypotheses generated by the HypoGen algorithm.

Hypothesis Ra RMS Total cost △cost Max.Fit Chemical feature q2, b

1 0.943394 2.26487 133.247 431.397 10.361 HBA, HYD, HYD, and RA 0.707

2 0.937476 2.37587 137.012 427.632 10.2033 HBA, HYB, HYB, NI, and RA 0.958

3 0.921851 2.6455 152.011 412.633 9.2773 HBA, HYD, HYD, NI, and RA 0.867

4 0.915875 2.74076 158.409 406.235 9.59251 HBA, HYD, HYD, and RA 0.763

5 0.88746 3.14624 184.281 380.363 11.4845 HYD, HYD, HYD, NI, and RA 0.694

6 0.88397 3.1919 188.102 367.542 12.2612 HYD, HYD, HYD, NI, and RA 0.717

7 0.872691 3.33312 197.463 367.181 8.74394 HBA, HYD, HYD, HYD, and RA 0.627

8 0.872847 3.33132 197.567 367.077 9.30264 HBA, HYD, NI, and RA 0.884

9 0.870879 3.35523 199.306 365.338 9.28018 HBA, HYD, HYD, and NI 0.770

10 0.866329 3.40959 203.149 361.495 6.97513 HYD, HYD, HYD, and NI 0.738

Null cost = 564.644, Fixed cost = 74.9106, Best records in pass: 6; HBA, Hydrogen bond acceptor; HYB, Hydrophobic; RA, Ring aromatic; NI, Negative ionizable; Ra: Correlation coefficient of

hypothesis based on the training set; q2, b: Validation coefficient of the validation result using test ligands.

FIGURE 3
The best pharmacophore model (Hypo_2); hydrogen bond acceptor (HBA, in green); hydrophobic feature (HYD, in blue); ring aromatic (RA, in
brown); negative ionizable (NI, in dark blue).
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acceptor (HBA), negative ionizable (NI), and ring aromatic (RA).
The uncertainty value of all compounds was fixed at 1.5, and IC50

values of individual compounds were selected as an active property
before hypothesis generation. Test set and Fisher validations with a
confidence level of 95% were applied to validate the models. Other
parameters were kept as default. The 3D-QSAR pharmacophore

model was generated by running the 3D-QSAR Pharmacophore
Generation protocol of Discovery Studio, which requires
collecting chemically diverse training set compounds with the
same bioassay value (Guner et al., 2004). The activities of the
input training set (0.003–68 µM) and test set (0.002–39.6 µM)
spanned five orders of magnitude. The best model among the

TABLE 2 Experimental and estimated activity of the training set based on Hypo_2.

Comp.
No.

IC50 (µM) Errors Fit value Experimental scale Estimated scale

Experimental Estimated

T1 0.003 0.00135573 −2.21283 8.61813 ++++ ++++

T2 0.014 0.0159841 1.14172 7.54661 +++ +++

T3 0.015 0.0139266 −1.07708 7.60646 +++ +++

T4 0.028 0.0667427 2.38367 6.9259 +++ +++

T5 0.028 0.0807822 2.88508 6.84298 +++ +++

T6 0.03 0.0152405 −1.96844 7.5673 +++ +++

T7 0.03 0.0826144 2.75381 6.83324 +++ +++

T8 0.051 0.0795133 1.55908 6.84986 +++ +++

T9 0.058 0.0527888 −1.09872 7.02776 +++ +++

T10 0.061 0.138865 2.27648 6.60771 +++ ++

T11 0.106 0.124536 1.17487 6.655 ++ ++

T12 0.123 0.052655 −2.33596 7.02886 ++ +++

T13 0.235 0.30066 1.2794 6.27222 ++ ++

T14 0.25 0.307362 1.22945 6.26265 ++ ++

T15 0.26 0.805205 3.09694 5.84439 ++ ++

T16 0.8 0.527419 −1.51682 6.02814 ++ ++

T17 11.2 0.433289 −25.8488 6.11352 + ++

T18 11.2 13.4728 1.20293 4.62084 + +

T19 11.7 13.3072 1.13737 4.62621 + +

T20 11.8 18.7297 1.58726 4.47777 + +

T21 12.1 13.3406 1.10253 4.62512 + +

T22 67.7 10.9976 −6.15589 4.709 + +

FIGURE 4
Alignment of the most active and inactive ligands of the training set on the Hypo_2 pharmacophore model. (A) compound T1 and (B)
compound T22.
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10 generated pharmacophores was selected by combining
parameter correlation coefficient (R), root mean square
deviation (RMSD), null cost, total cost, error, and fit values
(Zhang et al., 2021).

2.2 Pharmacophore validation

The three techniques for validating the pharmacophore
models were cost analysis, test set analysis, and Fischer

randomization tests. Three types of costs are reported: total
cost, null cost, and fixed cost in the HypoGen algorithm (Li
et al., 2000). Generally, ΔCost (Null cost − Total cost) is
important in assessing the pharmacophore model. A ΔCost of
more than 60 bits suggests a significant correlation. A ΔCost in
the range of 40–60 bits means the model falls within the
prediction range of 70%–90%. Predicting correlation
likelihood will be difficult if the cost difference is less than
40 bits (John et al., 2011). The Fischer randomization method
is essential to establish a structure–activity relationship between

TABLE 3 Experimental and estimated activity of the test set based on Hypo_2.

Comp.
No.

IC50 (µM) Errors Fit value Experimental scale Estimated scale

Experimental Estimated

T23 0.002 0.003228 1.61424 8.2413 ++++ ++++

T24 0.1 0.023829 −4.19664 7.3732 ++ +++

T25 0.1 0.069607 −1.43664 6.90765 ++ +++

T26 0.081 0.071526 −1.13246 6.89584 +++ +++

T27 1.95 1.72224 −1.13225 5.51421 + +

T28 17.9 9.02679 −1.98299 4.79477 + +

T29 39.6 10.8989 −3.63339 4.71292 + +

T30 5.2 10.9342 2.10273 4.71151 + +

T31 9.76 46.8162 4.79674 4.0799 + +

++++ (IC50 ≤ 0.01 µM) represents the most active; +++ (IC50 0.01 µM–0.1 µM) represents high activity; ++ (IC50 0.1 µM–1 µM) represents moderate activity; + (IC50 > 1 µM) represents

inactive.

FIGURE 5
The correlation coefficient (R) of the actual and predicted values of the test set and training set based on the Hypo_2 pharmacophore model.
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the structures and biological activity of the training set. The
hypotheses were validated using the Fischer randomization
approach, which rearranged the activity values of the training
set molecules to yield 19 random spreadsheets with 95%
confidence levels (Zhang et al., 2021). The pharmacophore
model was also validated by inputting the test set consisting of
nine compounds. All test and training set compounds were
constructed and minimized using comparable procedures.

2.3 High-throughput virtual screening

The virtual screening compounds were downloaded from the
Life Chemicals HTS (https://lifechemicals.com/), which consist of 3.
04 million structurally novel molecules designed on the basis of
promising drug-like scaffolds, carefully selected building blocks, and
advanced cheminformatics approach, 460,160 compounds from the
Enamine Hit Locator Library (https://enamine.net/compound-

FIGURE 6
Correlation and total cost values of hypo-PHGDH and 19 random spreadsheets. (A) The correlation values; (B) The total cost value.
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libraries/diversity-libraries), and 47,490 compounds from the
ChemDiv 3D-pharmacophore database (https://www.chemdiv.
com/catalog/screening-libraries/). The virtual screening based on
3D-QSAR pharmacophore was carried out in the Ligand
Pharmacophore Mapping module, which compares a set of
ligands to a selected pharmacophore. The relevant ligand-3D-
QSAR pharmacophore mappings were exported and aligned to
the pharmacophore.

2.4 ADMET property prediction

Absorption, distribution, metabolism, excretion, and toxicity
(ADMET) properties were predicted on AdmetSAR2 (http://lmmd.
ecust.edu.cn/admetsar2/) (Yang et al., 2019) and Swiss-ADME
online web (https://www.swissadme.ch) (Daina et al., 2017). The

toxicities were predicted in ProTox-II (https://tox-new.charite.de/
protox_II/), a virtual lab for predicting the toxicities of small
compounds (Banerjee et al., 2018).

2.5 Molecular docking

Molecular docking was performed by using LibDock in
Discovery Studio and AutoDock in AMDock software
(Version 1.6.1) based on two different algorithms and scoring
functions. The LibDock program developed by Diller and Merz
(2001) is based on a binding site comprising lists of polar and
apolar hot spots and presents docking results as a LibDock score
(Raychaudhury et al., 2023). The protein was prepared by
removing atomic clashes, water molecules, and unnecessary
atoms, deleting alternate conformations, inserting the missing

FIGURE 7
The structures of the top 10 compounds from virtual screening based on Hypo_2.
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atoms in incomplete residues, and adding hydrogen. The site
sphere was defined from PDB site records by Discovery Studio
software. The Prepare Ligands module of Discovery Studio was
utilized to generate the three-dimensional structures of
anticipated bioactive small molecules. AMDock software
(Version 1.6.1), which integrates with Autodock Vina,
AutoDock4, and AutoDock4Zn, in which Autodock was based
on an empirical free-energy force field and rapid Lamarckian
genetic algorithm (Fuhrmann et al., 2010) search method, was
used to docking study. The exported binding energy was used to
assess the receptor–ligand affinity (Forli et al., 2016). Its
graphical tool is simple to use and assists in molecular
docking studies. The ligands and proteins were prepared by
running the Prepare Input module. The co-crystal structure of
PHGDH in complex with BI-4924 (PDB ID: 6RJ6) (Weinstabl
et al., 2019) was downloaded from the PDB database (https://
www.pdbus.org/). The search space was defined from the Center
on Hetero: a box (Center: 18.66, −10.27, −1.74; Size: 24, 24, 24)
was placed on the geometric center of an existing ligand.
Subsequently, the docking simulations were run using
Autodock (Valdes-Tresanco et al., 2020).

2.6 Molecular dynamics (MD) simulation

The binding stability and intermolecular interactions of the
target macromolecule with promising hits after the docking
process were assessed using Desmond2023-1 (Schrodinger, LLC,
New York, NY, 2024) with OPLS_2005 force field tools (Kaminski
et al., 2001) from a dynamic point of view. The orthorhombic box
with the TIP3P water model (Mark and Nilsson, 2001) was used to
predefine a 10 Å × 10 Å × 10 Å buffer region between the complex
and box sides. The solvated system was neutralized with Na+ and Cl−

ions. The system builder panel allows minimization, which in turn
allows the system to relax into a local energy minimum.
Subsequently, elapsed 100-ns MD simulations were carried out at
a periodic boundary condition, and the recording interval was set to
100 ps, while the ensemble class was set to NPT (T = 300 K, 1 atm
pressure). Finally, approximately 1,000 frames were obtained, and
the stability of ligand–receptor complexes was assessed by
calculating several important parameters such as RMSD and root
mean square fluctuations (RMSF). Their interactions also were
analyzed when the simulation jobs were completed (Lanka
et al., 2023).

TABLE 4 The estimated activity and predictive ADME properties of top 10 screening compounds.

Comp No. Estimate activity (µM) MWa NRBb NBDc NBAd ALogPe GI absorptionf BBB permeantg

Hit1 0.0016 397.44 9 1 7 1.90 High No

Hit2 0.0035 386.35 7 1 8 2.79 High No

Hit3 0.0073 354.42 5 1 5 3.08 High No

Hit4 0.0100 392.44 9 3 7 3.12 High No

Hit5 0.0160 400.38 7 1 8 3.16 High No

Hit6 0.0163 366.46 8 3 5 3.75 Low No

Hit7 0.0267 396.85 8 3 7 1.85 Low No

Hit8 0.0300 479.87 5 1 6 2.55 High No

Hit9 0.0315 394.40 10 3 8 0.93 Low No

Hit10 0.0325 408.43 10 3 9 0.90 Low No

aMolecular weight of the compounds.
bNumber of rotatable bonds.
cNumber of H-bond donors.
dNumber of H-bond acceptors.
ePrediction by the admetSAR webset.
fGastrointestinal absorption predicted by SwissADME.
gBlood–brain barrier permeation predicted by SwissADME.

TABLE 5 Predictive toxicities of the top 10 screening compounds.

ID
Number

Ames
toxicity

Carcinogens Hepatotoxicity Cytotoxicity Mutagenicity LD50

(mg/kg)
Predicted toxicity

class

Hit1 - - - - - 600 IV

Hit2 - - - - - 500 IV

Hit3 - - - - - 500 IV

Hit4 - - - - - 500 IV

Note: -: inactive; +: active; toxicity classes are categorized based on the LD50 value. Category III indicates toxicity if swallowed, with an LD50 value between 50 mg/kg and 300mg/kg. Category IV

indicates harm if swallowed, with an LD50 value between 300mg/kg and 2,000mg/kg. Category V indicates potential harm if swallowed, with an LD50 value between 300mg/kg and 2,000mg/kg.
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2.7 Growth scaffold

Hit1, with the lowest estimated IC50 value (0.0016 µM), was
selected as the most promising lead compound. We performed
reaction-based ligand enumeration within the PHGDH active
pocket for lead optimization by using the Grow Scaffold protocol
of Discovery Studio. Based on isosterism of the sulfonic acid moiety,
the carboxyl was used to replace the sulfonic acid moiety in hit1
based on rational synthesizability. The intermediate could be formed
by Claisen–Schmidt condensation using 2,5-dioxopyrrolidin-1-yl
succinic acid as the starting material. Beginning with the
intermediate position in the binding site of the receptor, the
hydroxyl was selected to act as a reaction vector for the
enumeration. Then, the amide synthesis and esterification
reactions were selected. Other parameters were kept as default.

3 Results and discussion

3.1 Pharmacophore model generations

3D-QSAR pharmacophore models were generated from the
features of known compounds that correspond to their activity,
which could elucidate the spatial arrangement of chemical features
of active compounds and facilitate the quick and effective discovery
of promising hit compounds through ligand-based virtual screening
(Yu et al., 2015; Desai et al., 2023).

The statistical parameters and chemical features of ten
pharmacophore models are shown in Table 1. The total cost of
the generated pharmacophore models ranged from 133.247 to
203.149, with a null cost of 564.644 and a fixed cost of 74.9106.
Typically, the selected hypothesis has a significant total cost value, a

FIGURE 8
The interactions of co-crystal structure (PHGDH-T23 complex); docking result diagrams of PHGDH with hit4 (below). (A) Solid ribbon model; (B)
active sites of amino acid residues represented in the parent color line model; (C) 2D interaction diagram.

TABLE 6 Docking scores of hit 1 to hit4 and derivatives from hit1.

Comp.No. Fit value Estimate LibDock scores (kcal/mol) AutoDock scores (kcal/mol)

BI-4929 (T23) 8.2413 0.003228 134.386 −7.1

Hit1 8.54524 0.0016 84.4339 −6.2

Hit2 8.19871 0.0035 107.808 −6.3

Hit3 8.10425 0.0073 109.652 −6.7

Hit4 8.03687 0.0100 124.224 −6.6

Hit1-1 8.13017 0.0041 137.977 −7.5

Hit1-2 7.84307 0.0080 116.992 −7.0
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low RMSD, a high correlation coefficient, and the highest cost
difference. According to the results shown in Table 1, the △costs
(Null cost − total cost) of the 10 pharmacophore models generated
by the HypoGen algorithm were all larger than 40, indicating that
these models are credible. Thus, Hypo_1 should have been selected
as the optimal pharmacophore. However, it showed lower predictive
ability in the subsequent validation results using the input test set
(q2 = 0.707). This is in contrast to Hypo_2, which had amore reliable
pharmacophore model efficacy (q2 = 0.918). Finally, Hypo_2 was
selected as the best pharmacophore model, characterized by the
lower total cost value (137.012), RMSD (2.37587), correlation
coefficient (0.937476), HBA, HYB, HYB, NI, and RA (Figure 3)
and the best predictability.

Inhibitors with known activity were collected from published
studies and classified into four groups: the most active (++++, IC50 ≤

0.01 µM); highly active (+++, IC50 0.01–0.1 µM); moderately active
(++, IC50 0.1–1 µM); inactive (+, IC50 > 1 µM). The experimental
and estimated activities of the training set based on Hypo_2 are
shown in Table 2. The most active compound in the training set, T1,
was found to be well-mapped with the essential features of Hypo_2,
whereas the inactive compound, T22, was not well linked with three
chemical features (Figure 4).

3.2 Pharmacophore validation

3.2.1 Test set analysis
The ability of Hypo_2 to predict the biological activities of the

test set, including nine chemically diverse compounds with IC50

values ranging from 0.002 µM to 39.6 µM, was used to assess its

FIGURE 9
The RMSD and RMSF plots of the empty protein backbone (PDB ID: 6RJ6). (A) The RMSD plot of the empty protein; (B) The RMSF plot of the empty
protein (secondary structure elements: alpha-helical and beta-strand regions are highlighted in red and blue backgrounds, respectively).
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dependability. As shown in Table 3, the most active compounds,
highly active compounds, and inactive compounds were anticipated
to be in the same range as their experimental range, except for two
moderately active compounds. Simple regression has been used to
analyze the correlation between experimental values and estimates
of activity. The results illustrated in Figure 5 show the correlation
coefficients between the actual and predicted PHGDH inhibitory
activity values for both the training set (R = 0.937476) and the test
set (R = 0.958384). With Hypo_2, it was apparent that the test set of
nine compounds with known activity had been properly mapped.

3.2.2 Fischer’s randomization test
The pharmacophore hypothesis was assessed using the Fischer

randomization test (Jacquez and Jacquez, 2002), which was designed
with a 95% confidence level. Then, 19 spreadsheets were produced at
random. Using this strategy, hypotheses were produced by
randomly rearranging the bioactivity values of the compounds in
the training set. Figure 6 depicts the differences in correlations
(Figure 6A) and cost values (Figure 6B) between the HypoGen and
Fischer randomizations. None of the randomly produced
pharmacophores performed better statistically than HypoGen.

FIGURE 10
The MD simulation results of the PHGDH-T23 complex (PDB ID: 6RJ6). (A) PHGDH-T23 complex RMSD plot; (B) PHGDH-T23 complex RMSF plot.
(C) The main interactions of T23 with active residues during MD simulation. (D) A schematic of detailed T23 interactions with the protein residues. (E) A
timeline representation of the PHGDH-T23 complex contacts.
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3.3 Virtual screening results and analysis

The 3.04 million compounds from the Lifechemicals database,
460,160 compounds from the Enamine database, and
47,490 compounds from ChemDiv were first filtered by Lipinski
and Veber rules (Veber et al., 2002; Lipinski, 2004). The resulting
compounds were then virtually screened using the constructed
Hypo_2 model, and 1,006 compounds were mapped to Hypo_2.
Ten top-ranked compounds with IC50 0.0016 µM–0.0325 µM are
shown in Figure 7, and compounds 1–4 were selected as hit
compounds with estimated IC50 values of less than 0.01 µM. The
estimated activity and predictive ADME properties of 10 top-ranked
compounds are shown in Table 4. All parameters were within

Lipinski’s rule of five (ROF) cut-off range for the test compounds
resulting from the pre-filter. Toxicity restricts the development of
specific compound families at any stage of drug development.
Toxicity may take the form of Ames toxicity, carcinogenicity,
hepatotoxicity, mutagenicity, or cytotoxicity and is the most
noteworthy property of any potential drug candidates. Ideal
drug-like compounds would be more highly potent yet not
harmful (Ferreira and Andricopulo, 2019). In silico prediction of
compound cytotoxicity and mutagenicity has drawn great attention
from researchers, can assist the early identification of potentially
harmful and mutagenic compounds, and can minimize the time and
funding involved with hit-to-lead optimization (Kazius et al., 2005;
Kramer et al., 2007; Chu et al., 2021). Therefore, we focused on

FIGURE 11
The 3D docking pose and MD simulation results of PHGDH–hit1, PHGDH–hit2, and PHGDH–hit3 complexes. (A–C) The 3D docking pose of the
hit1, hit2 and hit3 with PHGDH, respectively; (D–F) The protein RMSD of PHGDH–hit1, PHGDH–hit2, and PHGDH–hit3 complexes, respectively.
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investigating the predictive Ames toxicity, carcinogenicity,
hepatotoxicity, cytotoxicity, mutagenicity, and LD50 of the top
10 compounds. As shown in Table 5, compounds 1–4 and
compounds 7–8 had good ADME properties without any toxicity.

Molecular docking provides a peripheral vision for investigating
ligand and receptor interactions in active pockets. The most active
ligand (T23) was chosen for active control with a LibDock score of
134.386 kcal/mol and an AutoDock score of −7.1 kcal/mol. Its
interactions with PHGDH were first analyzed. As illustrated in
Figure 8, the binding affinity of compound T23 was acquired
from two strong hydrogen bonds interacting in the adenine

pocket, which was accompanied by a bidentate polar anchor
interaction of an -NH group and an -OH group with ASP174. In
addition, T23 was stabilized by two other strong hydrogen bond
interactions between residues ARG154 and ILE155. The aromatic
ring exhibited Pi–Sigma interactions with PRO207. Using hit4 as an
example for docking analysis, the PHGDH-hit4 complex was
mainly stabilized by six strong hydrogen bond interactions
between residues GLY151, GLY153, ARG154, ILE155, GLY156,
and HIS205, as well as an attractive charge between HIS205.
Moreover, the linker was bound within the hydrophobic cavity
consisting of residues PRO207 and LEU192. It was interesting that

FIGURE 12
The MD simulation results of the PHGDH–hit4 complex. (A) RMSD plot of the PHGDH–hit4 complex; (B) RMSF plot of the PHGDH–hit4 complex;
(C) The main interactions of hit4 with active residues during MD simulation; (D) A schematic of detailed hit4 interactions with the protein residues; (E) A
timeline representation of the PHGDH–hit4 complex contacts.
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both T23 and hit4 bound into the active pocket of PHGDH in a
reversible “V” shape. The docking scores of hit1 to hit4 bound to
PHGDH were lower than T23, especially for hit1, which suggested
further structure optimization. Meanwhile, derivatives of hit1 were
slightly higher than or comparable to T23 (Table 6). However,
docked scores alone are insufficient to determine the potential of
a compound.

3.4 MD simulation

MD simulations were employed to further identify the virtual leads.
Hit1 to hit4 were analyzed and compared with the most potent
inhibitor known, T23, in terms of the stability and steady nature of
the empty protein and the respective contacts andmobility in the pocket
of PHGDH. Following the alignment of each protein frame on the
reference frame backbone, the atom selection was used to compute the
RMSD, which could give insights into the structural conformation by
monitoring RMSD in the simulation. When the simulation ends, its
fluctuations are centered around a thermal average structure if it has
reached equilibrium. Changes of the order of 1–3 Å are acceptable. On
the other hand, larger fluctuations suggest that the protein is changing
significantly during the simulation. The 100-ns empty protein
simulation reached an equilibration phase with RMSD fluctuations
in the range of 6 Å–8 Å (Figure 9A). In the Figure 9B plot, peaks
indicate areas of the protein that fluctuate during the simulation.
Typically, the tails (N-and C-terminal) fluctuate more than any
other part of the protein.

In order to demonstrate that the screened novel hit compounds
have the potential to be more effective inhibitors of PHGDH than

the reported available inhibitors, a comparative MD simulation
study was conducted using hit compounds and the most potent
known PHGDH inhibitor (T23) as reported by Weinstabl et al.
(2019). The PHGDH-T23 complex showed initial light fluctuation
in RMSD-P within the first 40 ns, which stabilized in the range of
2.5 Å–4.5 Å (Figure 10A). Except for the N-and C-terminal, the
P-RMSF fluctuated less than 3 Å. Comparing Figures 9B, 10B shows
that protein chain binding to the respective ligand makes the loop
region more stable. As shown in Figure 10C, the PHGDH-T23
interactions are categorized into three types: hydrogen interactions,
hydrophobic interactions, and water bridges. During the MD
simulation, the residues ASP174 (99%) and ARG154 (72%) of
PHGDH exhibited long-time H-bond interaction with the
inhibitor T23. Water bridging and hydrophobic interactions can
also be observed (Figure 10D). The top panel of Figure 10E shows
that an average of 10 residues formed contacts with T23 over the
course of the trajectory. Some residues make more than one specific
contact with the ligand, which is represented by a darker shade of
orange. ARG154, ASP174, and PRO175 are shown with dark orange
shades (Figure 10E).

The 3D docking poses and MD simulation of the PHGDH-hit1,
PHGDH-hit2, and PHGDH-hit3 complexes are shown in Figure 11.
The protein backbone RMSD and ligand fit protein initially revealed
a large deviation that suggests irregular interactions during the
simulations. Throughout simulations, the RMSD fluctuations of
ligand fit proteins did not equilibrate or converge, which
indicated their weak ligand–protein complex binding behavior
and suggests the need for further structural optimization.

A similar MD simulation was carried out for hit4. The RMSD of
the PHGDH-hit4 complex was steadily maintained from 10 ns to

FIGURE 13
The structures of eliciting hits from hit1 using Grow Scaffold.
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100 ns, which was approximately 2.4 Å to 4.8 Å (Figure 12A). The
residues on the main protein chain showed low fluctuations with an
RMSF value of less than 2.4 Å (Figure 12B). The bar histogram
displays the four hydrogen bonds between hit4 and residues
ARG154, ILE155, ASP174, and HIS205, as well as hydrophobic
contacts with residues PRO175, ILE176, PRO207, and LEU209
(Figure 12C). The residues, including ARG154, HIS105, and
TASP174, had a major contribution of hydrogen bond
interaction to the hydroxyl and carbonyl groups of hit4 with the
percentage of simulation time of 80%, 87%, and 86%, respectively
(Figure 12D). Averages of eight residue interactions were
maintained until the end of the simulation, as illustrated in the
protein–ligand contact plot. Like the PHGDH-T23 complex, the
residues ARG154, ASP174, and HIS205 showed more than one
specific contact in 100-ns MD simulations (Figure 12E).Hit4might,
therefore, be identified as a candidate PHGDH inhibitor for
combating various cancers.

3.5 Newly designed compounds

Hit1, with the lowest estimated activity value, was selected as the
lead compound for subsequent structure optimization. The newly
designed derivatives were based on the inclusion of 3D-QSARmodel
insights and molecular docking. A total of 198 ligands were
produced and were subsequently mapped to Hypo_02, and

133 compounds were mapped to Hypo_02. The criterion of
estimating activity values less than 0.01 µM was used to further
narrow down the scope of virtual hits. Two potential hits (Figure 13)
were selected from output ligands. In the next MD simulation, two
resulting compounds were evaluated individually.

TheMD simulation results of the PHGDH-hit1-1 and PHGDH-
hit1-2 complexes are shown in Figure 14. Through MD simulation,
the RMSD of the protein backbone, Lig_fit_on_Prot, was stabilized
in the range of 3.6 Å–5.2 Å, 1.8 Å–4.8 Å, 2.4–4.8 Å and 1.6 Å–4.0 Å,
respectively, which indicated the existence of a stable binding pose
between protein and ligands. The RMSF of the protein backbone
showed high fluctuation at the tails (N- and C-terminals) and loop
regions of the protein, especially hit1-1. In addition, the other RMSF
values interacting with ligands were less than 2.0 Å. The newly
designed hit1-1 and hit1-2 showed relatively stable binding poses
with PHGDH and good results from the MD simulation studies
compared to hit1. Therefore, these two newly designed hits could act
as potential candidate inhibitors of PHGDH.

4 Conclusion

Since PHGDH became an attractive target for cancer research in
the past decade, the development of PHGDH-targeted drug
discovery has been limited due to the scarcity of reported
inhibitors. In this study, a 3D-QSAR pharmacophore with

FIGURE 14
(A, B) The RMSD of the PHGDH–hit1-1 complex and RMSF of the protein plot during a 100-ns simulation; (C, D) The RMSD of the PHGDH–hit1-2
complex and the RMSF of the protein plot during a 100-ns simulation.
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credible predictive was established, which was validated by test set,
cost analysis, and Fischer randomization tests. A 3D-QSAR-based
high-throughput virtual screening strategy was comprehensively
integrated to identify structurally novel PHGDH inhibitors from
a commercial database, including approximately 3.54 million small
molecules. The drug-like properties of the top 10 compounds were
predicted through an in-silico study. Safety was considered the
primary criterion for manual screening. Hit1, with the highest
estimated active value, distinguished from the published
compounds, was selected for lead optimization, even though
unsatisfactory MD simulation results were found. Two hits with
an estimated activity of less than 0.01 µM were obtained by lead
optimization. Further MD simulation was employed to determine
the dynamic binding behavior and binding stability of
protein–ligand complexes. The related structural data of
identified hit1 to hit4 and derivates from hit1 could be helpful
in various cancer-related drug discovery projects.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding authors.

Author contributions

YX: funding acquisition, project administration, software,
writing–original draft. ZY: data curation, investigation, project
administration, and writing–original draft. JY: investigation,
methodology, validation, and writing–review and editing. CG:
formal analysis, funding acquisition, project administration, and
writing–review and editing. NQ: conceptualization, resources,
software, supervision, and writing–review and editing. XW:

conceptualization, methodology, software, supervision, validation,
visualization, writing–original draft, and writing–review and editing.

Funding

The authors declare that financial support was received for the
research, authorship, and/or publication of this article. This work
was supported by grants from the Science and Technology
Development Fund of Tianjin Education Commission for Higher
Education (2020KJ204) and the Science and Technology
Development Fund of Quzhou (2023K253).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors, and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphar.2024.1405350/
full#supplementary-material

References

Banerjee, P., Eckert, A. O., Schrey, A. K., and Preissner, R. (2018). ProTox-II: a
webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 46,
W257–W263. doi:10.1093/nar/gky318

Chu, C. S. M., Simpson, J. D., O’Neill, P. M., and Berry, N. G. (2021). Machine
learning - predicting Ames mutagenicity of small molecules. J. Mol. Graph Model 109,
108011. doi:10.1016/j.jmgm.2021.108011

Daina, A., Michielin, O., and Zoete, V. (2017). SwissADME: a free web tool to evaluate
pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small
molecules. Sci. Rep. 7, 42717. doi:10.1038/srep42717

Desai, S. P., Mohite, S. K., Alobid, S., Saralaya, M. G., Patil, A. S., Das, K., et al.
(2023). 3D QSAR study on substituted 1, 2, 4 triazole derivatives as anticancer
agents by kNN MFA approach. Saudi Pharm. J. 31, 101836. doi:10.1016/j.jsps.
2023.101836

Diller, D. J., and Merz, K. M., Jr. (2001). High throughput docking for library design
and library prioritization. Proteins 43, 113–124. doi:10.1002/1097-0134(20010501)43:
2<113::aid-prot1023>3.0.co;2-t
El-Hattab, A. W. (2016). Serine biosynthesis and transport defects. Mol. Genet.

Metab. 118, 153–159. doi:10.1016/j.ymgme.2016.04.010

Ferreira, L. L. G., and Andricopulo, A. D. (2019). ADMET modeling approaches
in drug discovery. Drug Discov. Today 24, 1157–1165. doi:10.1016/j.drudis.2019.
03.015

Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., and Olson, A. J. (2016).
Computational protein-ligand docking and virtual drug screening with the AutoDock
suite. Nat. Protoc. 11, 905–919. doi:10.1038/nprot.2016.051

Fuhrmann, J., Rurainski, A., Lenhof, H. P., and Neumann, D. (2010). A new
Lamarckian genetic algorithm for flexible ligand-receptor docking. J. Comput. Chem.
31 (9), 1911–1918. doi:10.1002/jcc.21478

Gao, D., Tang, S., Cen, Y., Yuan, L., Lan, X., Li, Q. H., et al. (2023). Discovery of novel
drug-like PHGDH inhibitors to disrupt serine biosynthesis for cancer therapy. J. Med.
Chem. 66, 285–305. doi:10.1021/acs.jmedchem.2c01202

Guner, O., Clement, O., and Kurogi, Y. (2004). Pharmacophore modeling and three
dimensional database searching for drug design using catalyst: recent advances. Curr.
Med. Chem. 11, 2991–3005. doi:10.2174/0929867043364036

Guo, J., Gu, X., Zheng, M., Zhang, Y., Chen, L., and Li, H. (2019). Azacoccone E
inhibits cancer cell growth by targeting 3-phosphoglycerate dehydrogenase. Bioorg
Chem. 87, 16–22. doi:10.1016/j.bioorg.2019.02.037

Jacquez, J. A., and Jacquez, G. M. (2002). Fisher’s randomization test and Darwin’s data -- a
footnote to the history of statistics.Math. Biosci. 180, 23–28. doi:10.1016/s0025-5564(02)00123-2

John, S., Thangapandian, S., Arooj, M., Hong, J. C., Kim, K. D., and Lee, K. W. (2011).
Development, evaluation and application of 3D QSAR Pharmacophore model in the
discovery of potential human renin inhibitors. BMC Bioinforma. 12 (Suppl. 14), S4.
doi:10.1186/1471-2105-12-S14-S4

Kaminski, G. A., Friesner, R. A, Tirado-Rives, J, and Jorgensen, W. L. (2001).
Evaluation and reparametrization of the OPLS-AA force field for proteins via
comparison with accurate quantum chemical calculations on peptides. J. Phys.
Chem. B 105, 6474–6487. doi:10.1021/jp003919d

Kazius, J., McGuire, R., and Bursi, R. (2005). Derivation and validation of toxicophores for
mutagenicity prediction. J. Med. Chem. 48, 312–320. doi:10.1021/jm040835a

Frontiers in Pharmacology frontiersin.org16

Xu et al. 10.3389/fphar.2024.1405350

https://www.frontiersin.org/articles/10.3389/fphar.2024.1405350/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2024.1405350/full#supplementary-material
https://doi.org/10.1093/nar/gky318
https://doi.org/10.1016/j.jmgm.2021.108011
https://doi.org/10.1038/srep42717
https://doi.org/10.1016/j.jsps.2023.101836
https://doi.org/10.1016/j.jsps.2023.101836
https://doi.org/10.1002/1097-0134(20010501)43:2<113::aid-prot1023>3.0.co;2-t
https://doi.org/10.1002/1097-0134(20010501)43:2<113::aid-prot1023>3.0.co;2-t
https://doi.org/10.1016/j.ymgme.2016.04.010
https://doi.org/10.1016/j.drudis.2019.03.015
https://doi.org/10.1016/j.drudis.2019.03.015
https://doi.org/10.1038/nprot.2016.051
https://doi.org/10.1002/jcc.21478
https://doi.org/10.1021/acs.jmedchem.2c01202
https://doi.org/10.2174/0929867043364036
https://doi.org/10.1016/j.bioorg.2019.02.037
https://doi.org/10.1016/s0025-5564(02)00123-2
https://doi.org/10.1186/1471-2105-12-S14-S4
https://doi.org/10.1021/jp003919d
https://doi.org/10.1021/jm040835a
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1405350


Kramer, J. A., Sagartz, J. E., and Morris, D. L. (2007). The application of discovery
toxicology and pathology towards the design of safer pharmaceutical lead candidates.
Nat. Rev. Drug Discov. 6, 636–649. doi:10.1038/nrd2378

Lanka, G., Begum, D., Banerjee, S., Adhikari, N., P, Y., and Ghosh, B. (2023).
Pharmacophore-based virtual screening, 3D QSAR, Docking, ADMET, and MD
simulation studies: an in silico perspective for the identification of new potential
HDAC3 inhibitors.Comput. Biol. Med. 166, 107481. doi:10.1016/j.compbiomed.2023.107481

Li, H., Sutter, J., and Hoffmann, R. (2000). “HypoGen: an automated system for
generating 3D predictive pharmacophore model,” in Pharmacophore perception,
development, and use in drug design. Editor O. F. Güner (La Jolla, CA: International
University Line), 171–189.

Lipinski, C. A. (2004). Lead- and drug-like compounds: the rule-of-five revolution.
Drug Discov. Today Technol. 1, 337–341. doi:10.1016/j.ddtec.2004.11.007

Mark, P., and Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/
E water models at 298 K. J. Phys. Chem. A 105 (43), 9954–9960. doi:10.1021/jp003020w

Mullarky, E., Lairson, L. L., Cantley, L. C., and Lyssiotis, C. A. (2016). A novel small-
molecule inhibitor of 3-phosphoglycerate dehydrogenase.Mol. Cell Oncol. 3, e1164280.
doi:10.1080/23723556.2016.1164280

Raychaudhury, C., Srinivasan, S., and Pal, D. (2023). Identification of potential oral
cancer drugs as Bcl-2 inhibitors from known anti-neoplastic agents through docking
studies. J. Math. Chem. 62, 317–329. doi:10.1007/s10910-023-01537-w

Rohde, J. M., Brimacombe, K. R., Liu, L., Pacold, M. E., Yasgar, A., Cheff, D. M., et al.
(2018). Discovery and optimization of piperazine-1-thiourea-based human
phosphoglycerate dehydrogenase inhibitors. Bioorg Med. Chem. 26, 1727–1739.
doi:10.1016/j.bmc.2018.02.016

Spillier, Q., and Frederick, R. (2021). Phosphoglycerate dehydrogenase (PHGDH)
inhibitors: a comprehensive review 2015-2020. Expert Opin. Ther. Pat. 31, 597–608.
doi:10.1080/13543776.2021.1890028

Valdes-Tresanco, M. S., Valdes-Tresanco, M. E., Valiente, P. A., and Moreno, E.
(2020). AMDock: a versatile graphical tool for assisting molecular docking with
Autodock Vina and Autodock4. Biol. Direct 15, 12. doi:10.1186/s13062-020-00267-2

Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R.,Ward, K.W., and Kopple, K. D.
(2002). Molecular properties that influence the oral bioavailability of drug candidates.
J. Med. Chem. 45, 2615–2623. doi:10.1021/jm020017n

Weinstabl, H., Treu, M., Rinnenthal, J., Zahn, S. K., Ettmayer, P., Bader, G., et al.
(2019). Intracellular trapping of the selective phosphoglycerate dehydrogenase
(PHGDH) inhibitor BI-4924 disrupts serine biosynthesis. J. Med. Chem. 62,
7976–7997. doi:10.1021/acs.jmedchem.9b00718

Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., et al. (2019). admetSAR 2.0: web-
service for prediction and optimization of chemical ADMET properties. Bioinformatics
35, 1067–1069. doi:10.1093/bioinformatics/bty707

Yu, Z., Li, X., Ge, C., Si, H., Cui, L., Gao, H., et al. (2015). 3D-QSAR modeling and
molecular docking study on Mer kinase inhibitors of pyridine-substituted pyrimidines.
Mol. Divers 19, 135–147. doi:10.1007/s11030-014-9556-0

Zhang, C., Xiang, J., Xie, Q., Zhao, J., Zhang, H., Huang, E., et al. (2021). Identification
of influenza PA(N) endonuclease inhibitors via 3D-QSARmodeling and docking-based
virtual screening. Molecules 26, 7129. doi:10.3390/molecules26237129

Zhang, F. M., Yuan, L., Shi, X. W., Feng, K. R., Lan, X., Huang, C., et al. (2022).
Discovery of PHGDH inhibitors by virtual screening and preliminary structure-activity
relationship study. Bioorg Chem. 121, 105705. doi:10.1016/j.bioorg.2022.105705

Zhao, J. Y., Feng, K. R., Wang, F., Zhang, J. W., Cheng, J. F., Lin, G. Q., et al. (2021). A
retrospective overview of PHGDH and its inhibitors for regulating cancer metabolism.
Eur. J. Med. Chem. 217, 113379. doi:10.1016/j.ejmech.2021.113379

Zheng, M., Guo, J., Xu, J., Yang, K., Tang, R., Gu, X., et al. (2019). Ixocarpalactone A
from dietary tomatillo inhibits pancreatic cancer growth by targeting PHGDH. Food
Funct. 10, 3386–3395. doi:10.1039/c9fo00394k

Frontiers in Pharmacology frontiersin.org17

Xu et al. 10.3389/fphar.2024.1405350

https://doi.org/10.1038/nrd2378
https://doi.org/10.1016/j.compbiomed.2023.107481
https://doi.org/10.1016/j.ddtec.2004.11.007
https://doi.org/10.1021/jp003020w
https://doi.org/10.1080/23723556.2016.1164280
https://doi.org/10.1007/s10910-023-01537-w
https://doi.org/10.1016/j.bmc.2018.02.016
https://doi.org/10.1080/13543776.2021.1890028
https://doi.org/10.1186/s13062-020-00267-2
https://doi.org/10.1021/jm020017n
https://doi.org/10.1021/acs.jmedchem.9b00718
https://doi.org/10.1093/bioinformatics/bty707
https://doi.org/10.1007/s11030-014-9556-0
https://doi.org/10.3390/molecules26237129
https://doi.org/10.1016/j.bioorg.2022.105705
https://doi.org/10.1016/j.ejmech.2021.113379
https://doi.org/10.1039/c9fo00394k
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1405350

	Identification of novel PHGDH inhibitors based on computational investigation: an all-in-one combination strategy to develo ...
	1 Introduction
	2 Materials and methods
	2.1 3D-QSAR pharmacophore model generation
	2.2 Pharmacophore validation
	2.3 High-throughput virtual screening
	2.4 ADMET property prediction
	2.5 Molecular docking
	2.6 Molecular dynamics (MD) simulation
	2.7 Growth scaffold

	3 Results and discussion
	3.1 Pharmacophore model generations
	3.2 Pharmacophore validation
	3.2.1 Test set analysis
	3.2.2 Fischer’s randomization test

	3.3 Virtual screening results and analysis
	3.4 MD simulation
	3.5 Newly designed compounds

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


