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Introduction: In virtual bioequivalence (VBE) assessments, pharmacokinetic
models informed with in vitro data and verified with small clinical trials’ data
are used to simulate otherwise unfeasibly large trials. Simulated VBE trials are
assessed in a frequentist framework as if they were real despite the unlimited
number of virtual subjects they can use. This may adequately control consumer
risk but imposes unnecessary risks on producers. We propose a fully Bayesian
model-integrated VBE assessment framework that circumvents these limitations.

Methods: We illustrate our approach with a case study on a hypothetical
paliperidone palmitate (PP) generic long-acting injectable suspension
formulation using a validated population pharmacokinetic model published for
the reference formulation. BE testing, study power, type I and type II error
analyses or their Bayesian equivalents, and safe-space analyses are
demonstrated.

Results: The fully Bayesian workflow is more precise than the frequentist
workflow. Decisions about bioequivalence and safe space analyses in the two
workflows can differ markedly because the Bayesian analyses are more accurate.

Discussion: A Bayesian framework can adequately control consumer risk and
minimize producer risk . It rewards data gathering and model integration to make
the best use of prior information. The frequentist approach is less precise but
faster to compute, and it can still be used as a first step to narrow down the
parameter space to explore in safe-space analyses.
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1 Introduction

Bioequivalence (BE) clinical trial analyses check that two drug formulations do not lead
to different average rates and extents of drug absorption in patient populations or surrogate
healthy volunteers. The development of complex bioequivalent products can be challenging.
For example, long-acting injectable (LAI) formulations may require clinical trials lasting
years; high inter- or intra-subject variability may force the use of very large numbers of trial
participants; and costs can be prohibitive for such products. Virtual bioequivalence (VBE)
testing uses a simulationmodel and in vitro and abbreviated trial data (obtained from small-
sized studies) to generate realistic BE trial simulations, which are then used to assess BE for a
particular formulation (Hsieh et al., 2021; Tsakalozou et al., 2021). This can be much less
expensive and time-consuming than full BE trials (Sharan et al., 2021; Gong et al., 2023).
The motivations and conditions for the US-FDA approval of a generic product on the basis
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of a VBE assessment instead of a comparative clinical trial were
recently explained (Tsakalozou et al., 2021). An extensive validation
process was developed on the occasion of that assessment. A
publication by Hsieh et al. (2021) described a partly Bayesian
VBE workflow integrating evidence from in vitro experiments,
scientific literature, and clinical trials.

Regulatory acceptance of VBE is quite new, and VBE
methodology is still evolving. Fortunately, most elements of a
sound VBE framework are available. Modeling and simulations
to design or replace clinical trials are common (Tozer et al.,
1996; Upton and Mould, 2014; Jamei, 2016; Cristofoletti et al.,
2017; Lin and Wong, 2017; Loisios-Konstantinidis et al., 2020;
Zhang et al., 2021; Goutelle et al., 2022). Model-integrated BE
assessment is progressing rapidly (Dubois et al., 2010; Loingeville
et al., 2020; Möllenhoff et al., 2022), and VBE can easily use model-
integrated approaches (Gong et al., 2023). Since VBE uses minimal
clinical data, it makes sense to integrate historical data and in vitro
evidence [e.g., on dissolution (Cristofoletti et al., 2018)] to quantify
the differences between the reference and generic products. Bayesian
inference is currently the best way to do that, even with mechanistic
models (Gelman et al., 1996; Bois et al., 2020; Hsieh et al., 2021;
Wedagedera et al., 2022). Bayesian analysis of clinical BE trials has
been discussed (Fluehler et al., 1982; Selwyn and Hall, 1984; Racine-
Poon et al., 1987; Breslow, 1990; Ghosh and Rosner, 2007; Ghosh
and Gönen, 2008; Peck and Campbell, 2019).

Yet, so far, simulated VBE trials have been submitted to non-
compartmental analyses and standard hypothesis testing as if they
were real trials. However, an unlimited sample size is available for a
virtual trial. At the limit, standard statistical tests would need to
operate with zero-length confidence intervals, rendering error
analyses moot. Arbitrarily limiting the size of virtual trials is also
sub-optimal for decision making. It lowers power and affects both
producers and consumers because a safe product, potentially less
expensive, might not be approved even when it could be. Nobody
benefits from curtailing the power of VBE assessments. We show
that the above difficulties disappear if we adopt amore fully coherent
Bayesian approach (Fluehler et al., 1982; Racine-Poon et al., 1987;
Breslow, 1990), which shifts from a statistical assessment based on
asymptotics to a more coherent probabilistic assessment.

In the following, we describe a fully Bayesian workflow for VBE
assessment and compare it with a partly Bayesian workflow. We
apply these workflows in a case study using simulated abbreviated
trial data. The reference and test formulations will be assumed to
differ in terms of a single drug-release parameter. We discuss issues
related to model-integrated VBE, power and type I error
assessments, and safe space analysis [a form of sensitivity
analysis to estimate the range by which a generic formulation’s
characteristics can vary while maintaining bioequivalence (Hsieh
et al., 2021)].

2 Materials and methods

2.1 VBE workflows

We investigate two workflows (Figure 1). The steps of workflow
A mimic data-based BE assessment, except for the Bayesian
calibration of a predictive model:

1. Definition of a simulation model structure and prior parameter
distributions, usually for the reference formulation.
Mechanistic or empirical structural models can be used, but
mechanistic models should be preferred if in vitro data are
available. The model should be sufficiently predictive of the key
characteristics used to compare products: bioequivalence
checks similar rates and extents of active drug absorption
between the test and reference formulations. The rate and
extent are usually measured by peak plasma concentration
(Cmax) and area under the plasma concentration vs. time curve
(AUC). It is, therefore, mandatory for these to be correctly
simulated by the model for both the test and reference.

2. Model recalibration with in vitro data and clinical data from an
abbreviated BE trial provides estimates of the difference
between the test and reference formulations’ critical quality
attributes (CQAs), which are part of the model parameters. An
alternative is to first use the abbreviated trial data for model
verification. If the model needs improvement, updating it one
way or another is necessary, and Bayesian recalibration using
the abbreviated trial data can be tried. If the model does not
need recalibration, it can be used directly to perform further
simulations. Recalibration is mandatory for an empirical PK
model because there is no other way to inform the difference
between the test and reference.

3. Simulation of virtual trials of different sizes for BE assessment,
type I and type II error, and CQA safe-space analyses using
data-based methods. Those methods are usually related to the
two one-sided t-test (TOST test) (Schuirmann, 1987) with trial
design-specific adaptations. Model-integrated methods have
been proposed, whereby Cmax and AUC are estimated by
model-fitting (Dubois et al., 2010). Statistical tests for BE
control the type I error rate and the probability of declaring
a formulation as bioequivalent when it is not bioequivalent,
which is clearly a consumer risk (Möllenhoff et al., 2022). Type
II error rate, the probability of wrongly declaring a formulation
as non-bioequivalent, is clearly a producer risk but also
indirectly a consumer risk. Type II error depends on the
trial size and intra-group variances. The power of a trial
(one minus type II error) is usually required to be at least
80% to avoid running wasteful trials for sponsors and
participants. Since type II error and power strongly depend
on the variability structure of Cmax and AUC measures and
drug concentration measurements’ uncertainty, the model
should also be predictive of Cmax and AUC variances.

Workflow B differs from workflow A in the last step. There is
uncertainty about the difference between the test and reference
because information is imperfect and all the model parameters
calibrated at step 2 of the workflow, even without recalibration
with in vivo data, have a joint posterior probability distribution,
to which all components of variability and uncertainty
contribute. Therefore, the average Cmax and AUC differences
between the test and reference have a joint posterior predictive
distribution that can be estimated. With such a posterior
distribution, the Bayesian strict equivalent of the current
standard regulatory rule [focusing on population
bioequivalence (Ghosh and Khattree, 2003)] is to declare
bioequivalence if the probability that both Cmax and AUC
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differences fall within the 0.8–1.25 interval is equal or
superior to 0.95.

In workflow B, questions about type I and type II errors of
statistical testing for a simulated trial disappear from our concerns.
However, concerns regarding making a correct decision are still
legitimate and directly related to model validation. Safe-space
analyses are still possible and valid. For nonlinear PK models, the
posterior predictive distribution of Cmax and AUC differences can be
estimated by Monte Carlo simulations.

2.2 Case study data: VBE of generics for
long-acting injectable products

We will illustrate our workflows using a specific case study on
paliperidone palmitate (PP). One of the most important problems in
the management of schizophrenic patients is poor medication
adherence (Valsecchi et al., 2019). LAI formulations, which can
release the drug over months, improve treatment adherence. The
first marketed LAI suspension of paliperidone palmitate, an
antipsychotic agent (Samtani et al., 2009; Magnusson et al.,
2017), called INVEGA SUSTENA® or PP1M in the following, is
usually injected once per month. A more recent formulation
(INVEGA TRINZA®, PP3Mr in the following) can be injected
every 3 months. Reliable population PK models have been
developed and published for PP1M and PP3Mr (Samtani et al.,
2009; Magnusson et al., 2017). These models were developed using
clinical data collected in phase I and phase III trials. The subjects
received an injection of PP1M (dose range 50–150 mg eq.) every
month for 4 months; and then they switched to PP3Mr (dose range
175–525 mg eq.) with an injection every 3 months for 1 year

(i.e., four injections in total). We will assess our VBE workflows
with these models.

2.3 Models for PP long-acting injectables

The PP1M and PP3Mr models we use are illustrated in
Figure 2. The PP1M model published by Samtani et al.
(2009), which was also used by Magnusson et al. (2017), is a
two-compartment model with a depot and a central
compartment. The depot is split into a slow and a fast depot.
The PP1M model describes drug release from the depots by
linear processes. The structure of the PP3Mr model (Magnusson

FIGURE 1
Two VBEworkflows. On the left (A), a partly Bayesian data-based assessment workflow, and on the right (B), the fully Bayesianworkflowwe propose.

FIGURE 2
Structural part of the population PK models used for the
innovator’s PP 1-month (PP1M) and 3-month (PP3Mr) long-acting
injectable products (Samtani et al., 2009; Magnusson et al., 2017).
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et al., 2017) is similar but with two saturable drug-release
processes (described by Hills equations) from the depots.

The two models can be jointly used to model trials, in which the
starting dose is PP1M (for equilibration of the patients), followed by
PP3Mr injections (Magnusson et al., 2017). The equations are solved
concurrently because the PP1M depots may still release the drug
after the first PP3Mr injection. This is the approach followed by
Magnusson et al. (2017). The model considers the fact that some
subjects had already been treated with PP before entering the trial
and had an unknown quantity, Qcentral (0), of PP in the central
compartment. This quantity is, therefore, an additional model
parameter. Note that this model assumes that all injections go to
the same injection site, replenishing the previous depot.

For the PP1M model, after an intra-muscular injection of a
Dose1 of paliperidone palmitate in the depot compartment at the jth
injection time, tij, a fraction f1 of Dose1, is available for release from
the depot through a zero-order process up to time tl1, at which f1 ×
Dose1 has been released. After tl1, the remaining amount of Dose1 is
released through a first-order process with the rate constant ka,1. The
corresponding ordinary differential equations (Eqs. 1-3) are

∂Qdepot,1

∂t
� −f1 × Dose1

tl1
,

withQdepot,1 tij( ) + � f1 × Dose1, if t< tij + tl1, (1)
∂Qdepot,1

∂t
� − ka,1× Qdepot,1( ),

withQdepot,1 tij + tl1( ) + � 1 − f1( ) × Dose1, if t≥ tij + tl1, (2)
∂Qcentral

∂t
� −∂Qdepot,1

∂t
− CL ×

Qcentral

V
, (3)

where Qdepot,1 and Qcentral are the amounts of drug in the depot and
central compartments, respectively; CL is the drug clearance from
the central compartment; and V is the volume of that compartment.

In the PP3Mr model (Magnusson et al., 2017), two saturable
release processes (rapid and slow, using Hills equations) describe
drug release (Eqs. 4-6):

∂Qdepot,r,3

∂t
� − kar3, max × Qdepot,r,3

kar3,50 + Qdepot,r,3
,

withQdepot,r,3 tij( ) + � f3 × Dose3, (4)
∂Qdepot,s,3

∂t
� −kas3, max × Qdepot,s,3

γ

kas3,50
γ + Qdepot,s,3

γ ,

withQdepot,s,3 tij( ) + � 1 − f3( ) × Dose3, (5)
∂Qcentral

∂t
� −∂Qdepot,r,3

∂t
− ∂Qdepot,s,3

∂t
− CL ×

Qcentral

V
, (6)

where Qdepot,r,3, Qdepot,s,3, and Qcentral are the respective amounts of
drug in the rapid-release depot, slow-release depot, and central
compartments, respectively; kar3, max, kar3,50, kas3, max, kas3,50, and γ

are Hills drug-release and absorption parameters. Dose3 is the dose
of paliperidone palmitate at the jth injection time; and f3 is the
fraction of Dose3 going to the fast-release depot.

2.4 Hierarchical population model

The above structural model was developed, calibrated, and
checked in a population framework with large clinical datasets of

the innovator’s drug (Magnusson et al., 2017). We use the
same framework.

At the subject level, plasma concentration measurements were
assumed to follow a lognormal distribution with a geometric mean
given by the model-predicted subject-specific central compartment
concentration profile and a variance σ2 in the log-space (Eq. 7). The
predicted plasma concentration values at times ti,j were obtained
using the structural model, f, described above:

Ci,j ~ LN f θi, ti,j( ), σ2( ). (7)

For parameters ka,1, kas3, max, kas3,50, kar3,50, CL, and V, subject-
specific parameter values θi were assumed to be lognormally
distributed around population geometric means μ with variances
Σ2 in the log-space (Eq. 8):

θi ~ LN μ,Σ2( ). (8)

Parameters kar3, max and γ were assumed to be the same for
all subjects. In the analyses of Samtani et al. (2009) and
Magnusson et al. (2017), a multivariate normal distribution
was used, although they did not report the covariance values.
We assumed that they were negligible and used only the
variances they provided. This adjustment appears not to
affect the ability of the model to reproduce the results of
Magnusson et al. (2017).

For parameters f1 and f3, a logit transformation was used, and
the corresponding logit, κ, was assumed to be lognormally
distributed (Eqs. 9-10):

κi ~ LN
μ

1 − μ
,Σ2( ). (9)

θi � 1
1 + exp −κ( ). (10)

The initial quantity of PP in the central compartment,
Qcentral (0), was not reported for the subjects of the
Magnusson et al. trials. We assumed that the subject-level
values Qcentral,i (0) were lognormally distributed around a
population geometric mean equal to 30 mg eq. of PP, with a
geometric SD of 1.5. Those values were adjusted manually by us
to match the starting PP plasma concentration levels shown in
Figure 3. They have a minimal impact on the concentrations
during the last dosing period, which is approximately 1 year
later. We also have uncertainty on the exact dose of PP1M for
each subject (some unreported dose adjustment was applied to
the last three doses of PP1M to reach the therapeutic window for
each subject), but we left that to be a part of the residual error
(and it is unclear whether this reduced subject variability or not).

To model differences between the reference (PP3Mr) and
test (PP3Mt) formulations, we introduced a vector of relative
changes, δ, affecting the geometric means of the six drug-release
and absorption parameters of the model, which were f3 (the
fraction of PP rapidly released), kas3, max (maximum release rate
from the slow-release depot), kar3, max (maximum release rate
from the rapid-release depot), kas3,50 (Hills coefficient for the
slow-release depot), kar3,50 (Hills coefficient for the rapid-release
depot), and γ (Hills power), in that order. These parameters
should be related to product formulation CQAs, such as drug
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dissolution and injection medium composition. Each mean
(termed μi,test in the following equation) for the test
formulation, given the reference formulation value μi,ref and
the relative change δi, was computed as Eq. 11

μi,test � δi × μi,ref,with i ∈ 1, . . . , 6{ }. (11)

Magnusson et al. (2017) gave estimates for all the parameters’
population geometric means and geometric variances (the latter
transformed to coefficients of variation, CV, in natural space),
together with precisions (as CVs) of those estimates. We used
those numbers, appropriately transformed, to define prior
distributions for the model’s parameters [for details, see
Supplementary Material, structural model C code (v4)].
Magnusson et al. also introduced covariate measurements for
their subjects, but individual covariate values were not reported
in the original model (Magnusson et al., 2017). Therefore, their
covariate model was not implemented in this study.

2.5 Recalibration of the model with
simulated abbreviated parallel clinical
trial data

Without an actual abbreviated trial of PP3Mr and PP3Mt
formulations, we simulated an abbreviated parallel BE clinical
trial with 25 subjects per arm. All the model parameters with
prior uncertainty or population variability were randomly
sampled to generate virtual subjects. The same dosing regimen
and sampling scheme as described in Magnusson et al. (2017)
were applied. In both arms, a final PP dose of 525 mg eq. was
tested; the initial PP1M dose was 150 mg eq. Plasma concentrations
simulated at 54, 55, 57, 59, and 63 weeks for each individual were
used for model recalibration. The calibration dataset, therefore,
consisted of 250 measurements from 50 individuals. Differences
between PP3Mr and PP3Mt drug-release parameters were simulated
at the population average level by setting the value of the second
component of vector δ, i.e., δ2, to 1.05 (5% difference). This increases

FIGURE 3
Simulated plasma PP concentrations with the PP1M and PP3Mrmodels for all validation plots in the original paper (Magnusson et al., 2017) for various
dosages. Four injections of PP1M (dose range 50–150 mg eq.) are followed by four injections of PP3Mr (doses indicated in each panel). A total of
100 clinical trials with 130 subjects were simulated. The solid and dashed red lines represent themedian and 5th and 95th percentiles of the observations,
as reported in the original publication; the shaded blue areas represent the 90% confidence interval of the median and 5th and 95th percentiles
predicted by our implementation of the model.
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the kas3, maxpopulation mean by 5% for the above test reference. The
other components of δ were set to 1.0 (no difference). Parameter
kas3, max was determined to be the most influential on Cmax and
(partial) AUC at steady state during the last dosing period; it
conditions the rate of release from the slow depot compartment
(see Supplementary Material section sensitivity analysis of the
impact of drug-release parameters on Cmax and AUC).

The above simulated abbreviated trial is the only source of
information we considered to estimate the differences between the
parameters of the test and reference formulations. Estimating those
differences is important to simulate realistic final BE trials. Because
our population PK model has strong prior information on the
reference formulation parameters, a Bayesian approach is well
suited to estimate the value of the difference δ2. Furthermore, the
other components of δ were set to 1.0. Metropolis–Hastings
Markov-chain Monte Carlo (MCMC) sampling was used to
obtain a sample of the parameter values from their joint
posterior distribution given the abbreviated trial data (Gelman
et al., 1996). We set the other population mean and variance
parameters to their central values [maximum likelihood estimate,
MLE, values as reported by Magnusson et al. (2017)] of their prior
distributions. We set the residual error σ2 to the MLE reported by
Magnusson et al. (2017). It would not be meaningful to update these
parameters on the basis of a small trial as the subjects from the
reference trial arm are drawn from those priors by construction.
Subject-level parameters f1, f3, ka,1, kar3,50, kas3, max, kas3,50, CL,V, and
Qcentral (0) were estimated jointly with the values of the difference
test vs. reference parameter δ2. A vague lognormal prior was
assigned to δ2, with a geometric mean of 1 and a geometric SD
of 2 . The prior distribution of δ2 can be seen in Figure 5, and it
approximately spans a factor of 8.

Four MCMC chains of 10,000 iterations were run, and the first
2,500 iterations were discarded. The convergence of the remaining
4 × 7,500 was checked using Gelman and Rubin diagnostics
(Gelman and Rubin, 1992).

2.6 Large parallel virtual trial simulation, BE
assessment, and type I and II error analyses

In this step, workflows A and B diverge. Workflow A is data-
based. We simulated a “realistically large” virtual parallel BE trial
and analyzed it as a standard BE trial. Since the trial design is
parallel, a simple TOST test was used on the data-based estimates of
Cmax and partial AUC over the last dosing period (the AUC was
estimated by the trapezoidal rule). A simulation-based power
analysis [see Supplementary Material, section power calculations
(workflow A)] indicated that 130 subjects would be adequate given
all the prior information we had on PP kinetics with the reference
formulation. To simulate a parallel BE trial with 130 subjects per
arm, we fixed the population means and variances to the central
values of their prior distributions [MLE value reported by
Magnusson et al. (2017)]. Virtual subjects were sampled from
their population distribution. We set the residual error σ2 to its
MLE (Magnusson et al., 2017). The value of δ2 was set to its mean
estimate after calibration with the abbreviated trial data. The other δ
values were set to 1. The dosing schedule and sampling times were
the same as in the above trials.

Workflow B uses Monte Carlo simulations to obtain an estimate
of the joint posterior predictive distribution of the ratios δCmax and
δAUC between the population geometric means of Cmax (and AUC,
respectively) for the test and the reference formulations. To be fully
model-integrated, we estimated Cmax by computing PP plasma
concentration at 100 time points during the last dosing period
(the system is at steady-state, and we checked that using
100 points was largely enough to obtain a stable estimate of
Cmax); AUC was computed by numerical integration (adding one
ODE to the system of ODEs to solve) over the same period. We
formed the δCmax and δAUC ratios for 1,000 simulated trials with
1,000 subjects per arm each. Each trial was simulated exactly as the
large trial described above, except for the number of subjects.

2.7 Safe-space calculations

For workflow A, 1,000 virtual trials with 130 subjects per arm
were run as above, except for sampling each element of δ from a
uniform [0.5, 2] distribution. This generated a large number of
bioequivalent and non-bioequivalent test formulations. We
computed the geometric mean ratios test over the reference for
Cmax and AUC in those simulated trials. BE for Cmax and AUC of
each trial was assessed with a TOST test. BE was declared if it passed
for both Cmax and AUC. Color-coded TOST BE passes and fails were
plotted against the values sampled for the different components of
the vector δ.

For workflow B, safe-space calculations required computing the
posterior predictive distribution of δCmax and δAUC over the whole
drug-release parameters’ space. However, we know that the safe-
space limits should be crisp (because they are not blurred by
uncertainty induced by a limited trial size), and the workflow A
safe-space calculations gave us a rough estimate of the safe-space
shape. We, therefore, focused on determining the boundaries of the
safe-space for the two most critical absorption parameters (f3 and
kas3, max) of the PK model. For each trial point (near the boundary)
of the f3 and kas3, max space, we based our decision for BE on the
δCmax and δAUC ratios from 1,000 simulated trials with
1,000 subjects per arm each. Each trial was simulated exactly as
the large trial described above, except for the number of subjects.

2.8 Software

We coded the structural PK model as a C-language routine
callable from workflow R (R Development Core Team, 2013) scripts
using the Nimble R package (de Valpine et al., 2017; NIMBLE
Development Team, 2022) to perform Monte Carlo simulations,
Bayesian inference, and posterior analyses. The corresponding codes
are given in Supplementary Material (section computer codes.

3 Results

3.1 Prior model checking

To check our PM model implementation, we compared the
simulations obtained with it to the measured paliperidone
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concentrations reported by Magnusson et al. (2017). Figure 3
presents the simulated paliperidone plasma concentration
measurement percentiles overlaid with the reported data
summaries for several PP1M and PP3Mr dosages. A total of
100 clinical trials with 130 subjects were simulated to integrate
uncertainty in population parameter values, inter-individual
variability, and residual error. The median and 5th and 95th
percentiles of the plasma concentrations for the 130 subjects
were computed in each trial. The blue bands in Figure 3 are
bounded by the 5th and 95th percentiles of the distributions of
those three quantiles over the 100 trials. Despite missing
information on the subjects’ covariates, our implementation of
the model captures the reported PP1M and PP3Mr kinetics well,
including inter-individual variability and residual error. Summary
ratios of the predicted over observed PP3Mr median concentration
values do not exceed 1.25. The code used for generating that plot
(population PK model implementation in Nimble R v8_pop) and
further details are given in Supplementary Material, in the section
prior to model checking.

3.2 Abbreviated clinical trial simulation

Figure 4 shows the simulated concentration data, Cmax, and
AUC/Δt for the simulated abbreviated clinical trial. Cmax and AUC

were computed for the last PP3Mr or PP3Mt dosing period, in which
plasma concentrations were sampled at weeks 54, 55, 57, 61, and 65,
and Δt is the corresponding time span (11 weeks). AUC/Δt is an
average concentration and can be plotted on the same scale (see also
in Supplementary Material, section abbreviated clinical trial
simulation summary plot).

Cmax and AUC are increased on average in the test formulation
(geometric mean ratio test/reference at 1.38 for both). Such an
increase is large compared to a couple of percentages expected with a
5% increase in kas3, max (see in Supplementary Material, section
sensitivity analysis of the impact of drug-release parameters on Cmax

and AUC). A standard TOST test on either Cmax or AUC did not
allow concluding bioequivalence due to the size of the difference
between formulations, a low number of subjects, and large inter-
individual variability in Cmax and AUC (51% and 54%, respectively).

3.3 Recalibration of the model with the
simulated abbreviated clinical trial data

MCMC sampling was used to estimate the joint posterior
distribution of δ2 and of the subject-specific parameters f1,i, f3,i,
ka,1,i, kar3,50,i, kas3, max ,i, kas3,50,i, CLi, Vi, and Qcentral,i (0) for the two
groups of the abbreviated clinical trial (451 parameters altogether).
Subject-specific parameters can be considered nuisance parameters

FIGURE 4
Simulated plasma PP concentrations, Cmax, and AUC/Δt for 25 subjects per arm in a parallel abbreviated virtual trial when parameter kas3,max was
increased by 5% from the value of the reference formulation. The subjects received four injections of PP1M (150 mg eq.) prior to four injections (525 mg
eq.) of PP3Mr (blue) or PP3Mt (red). The gray lines indicate the injection times.
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that were integrated. Sufficient convergence was achieved for all
parameters (see Supplementary Material for a convergence plot and
a histogram of all R̂ values in the section convergence of the model
recalibration by MCMC sampling). The posterior distribution of δ2,
the relative difference between the test and reference maximum
release rates from the drug slow depot, which should alone explain
the difference between the test and reference PK profiles, had a
geometric mean of 1.42, a geometric SD of 1.19, and a 95%
credibility interval of 1.0–1.97 (see Supplementary Material,
section posterior distribution summary for parameter δ2).
Figure 5 shows the empirical posterior distribution (well
approximated by a normal distribution) together with its prior.
The posterior mean of δ2 is higher than 1.05 used for simulating the
clinical data because we used a random abbreviated trial for
recalibration, in which the test subjects behaved quite differently
from the reference subjects. Only a much larger trial would be likely
to yield more accurate estimates of the differences between the test
and reference. Note that this is conservative from a consumer safety
point of view but not from a production point of view.

The posterior fit of the recalibrated model to the abbreviated
trial data is very good, as shown in Figure 6 (see also in
Supplementary Material section observations vs. predictions plot
for the recalibration step). We will, therefore, assume in the
following that the model is validated for both the reference and
test formulations.

3.4 Large virtual trial simulation, BE
assessment, and type I and II error analyses

3.4.1 Partly Bayesian data-based workflow A
A plot of simulated large parallel trial plasma concentration data

withCmax andAUC/Δt is shown in Figure 7 (see also in Supplementary
Material, section large virtual trial simulation summary plots). In this
trial, Cmax and AUC are increased on average in the test formulation
(geometric mean ratio test/reference at 1.08 and 1.06, respectively).
The difference between kas3, max population means in the test and
reference formulations, δ2, was set to 1.42. A standard TOST test on
either Cmax or AUC concludes bioequivalence despite the large inter-
individual variability in Cmax and AUC (57% and 54%, respectively).
This is due to the expected randomness of the virtual trial. That
randomness impacts type I and type II errors (and, therefore, power) of
the analysis (see Supplementary Material, sections power calculations
(workflow A) and type I error analysis (workflow A)). Power can be
good for a data-based approach in the case of perfect BE (also with
good prior information and study designs more sophisticated than just
parallel), but it degrades rapidly if sizeable, unanticipated differences
exist between formulations (even though they are bioequivalent). Type
I error was very low and below the expected 2.5% at each side of the BE
interval. This is a side-effect of the low power of parallel BE trials; close
to the BE boundaries, no trial will conclude BE due to inter-subject
variability.

3.4.2 Fully Bayesian model-integrated workflow B
Workflow B uses Monte Carlo simulations to approximate

δCmax and δAUC ratio posterior predictive distributions (see
Figure 8). The decision about BE is immediate: the Cmax ratio
exceeds 1.25 with a probability of 0.354 and the AUC ratio
exceeds it with a probability of 0.378, so BE should not be
declared. The decision about BE differs from the one reached in
the data-based workflow because the latter relied on only one (albeit
large) VBE trial, while in this study, we “average” the decision over
1,000 trials.

3.5 Safe-space analysis

For workflow A, Figure 9A shows the safe-space of model
parameters f3 and kas3, max (proxies for CQAs), as assessed by
large virtual parallel trials. Parameters f3 and kas3, max were the
most influential parameters on safe-space definition, and they
interact, which is why we show the results in two dimensions
(results for all six drug-release model parameters are given in
Supplementary Material, section full safe-space calculations for
the data-based parallel trial workflow). Given the low power of
the TOST test near the BE limits, the safe-space region limits are
fuzzy, and the “safest” space is quite reduced. The safe region is
banded due to the structure of the PP kinetic model. The location of
the full parallel trial we simulated for BE assessment is given by a
blue cross. It falls in that region where decisions can be inconsistent.

The safe-space identified by workflow B is shown in Figure 9B.
Since power is not a problem in that framework, the region is much
better defined and approximately twice as large but still coherent
with the previous estimate (actually intermediate between the
optimistic and pessimistic estimates marked by green and red

FIGURE 5
Posterior distribution of δ2 (histogram and smooth density curve).
The dotted line shows its prior distribution. The posterior is much
more precise.
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lines, respectively, in the left panel). A (δ1, δ2) pair with a value of (1,
1.42) is a pass in this framework because, on average, it will not lead
to an exceedance of the BE limits for Cmax nor AUC.

In either case, those are predictive simulations that ignore
uncertainty about δ1 and δ2. It would be prudent to account for
the potential uncertainty. If we have a measure of that uncertainty,

FIGURE 6
Abbreviated trial data (circles) and posterior model predicted profiles (lines) obtained with the maximum posterior population PK parameter values
for the reference formulation (left panel) and the test formulation (right panel). Boxplots of Cmax and AUC/Δt are shown for the data (blue or red) and the
model predictions (gray). Cmax and AUC/Δt are noticeably higher for the test formulation.
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FIGURE 7
Simulated plasma PP concentrations, Cmax, and AUC/Δt for 130 subjects per arm in a parallel virtual trial. The subjects received four injections of
PP1M (150 mg eq.) prior to four injections (525 mg eq.) of PP3Mr (blue) or PP3Mt (red).

FIGURE 8
Histograms of the Bayesian marginal posterior predictive distributions of δCmax (A) and δAUC (B) ratios. PBE is the probability of non-bioequivalence.
The red-shaded areas mark the standard non-bioequivalence regions (outside 0.8–1.25).
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then a ball of the size of the 95% posterior probability interval on δ

would surround every point of the BE frontier, creating a zone of
uncertainty on each side of it.

4 Discussion

We have presented two Bayesian virtual comparative clinical
trial workflows. We demonstrated them with a realistic case study
using an empirical population pharmacokinetic model of
paliperidone palmitate LAI formulations. This work is not
intended to be a VBE assessment for a particular product but
rather a discussion of overarching issues in VBE.

PP long-acting injectable formulations are difficult to compare
because inter-subject variability is high, and actual comparative
trials seem unfeasible at reasonable costs and in a reasonable
time. However, the pharmacokinetics of the innovator
formulation are well documented, and a population PK model
validated with clinical data on that formulation is available; the
model describes the data well and was accepted by the US FDA
(2014). Our implementation made a few necessary approximations
that should not affect our conclusions: we were unable to account for
unreported covariate measurements, lacked information on subject-
level parameters’ covariance, and faced uncertainty regarding the
exact PP dose per subject and previous treatments at the start of the
validation trials. This explains why our predicted population
variability is slightly higher than the published variability. Inter-
occasion variability and modeling error are folded into residual
error, but that should have minimal impact on our results because
we simulated parallel clinical trials. Overall, the predictions were
within factor 2 of the summary observations, and the median
estimates were within 25% of their observed counterparts, as

reported by Magnusson et al. (2017). A refined model could
assume that different formulations have different variabilities in
release and absorption. They might be estimable from prior clinical
data and abbreviated trials with a Bayesian population PBPK
approach. An alternative would be to assume the possibility of
different variances and assess their impact through
sensitivity analysis.

We did not use in vitro evidence about test and reference
differences because this has already been demonstrated (Hsieh
et al., 2021), and the model we used has no parameter
measurable in vitro. Mechanistic PBPK models can better
integrate prior information and data from in vitro experiments.
However, we do not have such a model for PP LAI suspensions, and
a simpler model allows us to focus on the actual differences between
workflows A and B. We definitely used informative priors, but they
simply summarize the data that were obtained and published for the
innovator drug; in a way, they are interim estimates in a two-stage
estimation process. Using weaker priors is always possible, but in
that case, the model might not be validated (because it would run the
risk of over-estimating uncertainties and variances) and would not
be usable.

Both workflows start with a definition of prior distributions and
their Bayesian recalibration with available data from an abbreviated trial.
Without an actual abbreviated trial, we simulated data with a published
population model. It is important to note that in a real application, these
data would be observed and not simulated. Therefore, the validation step
would be much more difficult than in our example, where we know the
actual difference between the test and reference and can focus on the
“right”model. However, that would be true for any VBE assessment and
applies to bothworkflowsA andB.Note also that the recalibration step is
not needed if the prior data already inform the model sufficiently to
make it valid for prediction purposes. The data-based workflow A then

FIGURE 9
BE safe-space regions for the absorption parameters f3 and kas3,max of the PP population PKmodel. (A)Data-based estimate; the green dots indicate
parallel PP trials (1,000 trials, 500 subjects per arm), for which BE was declared using the TOST test; the red dots indicate failing trials; the red lines mark
“sure” safe-space; the green lines mark the limits of surely non-BE space. The blue crossmarks the location of the simulated full parallel trial we simulated
for BE assessment. The intermediate areas stems from imperfect statistical power. (B) Fully Bayesian model-based regions are much crisper.

Frontiers in Pharmacology frontiersin.org11

Bois and Brochot 10.3389/fphar.2024.1404619

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1404619


assesses a simulatedVBE trial with a frequentist test as if it were real. The
particular abbreviated trial used impacts both workflows; the particular
large trial simulated impacts only workflow A. Despite using an
abbreviated trial, which, by chance, over-estimates formulation
differences, workflow A declares BE, but again, it is by chance. The
TOST test ignores most of the prior information gathered in vitro and in
vivo and judges BE on only a noisy sample of simulated concentrations.
Safe-space analysis shows that the simulated large trial falls in the area
where BE decisions are random because of low power. This poses the
problem of how to define “large” (and still “realistic”) for a virtual trial.
Performing a standard statistical analysis of only one large trial is also
problematic because the decision hinges entirely on one trial realization.
Averaging over many very large trials could be done, but overall,
assessing VBE on the basis of a large simulated trial blurs the
information already obtained up to the abbreviated trial stage. That is
because a large simulated trial does not bring new information, and the
subsequent statistical test adds unjustified randomness to the
decision process.

The model-integrated workflow B is more coherent and bases
decisions on the expected future rather than on a particular virtual
trial simulation. The posterior distribution of formulation differences is
used to calculate posterior predictive distributions of PK measures of
drug absorption. Those directly give us the probability that formulation
differences will lead to unacceptable differences in drug absorption (see
Figure 8). TheVBE assessment then simply estimates the probability that
Cmax or AUC differences exceed predefined limits. This is essentially
equivalent to the current decision rule, with a probability estimatedmore
accurately. The decision depends on the uncertainty regarding the size of
formulation differences, which is affected by the inter-subject variability
in measures of rate and extent of drug absorption (in particular in a
parallel trial design). We used model-based estimates of Cmax and AUC
because it would not make sense to re-introduce measurement error in
the process when it has already been accounted for during model
calibration. Overall, workflow B controls consumer risk strictly while
minimizing producer risk. The Bayesian decision rule also rewards data
gathering in the first steps of theworkflow.Note that the abbreviated trial
could have had any design (the more informative, the better, so a cross-
over design could be used). The design of the abbreviated trial should be
closely examined, and the use of other metrics of rate and extent (e.g.,
Cmin and various forms of partial AUC) could be investigated
(Lionberger et al., 2012; Gajjar et al., 2022).

Concerns about making the right decision with an acceptable error
rate do not disappear in workflow B. However, standard statistical test
performances (e.g., type I and II error assessments) do not apply
anymore because there is no need for a large trial and the associated
statistical testing. In our case study, if we declare bioequivalence and
release the drug into the market, there is a 35% chance that we will
release a non-bioequivalent product; if we do not declare bioequivalence
and block the product, there is a 65% chance that the product is
bioequivalent in the population. So, it is a judgment call. However, if
we adhere to the strict practice of controlling direct consumer risk at 5%,
we would reject bioequivalence with a relatively high direct producer
risk. A deeper problem is that a VBE framework, either data-based or
model-integrated, has very little specific clinical evidence (only an
abbreviated trial) available. However, it benefits from using a
validated (i.e., as good as possible) structural model, in vitro data,
and published prior information (which can be massive in the case
of PBPK models). Therefore, model structure and correct

parameterization are very important for both workflows, and model
verification is of paramount importance in VBE. Modeling errors can be
introduced and could have more impact than in a BE assessment
(Tsakalozou et al., 2021). Standard BE trial analyses also make
assumptions (like when using drug plasma concentrations for
assessing the local bioequivalence of a drug targeting the gastro-
intestinal tract), but the issue is more glaring in VBE assessment. A
further complication is that we simulate the abbreviated trial, and the
“ground truth” of our case study is laid bare for everyone to compare the
results of workflows A and B. Readers can immediately see the
incoherence between “truth” and “decision”: the data-based workflow
leads to a correct decision if we know the truth, but it leads to an
incorrect decision given the information from the abbreviated trial. On
the contrary, the model-integrated workflow decision is correct, given
the abbreviated trial, but it is incorrect given the ground truth. In a “real-
life VBE assessment,” we would only have a model, its prior parameter
distributions, in vitro data, and data from one abbreviated clinical trial.
The ground truth would not be accessible to us, and workflow A would
always be at the mercy of incoherent abbreviated trial and large trial
simulations. However, we show that workflow B is more coherent and
safer for everyone (producers and consumers). In a way, in a data-based
VBE framework, type I and type II calculations on the virtual large trial
can be a smoke screen, giving a false sense of security as if they were
dispelling the only source of potential error while masking the real crux
of VBE: having a correct model. So, we should not conduct VBE
assessments in the same way as BE assessments and should not
judge a VBE assessment in the same way as a BE assessment.

Safe-space analyses average over many simulations and are not
affected by a specific trial simulation. However, they still differ
between the two workflows, and this may be viewed as our most
important contribution. Safe-space calculations are more precise
with workflow B because the producer risk is minimized. Those
calculations for workflow B took longer (12 h on an 8-core laptop
machine) than for workflow A. Preliminary calculations with
workflow A could orient the search for precise safe-space
boundaries in a fully Bayesian framework, as shown in this study.

Overall, we have shown that a Bayesian framework is well-suited for
VBE assessment. We believe that virtual comparative trials would
generally benefit from the transparency and improved accuracy they
provide. We need to gain more experience with it, in particular in real-
life case studies with mechanistic models such as PBPK models.
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