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Female hormones, functioning as neuroactive steroids, are utilized beyond
menopausal hormone therapy. The rapid onset of allopregnanolone analogs,
such as brexanolone and zuranolone, in treating depression, and the
effectiveness of megestrol acetate in addressing appetite and weight gain,
prompted the Food and Drug Administration to authorize the use of
progesterone for treating postpartum depression and cancer-related cachexia.
Progesterone has also been found to alleviate neuropathic pain in animal studies.
These off-label applications offer a promising option for patients with advanced
cancer who often experience various mood disorders such as depression,
persistent pain, social isolation, and physical complications like cachexia.
These patients have shown low tolerance to opioids and mood-regulating
medications. However, the potential risks and uncertainties associated with
hormone therapy treatment modalities can be daunting for both patients and
medical professionals. This review aims to offer a comprehensive understanding
of the non-reproductive functions and mechanisms of female hormones in brain
health.
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Introduction

Patients with cancer often experience refractory pain. It is projected that there will be
over 28.4 million new cases of cancer globally in 2040 (Sung et al., 2021). 39.3% of cancer
survivors experience pain, and this percentage increases to 66.4% among individuals with
advanced cancer (Van Den Beuken-Van Everdingen et al., 2016). Nevertheless, the
effectiveness and acceptance of opioids for these patients are unsatisfactory, not to
mention their associated side effects with long-term use. Additionally, the coexistence
of pain and depression is a prevalent phenomenon among this population (Adam et al.,
2021), often accompanied by a tendency to passively seek medical attention and exhibit
suboptimal nutritional status (Adams et al., 2018; Law, 2022). Hence, our objective is to find
a supplementary medication that can effectively reduce the dependence on opioids while
also improving the emotional wellbeing and physical status of these patients. Benefiting
from a long-term focus on women’s health, our attention is directed towards neuroactive
steroids, especially female hormones, and their potential non-reproductive functions in the
aforementioned patients. Neuroactive steroids refer to steroids that target neurons and glial
cells. They include hormonal steroids produced by the peripheral glands, neurosteroids
synthesized by neurons and glial cells, and synthetic steroids that alter the functioning of the
nervous system.
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The brain and the ovary are integral components of the
neuroendocrine system and are intricately interconnected
(Hogervorst et al., 2022). Hormones produced by the ovaries
have the capacity to impact brain function. For instance, a
reduction in estrogen levels results in a slowing down of brain
function and a hastening of the aging process. This process may also
contribute to the formation of amyloid plaques, which are linked to
the pathogenesis of Alzheimer’s disease (Oveisgharan et al., 2023).
Women are at an increased risk of developing dementia if they
undergo oophorectomy before reaching menopause (Uldbjerg et al.,
2022). In addition to affecting cognitive function, the hormones
produced by the ovaries also play a role in mental health, including
depression and social interaction. For instance, allopregnanolone
(AP) analogs have been approved by the Food and Drug
Administration (FDA) for the rapid management of postpartum
depression (PPD) (Scott, 2019), and the significance of oxytocin in
social dysfunction is widely acknowledged (Jones et al., 2017).
However, hormonal therapy is still predominantly utilized for the
relief of symptoms such as menopausal hot flashes up to the
present time.

Females are disproportionately affected by numerous illnesses
affecting the brain, and emerging evidence suggests a high incidence
of depression in endocrine transition phases like perimenopause and
postpartum (Mauvais-Jarvis et al., 2020). Reduction and fluctuation
of female hormones can, in part, explain the etiology of depression,
pain, and social interaction, but the effectiveness of supplementation
in prevention or treatment remains incompletely understood.
Furthermore, there are numerous concerns regarding the
potential of hormone replacement therapy (HRT) to trigger
tumor recurrence or metastasis. Thus, we review the non-
reproductive effects of female hormones on pain, depression,
social interaction, cachexia, and their underlying mechanisms
and treatment implications. It is expected that medical
professionals will be able to provide evidence-based and
alternative approaches for managing patients with relevant
medical conditions.

Female hormones and depression

More than 350 million people suffer from depression, and
women exhibit a higher prevalence of major depression
compared to men, with a global annual prevalence rate of 5.5%
among women and 3.2% among men (Whiteford et al., 2013).
Furthermore, over 70% of depression in women occurs during
the menopausal period, and one out of every three women will
experience notable psychological changes during the menopausal
transition (MT) (Maki et al., 2019). Studies have shown that the
incidence of depression is more than fourfold higher during the MT
compared to the pre-menopausal period. For women who have a
history of depression, the risk even increases to 60% (Freeman et al.,
2006). In addition, women are not only at an increased risk of
depression and anxiety during perimenopause and MT, but also
experience depressive symptoms of higher severity compared to pre-
and postmenopause.

Estrogen fluctuations and loss have been shown to be closely
related to depression in perimenopausal women. Women who
undergo bilateral oophorectomy without receiving estrogen

replacement therapy (ERT) are more likely to experience major
depression (Stuursma et al., 2022). Therefore, the estrogen
withdrawal theory is proposed. The theory suggests that a rapid
decrease in estradiol (E2) secretion, the most biologically active
estrogen, is associated with an increase in mood disorders during
this period, resulting in new or recurrent depressive symptoms.
However, the antidepressant effect of estrogen therapy depends on
various factors, including the type of estrogen, duration of
treatment, dosage, time elapsed after ovariectomy, and age. For
instance, estrogen has maximal protective benefits on cognition in
women when it is initiated closely in time to natural or surgical
menopause (Maclennan et al., 2006). However, treatment begun
decades after menopause does not have the same effect. This means
that perimenopausal women are more responsive to ERT than
postmenopausal women. Similarly, in young rats, 3 months after
ovariectomy, the acute injection of E2 failed to produce an
antidepressant-like action. However, if E2 was administered 1 or
3 weeks after ovariectomy, it produced clear antidepressant-like
effects (Estrada-Camarena et al., 2011). Interestingly, another
estrogen, EE2, was able to induce antidepressant-like actions in
young rats even 4 months after ovariectomy (Estrada-Camarena
et al., 2011). This suggests that each estrogen has a specific time
frame in which it is effective.

Though there is some evidence that estrogen has antidepressant
effects similar in magnitude to those observed with classic
antidepressant agents when administered to depressed
perimenopausal women, estrogen is still not FDA-approved to
treat mood disturbances. Hormone therapy is FDA-approved for
the treatment of hot flashes and vaginal dryness, but it is not
approved for the treatment or prevention of mood disturbances.
However, the use of time-limited ERT or HT is reasonable in
perimenopausal women experiencing physical symptoms of
menopause such as vasomotor symptoms and vaginal dryness, in
addition to depression.

Besides menopausal depression, women also suffer from
postpartum depression (PPD), which typically occurs 2 weeks
after delivery and can last for 3–6 months or even longer. It is
estimated that 7% of women experience an episode of major
depression in the first 3 months following delivery, and the
prevalence increases to 20% when episodes of minor depression
are also taken into account (Gavin et al., 2005). The average
prevalence of PPD worldwide is 17.22%, while in China it ranges
from 7.3% to 37.14% (Wang et al., 2021). PPD not only causes
damage to the mother but also affects the growth and development,
emotions, behavior, and intelligence quotient of the infant. It
increases the risk of depressive disorder, attention deficit
hyperactivity disorder, and autism spectrum disorder in children
(Becker et al., 2016).

During late pregnancy, estrogen levels are 49 times higher than
the peak of the menstrual cycle, and progesterone levels are
9–10 times higher than the peak of the menstrual cycle. Both
hormones return to pre-pregnancy levels shortly after the
delivery of the fetus (Bloch et al., 2003; Mccoy et al., 2003;
Wable et al., 2015). But the results regarding whether hormones
contribute to PPD have been mixed. Absolute levels of estrogen and
progesterone may not differ in women with maternal depression,
but women who develop PPD may be more sensitive to fluctuations
in these hormones. Estrogen and progesterone withdrawal can lead
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TABLE 1 Comparisons of various AP analogs in treating depression.

Compound Dosage
form

Indication Advantage Mechanism Attention Dosage
used

Others

Brexanolone,
SAGE-547

Intravenous Moderate and
severe PPD

Rapid onset (60 h)
of action

Positive allosteric
modulators of
GABA-AR.

Need to be under
thorough medical
supervision because
of the risk of severe
sedation, hypnosis,
loss of
consciousness and
profound
respiratory arrest.
Long hours of
administration
time, and the high
cost of $34,000.
Commons side
effects included
flushing or hot
flashes, dry mouth,
dizziness and
somnolence

Continous
infusion at 60 or
90 mcg/kg/h
for 60 h

Zuranolone,
SAGE-217

Oral Major depressive
disorder and
severe PPD

Rapid onset (day 3)
and persist up to
45 days in PPD.
Symptom reduction
by day 15 with
50 mg daily in
major depressive
disorder

Enhance inhibitory
GABAergic signaling
by increasing synaptic
and extrasynaptic
GABA-A activity and
regulation of GABA-
AR expression

Common side
effects reported
were somnolence,
dizziness, balance
disorder, diplopia,
dysarthria and gait
impairments

30 mg once-
daily, for
14 days; 50 mg
for severe PPD;
the maximum
tolerated dose
was 55 mg. Not
suitable for long-
term use

Approved by
FDA for PPD. In
Phase III clinical
trials for MDD,
and insomnia. In
Phase II clinical
studies for
bipolar
depression,
essential tremor,
and Parkinson’s
disease. In the
preclinical trial
stage for
dyskinesias

Ganaxolone Both
intravenous
and oral

Phase II and Phase III
studies are ongoing
and planned where
ganaxolone is being
developed for PPD
(NCT03460756),
pharmacoresistant
status epilepticus, and
several rare, treatment-
resistant genetic
epilepsies (e.g.,
CDLK5 deficiency
disorder,
NCT03572933,
NCT05249556)

Great therapeutic
potential in treating
epilepsy

An extrasynaptic and
synaptic GABA-AR
positive allosteric
modulator

Mild adverse events
including
somnolence,
fatigue, dizziness,
and headache

1,500 mg/day for
6 weeks

Preclinical
efficacy in
ameliorating
social isolation

NORA520 Oral Phase II study are
ongoing in female
adults with severe PPD
(NCT06285916)

Active moiety, rapid
onset of action,
enhancing oral
absorption and
proloing half-life

Structurally identical
to allopregnanolone,
binds to extrasynaptic
GABAA receptor and
increases tonic
GABAergic current

LYT-300 Oral Phase IIa clinical trial
are ongoing. Targeted
for treating anxiety,
mood disorders and
Fragile X-associated
Tremor/Ataxia
Syndrome
(NCT05129865)

High bioavailability,
approximately
nine-fold greater
than that of orally
administered AP.

Positive allosteric
modulators of
GABA-AR.

(Continued on following page)
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to increased depression in certain women, especially those who have
previously experienced PPD (Bloch et al., 2000). However, there is
no convincing evidence that women who develop PPD experience
more rapid postpartum hormone withdrawal, have lower
concentrations of reproductive hormones during the postpartum
period, or experience greater reductions in hormone levels from
pregnancy to the postpartum period compared to women without
PPD. A double-blind, placebo-controlled study of 61 women with
PPD that started within 3months after delivery revealed that women
who were treated with transdermal estradiol (E2) over placebo
showed significant improvement. While another pilot RCT
involving 30 women with PPD treated with sublingual E2 did
not show significant efficacy compared to the placebo (Kettunen
et al., 2022). It is worth noting that almost half of the women in both
groups were also taking antidepressant medication. In addition, the
adverse effects of estrogen supplementation are related to different
absorption pathways. Oral estrogen collects in the hepatic portal
vein and is inactivated in the liver, greatly reducing the efficiency of
estrogen. Estrogen metabolism in the liver may impact the balance
of coagulation and anticoagulation systems, leading to an increase in
the concentration of prothrombin fragments in patients and a
decrease in the concentration of antithrombin. This can result in
resistance to activated protein C and elevate the risk of thrombosis.
While transdermal absorption can bypass the liver’s first-pass effect
of oral estrogen, and the dosage is typically lower than the oral dose.
This results in a stable concentration of estrogen, making it more
suitable for long-term use. It should be noted that, estrogen therapy
can hinder lactation, which can impact the choice of postpartum
breastfeeding for patients with depression.

Alterations in progesterone metabolites, including
allopregnanolone (AP), have also been suggested to play a role in
PPD, though conflicting results have been reported. For example,
Osborne et al. found that low levels of AP during pregnancy
predicted subsequent PPD (Osborne et al., 2017), while
Deligiannidis et al. showed higher concentrations of AP in the
peripartum plasma of women who developed PPD (Deligiannidis
et al., 2019). Clinical trials have demonstrated efficacy of AP
supplement in treating PPD.

For the poor bioavailability of exogenously administered AP,
trials have relied on small molecules similar to AP. Among these, γ-
aminobutyric acid (GABA)-A receptor selective positive allosteric

modulators such as brexanolone (SAGE-547), zuranolone (SAGE-
217), and ganaxolone are commonly studied and have shown great
potential in treating PPD (Table 1). A double-blind, placebo-
controlled RCT with 10–11 females with severe PPD per group,
followed by two larger multi-center RCTs involving a total of
246 patients, demonstrated that a 60-hour infusion of
brexanolone (SAGE-547, a synthetic formulation of AP) led to
significant reductions in depressive symptoms among women
with severe PPD (Meltzer-Brody et al., 2018). On 19 March
2019, brexanolone was approved by the FDA for the treatment of
PPD (Wisner et al., 2019), making it the first specific treatment for
PPD. Despite the bright future of brexanolone due to its rapid onset,
the need for continuous infusion under medical supervision and its
high cost have prompted researchers to develop other drugs. It is
worth noting that as the first-line treatments for PPD, SSRIs take
several weeks to show effectiveness, while brexanolone has rapid
antidepressant effects, making it potentially suitable for the critical
early stages of PPD (Meltzer-Brody et al., 2018).

SAGE-217 was orally bioavailable, and the maximum tolerated
dose of the oral solution formulation was established as a single dose
of 55 mg and multiple doses of 30 mg (Hoffmann et al., 2020). There
have been two phase III trials of zuranolone for PPD and both
demonstrated efficacy by day 15 of treatment. In both studies, the
drug was well tolerated, with a dosage of 30 mg/day in the first phase
III PPD study (Deligiannidis et al., 2021) and 50 mg/day in the
second phase III PPD study (Deligiannidis et al., 2023). Reductions
in depressive symptoms were observed by day 3 and sustained at all
measured time points through day 45 in both studies. The FDA
approved the drug for PPD but did not approve zuranolone for
major depressive disorder at the time. A double-blind, placebo-
controlled RCT recruited patients with major depressive disorder.
They received zuranolone at doses of 20 mg, 30 mg, or a placebo for
14 days. No significant improvement was observed at any measured
time point between zuranolone 20 mg and placebo. Improvement
versus placebo was significant on days 3, 8, and 12 for the zuranolone
30 mg group, while it was similar between day 15 and day 182
(Clayton et al., 2023).

Ganaxolone, being developed for treating PPD, is a 3β-
methylated synthetic analog of AP with effects on extrasynaptic
and synaptic GABA-A receptors. Clinical trials investigating the
treatment of PPD (NCT03460756; NCT03228394) are currently in

TABLE 1 (Continued) Comparisons of various AP analogs in treating depression.

Compound Dosage
form

Indication Advantage Mechanism Attention Dosage
used

Others

SGE-516 Both
intravenous
and oral

Preclinical: Detect
compounds with
anticonvulsant and
mood-enhancing
efficacy

Acute treatment
exhibits robust
therapeutic effects
in preclinical PPD
models

Neuroactive steroid;
increase
allopregnanolone
levels in the basolateral
amygdala

SAGE-324 Oral A phase IIb KINETIC
2 trial. Efficacious in
reducing essential
tremor
(NCT04305275,
NCT05173012,
NCT05366751)

A neuroactive steroid
GABAkine and a
delta-preferring
GABAkine

Common side
effects reported
were somnolence,
dizziness, balance
disorder, diplopia,
dysarthria and gait
impairments

Uptitration from
15 mg to 60 mg,
daily at night
over 28 days

PPD: postpartum depression; GABA-AR: γ-aminobutyric acid type A receptor; MDD: major depression disorder.
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progress. In addition, there is an open-label, uncontrolled pilot study
indicating that adjunctive ganaxolone seems to have antidepressant
effects but causes sedation. In this study, 10 post-menopausal
women with persistent depression received open-label ganaxolone
(225 mg bid, increased to 450 mg bid if tolerated) for 8 weeks,
followed by a 2-week taper (Dichtel et al., 2020).

There has long been evidence that oral contraceptives (OCPs)
have the ability to affect mood. According to two large prospective
studies that looked at the medical records of over a million Danish
women over a 10-year period, OCPs use is associated with increased
risk for depression diagnosis, antidepressant treatment, and suicidal
acts (Skovlund et al., 2016; Skovlund et al., 2018). In contrast, a
smaller cross-sectional study describes an increased risk of mood
disorders with progestin-only OCPs but decreased risk of mood
disorders when combined estrogen-progestin OCPs (Svendal et al.,
2012). However, a comprehensive analysis of 26 trials involving
progestin-only OCPs found no consistent evidence of relationship
with depressed symptoms; the majority of these studies were
classified as low-quality or significantly biased (Worly et al.,
2018). An even more complex picture is presented in an RCT
with 178 women from a population sample, where OCPs are
linked to an improvement in mood during the premenstrual
phase but a worsening of mood symptoms in the intermenstrual
period (Lundin et al., 2017). For example, women with polycystic
ovarian syndrome have higher rates of depression and anxiety
(Cooney et al., 2017). OCPs are associated with an improvement
in depressive symptoms and health-related QoL (Dokras et al.,
2016). Taken together, these complex data suggest that ovarian
hormones can have significant effects on mood. However, they also
indicate a complex underlying biology that is influenced by factors
such as age, timing within the menstrual cycle, and the
administration of hormones.

Emerging evidence suggests that sex steroid exposure and
exogenous sex steroid use shape the female brain, and might
contribute to the risk for Alzheimer’s disease later in life.
Depression is also a known risk factor for Alzheimer’s disease
(Sáiz-Vázquez et al., 2021; Jett et al., 2022). However, the
influence of depression emerging with hormonal changes of
pregnancy and menopause, and HT on Alzheimer’s disease risk
is rarely studied and remains controversial. Compared with oral E2-
based types, which present with an increased risk of Alzheimer’s
disease, vaginal and transdermal E2-based HT are effective and safer
in reducing the risk of Alzheimer’s disease (Savolainen-Peltonen
et al., 2019; Kim et al., 2021). More research is needed to establish the
link among subtypes of depression, E2, and Alzheimer’s disease.

Mechanisms

Estrogen can affect depressive disorders by regulating a variety
of neurotransmitters, including 5-hydroxytryptamine (5-HT),
dopamine (DA), glutamate, and GABA. It increases the synthesis
and availability of 5-HT in the dorsal raphe nucleus, which plays a
role in emotional regulation through the activation of 5-HT
receptors, particularly the 5-HT1A receptor (Gundlah et al.,
2002; Hiroi et al., 2006). Activation of the 5-HT1A receptor has
been found to have antidepressant and anti-anxiety effects. Estrogen
also selectively increases 5-HTA density in brain regions that

contain ER, such as the thalamus, preoptic area, and amygdala
(Moses-Kolko et al., 2008). Estrogen can also regulate the serotonin
transporter, which reuptakes 5-HT from the synaptic cleft back into
the presynaptic neuron. The reactivity of 5-HT decreases during
premenstrual, perimenopausal, and postmenopausal periods,
making women more susceptible to depression. However, it can
be restored through E2 treatment. Estrogen can also inhibit the
degradation of monoamine oxidase and promote an increase in
tryptophan hydroxylase levels, thereby increasing the concentration
of 5-HT in the blood plasma.

Estrogen can also exert antidepressant effects by affecting DA
metabolism through promoting the synthesis and release of DA. In a
model of perimenopausal depression, female rats were subjected to
ovariectomy. The study found that the levels of DA in the striatum of
ovariectomized rats were significantly lower compared to non-
ovariectomized rats. This suggests that estrogen can increase the
levels of DA in the striatum and even enhance its release in the
hypothalamus and anterior pituitary, thereby alleviating depressive
symptoms. In addition, estrogen can upregulate the expression and
function of DA receptors. Chronic E2 treatment increases DA
receptor density in the striatum and nucleus accumbens (Landry
et al., 2002). The levels of 5-HT and DA in the serum of patients with
PPD were also found to be decreased compared to patients without
PPD. These levels were negatively correlated with the Edinburgh
Postnatal Depression Scale score. In addition, estrogen can have a
positive regulatory effect on NMDA receptors in postsynaptic
membranes, thereby enhancing the release of glutamate at
synapses. It can also facilitate the transmission of glutamatergic
and DAergic neurons by promoting the influx of Ca2+ (D’anglemont
De Tassigny et al., 2009).

In addition, GABAergic neurons are also involved in PPD
development. Enhancing the activity of neurons in the medial
preoptic area ameliorates depressive-like behaviors in mice, while
reducing their activity leads to the expression of these behaviors. A
neuronal ensemble projecting to the ventral tegmental area mediates
anhedonia, while another projecting to the periaqueductal gray
mediates immobility. The two projections increase the activity of
dopaminergic neurons in the ventral tegmental area and
serotonergic neurons in the dorsal raphe, leading to higher
dopamine and serotonin release. Thus, GABAergic neurons in
the medial preoptic area mediate PPD (Tao et al., 2023).

There is mounting evidence that inflammation is closely linked
to depression. Overexpression of proinflammatory cytokines in the
brain can contribute to the development of anxiety and depression-
like behaviors. Estrogen is a sex steroid hormone with anti-
inflammatory effects and plays an important role in suppressing
the inflammatory response in depression. Estrogen can reduce the
inflammatory response activity of astrocytes and microglia, as well
as decrease the release of inflammatory factors such as IL-6, TNF-α,
and NO (Rachoń et al., 2002). In the mouse model of
perimenopausal depression, which was constructed by
performing ovariectomy, it was observed that the levels of
inflammatory factors and nucleotide-binding and oligomerization
domain-like receptor family 3 (NLRP3) inflammasome in the
hippocampus of mice increased in the estrogen-deficient state.
Additionally, the mice exhibited depression-like behavior (Wang
et al., 2016). Estrogen and ERβ agonist supplementation can reduce
the levels of inflammatory factors and the NLRP3 inflammasome in
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the hippocampus of mice, thereby improving the depression-like
behavior of mice. Long-term use of HRT is effective in decreasing
inflammation and increasing antioxidant contents in the serum of
postmenopausal women (Jee et al., 2021).

Oxytocin (OT) has also been implicated in PPD for its functions
in regulating emotion, stress, and maternal care. Low levels of
oxytocin during pregnancy or postpartum have been suggested as
a risk factor for PPD. However, supplementing OT in postpartum
womenmay worsen mood (Mah, 2016). Interestingly, a recent study
using a hormone-simulated pseudopregnancy model shows that
estrogen withdrawal increases postpartum anxiety through OT
plasticity, including changes in OT-immunoreactive cells, mRNA,
and receptor density in the paraventricular hypothalamus and
dorsal raphe nucleus (Hedges et al., 2021).

ER can be divided into nuclear receptors and membrane
receptors. Nuclear receptors can be divided into estrogen
receptor (ER) α and ERβ, and membrane receptors mainly
include the G protein-coupled estrogen receptor (GPER). Studies
have shown that ERβ plays an important role in regulating
depressive-like behaviors. In the ERβ knockout mice, depression-
like behavior was significantly increased, and estrogen had no
significant effect. Studies in gonadectomized mice have shown
that ERβ agonists can effectively reduce depression-like behaviors
(Toufexis, 2007; Solomon et al., 2009). These results suggest that
estrogen exerts an antidepressant effect through ERβ. Reduced levels
of 5-HT and DA in the brain have been observed in ERβ knockout
mice, indicating that ERβ plays a crucial role in the regulation of
brain amines by estrogen. The rapid antidepressant effect of
estrogen may be related to GPER, which is widely distributed in
the central and peripheral nervous system, including the
hippocampus, hypothalamus, midbrain, and spinal cord, in both
female and male rats (Prossnitz et al., 2011; Lu et al., 2017). The
selective GPER agonist G1 exerts an antidepressant effect similar to
E2 in a mouse depression model, which can be inhibited by the
selective GPER antagonist G15. This suggests that the activation of
GPER may play a role in treating depression (Prossnitz et al., 2015).

Multiple antidepressant agents, antipsychotic drugs, and mood
stabilizers have been shown to increase AP brain levels in animal
studies (Jaworska-Feil et al., 2000; Marx et al., 2006). This suggests
that enhancing AP could be a significant mechanism for the
antidepressant effects of these drugs. Animal studies have found
that selective serotonin reuptake inhibitors (SSRIs) increase the
levels of AP in various areas of the rat brain. This has led to the
hypothesis that depression may be associated with reduced AP levels
in patients. It is further suggested that the administration of SSRIs
could normalize AP levels in the brain of depressed patients, thereby
improving depressive symptoms. This was verified by Uzunova
et al., who measured the levels of AP in the cerebrospinal fluid
(CSF) before and after 8–10 weeks of treatment with fluoxetine or
fluvoxamine in patients with unipolar depression (Uzunova et al.,
1998). Before initiating antidepressant pharmacotherapy, the
concentrations of AP were found to be approximately 60% lower
in depressed patients compared to age- and sex-matched non-
psychiatric subjects. At the end of the treatment period, there
was a normalization and re-increase of AP concentrations in the
CSF. This increase was significantly correlated with the
improvement of depressive symptoms, as measured by the
Hamilton Rating Scale for Depression.

Progesterone is highly lipophilic and easily crosses the blood-
brain barrier. As a result, concentrations of progesterone in certain
regions of the brain can be higher than those measured in the serum.
Similar to progesterone, AP and other progesterone metabolites also
accumulate in the brain. In women, the highest concentrations of AP
are found in the basal hypothalamus, followed by the substantia
nigra and the amygdala. Functional brain imaging was introduced to
further investigate the impact of AP on emotion regulation. A 3T
functional magnetic resonance imaging (fMRI) was performed while
participants engaged in the shifted-attention emotion appraisal task
to investigate emotional regulation and processing. Compared to the
placebo, administration of pregnenolone (400 mg) resulted in
elevated AP levels (Sripada et al., 2013). These elevated levels
were found to be associated with decreased activity in the
amygdala and insula, but increased activity in the dorsal medial
prefrontal cortex. Additionally, there was enhanced connectivity
observed between the amygdala and the dorsal medial prefrontal
cortex. Moreover, these effects on emotion-regulatory neurocircuits
were associated with a reduction in self-reported anxiety in the
31 healthy male volunteers (Sripada et al., 2013). Notably, the
amygdala and medial prefrontal cortex are rich in GABA-A
receptors and endogenous AP, suggesting that AP could feasibly
have a direct influence on the activity in these brain regions (Pirker
et al., 2000). Others have speculated that PPD could be caused by a
deficit in GABA-A receptor modulation rather than AP itself
because AP is a strong allosteric modulator of the GABA-A
subtype. This is corroborated by a study with knockout mice that
showed anxiety- and depression-like behaviors after giving birth
because they were unable to regulate the GABA-A receptor during
the peripartum phase (Maguire et al., 2008). In female rats, AP
injected intracerebroventricularly regulates GABA-A receptors to
produce anxiolytic-like effects (Bitran et al., 1991). Distinct from
other GABA-A positive allosteric modulators, such as
benzodiazepines, AP in the basolateral amygdala enhances high-
theta oscillations through delta-containing GABA-A receptors
(Antonoudiou et al., 2022). Significantly, progesterone injection
raises brain AP levels in both male and female rats, exhibiting
anxiolytic-like effects that may be inhibited by GABA-A receptor
inhibitors. According to animal studies, progesterone receptors
(PR), specifically PR-A and PR-B, are strongly expressed in
regions critical to cognitive function and emotional processing
(Schumacher et al., 2014). These regions include the frontal
cortex, thalamus, hippocampus, hypothalamus, and amygdala
(Holder et al., 2015) (Figure 1).

Progesterone and neuropathic pain

There have been some observational clinical studies indicating
an association between neuroactive steroids and neuropathic pain in
patients. Women with migraines presented significantly lower
serum levels of pregnenolone and AP, which were negatively
associated with the progression of migraines (Rustichelli et al.,
2021a; Rustichelli et al., 2021b). Breast and ovarian cancer are
hormone-dependent cancers, which means that they cannot grow
in the absence of hormones. The two cancers that have high estrogen
and low progesterone levels are prone to developing peripheral
neuropathy and neuropathic pain (Mchann et al., 2021). In addition,
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there was a significant negative correlation between pain severity
and daily changes in progesterone and testosterone (Schertzinger
et al., 2018). Serum progesterone level showed a negative correlation
with the pain score after cesarean section (Kashanian et al., 2019).
Together, these observations led us to conclude that progesterone
and AP may play a protective role in reducing pain severity.
However, there are few clinical studies on exogenous or synthetic
neuroprotective steroids as analgesics, which could be promising
future treatment for neuropathic pain due to their high
therapeutic potential.

Mechanisms

APwas found to be increased in the central nervous system (CNS)
in many pain models. In the sciatic nerve ligation rat model, the level
of AP in the spinal cord of hyperalgesic rats was greater than that of
the control animals (Kawano et al., 2011a). The analgesic effect of
paroxetine is associated with increased levels of AP in the spine in the
rat neuropathic pain model (Kawano et al., 2011b). Consistent with
these results, several studies have confirmed that key enzymes
important for progesterone and AP biosynthesis throughout the
CNS, including cytochrome P450 side-chain-cleavage and 3α-
hydroxysteroid oxido-reductase (3alpha-HSOR), are upregulated in
the dorsal horn in chronic constriction injury (CCI) rats (Patte-
Mensah et al., 2004; Meyer et al., 2008). Most importantly, the use of
siRNA to knock down the expression of 3alpha-HSOR exacerbated
thermal and mechanical pain perceptions (Patte-Mensah et al., 2010).

Several studies have suggested that progesterone is a promising agent
for modulating mechanical and cold allodynia after spinal cord injury
(Coronel et al., 2011b; Coronel et al., 2014; Coronel et al., 2016). Indeed,
numerous studies in animal models of peripheral nerve injury have
demonstrated the protective effect of progesterone and its metabolites.
Exogenous progesterone and AP can alleviate allodynia in animal
models of neuropathic pain, such as peripheral nerve injury, diabetic
neuropathy, neuropathic pain caused by anticancer drugs, and spinal
cord injury. AP treatment can effectively reduce the immunoreactivity

and pro-inflammatory cytokine release of p-ERK and OX-42, and
improve the mechanical hypersensitivity response in CCI rats
(Huang et al., 2016). In a rat model of nerve crush injury, treatment
with dihydroprogesterone (DHP) or progesterone was found to decrease
the density of myelinated fibers, increase reelin mRNA levels, regulate
biochemical parameters, and normalize thermal threshold (Roglio et al.,
2008). In good agreement with these results, treatment with
medroxyprogesterone acetate (MPA) led to a decrease in endogenous
AP levels, rendering rats susceptible to neurologic changes caused by
nerve injury (Huang et al., 2016). The use of AP in a diabetic neuropathy
model could counteract the downregulation of the GABA-A receptor,
which plays an inhibitory role in the neural circuits associated with
neuropathic pain (Afrazi et al., 2014). Furthermore, AP significantly
improved the hyperglycemia-induced hyperalgesia and motor
dysfunction. Driving the synthesis of progesterone, AP and DHP in
the sciatic nerve, the liver X receptor ligands could significantly increase
the decrease in thermal threshold of diabetes-induced neuropathy. This
reflects the critical protective effect of neuroactive steroids in diabetic
neuropathic pain (Cermenati et al., 2010). In addition, AP could
counteract the neurochemical, electrophysiological, and functional
alterations in peripheral nerves and suppress anticancer drug-evoked
painful neuropathy caused by oxaliplatin and vincristine (Meyer et al.,
2010; Meyer et al., 2011; Taleb et al., 2017).

The mechanism of how progesterone and AP exert analgesic
effects has not been fully clarified. The preclinical evidence has
revealed several potential targets of progesterone and its metabolites
for preventing neuropathic pain in various animal models. It is well
known that alterations in the expression of NMDAR subunits in the
spinal cord are significantly associated with abnormal pain
processing. Remarkably, progesterone prevents upregulation of
NMDAR subunits and PKCγ mRNAs after spinal cord injury
(Coronel et al., 2011a; Coronel et al., 2011b). Additionally,
progesterone may prevent allodynia by modulating
neuroinflammatory responses. Experimental animals with
neuropathic pain that received progesterone showed decreased
mRNA levels of proinflammatory factors such as IκB-α, IL-1β,
IL-6, and TNF-α (Coronel et al., 2014; Coronel et al., 2016).

FIGURE 1
Estrogen and Progesterone relieve depression.
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Additionally, there was a decrease in COX-2, iNOS, and OX-42
positive cells compared to the control group (Coronel et al., 2014).
Furthermore, transient receptor potential vanilloid 1 (TRPV1)
channels are primarily expressed by nociceptors (Aδ and
C-fibers), where they play a crucial role in nociceptive signal
transduction. Some studies have revealed that TRPV1 physically
interacts with the Sigma 1 Receptor (Sig-1R), a crucial molecular
target that regulates the number of TRPV1 channels localized to cell
membranes without affecting channel transcription. This finding
emphasizes the significance of the connection between TRPV1 and
Sig-1R in the mechanism of pain. As an antagonist of Sig-1R,
progesterone can downregulate the expression of TRPV1 in
sensory neurons, leading to a decrease in nociceptive responses
(Ortíz-Rentería et al., 2018). Enhancing the inhibitory effect of
GABAergic transmission in the pain pathway is one of the
important mechanisms to reduce pain transmission (Zeilhofer
et al., 2012). As a metabolite of progesterone, AP could alleviate
neuropathic pain by modulating T-type Ca2+ channels and GABA-A
receptors. It has been shown that the GABA-A receptor antagonist
bicuculline reverses the analgesic and antinociceptive effects of AP
in vivo, confirming that this receptor is considered to be the primary
target of AP (Huang et al., 2016). Additionally, Ayoola C et al. found
that in wild-type mice, local plantar injection of epipregnanolone
reduced nociception (Ayoola et al., 2014). However, it was not
effective in CaV3.2 knockout mice, confirming that the blocking of
the CaV3.2 T-type calcium channel in sensory neurons was involved
in epipregnanolone-induced analgesia.

In summary (Figure 2), neuroactive steroids, including
progesterone and its metabolites, play a role in pain mechanisms
and deserve further attention for the development of effective steroid
treatment strategies for neuropathic pain.

Estrogen and social interaction

People who are socially isolated lack social interactions. Social
isolation refers to an individual’s lack of interaction with society and

the objective state of being isolated from others. Long-term social
isolation is a potential source of psychological stress and is
considered a significant risk factor for human illness and
mortality (Brandt et al., 2022). Social interaction can have a
positive impact on the physical and mental health of humans
and animals by regulating the hypothalamic-pituitary-adrenal
axis (HPA) axis (Devries et al., 2003). Animal studies have found
that increasing social interaction can promote the recovery of
neurological function in mice with cerebral ischemia (Venna
et al., 2014). This suggests that promoting social interaction can
be an adjunctive treatment for related diseases. Epidemiological
studies have reported gender differences regarding lifetime
prevalence rates, showing that social anxiety disorder affects
women more frequently than men (Weinstock, 1999). In rodents,
males typically display higher levels of social interest compared to
females, highlighting sex differences that may naturally exist in
social investigation and behavior (Rigney et al., 2021).

Studies suggest a potential role of estrogen in social behavior.
E2-treated female animals displayed increased affiliative behaviors
and decreased aggressive behaviors towards unfamiliar females in
the social interaction test (Simon et al., 2004). Social interaction
testing involves placing familiar or unfamiliar male or female
rodents in a new environment and monitoring their exploration
and social behavior. In addition, female voles treated with
E2 exhibited a significant preference for females over males in
the sexual preference test (Lian et al., 2020). When conjugated
equine estrogen was administered subcutaneously to
ovariectomized rats, it improved object recognition, increased the
time spent on the open arms of the plus maze, and increased the time
spent interacting with a conspecific (Walf et al., 2008).
Phytoestrogens are estrogen analogues derived from plants and
are found in high concentrations in soy. Phytoestrogens have
been shown to modulate the DNA binding affinity of estrogen
receptors (Kostelac et al., 2003); the study reported the
significance of dietary phytoestrogens in maintaining the activity
of a brain circuit that controls aggressive and social behavior in male
mice. After a 6-week period of adhering to a low-phytoestrogen

FIGURE 2
Progesterone contributes to pain relieve.
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chronic diet, notable changes were observed in intermale aggression
and territorial marking behavior. Furthermore, mice that were fed a
low-phytoestrogen diet exhibited a decline in sociability and a
diminished preference for social odors (Sandhu et al., 2020).
These findings suggest a disruption in social behavior, which was
accompanied by a significant decrease in c-Fos induction in various
brain regions, including the medial and cortical amygdala, lateral
septum, medial preoptic area, and the bed nucleus of the stria
terminalis. Long-term effects of estrogen replacement on social
investigation and social recognition in ovariectomized female
mice have been documented through the use of 60-day time-
release pellets containing physiological doses of E2 (Tang et al.,
2005). After a treatment period of 55 days, mice that were
administered the 0.72-mg pellet exhibited evidence of social
recognition memory, as determined by a 24-hour habituation test.

Mechanisms

OT serves as the neurohormonal foundation for social
interaction. Studies have demonstrated that OT has a beneficial
impact on social interaction through the reduction of anxiety and
stress responses (Chen et al., 2016). Evidence suggests that central
oxytocin mediates social cognition, social bonding, and social
anxiety. In the context of human or animal interaction, the
release of endogenous OT can be enhanced. Endogenous OT and
sex hormone levels were examined in a sample of 199 socially
anxious individuals, consisting of 51 women in the high socially
anxious group and 50 women in the low socially anxious group
(Schneider et al., 2021). Regression analyses revealed a significant
association between elevated levels of OT and E2 in women and a
decrease in both the total Liebowitz Social Anxiety Score (LSAS) and
the LSAS Fear subscale score. The correlation between hormonal
interaction and social anxiety scores was found to be statistically
significant among women with high levels of social anxiety in the
subsample. In the male population, no significant correlations were
found between endogenous hormones and LSAS scores. The
aforementioned findings suggest that women exhibiting elevated
levels of basal OT and E2 tend to experience lower levels of anxiety
in comparison to those with lower levels of OT and E2. Social
interaction exhibited a positive correlation with the expression of
OT receptor and vasopressin receptor mRNA in the medial
amygdala and paraventricular nucleus of the hypothalamus
(Murakami et al., 2011). Furthermore, the mRNAs of OT
receptor and vasopressin receptor exhibited a strong positive
correlation with ERα mRNA in the medial amygdala. Similarly,
the mRNAs of OT and arginine vasopressin showed a significant
association with ERβ mRNA in the paraventricular nucleus of the
hypothalamus. These findings suggest that the OT and arginine
vasopressin systems are under tight regulation by ERs. Furthermore,
the levels of OT and the binding of OT receptors exhibited a
significant increase following estrogen treatment in various brain
regions of female rats and mice, whether they were naturally cycling
or had undergone ovariectomy (Tokui et al., 2021). E2 exerts direct
modulation on the OT system, encompassing OT production,
receptor binding, and the impact of OT on social behavior.
Additionally, it was observed that in mice, the administration of
E2 resulted in an augmentation of the anxiolytic properties of OT

(Mccarthy et al., 1996). Estrogen was found to mitigate the stress
levels associated with social interactions. Specifically, it reduced the
anxiety of mice when approaching unfamiliar mice by decreasing
the concentration of corticosterone (Eid et al., 2020). Consequently,
this led to an increase in the baseline frequency of social interactions.

E2 facilitation of psychosocial anxiety in females may depend on
the presence of ERα and ERβ. Female ERα and ERβ knockout mice
exhibit impairments in social interaction, specifically in the
manifestation of social anxiety (Clipperton et al., 2008; Tsuda
et al., 2018). Mice that lacked the ERβ gene specifically in the
CNS displayed a decrease in social interaction. This was
accompanied by altered expressions of OT and arginine
vasopressin in the bed nucleus of the stria terminalis (Dombret
et al., 2020). ERβ knockout mice exhibited impairments in neuronal
migration and eliminated the E2-induced reductions in depressive
behavior observed in mice (Xu et al., 2016; Varshney et al., 2017).
Additionally, the administration of an ERβ agonist has
demonstrated the ability to decrease anxiety and depressive-like
behavior in rats (Choleris et al., 2008). Estrogen plays a crucial role
in social interaction through the activation of ERβ and the regulation
of OT (Figure 3). However, the implementation of ERT for the
purpose of treating or enhancing social interaction is not yet widely
practiced in clinical settings.

Progesterone and cachexia

Cachexia is a debilitating wasting syndrome that is associated
with numerous chronic diseases, including cancer, acquired
immune deficiency syndrome (AIDS), chronic obstructive
pulmonary disease (COPD), anorexia nervosa, neurodegenerative
diseases, and other terminal illnesses. It is estimated that 60%–80%

FIGURE 3
The involvement of estrogen in social interaction.
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of patients with advanced cancer, 25% of patients with COPD, and
28%–54% of patients with end-stage renal failure suffer from this
syndrome (Wagner, 2008; Von Haehling et al., 2010; Koppe et al.,
2019). Cachexia is characterized by a loss of appetite, weight loss,
tissue wasting, accompanied by a decrease in muscle mass and
adipose tissue. It also leads to worse tolerance to anticancer therapy,
reduced quality of life (QoL), and shortened survival. For patients
with cachexia, improving appetite and promoting weight gain are
important treatment goals.

Two available drugs for progesterone therapy, MPA and
megestrol acetate (MA) were used to treat cachexia. These
drugs have shown to increase appetite and promote weight
gain. The US FDA licensed MA for the treatment of anorexia,
cachexia, or unexplained weight loss in patients with AIDS-
associated cachexia in 1993. There is now ample evidence of
progestins having a supportive effect for cachexia. The French
Cancer Centre concluded that MA, as well as MPA, are appetite
stimulants that are effective in controlling cancer-related
cachexia and weight loss (Desport et al., 2000). The
2010 European Palliative Care Research Collaborative
Cachexia Guidelines recommended that progesterone therapies
“should be considered for patients with refractory cachexia and
anorexia as major distressing symptoms” in cancer patients. In
patients with locally recurrent or metastatic nasopharyngeal
carcinoma who received MA or MPA for cachexia
management, 80.5% experienced weight gain, improved QoL
and pain control, and reduced plasma Epstein-Barr virus DNA
load (Hung et al., 2017). A 2013 Cochrane review, which
encompassed 23 RCTs and involved 3,428 cancer patients,
affirmed that individuals undergoing MA treatment were more
prone to experiencing enhancements in appetite, weight, and
QoL (Ruiz Garcia et al., 2013). Moreover, combining MPA with
other anticachectic agents has been suggested as a means of
enhancing their effectiveness in treating cachexia (Madeddu

et al., 2009). The combination of MPA with an inhibitor of
dsRNA-dependent protein kinase, which plays a role in
connecting two cachectic signaling molecules to reduce
synthesis and increase degradation of skeletal muscle protein,
resulted in an increase in the wet weight of the gastrocnemius
muscle and blood glucose, as well as a decrease in serum
triglyceride, TNF-α, and IL-6 in cancer cachexia in mice
(Chen et al., 2012). MPA combined with radiotherapy can not
only improve the QoL of patients, but also have an adjuvant
treatment effect for certain types of cancer.

However, both the American Society of Clinical Oncology
and the European Society for Clinical Nutrition and Metabolism
guidelines suggest the use of MA for cachexia treatment without
specifying the recommended dosage, which is a more detailed
concern for clinicians. In a meta-analysis including 23 trials
(3,790 patients) investigating the clinical benefits of MA in
cancer patients with anorexia/cachexia, studies were divided
into high-dose treatment (>320 mg/day) and low-dose
treatment (<320 mg/day) (Lim et al., 2022). However, patients
who received high-dose MA tended to experience weight loss
rather than weight gain. The author explained that patients who
received higher doses of MA may have experienced more severe
cachexia. A Cochrane systematic review examined the use of MA
for treating anorexia/cachexia syndrome in patients with cancer,
AIDS, and other chronic diseases. The review concluded that,
compared with placebo, MA improved appetite and resulted in a
slight weight gain of 2.25 kg, but with more adverse events (RR
1.46; 8 studies, 638 patients) though with no significant difference
in terms of mortality (Ruiz-García et al., 2018). Interestingly,
when compared to no treatment or other appetite stimulants,
patients treated with MA gained weight without experiencing any
increase in adverse events. This research also concluded that
there was no difference in weight gain between lower and higher
doses. However, the study used the definition of low dose and
high dose outlined in each trial, which had a large variability and
weakened its findings. Another network meta-analysis included
80 RCTs with 10,579 patients (48 RCTs with 7,220 cancer
patients, 23 RCTs with 2643 AIDS patients) to evaluate the
efficacy and safety of pharmacological interventions for
cachexia (Saeteaw et al., 2021). The study concluded that
compared to placebo, corticosteroids, high-dose MA
combination (≥400 mg/day, 4 cancer studies, 427 patients),
MPA (3 cancer studies, 285 patients), high-dose MA
(≥400 mg/day, 12 cancer studies, 1,426 patients), and
androgen analogues (Androgen, 3 cancer studies, 922 patients)
were significantly associated with weight gain of 6.45, 4.29, 3.18,
2.66, and 1.50 kg respectively after 8 weeks of treatment. For
improving appetite, high-dose MA (combination), and Androgen
significantly improved the standardized appetite score.
Moreover, high-dose MA did not show a significant increase
in overall and serious adverse events. Lower doses (less than
400 mg/day, 11 cancer studies, 715 patients) or low-dose
combination (5 cancer studies, 263 patients) did not show any
benefits in terms of weight and appetite gain. In summary, when
it comes to the clinical dosage for cancer-related cachexia, high-
dose MA for 8 weeks, whether combined with other
pharmacological interventions or not, has the potential to
increase weight and appetite gain in the treatment of cachexia.

FIGURE 4
Progesterone alleviates cachexia via inhibiting inflammation and
improving appetite.
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Nevertheless, the benefits of cachexia in patients with AIDS or
other pathologies were inclusive. In a review that included 38 RCTs
assessing anorexia/cachexia related to various pathologies,
treatment with MA resulted in a weight gain of 1.47 kg in
patients with other underlying pathologies except for cancer
and AIDS, compared to placebo (4 studies, 244 patients) (Ruiz-
García et al., 2018). For patients with AIDS, 20 studies
(2,122 participants) assessed the difference in weight gain and
reported that high-dose MA and high-dose combination
significantly improved weight gain, with an increase of 3.81 kg
and 3.14 kg, respectively (Saeteaw et al., 2021). In a review
assessing MA for non-cancer cachexia patients
including12 RCTs and 6 non-randomized trials, involving
916 patients (11 AIDS studies, 607 patients), it was found that

mean weight change in patients receiving MA was positive in all
studies (Taylor et al., 2016). There was insufficient data to support
appetite improvement. Therefore, it seems that patients with AIDS
can also benefit from MA treatment, but there is a lack of evidence
for its effectiveness in other pathologies such as COPD and end-
stage renal failure.

Mechanisms

The pathogenesis of cachexia is a multifactorial process
mediated predominantly by proinflammatory cytokines under
NF-κB control such as TNF-α, IL-1, IL-6, interferon-γ, and
leukemia inhibitory factor (Camargo et al., 2015). High serum

TABLE 2 Risks and benefits of estrogen treatment.

Therapy Tumor Risks Benefits Conclusion References

ERT Breast cancer Augments the susceptibility
to breast cancer among
women

ERT should not be administered
to individuals with breast cancer

Baber et al. (2016)

Estrogen and
progesterone

Endometrial
carcinoma

Estrogen-only therapy did
not demonstrate this
protective effect

Protective effect against the
recurrence

Combination of estrogen and
progesterone reduces the
recurrence of endometrial
carcinoma

Barakat et al. (2006), Shim et al.
(2014)

ERT Ovarian cancer Improve overall patient survival It is generally recommended to
avoid ERT in patients with
granulosa cell tumor

Eeles et al. (2015), Mascarenhas
et al. (2006), Pergialiotis et al.
(2016), Bešević et al. (2015),
Del Carmen and Rice (2017)

ERT Colorectal
cancer

Decrease the risk of colorectal
cancer in postmenopausal
women; have a protective effect
in the development and
progression of intestinal tumors;
reduce morbidity and mortality
associated with colorectal
cancer; ERβ can serve as a
favorable prognostic indicator in
the management of colorectal
cancer

ERT exerts a beneficial impact
on colorectal cancer

Murphy et al. (2015), Koch
et al. (2022), Prentice et al.
(2009), Peng et al. (2017)

ERT Hepatocellular
carcinoma

Reduce the incidence of
hepatocellular carcinoma;
inhibiting fibrosis and
development of hepatocellular
carcinoma

Reduce the occurrence of
hepatocellular cancer and
improved overall survival rates

Adami et al. (1989), Sukocheva
(2018), Shi et al. (2014),
Montella et al. (2015)

ERT Gastric cancer ER + status is a predictor of
unfavorable prognosis in the
treatment of gastric cancer;
ERα and ERβ are prognostic
indicators for gastric cancer

Avoid initiating ERT in
individuals who have previously
been diagnosed with gastric
cancer

Zhao et al. (2003), Matsui et al.
(1992), Ur Rahman and Cao
(2016)

ERT Pancreatic
cancer

No significant association
between the risk of pancreatic
cancer and the use of ERT.

Not a contraindication for ERT. Tang et al. (2015)

ERT Prostate cancer Contribute to the
development of benign
prostatic hyperplasia and
prostate cancer

Several estrogen antagonists are
currently undergoing clinical
trials. Toremifene exhibited a
significant improvement in the
recurrence of bone metastatic
prostate cancer

Fujimura et al. (2015)

ERT Lung cancer Tumor-promoting effect in
lung cancer. ERα and ERβ are
prognostic indicaters

ERT should not be administered
to patients with lung cancer

Hsu et al. (2017)
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levels of proinflammatory cytokines have been reported in patients
with advanced cancer-related cachexia. Increased production of IL-
1, IL-6, and TNF-α was observed in phytohemagglutinin-stimulated
cultured peripheral blood mononuclear cells isolated from advanced
cancer patients (Mantovani et al., 2000). Moreover, chronic
administration of these cytokines is capable of reproducing some
features of cachexia in vivo, while treatment with specific antagonists
can reverse their effects. Among these factors, TNF-α is the first
factor confirmed to be related to cancer-related cachexia. Injection
of TNF-α into experimental animals induces anorexia, weight loss,
and the development of cachexia; while preemptive administration
of TNF-α antibody mitigated cancer cachexia manifested with
significantly less weight loss and leg muscle preservation (Kang
et al., 2022). It can promote fat mobilization by inhibiting
lipoprotein lipase, which encourages adipocytes to uptake fatty
acids from plasma lipoproteins and convert them into
triglycerides. Interferon-γ and IL-6 also have a similar effect to
TNF-α on lipid metabolism in animal studies of cancer cachexia.
TNF-α can inhibit protein synthesis and increase protein
degradation. In addition, TNF-α and IL-1 can not only increase
the capacity for glucose utilization, but also elevate glucose
concentration.

The mechanism of progesterone-induced appetite stimulation
and weight gain in cachexia is not fully understood. It is thought to
act by inhibiting cytokines, as observed in both animal and human
studies. MPA was able to abolish cachexia and reduce systemic
levels of IL-6. It also suppressed TNF-α-induced IL-6 secretion. In
addition, intramuscular injections of MPA into nude mice bearing
KPL-4 (a human breast cancer cell line) transplanted tumors
significantly decreased serum IL-6 levels without affecting
tumor growth and maintained the body weight of recipient
mice (Kurebayashi et al., 1999). Moreover, MPA significantly
inhibits IL-6 and IL-8 promoter-reporter constructs at the
transcriptional level by interfering with NF-κB and activator
protein-1 in mouse fibroblast cells (Koubovec et al., 2004).
These findings indicate that the suppression of proinflammatory
cytokine secretion may, at least in part, contribute to the
anticachectic effect of MPA.

In addition, MA can stimulate the hypothalamus to produce
neuropeptides that increase appetite. Increased production of
neuropeptide Y, a potent central appetite stimulant, is thought
to be associated with an increase in food intake. Neuropeptides can
regulate the ventromedial hypothalamic nucleus (the satiation
center) by reducing the firing impulses of neurons and
inhibiting the activity of pro-inflammatory cytokines, such as
IL-1, IL-6, and TNF-α. MPA has been confirmed to inhibit the
production of TNF-α, promote protein synthesis, and increase
adipose tissue. MA can increase insulin-like growth factor (IGF-1)
levels in breast cancer patients, which is presumably one of the
mechanisms of weight gain caused by MA (Helle et al., 1999). This
is because IGF-1 has been shown to increase appetite. By utilizing
dual-energy X-ray absorptiometry to conduct a comprehensive
body scan, Loprinzi discovered that MA resulted in weight gain,
primarily due to a significant rise in adipose tissue, as opposed to
fluid retention (Loprinzi et al., 1993). This is particularly
important for cancer patients with cachexia, as the primary
consequence of energy expenditure is the depletion of
adipose tissue.

In general (Figure 4), progesterone therapies have been shown to
improve appetite and weight gain in cancer and AIDS patients with
cachexia. However, the optimal dosage is still unclear, although
there is a tendency towards high doses. For cachexia patients with
other diseases, the efficacy of MA in improving weight gain and
appetite has yet to be determined. Since cancer-related cachexia is a
multifactorial process, it is unlikely that MA or MPA alone can
counteract the complex processes involved in cachexia. Accordingly,
combining MPA with other novel anticachectic agents may be a
more effective way of treating cachexia.

Safety of HRT

Progesterone is typically well tolerated among patients with
advanced-stage cancer. The most commonly reported adverse
events include the occurrence of peripheral edema and an
elevated risk of thromboembolic complications, particularly deep
vein thrombosis in the lower extremities (Marjoribanks et al., 2012).
However, the latter is rarely severe. Other potential adverse events
could be attributed to the glucocorticoid-like activity. It is
improbable that patients with cachexia who are taking MPA will
need to discontinue the medication due to the aforementioned
adverse events. When HRT is administered to enhance the QoL
in patients with malignancies, a crucial factor to consider is the
potential for HRT especially ERT to induce tumor recurrence or
metastasis (Table 2).

Conclusion

The regulation of female hormones on brain health, particularly
their potential treatment on appetite, pain, depression, and social
isolation is gaining attention. Progesterone has been found to be
advantageous in promoting weight gain and stimulating appetite
when used in the management of cachexia associated with cancer or
AIDS. Exogenous progesterone also contributes to alleviating
allodynia. Furthermore, progesterone has been authorized for the
treatment of PPD. Therefore, the administration of progesterone
may be considered as a treatment option for patients experiencing
pain, depression, and cachexia. Estrogens are known to have an
antidepressant effect and to contribute to social interaction.
However, concerns have been raised regarding their potential to
induce tumor recurrence or metastasis, which has hindered their
clinical acceptance. Nonetheless, estrogen therapy can actually
reduce the risk of colorectal cancer and hepatocellular carcinoma.
Further considerations regarding the risks and benefits of estrogen
therapy in breast cancer, endometrial carcinoma, ovarian cancer,
gastric cancer, pancreatic cancer, prostate cancer, and lung cancer
are necessary. Nevertheless, medical professionals are still unable to
provide compelling answers regarding the specific selection of drugs,
routes of administration, dosage, timing of initiation and duration,
and the decision to use combination therapies, except for the rapid
control of depression symptoms with brexanolone and zuranolone.
It is worth noting that drugs with a rapid onset for severe symptoms
are generally more likely to be approved by the FDA. However, the
prevention or efficacy only after long-term administration of
hormones is often affected by various factors and needs to be
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studied repeatedly. However, the potential benefits of female
hormones in brain health should not be overlooked.
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Glossary

AIDS Acquired immune deficiency syndrome

AP Allopregnanolone

CNS Central nervous system

CSF Cerebrospinal fluid

CRC Colorectal cancer

CCI Chronic constriction

COPD Chronic obstructive pulmonary disease

DA Dopamine

DHP Dihydroprogesterone

FDA Food and Drug Administration

E2 Estradiol

ER Estrogen receptor

ERT Estrogen replacement therapy

fMRI Functional magnetic resonance imaging

GPER G protein-coupled estrogen receptor

Dichtel et al. Hormone therapy

HRT Hormone replacement therapy

HPA Hypothalamic-pituitary-adrenal axis

IGF-1 Insulin-like growth factor

LSAS Liebowitz Social Anxiety Score

MPA Medroxyprogesterone acetate

MA Megestrol acetate

MT Menopausal transition

MHT Menopausal hormone therapy

NLRP3 Nucleotide-binding and oligomerization domain-like receptor
family 3

OCPs Oral contraceptives

OT Oxytocin

PPD Postpartum depression

PR Progesterone receptors

QoL Quality of life

RCTs Randomized controlled trials

SSRI Selective serotonin reuptake inhibitors

Sig-1R Sigma 1 Receptor

TRPV1 Transient receptor potential vanilloid 1

5-HT 5-hydroxytryptamine

GABA γ-aminobutyric acid
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