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Introduction: Traditional Chinese medicine (TCM) is gaining worldwide popularity
as a complementary and alternativemedicine. The isolation and characterization of
active ingredients fromTCMhas becomeoptional strategies for drug development.
In order to overcome the inherent limitations of these natural products such as
poor water solubility and low bioavailability, the combination of nanotechnology
with TCM has been explored. Taking advantage of the benefits offered by the
nanoscale, various drug delivery systems have been designed to enhance the
efficacy of TCM in the treatment and prevention of diseases.

Methods: The manuscript aims to present years of research dedicated to the
application of nanotechnology in the field of TCM.

Results: The manuscript discusses the formulation, characteristics and
therapeutic effects of nano-TCM. Additionally, the formation of carrier-free
nanomedicines through self-assembly between active ingredients of TCM is
summarized. Finally, the paper discusses the safety behind the application of
nano-TCM and proposes potential research directions.

Discussion: Despite some achievements, the safety of nano-TCM still need
special attention. Furthermore, exploring the substance basis of TCM formulas
from the perspective of nanotechnology may provide direction for elucidating
the scientific intension of TCM formulas.
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1 Introduction

Since ancient times, plants have been widely used as medicinal agents for various
diseases. TCM, which consists of plants, animals, and minerals, has been used in China
for thousands of years (Wang et al., 2018). Among the various species used in TCM,
plants account for 90% (Zuo et al., 2021). Plants are rich in bioactive metabolites, which
offers the potential to treat a wide range of diseases. Based on the inherent advantages of
natural products, active ingredients of TCM are currently being screened for the
treatment of diseases such as cancer, diabetes, cardiovascular diseases and
inflammation. For example, it has been found that flavonoids and non-flavonoid
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polyphenolic compounds exhibit favorable anti-inflammatory
effects both in vivo and in vitro (Peng et al., 2023). The
alkaloid berberine (BBR) extracted from Coptis chinensis
Franch. has anti-inflammatory effect. Camptothecin (CPT) is
extracted from Camptotheca acuminata Decne., which has a
good anti-tumor effect (Swamy et al., 2021; Lan et al., 2022).

However, the compositional complexity and toxicity-related
issues associated with herbal ingredients pose greater challenges
to their use as medicines and therefore make it difficult to transition
from clinical trial to the use of nanotechnology (Patra et al., 2018;
Peng et al., 2023). Using drug delivery systems to deliver these
ingredients may be an option to address these issues.
Nanotechnology has been introduced into the research of TCM,
leading to the concept of nano-TCM. By incorporating natural
products in nanocarriers, their properties, such as bioavailability,
targeting ability and controlled release, can be effectively improved.
In nano-based delivery of herbal ingredients, organic, inorganic, and
polymeric nanostructures, including nanoparticles (NPs), micelles,
liposomes, and dendrimers, are often considered (Patra et al., 2018).

Nanotechnology has been widely applied in various aspects of
TCM (Zheng et al., 2022). Herein, this review focused on the
integration of nanotechnology with natural products derived from
Chinese herbs. Different drug delivery systems based on TCM have
been carefully designed and can be classified into two platforms:
nanocarriers and carrier-free nanomedicines. Liposomes, micelles,
NPs, and dendrimers are commonly used nanocarriers. Carrier-
free nanomedicines include self-assembled nanomedicines,
pharmaceutical cocrystals, and Pickering emulsions. Despite
these achievements, further understanding of the safety of
nano-TCM is necessary to accelerate future clinical translation.
Moreover, exploring how TCM theories, such as personalized
diagnosis and prescription, can be better incorporated into

modern research requires further investigation. Overall, the
remarkable progress in nano-TCM highlights the significant
role of nanotechnology in advancing the modernization of
TCM research.

2 Active ingredients of TCM

TCM is a large repository of bioactive metabolites including
terpenes, flavonoids, alkaloids, glycosides, saponins and so on. For
example, ginkgolides are diterpenes, ginsenosides are triterpenes,
baicalin is a flavonoid, and BBR is a benzylisoquinoline alkaloid.
According to statistics, 25% of new molecular entities approved by
the U.S. Food and Drug Administration (FDA) from natural sources
are derived from plant natural products (Li and Weng, 2017). As
shown in Figure 1, medicinal plants produce structurally and
functionally diverse secondary metabolites. These compounds
serve as the material basis for the therapeutic effects of TCM and
are also sources for innovative drugs.

3 Nano-TCM

Based on the clinical validation of several active ingredients, such
as artemisinin (ART), paclitaxel (PTX), and BBR, TCM is being
increasing accepted as a potential source of clinical drugs. However,
due to strong hydrophobicity, poor in vivo stability, low bioavailability,
and potential systemic toxicity within therapeutic doses, some
ingredients fail to meet the requirements for clinical application
(Watkins et al., 2015). Nano-TCM offers several advantages over
herbal medicines. It improves bioavailability, enables sustained
release, and enhances the solubility and permeability of poorly
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soluble drugs, allowing them to overcome biological barriers (Watkins
et al., 2015). The application strategies for nano-TCM can be broadly
categorized into two types. The first type is nanocarriers, which focus
on the “efficacy” of TCM’s ingredients. It involves the development of
novel carriers, such as liposomes, NPs, dendrimers, and micelles to
encapsulate and deliver these active ingredients. The second type is
carrier-free nanomedicine, which emphasizes the “functionality” of
certain herbal ingredients. In this approach, these ingredients act as
solubilizers, stabilizers, or targeting ligands, exerting therapeutic effects
while also serving as carriers themselves.

3.1 Advantages of nano-TCM

3.1.1 Improved bioavailability
Many identified ingredients of TCM, such as curcumin (CUR),

resveratrol (RES), and ART, are lipophilic in nature. Due to their
poor solubility in the bloodstream, these compounds often require
high doses for therapeutic efficacy, which can lead to toxicity or poor
patient compliance (Muqbil et al., 2011). On the other hand,
alkaloids such as ephedrine (EPH) and matrine (MT) are
hydrophilic and encounter obstacles in crossing biological
membranes (Bonifácio et al., 2014). Encapsulating these active
ingredients in nanocarriers can enhance their bioavailability and
reduce the required dosage to achieve therapeutic effects. CUR is a
polyphenolic compound derived from the rhizome of Curcuma
longa Linn., and it possesses anti-inflammatory, antioxidant, and
anticancer properties (Kadota et al., 2020). Takahashi et al. (2009)
encapsulated CUR in lipid-based nanocarriers (LECs). The area
under the curve (AUC) analysis revealed that the AUC value in rats
after oral administration of LECs was 4.96 times greater than that of
free CUR. In another study, the relative bioavailability of CUR-

loaded lipid polymeric NPs was increased 18.2-fold compared to free
CUR (Liu Y. et al., 2019).

3.1.2 Targeted delivery
The second advantage of nano-TCM is its ability to target

specific tissues or organs. Targeted delivery can increase the
proportion of drugs reaching specific tissues to improve
bioavailability and reduce drug side effects. Targeted delivery
strategies can be divided into two categories: active targeting,
which involves attaching targeting ligands to the surface of the
carrier, and passive targeting, which relies on inherent properties
such as size, shape, and surface charge to reach the target area
without specific chemical interactions.

Active targeting is achieved by attaching different types of
ligands, such as peptides, antibodies, proteins, and nucleic acids,
to the surface of the carrier to improve the target to non-target
ratio. Nanocarriers conjugated with folic acid (FA) have shown
promise in cancer treatment. Due to the overexpression of folic
receptors, FA-grafted nanocarriers can target cancer cells. Hong
et al. (2021) synthesized β-cyclodextrin-polycaprolactone block
copolymers and conjugated them with FA to construct CUR-
loaded nanoparticles (FA-CUR-NPs) using the emulsion
evaporation method. Under tumor microenvironment
conditions (pH 6.4), the release rate of CUR from FA-CUR-
NPs was three times greater than that under systemic circulation
conditions (pH 7.4). Compared to free CUR and CUR-NPs, oral
administration of FA-CUR-NPs reduced the tumor volume by
three times and two times, respectively, after 30 days in mice.
These indicates that FA-CUR-NPs demonstrate significantly
improved therapeutic efficacy in vivo and that FA can be
successfully used as a tumor-targeting ligand to enhance
cellular internalization.

FIGURE 1
Synthesis of active ingredients of TCM.
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Lactoferrin (LF) is a glycoprotein of the transferrin (TF) family
that can bind to TF receptors (TFRs) and LF membrane
internalization receptors (LFRs) that are highly expressed on the
surface of cancer cells and blood-brain barrier (BBB), thereby
promoting entry into the cell nucleus (Agwa and Sabra, 2021).
This characteristic can be used to develop active targeted drug
delivery systems. A novel mesoporous magnetic nanocarrier was
formed by grafting LF onto mesoporous oxide nanoparticles
(MIONs) through an EDC coupling reaction. The nanocarrier
can continuously release perfluorohexane (PFH) and PTX to
achieve deep penetration of drugs in tumors. Prior to exposure
to high-frequency magnetic fields (MF), LF-MIONs loaded with
PTX and PFH exhibited slow in vitro release. A local increase in the
temperature of the MIONs triggered the vaporization of PFH,
leading to severe damage to the tumor spheroids. Additionally, it
promoted deep penetration and increased accumulation of the
nanocarrier within the tumor, thus increasing the killing
potential. After a single exposure to a magnetic field for 16 days,
significant inhibition of tumor growth was observed (Su et al., 2015).

Passive targeting is often an effective and cost-effective choice. Many
tumors exhibit enhanced permeability and retention (EPR) effects due to
vascular leakage, which is the main driving force for passive targeting
(Maeda et al., 2013). NPs utilize the EPR effect to deliver drug molecules
to the tumor site in a controlled and targeted manner, demonstrating
significant advantages in cancer treatment. Chen et al. (2023) prepared
pH-responsive and biodegradable calcium orthophosphate@liposomes
(CaP@Lip) NPs for loading hydrophobic PTX and hydrophilic
doxorubicin (DOX) hydrochloride. Under physiological conditions,
the obtained NPs carry a negative charge but they convert to a
positive charge when exposed to a weakly acidic environment,
thereby promoting drug internalization. Additionally, CaP@Lip NPs
undergo degradation under acidic conditions (pH 5.5), facilitating drug
release and rapid metabolism of the NPs in the body. At pH 5.5, nearly
63.33% of PTX was released within 48 h, while at pH 7.4, the 40.47% of
the PTX was released. The slow release of PTX in NPs and the pH-
responsive drug release minimize the adverse effects on healthy cells,
making it beneficial for tumor treatment (Chen et al., 2023).

3.1.3 Controlled release
The third advantage of nano-TCM is the ability to control drug

release. The amount and rate of drug release from nanocarriers
depend on various factors, such as the carrier material, formulation
size, drug molecules, and microenvironment (Watkins et al., 2015).
The choice of carrier material significantly influences drug release
characteristics, and the type of polymer can be adjusted to affect the
release profile. By polymerizing folic acid-conjugated nanocellulose
(FA-NC) with glycidyl methacrylate (GMA) and 2-hydroxyethyl
methacrylate (HEMA), Anirudhan et al. prepared an innovative
drug delivery system. The hydrogen bonding interaction between
the polymer carrier and CUR enhanced the loading efficiency of
CUR. Approximately 91.0% of the drug was released within 48 h
under acidic conditions, demonstrating controlled release without
premature leakage (Anirudhan et al., 2021). In another study, Hu
et al. (2023) used a zinc-based nanoscale metal-organic framework
(NMOF) as carriers to prepare BR@Zn-BTB NPs loaded with BBR.
It was further encapsulated using a hydrogel with ROS scavenging
ability (due to the introduction of quaternary ammonium and
phenyl borate functionalities) to obtain a BR@Zn-BTB gel (BZ-

Gel). As the pH increased, the drug release rate from the BZ-Gel also
increased. At pH 8.0, the 36-h release rate of BR was close to 80%,
while at pH 7.4, it was approximately 60%, and at pH 7.0 and 6.5, it
was close to 40%. In chronic and infectious wounds, the pH of the
skin surface becomes alkaline (between 7.5 and 8.9) (Zhu et al.,
2020). Therefore, this pH-responsive drug release BR-Gel is suitable
for treating malignant diabetic foot wounds. In addition to
pH responsiveness, controllable drug release nanocarriers also
include temperature-sensitive (Qi X.-J. et al., 2020), redox-
responsive (Guo et al., 2017), ion-sensitive (Li et al., 2015) and
other types. Taking into account the target location, properties of
natural compounds, and preferred carrier materials, optimizing
nanocarriers will yield significant benefits.

3.2 Nanocarriers

Developing single herbal ingredient into nanomedicines is
considered an innovative strategy in the development of new drugs.
The strategy of nanocrystallization of single active ingredients is similar
to existing mature chemical drug preparation methods, making it
technically feasible. This approach allows the active ingredients to fully
exert their efficacy while avoiding the challenges of the complex
material basis and quality control of TCM. In recent years,
researchers have extensively explored various nanocarriers,
including NPs, liposomes, micelles, dendrimers, and so on
(Figure 2). These new formulations help overcome the low water
solubility and bioavailability issues of herbal ingredients, enabling
targeted delivery to specific sites or prolonging circulation in the body.

3.2.1 Liposomes
Liposomes, a commonly used delivery systems for natural products,

were first discovered by Bangham et al. in the 1960s, with the first
publication in 1964 (Bangham and Horne, 1964). Liposomes are
spherical structures composed of lipid molecules with both
hydrophilic and hydrophobic properties (Sebaaly et al., 2016). Driven
by hydrophobic interactions and other molecular interactions,
amphiphilic lipid molecules spontaneously assemble into liposomes
in an aqueous environment. The liposome membrane can consist of
one or multiple lipid bilayers. With an aqueous core inside, the polar
head groups face the inner and outer aqueous phases (Manna et al.,
2019). This structure endows liposomes with the ability to encapsulate
molecules with different solubilities. Lipophilic drugs can be
encapsulated within phospholipid bilayers or adsorbed onto the
surface of liposomes, while hydrophilic drugs can be encapsulated by
the internal aqueous core. Additionally, liposomes exhibit excellent
biocompatibility and biodegradability due to their phospholipid
bilayer structure, facilitating favorable interactions with cell
membranes and promoting effective cellular uptake (He et al., 2019).

3.2.1.1 Preparation of liposomes
The preparation techniques for liposomes can be divided into

traditional methods and novel methods, and different techniques
can have an impact on the final characteristics of liposomes, such as
size and encapsulation efficiency (EE). Traditional methods include
film hydration, reverse-phase evaporation, solvent injection, and
detergent removal. These methods generally involve four steps: 1)
dissolution of lipids (usually using organic solvents), 2) removal of
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organic solvents, 3) purification and separation of liposomes, and 4)
analysis of the final liposomes (Akbarzadeh et al., 2013).

The film hydration method, also known as the Bangham
method, was the earliest reported technique for liposome
preparation (Bangham et al., 1967). In this method, lipids are
generally dissolved in organic solvents such as ether, chloroform,
or methanol, and then a lipid film is formed by evaporating and
drying the organic solvent. The lipid film is then hydrated using an
aqueous solvent to form liposomes (Nkanga et al., 2019). The main
disadvantages of this method are the production of large and uneven
liposomes, low EE, and difficulty in completely removing
organic solvents.

The initial steps of the reverse-phase evaporation method are
similar to those of the film hydration method. First, phospholipids
are dissolved in an organic solvent to form a thin film, after which
the solvent is evaporated to remove them. Next, the film is

redissolved in an organic solvent, and water is added to form a
water-in-oil emulsion (Pattni et al., 2015). The emulsion was then
subjected to ultrasound treatment to make it more uniform.
Finally, the organic solvent is evaporated under reduced
pressure to form a liposome suspension (Akbarzadeh et al.,
2013). The advantage of this method is that it achieves high EE
in liposomes, but the disadvantage is that the encapsulated
compounds are exposed to ultrasound conditions and organic
solvents (Monteiro et al., 2014).

The solvent injection method involves rapidly injecting a lipid
solution dissolved in an organic solvent into an aqueous medium to
form liposomes (William et al., 2020). This method is commonly
used for liposome preparation due to its simplicity, strong
reproducibility, fast speed, and minimal lipid degradation or
oxidation. However, this method still has several limitations, such
as poor solubility of certain compounds in ethanol, low EE for

FIGURE 2
Nanocarriers for delivering active ingredients of TCM.
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hydrophilic compounds, and incomplete removal of ethanol
(Maherani et al., 2011).

In the detergent removal method, phospholipids are dissolved
by a detergent at the critical micelle concentration (Nkanga et al.,
2019). After removing the detergent by column chromatography or
dialysis, the phospholipid molecules self-assemble in an aqueous
medium to form liposomes (Akbarzadeh et al., 2013). The size and
uniformity of the liposomes produced by this method can be
influenced by the initial ratio of phospholipids to detergents and
the efficiency of detergent removal (Maherani et al., 2011). The
disadvantage of this method is that impurities may be present in
liposomes, and interactions between the detergent and the
compounds can also occur.

Currently, research on new liposome preparation methods has
focuses mainly on expanding the industrial production scale and

making them suitable for various phospholipids and drugs (Pattni
et al., 2015). Some of these new methods are improvements on
traditional methods, such as direct hydration of lipid components
after ultrasound treatment to avoid dissipation (Manca et al., 2013).
Additionally, the application of supercritical fluid (SCF) technology
in liposome production has also been explored. This method utilizes
a supercritical fluid, such as CO2, maintained under supercritical
conditions. The SCF method offers several advantages, including
low solvent cost, environmental friendliness, controllable particle
size, in-situ sterilization, and suitability for large-scale production
(William et al., 2020).

3.2.1.2 Application of liposomes
Triptolide (TP) is an epoxy diterpenoid compound isolated from

Tripterygium wilfordii Hook F. that has demonstrated anti-

FIGURE 3
Schematic illustration of preparation, targetingmechanism, synchronous intracellular drug release, and visualization of photosensitive liposome@TP
(TP/Ce6-LP). Reprinted from Acta Pharmaceutica Sinica B, L. Yu, Z. Wang, Z. Mo, B. Zou, Y. Yang, R. Sun, W. Ma, M. Yu, S. Zhang, Z. Yu, Synergetic delivery
of triptolide and Ce6 with light-activatable liposomes for efficient hepatocellular carcinoma therapy, 2004-2015, Copyright (2021), with permission from
Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER].
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inflammatory, anti-tumor, and anti-infective properties (Chen et al.,
2018). However, the narrow therapeutic window, poor water
solubility, and rapid metabolism of TP limit its clinical
application. To reduce adverse reactions and improve treatment
efficacy, Yu et al. (2021) designed a light-activated liposome (TP/
Ce6-lp). By combining the photosensitizer Ce6 with TP, this
liposome can synergistically treat liver cancer through the
controlled release of TP and photodynamic therapy. Studies on
its anti-tumor activity have shown that TP/Ce6-lp induces cell
apoptosis by upregulating Caspase-3/PARP protein expression,
resulting in good therapeutic effects on patient-derived
hepatocellular carcinoma xenografts (PDXHCC) after
irradiation (Figure 3).

In the field of TCM, TP is commonly used to treat rheumatoid
arthritis. To improve the transdermal delivery of TP in collagen-
induced arthritis (CIA) rats, Chen et al., 2015) prepared a TP-loaded
liposome hydrogel (TP-LHP) in the form of a microneedle patch
and evaluated its pharmacokinetics and pharmacodynamics. The
results showed that, after 1 week of treatment, TP-LHP had the
effect on reducing joint swelling in all treatment dose groups, with
the high-dose group showing the greatest efficacy. TP-LHP
demonstrated sustained and stable release of TP, and significant
efficacy was observed after 4 weeks of continuous treatment,
indicating that the combination of TP-LHP and the microneedle
delivery strategy is effective for the treatment of
rheumatoid arthritis.

The active ingredients of TCM can also participate in the
construction of liposomes, which can exert dual effects. In recent
years, numerous published reports have shown that combination
therapy with TCM can effectively improve tumor conditions and
have synergistic effects with reduced toxicity (Chen et al., 2021; Lu
et al., 2021). To overcome the potential toxic effects of traditional
liposome formulations in the body (Moein Moghimi et al., 2006),
Guo et al. (2022) incorporated glycyrrhizic acid (GA) into
liposomes constructed with a mixture of saponins and
phospholipids, using platycodin and ginsenoside as substitutes
for cholesterol to construct saponin liposomes (RP-lipo). PR-
lipo@GA exhibited similar morphological characteristics and
drug release behavior to conventional liposomes but
demonstrated stronger lung cancer cell targeting and anti-
tumor capabilities in vitro, possibly attributed to the
pharmacological properties of saponins themselves (Lu et al.,
2018). This novel formulation of liposomal drug delivery
system not only challenges the status of cholesterol as a
component of liposomes but also provides an innovative system
for the clinical application of combination therapy.

3.2.2 Polymeric micelles
3.2.2.1 Preparation of polymeric micelles

Polymeric micelles are core-shell aggregates formed by self-
assembly of amphiphilic block copolymers at the critical micelle
concentration. Depending on the hydrophobic and hydrophilic
conditions as well as the solvent, micelles can adopt various
shapes, including spherical, cylindrical, inverse micellar, and
bottle-brush structures. The preparation methods for micelles
include dilution (Liu et al., 2006), freeze-drying (Teagarden and
Baker, 2002), solvent evaporation (Hibino et al., 2021), and
dialysis (Minatti et al., 2003). During the preparation process,

the physicochemical properties of the block copolymers, the
sequence of addition, concentration, and water/organic solvent
ratio can impact the size, polydispersity index, and stability
of the micelles (Kotta et al., 2022). Micelles are capable of
loading hydrophobic drugs into their core through
physical encapsulation, chemical conjugation, and electrostatic
interactions, exhibiting excellent stability and drug solubility in
aqueous environments. Table 1 summarizes the materials and
preparation methods of polymeric micelles used for loading
components of Chinese herbs.

3.2.2.2 Application of polymeric micelles
Polymeric micelles, as drug carriers, have nanoscale sizes and

narrow size distributions. The core-shell structure of these materials
helps shield drugs from oxidation, enhancing drug stability. PTX, a
type of diterpenoid alkaloid compound, has been found to induce
cell cycle arrest and apoptosis in tumor cells by polymerizing tubulin
dimers to stabilize microtubules (Bian et al., 2015). However, the
anti-tumor potential of PTX is hindered by its poor water solubility,
short biological half-life, and toxicity to normal tissues.
Encapsulating PTX in biocompatible carriers is an alternative
approach for targeted drug delivery. Wang Y. et al. (2020)
synthesized a biotin-functionalized block copolymer, which called
poly (N-2-hydroxypropylmethacrylamide)-block-poly (N-2-
benzoyloxypropyl methacrylamide). This copolymer can self-
assemble into polymer micelles in water, and its size is positively
correlated with the length of hydrophobic segments. Due to the
presence of biotin receptors on the surface of target cells, biotin-
modified micelles achieve more effective internalization and exert
stronger cytotoxicity. In another study, Huang et al. (2018) prepared
a pH-responsive prodrug of PTX, which consisted of amphiphilic
polyethylene glycol (PEG) and PTX. In the acidic environment of
tumor tissues, the aldehyde linker is cleaved, resulting in the rapid
release of PTX loaded in the micelles, followed by the release of
conjugated PTX, thereby achieving programmable drug release.

Studies have shown that CUR inhibits tumor generation,
proliferation, and metastasis by downregulating cyclin B1,
activating the caspase-9/3 cascade, inhibiting the PI3K/Akt/
mTOR signaling pathway, and suppressing matrix
metalloproteinase-2 (MMP-2) (Yang et al., 2014). To overcome
the poor water solubility of CUR, Sun et al. (2021) synthesized
galactosamine-modified polyethylene glycol-polylactic acid (Gal-
PEG-PLA) polymers, and prepared CUR-loaded Gal-PEG-PLA/
D-α-tocopherol polyethylene glycol 1,000 succinate micelles
(CUR-loaded Gal-PEG-PLA/TPGS). The size of these polymeric
micelles is approximately 100 nm, with a drug loading capacity of
14.6%. The biodistribution results showed significant absorption of
these micelles in the jejunum and ileum. Moreover, CUR-loaded
micelles can reduce damage to liver and intestinal tissues, making
them valuable for the oral administration of hydrophobic drugs.

3.2.3 NPs
NPs are a novel drug delivery system that are actually defined as

“solid colloidal particles”. The particle size generally ranges from
10–50 nm, with an upper limit of about 1,000 nm (Mora-Huertas
et al., 2010; Petros and DeSimone, 2010). NPs can load a wide range of
drugs, including proteins, hydrophobic drugs, hydrophilic drugs,
vaccines, and biomacromolecules. Through formulation design, NPs
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can achieve targeted drug delivery to organs such as the lymphatic
system, spleen, lungs, brain, and liver, and can prolong the circulation
time of drugs in the body (Anwar et al., 2021). NPs provide an ideal
choice for the controlled and targeted administration of natural
products and have attracted great interest from researchers.

3.2.3.1 Polymeric NPs
Polymeric NPs are colloidal systems composed of natural,

synthetic, or semi-synthetic polymers (Van Vlerken et al., 2007).
Compared to inorganic NPs, polymeric NPs typically exhibit good
biocompatibility, stability, processability, and responsiveness to
external stimuli (Sarcan et al., 2018). The polymer serves as the
backbone of polymeric NPs and is considered the foundation of their
composition. Therefore, researchers must understand the
characteristics of polymers, such as biocompatibility,
biodegradability, stability, permeability, and the interaction
between drugs and polymers, in order to select appropriate
formulations. Additionally, the properties of the formulation
system can be modulated through chemical modifications, the
addition of targeting molecules, the incorporation of lipids, and
other methods to achieve the desired objectives of the researchers
(Kumari et al., 2010).

Polymers can be classified into natural polymers and synthetic
polymers based on their source. Numerous studies have reported the
use of synthetic polymers for the preparation of polymeric NPs.
Commonly used synthetic polymers include polylactic acid (PLA),
poly (lactic-co-glycolic acid) (PLGA), and poly-ε-caprolactone
(PCL). For example, Rathinavel et al. (2021) prepared polymeric
NPs loaded with CUR using PCL to enhance the antibacterial effects
against both gram-positive and gram-negative strains. Thuy et al.
(Kang et al., 2022) used PAMAM to prepare co-loaded NPs of PTX
and CUR, achieving improved bioavailability and enhanced
anticancer activity against skin cancer. Kumar et al. (2014)
prepared methacrylate-based NPs for CUR delivery and observed
that the drug delivery system enhanced the antitumor activity and
significantly reduced G0/G1 cell cycle arrest in tumor cells.

Compared to synthetic polymers, natural polymers have gained
widepraed attention due to their high biocompatibility,
biodegradability, stability, and cost-effectiveness (Sabra et al.,
2019). Commonly used natural polymers include chitosan,
alginate, and gelatin. Chitosan is a cationic alkaline
polysaccharide that exhibits good biocompatibility and
biodegradability and contains a large number of functional
groups suitable for chemical modification. Methods for preparing

chitosan NPs include ion gelation (Kalpana et al., 2010),
microemulsion (Wang et al., 2008), and emulsion solvent
diffusion (El-Shabouri, 2002). Rahmati et al. (2021) studied the
preparation of BBR-loaded alginate/chitosan gel and evaluated its
therapeutic efficacy in a rat sciatic nerve crush injury model. MTT
assays confirmed the cell compatibility of the gel and demonstrated
the dose-dependent effect of BBR on cell proliferation. In vivo
experiments showed that the hydrogel containing 1% BBR had a
positive effect on rat sciatic nerve regeneration. Dogan investigated
the potential cytotoxic effects of quercetin (QUE) and QUE-loaded
chitosan NPs on SH-SY5Y cells. After treatment with different
concentrations of QUE (0.5, 1, 2, 4, 8 μg/mL) for 24 h, cell
viability was determined using the XTT assay. The results
showed that QUE-loaded chitosan NPs induced significant
cytotoxicity in SH-SY5Y cells through the generation of oxidative
stress and DNA damage (Dogan, 2022).

Alginate is an anionic water-soluble natural polymer with
biodegradable, biocompatible, and adhesive properties. Its
adhesiveness is mainly attributed to strong hydrogen bonding
formed through hydroxyl and carboxyl groups interacting with
adhesive glycoproteins (Nair and Laurencin, 2007). Methods for
preparing alginate NPs include ion gelation, covalent cross-linking,
emulsion solvent displacement, and emulsion-solvent evaporation. Ion
gelation is a widely used technique for preparing alginate NPs(Damelin
et al., 2015), as alginate has an affinity for multivalent cations such as
Ca2+ and Zn2+(Draget et al., 1997). Ahmady et al. (2023) developed a
drug delivery system based on alginate. First, alginate NPs loaded with
capsaicin were prepared using cationic surfactants and nano-
emulsions. The particle size of these NPs was 19.42 ± 11.8 nm,
with an encapsulation efficiency of 98.7% ± 0.6%. Subsequently,
poly (ε-caprolactone)-chitosan co-blended nanofibers with different
mixing ratios were fabricated using electrospinning. The nanofibers
with the most favorable characterization results were chosen to
encapsulate the alginate NPs, resulting in a drug delivery system
consisting of nanoparticle-nanofiber composites. In vitro analysis
demonstrated the effective inhibition of MCF-7 human breast
cancer cell proliferation by the designed nanoplatform, while it
exhibited no toxicity toward human dermal fibroblasts (HDF).

Gelatin is a protein obtained by partially hydrolyzing collagen to
convert it into a non-oriented protein. Based on the pH at which
collagen is hydrolyzed, gelatin can be divided into two types: gelatin
A (isoelectric point of 9), where collagen is hydrolyzed under acidic
conditions, and gelatin B (isoelectric point of 5), where collagen is
hydrolyzed under alkaline conditions. Since gelatin is water-soluble,

TABLE 1 Study of polymeric micelles loaded with active ingredients of TCM.

Polymer Method of preparation Drug Ref.

Hexyl-hyaluronan and oleyl-hyaluronan Solvent evaporation method Curcumin Starigazdová et al. (2020)

Block copolymer of mPEG (5 kDa)-PCL (2 kDa) Continuous processing Curcumin Gupta et al. (2020)

disteraroylphosphatidylethanolamine-PEG Solvent evaporation method Paclitaxel Oda et al. (2020)

Carboxymethyl chitosan-rhein conjugate Self-assembly Paclitaxel Wang et al. (2020a)

Gallic acid-Chitosan-D-α-tocopherol PEG 1000 succinate Ultrasonic emulsification Paclitaxel Tu et al. (2020)

Cholic acid conjugated poly (bis (carboxyphenoxy) phosphazene) Ultrasonication Paclitaxel Mehnath et al. (2020)

Chitosan-lecithin Sonication Thymoquinone Negi et al. (2020)

Frontiers in Pharmacology frontiersin.org08

Zhang et al. 10.3389/fphar.2024.1405252

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1405252


cross-linking of gelatin may be required in the development of
NPs(Lin et al., 2009; Elmowafy et al., 2023). Tumor-responsive
nanocarriers are highly valuable and in demand for smart anticancer
drug delivery. For this reason, Zhou et al. (2020) designed redox-
and MMP-2-sensitive NPs for the delivery of PTX. Bovine serum
albumin was used as the targeting ligand, and the disulfide-
containing prodrug (PTX-SS-COOH) was grafted onto
sulfhydryl-modified gelatin as the hydrophilic carrier. The
sulfhydryl groups on gelatin can self-cross-link in air to form
disulfide bonds, thus giving the NPs a stable structure. Because
of their sensitivty to changes in MMP-2 concentration and redox
potential, the NPs achieved multi-responsive drug delivery to the
tumor microenvironment and showed excellent anti-cancer efficacy
in further in vitro and in vivo experiments.

3.2.3.2 Inorganic NPs
The nanoscale synthesis of inorganic materials has led to

significant changes in biology and medicine. With their nanosize
and abundance of atoms on their surfaces, inorganic NPs can exhibit
properties such as magnetism, conductivity, radioactivity, and light
(heat) responsiveness (Auffan et al., 2009). Based on these
properties, inorganic NPs are increasingly used in the field of
biomedicine for applications such as therapy, diagnosis,
biosensors, and material component modules (Ni et al., 2017;
Hess et al., 2019; Luther et al., 2020; Mitchell et al., 2021). The
most commonly used inorganic materials include pure metals (e.g.,
gold and silver), metal oxides (e.g., mesoporous silica and γ-Fe2O3/
Fe3O4), semiconductor materials, and calcium phosphate.

Compared to other inorganic NPs, noble metal (e.g., Au, Ag, Pt,
Hg, and Cu) NPs are gaining increasing attention from researchers
(Ramalingam et al., 2014). Among them, gold NPs are known to be the
most stable NPs. They also possess tunable optical properties, which are
determined by the surface plasmon resonance effect, involving the
oscillation and interaction of electrons between surface negative and
positive charges (Ramalingam, 2019). As shown in Figure 4, gold NPs
can be synthesized using top-down and bottom-up approaches.
However, these methods often face challenges such as the use of
chemically toxic reagents with safety risks, complex preparation
processes, and the need for improved functionality and
biocompatibility (da Silva et al., 2020). For example, common
surfactants like cetyltrimethylammonium bromide and reducing
agents such as hydrazine hydrate and sodium borohydride, due to
their explicit toxicity, must be removed or encapsulated with
biocompatible shells during the preparation process (LunáCheung
et al., 2012; Kumar et al., 2019). To avoid toxicity risks and explore
diverse biomedical applications, the green synthesis of gold NPs based
on specific natural compounds is considered an ideal alternative
method for improving the preparation process and enhancing the
functionality of the final materials. These natural bioactive components
also possess inherent pharmacological properties. Some active
ingredients, such as CUR (Matur et al., 2020), resveratrol (Wang
et al., 2017), and epigallocatechin gallate (EGCG) (Wu et al., 2018)
have received increasing attention due to their unique structures and
physicochemical characteristics that can confer special functions to
materials. For instance, Yao et al. (2022) selected the tetracyclic
triterpenoid compound ginsenoside Rh2 from Panax ginseng C.A.
Meyer as a reducing agent and stabilizer to react withHAuCl4, resulting
in the synthesis of Au@ginsenoside Rh2 NPs. These NPs inherited the

excellent anticancer properties of ginsenoside Rh2 and improved its
poor water solubility.

3.2.3.3 Bio-NPs
Currently, nanocarriers can be broadly classified into two

categories: artificial nanocarriers and natural nanocarriers.
Artificial nanocarriers, represented by inorganic NPs, have
limitations in drug loading capacity and inevitable systemic
toxicity, which to restrict their application as delivery platforms
(Chen et al., 2022). The safety concerns associated with using
artificially synthesized materials for drug delivery have
accelerated the research and application of cell-derived
nanovesicles (CDNs). CDNs include naturally secreted
extracellular vesicles (e.g., exosomes and microvesicles), stimulus-
induced nanovesicles, and lipid-based nanovesicles (Liu et al., 2021).
CDNs are typically isolated and purified from culture media and
various biological fluids, or they can be produced or modified from
various cells, bacteria, fungi, or even whole plants. Currently, there
are three main methods for preparing CDNs. The first method
involves the separation and purification of naturally secreted CDNs
using techniques such as differential ultracentrifugation (DUC),
density gradient ultracentrifugation (DGUC), and ultrafiltration
(UF) (Li et al., 2017). The second method involves the
application of exogenous stimuli to host cells to enhance the
biogenesis of CDNs, which is a feasible approach for increasing
CDN production while maintaining the major characteristics of the
cell membrane (Zou et al., 2019). The last method involves the
extraction of bio-lipids from cells and the reconstruction of CDNs
in vitro (Yang et al., 2018).

As particles that exist naturally in the environment, CDNs
possess almost all the advantages of artificial nanocarriers, and
they also exhibit biocompatibility and biosafety (Johnsen et al.,
2018). Through optimized separation, detailed characterization,
and appropriate functionalization, CDNs have been successfully
prepared for delivering plant chemicals. In the field of TCM, CDNs
have been studied for delivering active ingredients such as CUR,
RES, QUE, triptolide, and BBR. Table 2 summarizes the reports on
the delivery of herbal ingredients using CDNs.

The application of CDNs for delivering active ingredients also
faces some challenges. The primary issue is the limited efficiency in
obtaining CDNs, especially in regard to large-scale and highly
selective separation and preparation of CDNs from complex
media, which requires further research. Additionally, the
functional modifications carried out on CDNs to achieve
therapeutic goals may compromise their structural integrity,
reduce drug loading capacity, and alter the in vivo distribution of
the drugs (Chen et al., 2022). Therefore, the selection and
optimization of CDN-based drug delivery systems require further
consideration and improvement.

3.2.4 Dendrimers
Dendrimers are large molecules with a dendritic structure, that

consist of oligomers that are repeatedly and linearly linked by
branching units. As the number of polymerization generations
increases, the degree of branching of the molecules continues to
expand, eventually leading to the formation of a closed three-
dimensional spherical structure (Abbasi et al., 2014). The number
of branching points (also known as focal points) from the central
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core to the surface is referred to as “generation” (Tomalia, 2005). For
instance, dendrimers with 5 branching points are called the “fifth
generation” and are denoted as “G5-dendrimer”. Therefore, the fifth
generation PAMAM dendrimer is referred to as G5-PAMAM.

Dendrimers possess controllable physicochemical properties,
enriched active functional groups, and internal cavity structures,
making them promising drug delivery carriers (Madaan et al., 2014).
There are two approaches for dendrimer-based drug delivery. One is
through non-covalent interactions, where the drug molecules are
encapsulated within the internal cavities of dendrimers, providing
protection against metabolic processes and enhancing the
bioavailability of the drugs. The other approach involves covalent
interactions, where the drug molecules are covalently linked to the
dendrimers using cleavable functional groups such as esters and
amines, enabling effective drug release and controlled release of the
drugs (Chis et al., 2020).

Compared to more mature technologies such as liposomes, NPs,
and micelles, dendrimers have a relatively late start in the field of drug
delivery. Currently, one of the most successful companies utilizing
dendrimers as drug delivery platforms is Starpharma from Australia.
Their DEP® platform has advanced multiple drugs to clinical stages
(Kelly et al., 2020). In the field of TCM, there have been reports on the
use of dendrimers for the delivery of active ingredients such as MT
(Alibolandi et al., 2017), PTX (Bhatt et al., 2019), BBR(Yadav et al.,
2023), QUE (Madaan et al., 2016), ellagic acid (Priyadarshi et al., 2021),
RES (Pentek et al., 2017), and CUR (Gamage et al., 2016).

3.3 Carrier-free nanomedicines

Currently, the development of nanocrystallization of single
active ingredients has to some extent overlooked the

compatibility of TCM formulas. This is because clinically used
TCM contain various components with different
physicochemical properties. Therefore, it is necessary to
explore multi-component nanomedicines. The theory of TCM
compatibility refers to the combination of various herbs,
reflecting the synergistic effects of different components.
Utilizing multiple active ingredients through nanotechnology
is an effective strategy. Some structurally ideal active
ingredients can be utilized as carriers, while some active
ingredients can act simultaneously as carriers and drugs, fully
exploiting their physicochemical properties and pharmacological
actions. Various nanostructures formed by self-assembly of
active ingredients of TCM are referred to as carrier-free
nanomedicines (Li L. et al., 2020).

3.3.1 Self-assembled nanomedicines
Carrier-free self-assembled nanomedicines of TCM refer to the

formation of stable and specific structures through non-covalent
interactions such as hydrogen bonding, van der Waals forces, π-π
stacking, electrostatic interactions, and coordination bonds
between active ingredients of TCM(Tian et al., 2020). Studies
have found that the structural diversity of herbal ingredients
enables their self-assembly capabilities, allowing them to
assemble with other molecules through non-electrostatic
interactions. The preparation of self-assembled nanomedicines
is simple and allows for high drug loading, while achieving
highly stable drug delivery without the use of carriers (Figure 5)
(Zhi et al., 2020). Currently, common ingredients of TCM with
self-assembly properties include terpenoids, glycosides (Mao et al.,
2022), and quinones (Wu et al., 2022). These natural molecules can
self-assemble at the interface of different solvents to form carrier-
free nanomedicines.

FIGURE 4
Method of preparing AuNPs.
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Ginsenosides, the main active ingredients of P. ginseng C.A.,
belong to triterpenoid saponins. In order to avoid potential
issues associated with poor biocompatibility, low drug loading
capacity, and unpredictable side effects associated with drug
carriers, Tan et al. (2022) utilized the intermolecular recognition of
different ginsenoside monomers to achieve self-assembled carrier-free
ginsenosides nano-micelles (GSN). These self-assembled micelles
exhibited a lamellar structure with a uniform particle size
distribution. The molecular interactions between ginsenosides were
preliminarily studied using Discovery Studio 4.0 (DS 4.0). The results
demonstrated that the formation of GSN was driven by alkyl-alkyl
interactions and hydrogen bonding. Additionally, GSN effectively
inhibited tumor cell adhesion activity and the expression of
intercellular adhesion molecule-1 (ICAM-1). Importantly, in an in
vivo H22 mouse artificial lung metastasis model, the self-assembled
system significantly inhibited tumor metastasis. These results suggest
that this carrier-free nanomedicine has potential for the treatment of
tumor metastasis.

Rhein is an anthraquinone derivative and is present in Rheum
palmatum L. In the absence of carrier materials, Wu et al. (2021)
utilized hydrogen bonding and π-π stacking interactions as driving
forces to self-assemble rhein and DOX into a mitochondria-
targeting nanogel. This nanogel achieved 100% drug loading and
not only enabled sustained controlled release but also overcame the
drawbacks associated with the use of free DOX and free rhein, such
as high toxicity, poor target specificity, low solubility, and low
bioavailability. In the tumor environment, the rhein-DOX
nanogel was taken up by HepG2 cells and delivered to the
mitochondria. Subsequently, rhein and DOX were released from
the fibrous structure. The rhein-DOX nanogel significantly
increased intracellular reactive oxygen species (ROS) levels,
decreased mitochondrial membrane potential (MMP), and
further induced cell apoptosis. These results demonstrated the
synergistic effect of rhein and DOX in the treatment of liver cancer.

Ursolic acid is a pentacyclic triterpenoid compound. Fan et al.
(2018) designed a carrier-free nanomedicine based on the self-
assembly of ursolic acid molecules. This process relies on
hydrogen bonding and hydrophobic interactions between
ursolic acid molecules, resulting in stable NPs with a particle
size of 100–200 nm and a high drug loading capacity of up to
60%. Compared to free ursolic acid, these nanomaterials
significantly inhibit cancer cell proliferation and induce
apoptosis. In vivo studies, the nanomaterial significantly
inhibited tumor growth and protected the liver in
A549 xenograft mouse models. This carrier-free nanomedicine
platform represents a strategy to enhance the anticancer effects of
poorly soluble drugs.

3.3.2 Pharmaceutical cocrystals
Pharmaceutical cocrystals refer to multicomponent molecular

crystals formed by two or more drug molecules through
hydrogen bonding or other non-covalent interactions, with at
least one molecule being an active pharmaceutical ingredient
(API) and the other being a co-former (Kuminek et al., 2016;
Gu et al., 2022). Traditional co-formers are often composed of safe
pharmaceutical excipients, but there are now drug cocrystals
composed solely of active drug substances that have been used
in clinical applications. These drug cocrystals retain the advantages
of individual components while exhibiting synergistic effects in
terms of pharmacological activity. For example, the sacubitril
valsartan sodium cocrystal has been used in the clinical
treatment of heart failure (McCormack, 2016).

In the field of TCM, non-dissociating and weakly dissociating
active ingredients, such as flavonoids, alkaloids, terpenoids, and
polyphenols, can form cocrystal structures through intermolecular
interactions like hydrogen bonding (Heng et al., 2022). In particular,
due to the competitive hydrogen bonding sites within the molecular
framework of flavonoids, they readily form cocrystals with co-formers

TABLE 2 Research on CDNs as delivery carriers for active ingredients of TCM.

Drug CDNs source Preparation Application Ref.

Quercetin Plasma exosome Isolation Alzheimer’s Disease Qi et al. (2020b)

Icariin Fetal Bovine Serum Isolation Bone Loss Disease Dong et al. (2021)

Triptolide ID8 Cell Isolation Ovarian Cancer He et al. (2021)

SKOV3 Cells Isolation Ovarian Cancer Liu et al. (2019a)

Paclitaxel Milk Isolation Lung Cancer Aqil et al. (2016)

Dendritic Cells Isolation Breast Cancer Wan et al. (2018)

RAW 264.7 Cell Isolation Lung Cancer Kim et al. (2016)

Camptothecin Mesenchymal Stem Cell Isolation Tendon Injury Li et al. (2020a)

Berberine M2 macrophage Isolation Spinal Cord Injury Gao et al. (2021)

Curcumin Milk Isolation Cervical Cancer Aqil et al. (2017)

Endothelial Cell Isolation Cerebral Diseases Kalani et al. (2014)

Raw 264.7 Cell Isolation Glioma Jia et al. (2018)

Resveratrol RBC Membranes Bio-fabrication Alzheimer’s Disease Han et al. (2020)
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that also contain hydrogen bond acceptors and donors. Currently, a
series of cocrystals formed between flavonoid compounds and
excipients, such as caffeine, isoniazid, nicotinamide, acetamide,
betaine, and theophylline have emerged. These cocrystals exhibit
good solubility, dissolution, and oral bioavailability. For instance,
Luo et al. (2019) synthesized a cocrystal of luteolin with isoniazid and
caffeine using liquid-assisted grinding. The solubility of the luteolin-
isoniazid cocrystal was 112.3 μg/mL, approximately three times
greater than that of free luteolin. According to the
pharmacokinetic analysis, compared with those of free luteolin, the
AUC0-∞ of the luteolin-isoniazid cocrystal and luteolin-caffeine
cocrystal were 2.7-fold and 1.4-fold greater, respectively.

3.3.3 Pickering emulsion
Pickering emulsion is a type of emulsion in which solid particles

act as stabilizers and adsorb onto the surface of liquid droplets. This
structural uniqueness endows the material with excellent stability,
biocompatibility and environmental friendliness (Ni et al., 2022).
The use of Pickering emulsion can significantly improve the oral
bioavailability of poorly soluble drugs such as CUR, silybin, puerarin,
and rutin (Tai et al., 2020). In terms of drug delivery systems, lipophilic
components can be loaded into the oil phase, hydrophilic drugs can be
loaded into the aqueous phase, and amphiphilic drugs can be loaded at
the oil-water interface. Additionally, Pickering emulsion can be used as
precursors for preparing other dosage forms or carriers, such as nano-

FIGURE 5
Formation of injectable NPG scaffold. (A) 2D NOESY spectra of compound 3 in mixed solvent of deuterated ethanol and deuterated water (4:1) at
different concentrations. (B) Molecular length of compound 3. (C) UV spectra of compound 3 in ethanol/water mixed solvent (1:1) at different
concentrations. (D) IR spectra of compound 3 obtained from non-gel and gel. (E) 1H NMR spectra of compound 3 inmixed solvent of deuterated ethanol
and deuterated water (4:1) at different concentrations. (F) A possible self-assembly formation process of NPG. Reprinted from Acta Pharmaceutica
Sinica B, K. Zhi, J. Wang, H. Zhao, X. Yang, Self-assembled small molecule natural product gel for drug delivery: a breakthrough in new application of small
molecule natural products, 913-927, Copyright (2020), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER].
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composite materials, magnetic solid microspheres, and hollow
microcapsules (Nypelö et al., 2014).

3.3.4 Nanosized aggregates in decoction
Decoction is the main form of clinical application of

TCM(Weng et al., 2019). The decoction with water as the solvent
contains complex active ingredients, and it is speculated that
hydrophobic compounds may be modified to increase their
solubility (Kim and Park, 2017). Due to the encapsulation of
hydrophobic components by amphiphilic polysaccharides or
proteins, as well as the interaction between acidic and alkaline
compounds, new composites may be formed during the
decoction process of TCM(Zhou et al., 2019).

Liu et al. successfully isolated and characterized nanosized
aggregates from Bai-Hu Tang, which exhibit excellent
performance in antipyretic properties (Lü et al., 2018). Zhuang
et al. found that the nanosized aggregates of Xue-Fu-Zhu-Yu
Tang during boiling are closely related to its protective effect on
cardiovascular system (Zhuang et al., 2008). In addition, Zhou et al.
extracted colloidal NPs from Ma-Xing-Shi-Gan Tang, which were
formed by hydrophobic or ionic interactions between amphiphilic
molecules such as ephedrine and pseudoephedrine (Zhou et al.,
2014). In summary, substances such as nanosized aggregates have
played a crucial role in TCM decoctions, which has been proven
through nanotechnology. This discovery not only provides ideas for
understanding the mechanism of TCM, but also provides valuable
reference for the development of innovative dosage forms (Zheng
et al., 2022).

4 The safety of nano-TCM

Nano-based drug delivery systems hold promise for traversing
biological barriers, including cell membranes and even the BBB(Cox
et al., 2018; Tosi et al., 2020). However, concerns regarding their
potential toxicity are also increasing. The toxicity mechanism of
nano-TCM is relatively complex, which is not only related to the
toxic components contained in the drug, but also to factors such as
drug metabolism and elimination in the body. The advantages of
improved solubility and enhanced targeting provided by
nanomedicines can reduce or eliminate the toxic effects of active
ingredients of TCM. TP has remarkable efficacy in anti-tumor and
anti-autoimmune effects, but it is accompanied by serious adverse
effects, such as toxic effects on multiple organs (liver, kidney, heart
and reproductive system) (Ma et al., 2015; Wang et al., 2019). In
addition, clinical applications are limited due to its poor water
solubility. To overcome these problems, researchers developed a
transferrin-modified TP liposome (TF-TP@LIP). This modification
significantly enhances the liposome’s ability to target tumors and
reduces the accumulation of the drug in non-target tissues and
organs, thereby reducing drug toxicity and adverse effects (Zhao
et al., 2023).

In addition, the interaction between active ingredients of TCM
can also produce a detoxification effect. Licorice, the dried root and
rhizome of Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat., or
Glycyrrhiza glabra L., is an “essential herbal medicine” in TCM. It
can reduce toxicity and improve efficacy in the combination

application of certain herbs. Jiang et al. conducted a study on
124 bibliographies published from 1976 to 2019 and found that
the interaction between licorice and toxic compounds, as well as the
influence of licorice on the metabolism of toxic compounds, are the
main mechanisms by which licorice plays a role in TCM formulas
(Jiang et al., 2020). Euodiae Fructus (EF) is a commonly used herb
with mild toxicity in clinic. Zhang et al. found that licorice
processing can significantly reduce the hepatotoxicity of EF. The
detoxification mechanismmay be related to the antagonistic effect of
licorice on toxic components (Zhang et al., 2021).

5 Challenges and opportunities

The discovery of famous drugs such as ART and BBR usually
follows the concepts and strategies of Western medicine, which
involve developing new drugs using isolated single natural
products (You et al., 2022). This is one way in which TCM has
contributed to the development of global medicine. However, there
are obvious limitations to this research approach as it lacks the
guidance of TCM theory. TCM involves the individual regulation
of multiple components and targets, allowing the body to
transition from an abnormal state to a normal state. This
characteristic makes it difficult to replicate and conduct large-
scale clinical trials, thus making it challenging to obtain statistically
significant results (You et al., 2022). Through genomics,
transcriptomics, proteomics, metabolomics and combined omics
analysis, we are able to gain a more comprehensive understanding
of the interactions between TCM and biological system. Due to the
complexity and multi-component nature of TCM prescriptions,
the application of such research techniques can not only provide a
deeper understanding of drug mechanisms but also enhance the
knowledge of TCM principles, so that the embedded ancient
wisdom can be reinterpreted and utilized through the lens of
modern science.

6 Conclusion

Nanotechnology, as a field with tremendous potential, has
brought new momentum and confidence to the modernization of
TCM. On the one hand, relying on advantages such as improving
bioavailability, achieving controllable release, and enhancing
targeted effects, developing single active ingredients into
nanomedicines is considered an innovative strategy for the
development of new drugs. On the other hand, interpreting the
mechanism of compound prescriptions of TCM is crucial for the
modernization of TCM. Exploring the substance basis of TCM
formulas from the perspective of nanotechnology can provide
strong support for elucidating the scientific intension of TCM
formulas. In addition, exploring the physiological and
biochemical responses of nano-TCM in human body with the
help of omics technology is of great value in elucidating the
pharmacological mechanism and targets of herbal medicines. It is
worth emphasizing that the continuous integration of TCM with
modern scientific principles and technologies will continue to serve
the promotion of human health.
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Glossary

ART artemisinin

AT acyltransferase

BBR berberine

BBB blood-brain barrier

CDNs cell-derived nanovesicles

CPT camptothecin

CYP450 cytochrome P450

DOX doxorubicin

DMAPP dimethylallyl pyrophosphate

EPH ephedrine

EGCG epigallocatechin gallate

EE encapsulation efficiency

FDA the U.S. Food and Drug Administration

FA folic acid

GSN ginsenosides nano-micelles

GMA glycidyl methacrylate

HDF human dermal fibroblasts

HEMA 2-hydroxyethyl methacrylate

LF lactoferrin

LECs lipid-based nanocarriers

MT matrine

NPs nanoparticles

PTX paclitaxel

PFH perfluorohexane

PEG polyethylene glycol

PLA polylactic acid

PLGA poly (lactic-co-glycolic acid)

PCL poly-ε-caprolactone

PAMAM poly (amidoamine)

PLL poly (L-lysine)

PEI polyethylenimine

PPI poly (propylene imine)

QUE quercetin

RES resveratrol

ROS reactive oxygen species

SCF supercritical fluid

TPS terpene synthase

TCM Traditional Chinese medicine

TF transferrin

TP triptolide

UGT UDP-glycosyltransferase
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