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Background: Alternative and complementary therapies play an imperative role in
the clinical management of Type 2 diabetes mellitus (T2DM), and exploring and
utilizing natural products from a genetic perspective may yield novel insights into
the mechanisms and interventions of the disorder.

Methods: To identify the therapeutic target of baicalin for T2DM, we conducted a
Mendelian randomization study. Druggable targets of baicalin were obtained by
integrating multiple databases, and target-associated cis-expression quantitative
trait loci (cis-eQTL) originated from the eQTLGen consortium. Summary statistics
for T2DM were derived from two independent genome-wide association studies
available through the DIAGRAM Consortium (74,124 cases vs. 824,006 controls)
and the FinnGen R9 repository (9,978 cases vs. 12,348 controls). Network
construction and enrichment analysis were applied to the therapeutic targets
of baicalin. Colocalization analysis was utilized to assess the potential for the
therapeutic targets and T2DM to share causative genetic variations. Molecular
docking was performed to validate the potency of baicalin. Single-cell RNA
sequencing was employed to seek evidence of therapeutic targets’
involvement in islet function.

Results: Eight baicalin-related targets proved to be significant in the discovery
and validation cohorts. Genetic evidence indicated the expression of ANPEP,
BECN1, HNF1A, and ST6GAL1 increased the risk of T2DM, and the expression of
PGF, RXRA, SREBF1, and USP7 decreased the risk of T2DM. In particular,
SREBF1 has significant interaction properties with other therapeutic targets
and is supported by strong colocalization. Baicalin had favorable combination
activity with eight therapeutic targets. The expression patterns of the therapeutic
targets were characterized in cellular clusters of pancreatic tissues that exhibited
a pseudo-temporal dependence on islet cell formation and development.

Conclusion: This study identified eight potential targets of baicalin for treating
T2DM from a genetic perspective, contributing an innovative analytical
framework for the development of natural products. We have offered fresh
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insights into the connections between therapeutic targets and islet cells. Further,
fundamental experiments and clinical research are warranted to delve deeper into
the molecular mechanisms of T2DM.

KEYWORDS

type 2 diabetesmellitus, baicalin, therapeutic target, Mendelian randomization, single-cell
RNA sequencing, traditional Chinese medicine

1 Introduction

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder
characterized by inadequate insulin secretion and insulin resistance,
leading to dysregulation of glucose homeostasis in the bloodstream. The
management and treatment of diabetes pose considerable challenges
across all sectors of society. In 2021, the global population of diabetes
sufferers of all ages reached 529million, with over 90% being afflicted by
type 2 diabetes (GBD, 2021 Diabetes Collaborators, 2023). Type
2 diabetes imposes a substantial health and economic burden on
individuals and the public health system (Sun et al., 2022). Despite
the numerous pharmacotherapeutic options available, they frequently
possess limited therapeutic efficacy and an abundance of adverse effects
(Maruthur et al., 2016). Thus, finding safer and more efficient
treatments is crucial for early intervention of T2DM. Baicalin, one
of the major active constituents of Scutellaria baicalensis, exhibits
favorable pharmacokinetic properties and potent hypoglycaemic
effects (Froldi et al., 2022). Several animal studies have suggested
that baicalin improves metabolic function in skeletal muscle, adipose
tissue, and liver by reducing lipid accumulation and enhancing insulin
sensitivity, thus effectively suppressing hyperglycemia and improving
insulin action (Yu et al., 2022; Szkudelski and Szkudelska, 2023).
Moreover, it saliently reduces hyperglycemia-induced oxidative stress
by increasing the activity of antioxidant enzymes and alleviating
diabetes-related oxidative damage (Waisundara et al., 2011). Baicalin
also inhibits vascular inflammation induced by high glucose levels,
suggesting potential therapeutic effects on diabetic vascular
complications (Ku and Bae, 2015). In addition, baicalin can alleviate
pancreatic fibrosis by blocking the activation of pancreatic stellate cells
and ameliorate pancreatic β-cell injury by encouraging beneficial
apoptosis (Zhao et al., 2021; Miao et al., 2024). These researches
have demonstrated the potential regulatory effects of baicalin on the
pancreas, although precise molecular mechanisms and linkages to
genetic variation have not been completely elucidated. Insufficient
comprehension has limited the further development and application
of baicalin as a potential therapeutic agent for diabetes.

The rapid development of genome-wide association studies
(GWAS) has identified thousands of genetic variants linked to
human diseases and medically essential traits, providing
unprecedented opportunities to develop new drugs for complex
diseases (Reay and Cairns, 2021). Expression quantitative trait locus
(eQTLs) are genetic variations that regulate the expression of
specific genes and offer clues for drug discovery (Chauquet et al.,
2021). Since most risk variants for complex diseases exert their
biological effect by influencing gene expression, integrating GWAS
with eQTLs can aid in identifying potential drug targets.
Incorporating human genetics and genomics may be one of the
most efficient strategies to advance medication research, as therapies
supported by genetic evidence are more likely to succeed in clinical

trials and gain regulatory approval (Trajanoska et al., 2023).
Currently, there is a lack of research investigating complementary
and alternative treatments from a genome-wide perspective, and the
identification and mechanistic exploration of natural drug targets
may offer opportunities for preventing and treating T2DM.

Mendelian randomization (MR) is an epidemiological method that
utilizes genetic variants as instrumental variables to assess causal
relationships between exposures and outcomes. Its design is based
on the random assortment of alleles during gamete formation, which is
analogous to a natural randomized controlled experiment. Compared
to traditional observational studies, this approach is more effective in
minimizing bias due to confounding or reverse causation (Bowden and
Holmes, 2019). This sophisticated design can more accurately capture
the association between gene expression and complex disease
phenotypes, providing a powerful tool for drug target discovery and
validation (Võsa et al., 2021). Single-cell transcriptome sequencing
technology provides a novel perspective in investigating the
pathogenic mechanisms of natural compounds targeting
T2DM(Papalexi and Satija, 2018). The application of this technology
has already advanced our understanding of disease complexity in
several fields and provided important molecular information for
personalized medicine (Xin et al., 2016). Compared to bulk RNA
sequencing, single-cell RNA sequencing reveals heterogeneity in gene
expression within cell populations, enabling more precise identification
and targeting of therapeutic targets and enhancing our understanding of
specific signaling pathways.

Applying large-scale GWASs and high-throughput single-cell
RNA sequencing data, this study systematically integrates various
bioinformatics techniques to identify the targets of baicalin in the
treatment of type 2 diabetes and elucidate its mechanisms. It
innovatively integrates natural products with modern genetics,
providing novel insights for drug development and
precision medicine.

2 Materials and methods

The overall structure of this study based on guidelines for
Mendelian randomization research was illustrated in Figure 1
(Burgess et al., 2019; Skrivankova et al., 2021). Potential targets
of baicalein were collected via multiple sources regarding natural
products. We utilized the expression quantitative trait locus (eQTL)
related to the drug targets in the eQTLGen Consortium as the
exposure and performed MR analysis with two independent T2D
cohorts as the outcomes. Then, we conducted functional enrichment
analysis and constructed a protein-protein interaction (PPI)
network for the therapeutic targets. Bayesian colocalization was
employed to assess the possibility of shared causal genetic variation
between baicalin targets and T2D, and molecular docking was
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performed to evaluate the affinity between baicalein and therapeutic
targets. Finally, we utilized single-cell RNA sequencing data to
explore the potential mechanisms by which therapeutic targets of
baicalin are involved in pancreatic function. Subjects included in the
discovery and validation cohorts were restricted to European

descent to minimize potential bias in population stratification.
Data was derived from aggregated meta-GWASs and publicly
available eQTL statistics, with original studies authorized by their
respective institutional review boards and ethics committees, and all
participants granted informed consent.

FIGURE 1
The overall flowchart of this study.
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2.1 Data sources for the expression
quantitative trait locus

The expression quantitative trait locus (eQTL) refers to genetic
variations associated with gene expression levels. It provides
accurate proximity to target genes in pharmaceutical research
and exerts a more direct regulation on gene expression. The
eQTL data in this study originated from the meta-analysis of the
eQTLGen Consortium, and a detailed account of the data
preparation can be found in the original publication (Võsa et al.,
2021). The eQTLGen Consortium conducted an analysis of cis- and
trans-expression quantitative trait loci using blood samples from
31,684 healthy European individuals across 37 independent cohorts,
and a total of 19,250 genes were involved in the study. Cis-eQTL
referred to single-nucleotide polymorphisms (SNPs) within 1 Mb of
the gene center and detected in at least two cohorts. The complete
original data for cis-eQTL and allele frequency information can be
downloaded from the eQTLGen portal (https://eqtlgen.org/).

2.2 Acquisition of potential targets
for baicalin

In this study, potential drug targets were collected from the
BATMAN-TCM 2.0 (http://bionet.ncpsb.org.cn/batman-tcm/)
(Kong et al., 2024), SymMap V2 (http://www.symmap.org/) (Wu
et al., 2019), TCMIP V2.0 (http://www.tcmip.cn/) (Xu et al., 2019),
ChEMBL (https://www.ebi.ac.uk/chembl/) (Barbara et al., 2024),
CTD (https://ctdbase.org/) (Davis et al., 2023), and STITCH V5.0
(http://stitch.embl.de/) (Szklarczyk et al., 2016) databases, and some
remaining targets were comprehensively supplemented by
PharmMapper (https://www.lilab-ecust.cn/pharmmapper/) (Wang
et al., 2017), SwissTarget Prediction (http://www.
swisstargetprediction.ch/) (Daina et al., 2019), SuperPred (https://
prediction.charite.de/) (Nickel et al., 2014) and SEA (https://sea.
bkslab.org/) (Keiser et al., 2007). The potential targets of baicalin
were aggregated by normalizing the gene symbols and removing
non-human, unvalidated, invalid, and duplicate genes through the
UniProt database (https://www.uniprot.org/). To generate the
genetic instruments for proxy baicalin targets, cis-eQTLs derived
from the eQTLGen Consortium were restricted to SNPs within
100 kb upstream and downstream of the drug targets.

2.3 Data sources for type 2 diabetes

The genome-wide association studies (GWASs) for type 2 diabetes
were from the DIAGRAM consortium and the FinnGen R9 repository.
Detailed information regarding subject recruitment and quality control
can be found in the original publication (Mahajan et al., 2018; Kurki
et al., 2023). In the discovery phase, we selected the largest GWASmeta-
analysis of European ancestry, involving 74,124 cases and
824,006 controls, available via the DIAGRAM portal (https://
diagram-consortium.org/) (Mahajan et al., 2018). The diagnosis of
T2D was based on the clinical criteria of the American Diabetes
Association or the World Health Organization, supplemented by
healthcare registries, usage of antidiabetic medications, and valid
self-reporting. Levels of GAD antibodies and fasting C-peptide, early

insulin intervention, and family history were used to exclude patients
with probable type 1 diabetes. The residual inflation of the summary
statistics was corrected through genomic control, andmeta-analysis was
adjusted for BMI. In the replication analysis, we employed a publicly
available summary-level GWAS from the FinnGen R9 repository,
including 38,657 cases and 310,131 controls (Kurki et al., 2023).
T2D was defined according to the World Health Organization
guidelines, with the inclusion and exclusion criteria under the
International Classification of Disease (ICD, https://r9.risteys.finngen.
fi/) codes, specifically the 9th or 10th revision. The probability of overlap
in population selection between the exposure and outcome
was minimal.

2.4 Mendelian randomization

Mendelian randomization study must fulfill three key assumptions:
1) Instrumental variables (IVs) derived from genetic variation should be
tightly associated with the exposure; 2) confounding factors are
independent of the selected IVs; 3) The instrumental variables solely
impact the outcome through the exposure. We implemented a series of
rigorous quality controls for cis-eQTLs to obtain reliable genetic
instruments. Firstly, we identified common variants (minor allele
frequency >0.01) within a 100 kb region surrounding the potential
targets of baicalin with a significant threshold of p < 5e−8, ensuring that
the instrumental variables could serve as proxies for exposure (Chen
et al., 2022; Li et al., 2023). Secondly, utilizing a reference panel from the
European population of the 1000 Genomes Project (1000 Genomes
Project Consortium et al., 2015), we applied a linkage disequilibrium-
based clustering with an r2 = 0.1 threshold within a 10,000 kb range to
eliminate potential confounding effects generated by linkage between
SNPs(Chen et al., 2022). Thirdly, we computed the F-statistic for each
instrumental variable to estimate their strength (R2 = 2×EAF×(1-
EAF) × beta2; F = R2 × (N-2)/(1-R2)) and excluded SNPs with an
F-statistic below 10 to eliminate bias from weak instrumental variables
(Burgess et al., 2011; Papadimitriou et al., 2020). Fourthly, Steiger
filtering was applied to remove drug targets where SNPs accounted
for a larger fraction of the variation in T2D risk than gene expression to
ensure unidirectionality of causality. In addition, we removed
palindromic SNPs with uncertain strands and SNPs with non-
concordant alleles to avoid any potential errors in allele
determination and provide accurate causality assessments.

We utilized the “TwoSampleMR” package (version 0.5.7) in R
software (version 4.2.1) for the MR procedure and sensitivity
analysis (Hemani et al., 2018). In the primary analysis, if only
one eQTL for the drug target was available, we employed the
Wald method that calculated the coefficient ratio for the
outcomes and exposures. When two or more instrumental
variables were available, the meta-analysis integrated with the
Wald ratio on each SNP was performed using inverse-variance
weighted (IVW), MR-Egger, weighted median, and maximum
likelihood methods. The primary assessment was completed by
applying the IVW approach, yielding general estimates through
meta-analysis in combination with Wald ratios for each SNP
(Burgess et al., 2017). Compared to the fixed effects model, The
IVW method with multiplicative random effects model (REM)
could guarantee statistical efficacy even in the presence of weaker
random effects (Burgess et al., 2019). In comparison to the IVW

Frontiers in Pharmacology frontiersin.org04

Liang et al. 10.3389/fphar.2024.1403943

https://eqtlgen.org/
http://bionet.ncpsb.org.cn/
http://www.symmap.org/
http://www.tcmip.cn/
https://www.ebi.ac.uk/chembl/
https://ctdbase.org/
http://stitch.embl.de/
https://www.lilab-ecust.cn/pharmmapper/
http://www.swisstargetprediction.ch/
http://www.swisstargetprediction.ch/
https://prediction.charite.de/
https://prediction.charite.de/
https://sea.bkslab.org/
https://sea.bkslab.org/
https://www.uniprot.org/
https://diagram-consortium.org/
https://diagram-consortium.org/
https://r9.risteys.finngen.fi/
https://r9.risteys.finngen.fi/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1403943


approach, the other methods exhibited relatively inferior statistical
efficacy. Consequently, they were solely applied to corroborate the
general direction of the primary method.

We applied the IVW method and Egger regression to detect
heterogeneity for baicalin targets containing two or more
instrumental variables. Heterogeneity was quantified using Cochran’s
Q test, with p < 0.05 indicating apparent heterogeneity among
instrumental variables. The MR-Egger intercept was employed to
evaluate the existence of pleiotropy across instrumental variables,
and no meaningful horizontal pleiotropy was observed if p > 0.05.
Bonferroni correction was implemented in the discovery cohort to
define the significance threshold formultiple testing. Drug targets with a
p-value <1.00e-4 (0.05/499) were defined as significant. Sensitivity
analysis was conducted on the initially identified potential targets,
and validation was performed in a replication cohort. The
significance threshold for the validation phase was established at
0.0016 (0.05/31) (Cao et al., 2023).

2.5 Network construction and functional
enrichment analysis

Enrichment analysis of gene clusters was performed via the R
package “clusterProfiler” (version 4.4.4) to identify biological pathways
for potential targets of baicalin. Gene Ontology (GO) enrichment
analysis elucidates the biological significance of genes from three
perspectives: biological processes (BP), cellular components (CC),
and molecular functions (MF). The R package “org.Hs.e.g.,.db” is
used for gene ID conversion. Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis was performed
through the KOBAS-i portal (http://bioinfo.org/kobas/) (Bu et al.,
2021). To explore potential interactions between therapeutic targets,
the STRING database (version 12.0, https://string-db.org/) was
employed to construct Protein-Protein Interaction (PPI) networks.

2.6 Bayesian colocalization analysis

To further ascertain the potential shared genetic effects between
drug targets and T2D risk, we conduct colocalization analysis using
the R package “coloc” (version 5.2.3). Colocalization analysis requires
the inclusion of all SNPs within a genomic region, providing a
comprehensive method for utilizing genetic information to
evaluate the therapeutic targets of baicalin (Wallace, 2020). We
applied a prior probability of 1e-04 for baicalein targets (H1) and
T2D phenotypes (H2) while setting the prior probability to 1e-05 for
an individual variant being associated with both gene expression and
T2D risk (H4). For each potential target of baicalin, we included SNPs
within a range of ±1 Mb from the gene start and endpoints. The
significance criterion for colocalization was defined as
PP.H4 greater than 0.80.

2.7 Molecular docking

Molecular docking serves to evaluate the binding characteristics
of active compounds and therapeutic targets within their three-
dimensional structures, and it is widely utilized in drug discovery

(Pinzi and Rastelli, 2019). We retrieved the 3D crystal structure of
the drug target in PDB format from the RCSB Protein Database
(https://www.rcsb.org/), while the 3D chemical structure of baicalin
in SDF format was acquired from the PubChem database (https://
pubchem.ncbi.nlm.nih.gov/). The CB-DOCK2 web server (https://
cadd.labshare.cn/cb-dock2/php/index.php) was applied to validate
the binding strength of baicalin with the therapeutic targets (Yang X.
et al., 2022; Liu et al., 2022). The core of CB-Dock2 adopts the open-
source software, AutoDock Vina. Since the binding sites for ligands
are typically large cavities, the docking center, and size are pre-
determined based on the identified cavity pockets (C1-C5). After
completing the docking process, the binding poses are re-sorted
based on Vina scoring. The Vina score indicates the degree of
binding between the drug and the protein, with lower scores
indicating better binding. The optimal binding site for the active
ingredient and the first conformational pose based on the optimal
affinity are considered the best binding forms.

2.8 Quality control, cluster analysis and
identification of cell types for single cell
expression data

The dataset GSE153855 was originated from the Gene
Expression Omnibus (GEO) data repository and generated at the
Science for Life Laboratory in Stockholm using single-cell genomics
facilities, and it encompassed pancreatic islet tissues from 5 T2D
donors and six control individuals (Ngara and Wierup, 2022). We
utilized the R package “Seurat” (version 5.0.1) to process single-cell
transcriptomic sequencing data (Hao et al., 2023). Quality control
was performed by assessing gene counts, expressions, and the
percentage of mitochondrial genes in the sequencing data. We
applied nFeature_RNA > 2,000, nCount_RNA > 10,000, and
percent.mt < 5 as the threshold for cell selection, and violin plots
to demonstrate gene counts, gene expressions, and the percentage of
mitochondrial genes. The data was subjected to normalization,
feature selection, and standardization. Then it was reduced in
dimensionality using principal component analysis (PCA) and
clustered and visualized using the t-distributed stochastic
neighbor embedding (t-SNE) algorithm. The cell types in the
clustering were annotated using the intrinsic information from
the dataset.

2.9 Inference of intercellular
communication

The R package “CellChat” (version 1.6.1) is an appliance that
quantitatively infers and analyzes cell-cell communication networks
from single-cell expression profiles, and its database (http://www.
cellchat.org/) contains known ligand-receptor and their cofactor
interactions (Jin et al., 2021). We identified significant ligand-
receptor pairs by employing differentially overexpressed genes
(p < 0.05) across cell clusters, and multiple communication
patterns and pathways among cell clusters were categorized by
network analysis tools and pattern recognition methods. To
elucidate how cell clusters and signaling pathways coordinate and
drive intercellular communication, we utilized the
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FIGURE 2
Potential targets of baicalein significantly associated with T2D in the discovery cohort. (A) The Manhattan plot of MR analysis at the discovery phase.
The dashed line represented a nominal p-value (0.05), and the solid line referred to a p-value (1.00e−4) adjusted for Bonferroni correction. Significant
genes were annotated with labels. (B) 31 baicalein-related targets approved by sensitivity analysis. The effect estimates were represented by odds ratios
(ORs) and their corresponding confidence intervals (CIs).

Frontiers in Pharmacology frontiersin.org06

Liang et al. 10.3389/fphar.2024.1403943

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1403943


“identifyCommunicationPatterns” function to infer the functional
specificity of communication patterns.

2.10 Pseudotime trajectory analysis

The R package “Monocle” (version 2.22.0) was employed to arrange
cells along a hypothetical developmental timeline to infer the
differentiation process of cell clusters (Qiu et al., 2017). Utilize the
“dispersionTable” function to identify genes with high variability, and
employ the “setOrderingFilter” function to pseudo-temporally order the
cells. Genes with high variability were identified via the
“dispersionTable” function. Cells were pseudo-temporally sorted
applying the “setOrderingFilter” function, with a threshold of mean_
expression≥0.1 and dispersion_empirical≥1 * dispersion_fit for gene
inclusion in the ordering. The “DDRTree” method was utilized for
dimensionality reduction, and the “orderCells” function was applied to
estimate the cell arrangement along the trajectory.

3 Results

3.1 Acquisition of potential targets
for baicalin

We acquired potential targets of baicalin from multiple sources
to ensure the comprehensive scope of the study. In particular, there
were 58 baicalin-related targets in the BATMAN-TCM 2.0 database,
86 targets in the SymMap V2, 66 targets in the TCMIP v2.0,
258 targets in the ChEMBL, 53 targets in the CTD, 28 targets in
the STITCH, 297 targets in the PharmMapper, 100 targets in the
SwissTarget Prediction, 94 targets in the SuperPred, and 36 targets in
the SEA. After merging, deduplication, and standardization, there
are a total of 808 potential drug targets for baicalin. We obtained cis-
eQTLs tightly associated with baicalin targets in a reliable (P <
5e×10−8) and independent (r2 < 0.1, kb = 10,000) manner from the
eQTLGen consortium. After a series of quality control measures
including exclusion based on F-statistics and Steiger’s filtering, we
selected the eQTL from the final set of 499 target genes.

3.2 Association of baicalin-related targets
with T2D in the discovery cohort

During the discovery phase, we selected the largest T2D GWAS
currently available as the outcome and conducted MR analysis using
eQTLs for potential targets of baicalin. Applying theWald ratio or IVW
method with a multiplicative random effects model, a total of
35 baicalin targets remained significantly (p < 1.00e-4) associated
with T2D risk after Bonferroni correction (Figure 2A). DHODH,
HSD17B1, and ODC1 were excluded from the MR-Egger method
due to inconsistent causal estimates in the MR-Egger compared with
other methods (Supplementary Table S1). CFD was excluded due to
unaccountable heterogeneity. Despite the presence of heterogeneity in
ANPEP, BECN1, P2RX4, and ST6GAL1, their causal estimates
remained significant after multiple tests in the weighted mean
method (p < 1.00e-4), indicating relatively robust results
(Supplementary Table S2). The Egger intercept test demonstrated no

apparent horizontal pleiotropy. After the above sensitivity analysis,
31 genes were included for subsequent validation (Figure 2B). Genetic
prediction indicated elevated levels of AKT2, AMD1, ANPEP, BECN1,
CA4, CLC, F10, FGF2, HNF1A, MPO, MYC, NOS3, P2RX4,
ST6GAL1 and USP7 were associated with increased risk of T2D,
while the concentrations of CASP1, CD38, CDA, DHFRL1,
FKBP1B, FPGS, HES1, KDM5A, NCOA1, NFKB1, PGF, PRMT3,
RELA, RXRA, SREBF1, and UCK2 exhibited a negative correlation
with T2D risk. These associations are consistent across other
approaches, and the results of genome-wide MR in the discovery
phase are presented in Supplementary Table S1.

3.3 Association of baicalin-related targets
with T2D in the validation cohort

Employing GWAS from the FinnGen R9 repository for
validation, we conducted a replication analysis of the potential
targets of baicalin and performed MR analysis in a manner
consistent with the discovery cohort. We evaluated the potential
causal relationship between potential targets of baicalein and the risk
of T2DM by applying the Wald ratio or the IVW method with a
multiplicative random effects model (Supplementary Table S3), and
8 baicalin-related targets remained significant (p < 0.0016) after
Bonferroni correction (Figure 3). Specifically, the elevated
expression of ANPEP, BECN1, HNF1A, and ST6GAL1 was
associated with an increased risk of T2D, while the expression of
PGF, RXRA, SREBF1, and USP7 decreased the risk of T2D. These
targets exhibited identical causal effects across the 4 MR methods,
and their impact on the outcome in the validation cohort remained
consistent with that observed in the discovery cohort.
ST6GAL1 demonstrated heterogeneity among SNPs in Cochran’s
Q test, yet it exhibited statistical significance in the weighted mean
method (Supplementary Table S4). The Egger intercept test revealed
no significant pleiotropy for any target.

3.4 Functional enrichment and protein-
protein interaction analysis of
baicalin targets

GO enrichment analysis was performed to determine the
biological functions of baicalein targets (Figure 4A). The most

FIGURE 3
The forest plot showing statistically significant targets after
multiple tests (p = 0.0016) in the validation cohort.

Frontiers in Pharmacology frontiersin.org07

Liang et al. 10.3389/fphar.2024.1403943

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1403943


important enrichment entries for biological processes were: cellular
response to nutrient levels, mRNA transcription by RNA
polymerase II, cellular response to extracellular stimulus, mRNA
transcription, and cellular response to external stimulus, mainly
involving mRNA transcription and signal transduction. The
most important enrichment entries for molecular function
were: nuclear receptor activity, ligand-activated transcription
factor activity, transcription coregulator binding, vascular
endothelial growth factor receptor binding, and nuclear
vitamin D receptor binding. Cellular components were mainly
enriched in the Golgi apparatus. The enrichment entries related
to diabetes in the KEGG pathway included: the PI3K-Akt
signaling pathway, mature onset diabetes of the young,
autophagy, apoptosis, and N-Glycan biosynthesis (Figure 4B).
PPI analysis revealed that the 8 therapeutic targets shared a tight
association, and the targets with the highest centrality degree in
the network were SREBF1 and HNF1A (Figure 4C). There were
reliable interactions between SREBF1 and RXRA, SREBF1 and
USP7, as well as USP7 and BECN1, and suggesting co-expression
existed among them.

3.5 Colocalization analysis of baicalin-
related targets

We further determined the potential causal genetic variants
shared between the T2D risk and baicalin targets through
colocalization analysis (Figures 5A–D). In the meta-GWAS from
the DIAGRAM, ANPEP (PP.H4 = 0.88) and SREBF1 (PP.H4 = 0.85)
might share a causal variant with the T2D trait at a genetic locus. In

the GWAS from the FinnGen R9, ANPEP (PP.H4 = 0.89), SREBF1
(PP.H4 = 0.83), and PGF (PP.H4 = 0.83) might share a causal
variant within the genetic locus with the T2D trait
(Supplementary Table S5).

3.6 Molecular docking of baicalin-
related targets

We retrieved the structural files of 8 therapeutic targets from the
RCSB Protein Database and further explored the binding properties
of the therapeutic targets with baicalin. We performed molecular
docking of the receptor and ligand via CB-Dock2, and the Vina
scores were demonstrated in Table 1. All paired binding energies
were not greater than −7.0 kcal/mol, indicating that baicalin could
combine effectively with the therapeutic targets and exert its effects.
In particular, the binding energy of RXRA with baicalin was the
lowest (−10.7 kcal/mol). The binding energy of ANPEP with
baicalin was −9.8 kcal/mol, while USP7 was −9.2 kcal/mol,
ST6GAL1 was −9.0 kcal/mol, BECN1 was −8.7 kcal/mol,
HNF1A was −8.7 kcal/mol, PGF was −8.1 kcal/mol, and
SREBF1 was −7.0 kcal/mol.

3.7 Expression pattern of the target genes in
pancreas cells

Quality control for the single-cell sequencing dataset
GSE153855 was conducted by gene counts and RNA expression
as well as the percentage of mitochondrial genes, and we filtered out

FIGURE 4
Enrichment analysis of the therapeutic targets for baicalin. (A) GO functional enrichment analysis of the targets, ranked according to the adjusted
p-value, with the top five entries visualized. The horizontal axis represented the number of genes in enrichment, and the color of the bar represented the
adjusted p-value. (B) KEGG pathway enrichment analysis of the therapeutic targets. (C) Protein-protein interaction network of the therapeutic targets.
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19 cells due to inadequate quality (Figure 6A), and excluded 28 cells
of unknown type. Utilizing the top 10 principal components
(Figure 6B), we performed cell clustering through t-SNE
dimensionality reduction to visualize the overall distribution of
the data (Figure 6C). Cell types were annotated for each cluster
using the integrated annotations in the GSE153855 dataset
(Figure 6D). The final 3,336 cells passed the quality control,
comprising 1,638 cells from T2D patients and 1,698 cells from
the control group. The proportion of most cell types in T2D patients
decreased compared to that in the control group, except alpha cells
(Control: 46.2%, T2D: 47.9%), exocrine cells (Control: 8.8%, T2D:
19.1%), and macrophage cells (Control: 0.5%, T2D: 1.5%) had
increased (Figure 6E). Beta cells accounted for 14.7% of T2D

patients, while they accounted for 18.0% in the control
group. Endothelial cells (Control: 0.7%; T2D: 0.4%), epsilon cells
(Control: 0.5%; T2D: 0.0%), gamma cells (Control: 4.7%; T2D:
1.7%), stellate cells (Control: 5.4%; T2D: 2.0%), and mast cells
(Control: 0.4%; T2D: 0.2%) exhibited a salient decrease. The
change in cell ratios indicated altered pancreatic function and
microenvironment in T2D patients. We found varying degrees of
differences in the expression of 8 targets between individuals with
T2DM and the control group (Figure 6F). The expression of USP7,
RXRA, and BECN1 was highly elevated in pancreas cells, with
USP7 and RXRA significantly upregulated in most cell clusters of
T2D samples. SREBF1 and HNF1A exhibited higher expression
levels in the majority of cell clusters in the control group, while

FIGURE 5
Colocalization analysis results of therapeutic targets for baicalin. (A) The association between cis-eQTLs of ANPEP and SNPs of T2D in the DIAGRAM
consortium. (B) The association between cis-eQTLs of SREBF1 and SNPs of T2D in the DIAGRAM consortium. (C) The association between cis-eQTLs of
ANPEP and SNPs of T2D in the FinnGen R9 repository. (D) The association between cis-eQTLs of SREBF1 and SNPs of T2D in the FinnGen R9 repository.
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ANPEP, PGF, and ST6GAL1 were predominantly expressed only in
specific cell clusters.

To further explore the potential mechanism of baicalin
involvement in the progression of T2D, we utilized t-SNE
clustering exclusively for T2D samples (Figure 7A). The heatmap
demonstrated the expression of baicalin-related targets in different
cell types (Figure 7B) and in each cell (Figure 7C), and the eight
targets have a wide range of expression in the pancreatic cells. In
particular, SREBF1and ST6GAL1 were highly expressed in beta cells,
so were HNF1A and SREBF1 in gamma cells, ANPEP in exocrine
cells, RXRA in macrophage cells, ST6GAL1, BECN1 and PGF in
endothelial cells, and USP7 in mast cells. Figure 7D provided a
detailed display about the expression of the targets in each cell under
the t-SNE algorithm, and Figure 7E illustrated the differential
expression of the targets in pancreatic cell clusters.

3.8 Cell-cell communication

To characterize the islet microenvironment in T2D patients,
CellChat was employed to infer and quantify the interactions
between cell clusters. The findings indicated that ligand-receptor
pairs exhibited extensive molecular interactions among
10 pancreatic cells, and stellate, endothelial, ductal, and beta cells
shared strong interactions (Figures 8A, B). The top five contributing
outgoing and incoming pathways for intercellular communication
were the SPP1, ANGPTL, GRN, MK, and insulin signaling
pathways. We further explored the insulin signaling pathway
involved in the function of the pancreatic cells (Figure 8D). The
intercellular communication between beta cells and endothelial or
exocrine cells had a significant impact on the transduction process of
the insulin signaling pathway (Figure 8E). Beta cells were
responsible for the transmission of the insulin signal pathway,
while endothelial and exocrine cells were primarily involved in
signal reception. Delta cells could play a certain intermediary
role, and alpha, beta, and endothelial cells could influence signal
transduction (Figure 8F).

3.9 Pseudotime trajectory analysis

To further elucidate the mechanisms underlying the involvement
of baicalein targets in pancreatic cell development of T2D progression,
we employed Monocle to categorize these genes at the single-cell
transcriptomes and constructed a dendritic structure of the entire
lineage differentiation trajectory. Cell trajectory was colored according
to the states of cell populations, pseudotime progression, and cell types
(Figures 9A–C). As themotor trajectory progresses, the pancreatic cells
transition through three states: the branch initiation point (pre-
branching) and two other branches. Alpha primarily appeared in
the initial stage of the trajectory before branching, and gamma,
beta, delta, mast, macrophage, endothelial, and stellate cells
completed the differentiation over a short period of time. Ductal
and exocrine cells mainly appeared at the two ends of the
trajectory after branching. The heatmap displayed the expression
trends of the baicalin-related genes along the pseudotime trajectory,
classifying them into three clusters with distinct expression dynamics
(Figure 9D). The expression of RXRA, SREBF1, HNF1A, andT
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USP7 initially surged and then gradually diminished along the
pseudotime trajectory, while ANPEP and BECN1 peaked at their
maximum expression levels at the completion of differentiation,
and the expression of PGF and ST6GAL1 exhibited a tidal wave
trend along the pseudotemporal trajectory. We delineated the orderly
and progressive trajectory of pancreatic cell development in T2D

samples and depicted the dynamic gene expression of baicalin
therapeutic targets along the pseudotemporal trajectory. This might
reveal the pseudo time dependence of these genes in the
formation and development of pancreatic cells, as they acted
upon specific cellular differentiation cycles and exerted an impact
on disease progression.

FIGURE 6
Quality control, clustering analysis, and cell annotation of pancreatic samples. (A) Violin plots of gene counts (nFeature_RNA), gene expressions
(nCount_RNA), and the percentage of mitochondrial genes (percent. mt). (B) The elbow plot of PCA clustering. (C)Cell clustering plot of pancreatic tissue
under t-SNE dimensionality reduction. (D) Annotation plot of cell types for each cluster under the t-SNE algorithm. (E) Bar plot of cell proportions in the
T2D and control group. (F) Violin plots of the differential expression of baicalin-related targets in the two groups of all cell types.
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4 Discussion

Applying eQTLs for baicalin-related targets, we performed MR
analysis in discovery and replication cohorts and identified eight

therapeutic targets causally associated with T2DM: ANPEP, BECN1,
HNF1A, ST6GAL1, PGF, RXRA, SREBF1, USP7. SREBF1, known as
SREBP1, engages in the encoding of sterol regulatory element
binding proteins. With strong colocalization support,

FIGURE 7
Expression profile of the therapeutic targets of baicalin in T2D samples. (A) The clustering plot of the t-SNE algorithm colored by cell types. (B)
Heatmap for the average expression of target genes in cell clusters. (C) Heatmap for the gene expression in each cell. (D) The clustering plots of t-SNE
algorithm showing gene expressions in each cell. (E) Box plots of cell types showing the differential expression of the target genes.
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SREBF1 was highly expressed in β-cells and exhibited important
interacting properties in the PPI network. SREBP1c, one of the
transcription factors of SREBF1, exerts a pivotal role in insulin
resistance and insulin signaling pathways. SREBP 1c is competent to
bind directly to and inhibit the activity of insulin receptor substrate 2
(IRS-2) (Shimano et al., 2007), which in turn participates in the IRS-
2/PI3K/Akt pancreatic islet signaling pathway (Ide et al., 2004;
Tsunekawa et al., 2011). A previous study has discovered that
overexpression of SREBP-1c may induce islet mass deficiency
and impaired insulin secretion (Kato et al., 2008). However,
recent experimental research has indicated that SREBP1c
regulates β-cell compensatory capacity in response to metabolic

stress (Lee et al., 2019). SREBP1c knockout mice exhibited glucose
intolerance and low insulin levels, and their β-cells had a reduced
ability to proliferate and secrete insulin. In contrast, transplantation
of islets overexpressing SREBP1c restored insulin levels and
alleviated hyperglycemia. Reconceptualizing the regulatory
mechanism of SREBF1 for β-cells could be a promising area of
future research. ANPEP identified a remarkable allelic expression
imbalance in islet tissues of type 2 diabetes, providing compelling
support for type 2 diabetes susceptibility (Locke et al., 2015). ANPEP
is involved in β-cell glutathione metabolism, and its expression is
upregulated in diabetic patients. The triggering of unfolded protein
response by dysregulation of glutathione metabolism is a potential

FIGURE 8
Intercellular communication and signaling pathway analysis on T2D samples. (A) The plot of intercellular communication is presented by the
number of interactions. The thickness of the line was proportional to the number of ligands. (B) Plot of intercellular communication presented by the
weights of interactions. The thickness of the line was proportional to the weight of the interactions. (C) Heatmap depicting the contribution of outgoing
and incoming pathways to intercellular communication. (D) Circular diagram illustrating the interactions of the insulin signaling pathway across cell
clusters. (E) Relationship diagram depicting the interactions of the insulin signaling pathway in cell clusters. (F) Heatmap showing the involvement of
pancreatic cells in the transduction of the insulin signaling pathway.
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mechanism of β-cell apoptosis and T2DM(Klyosova et al., 2023).
BECN1 regulates the cellular autophagy process. In a
BECN1 knockout mouse model, hyperactivation of autophagy
degrades insulin granule vesicles in β-cells to reduce insulin
secretion while suppressing endoplasmic reticulum stimulation in
insulin-responsive cells and increasing insulin sensitivity
(Yamamoto et al., 2018; Kuramoto and He, 2021). HNF1A
haploinsufficiency is intimately correlated with the pathogenesis
of maturity-onset diabetes of the young (MODY) and hypomorphic
HNF1A variants increase the risk of type 2 diabetes mellitus (Qian
et al., 2023). HNF1A regulates an extensive, highly histospecific
genetic program in pancreatic islets and liver (Servitja et al., 2009),
and deletion of HNF1A causes aberrant secretion of alpha and beta
cells (Hermann et al., 2023; Qian et al., 2023). The N-glycosylation
site of ST6GAL1 has a profound implication on diabetes
susceptibility (Rudman et al., 2023). Variant loci of
ST6GAL1 impact the risk of T2DM in cross-population research,
and a population-based study in South Asia shows that genetic

variation in ST6GAL1 is associated with pancreatic β-cell function
(Kooner et al., 2011; Sabiha et al., 2021). PGF is a member of the
vascular endothelial growth factor (VEGF) family. Some studies
indicate that Serum levels of PGF are an excellent prognosticator of
pre-eclampsia in women with gestational diabetes mellitus, and PGF
levels are decreased in patients with gestational diabetes mellitus
(Tsiakkas et al., 2015; Zen et al., 2020). It has been established that
PGFmodulates neovascularization andmicrovascular abnormalities
in diabetic retinopathy (Zhao Y. et al., 2023). Further studies are
awaited to confirm the correlation between PGF and diabetes. RXRA
is a subtype of the Vitamin A-like X receptor (RXR), and RXR often
binds to 9-cis retinoic acid (ATRA) to form a dimer and exert
physiological functions. In response to ATRA stimulation, RXR
upregulates the expression of SREBP1c, which collectively affects
insulin secretion (Yang H.-Y. et al., 2022). USP7 encodes
deubiquitinating enzymes and maintains the stability of
pancreatic development. USP7 serves as a binding chaperone for
phosphate inorganic transport protein 1 (PiT1), and deletion of

FIGURE 9
Differentiation trajectory of simulated cell development in T2D samples. Dot plots of cell trajectories are colored based on cell state (A),
pseudotemporal order (B), and cell type (C), with each dot corresponding to a single cell. (D)Heatmap for the expression of baicalein therapeutic target in
single cells arranged by pseudotemporal order, with colors from blue to red indicating relative expression levels from low to high.
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PiT1 enables USP7 to bind persistently to IRS-1, preventing
ubiquitination and promoting insulin pathway-regulated signaling
in response to insulin stimulation (Forand et al., 2016).
Furthermore, overexpression of USP7 in hepatic cells lowers
blood glucose levels (Lee et al., 2013). In previous investigations,
these therapeutic targets of baicalin have demonstrated potential for
intervening in T2DM, yet the detailed molecular mechanisms still
deserve further in-depth studies.

The regulatory pathways identified through enrichment analysis
included the PI3K/AKT signaling pathway, autophagy, and
apoptosis. Activation of the PI3K/Akt pathway can stimulate
insulin secretion from pancreatic β-cells, whereas inhibition of
Akt contributes to impaired insulin secretion (Bernal-Mizrachi
et al., 2004). In liver and adipose tissue, PI3K/Akt is identically
involved in mediating glucose homeostasis (Sajan et al., 2018). The
notion that β-cell apoptosis elicits T2DM is supported by mounting
evidence for apoptosis, a normal cellular process stabilizing
alterations in β-cells clusters during pancreatic development
(Finegood et al., 1995).

The decline in the quantity or dysfunction of pancreatic islet
β-cells is the centerpiece of the mechanism that induces the
dysregulation of glucose homeostasis that is responsible for the
pathogenesis of diabetes mellitus. The islet microenvironment,
which is collectively constituted by islet-cell interaction, directly
or indirectly affects pancreatic islet β-cell function. The cellchat
findings indicated that the intercellular cooperation of beta cells
with Endothelial, Exocrine, and Delta cells performs a crucial
role in pancreatic islet signaling pathways. β-cell outgrowth and
development are influenced by pancreatic pericytes (PC). PCs
sustain the structural integrity and functional normalization of
the vasculature within the pancreatic islets, along with
endothelial cells, constitute the microenvironment of the
islets, and its depletion further drives a decrease in the
expression of beta cell-associated developmental transcription
factors, which impede β-cell maturation and differentiation
(Sasson et al., 2016; Ahmed et al., 2024). Furthermore, Delta
cells can reduce the glucose threshold of β-cells through a
paracrine mechanism (Huang et al., 2024). In addition to
endocrine cells, ductal, vesicular, and endothelial cells in
exocrine tissues are closely intertwined with islet β-cell
function, with a number of findings that damage to the
exocrine pancreas is frequently comorbid with endocrine
metabolic disorders (Zhi et al., 2019). Adenoalveolar cells
may be essential to β-cell regeneration, and ductal cells
possess the capability to differentiate into follicular cells (Li
et al., 2014; Zhao H. et al., 2023). When pancreatic β-cells are
compromised, exocrine cells might possess a tendency to
polarize towards endocrine cells. An analysis using single-cell
RNA sequencing on human pancreatic islet sections reveals that
ductal and vesicular cells can be transformed into endocrine
cells, providing new evidence for the possibility of β-cell
regeneration studies (Doke et al., 2023). Based on exocrine-
endocrine intercellular crosstalk, the discovery of drug targets in
the role they play may offer new therapeutic approaches for the
treatment of diabetes mellitus in the future.

Endothelial cells are probably the crucial component that affects
the function of β-cells. Endocrine cells generate an angiogenic factor
VEGFA in pancreatic development, and decreased or absent

expression of VEGFA early in the process accounts for
abnormalities in the pancreatic islet vascular system (Brissova
et al., 2006). Its inactivation affects the proliferation of the adult
β-cell population, which further contributes to the deficit of β-cell
mass (Reinert et al., 2013). PGF is highly expressed in endothelial
cells, with PGF facilitating angiogenesis in pathological states. Both
PGF and VEGFA can activate tyrosine kinases, subsequently
regulating the PI3K/AKT signaling pathway (Autiero et al.,
2003). Inflammation-mediated endothelial cell impairment is also
now recognized as one of the pathogenic mechanisms of diabetes.
Inflammatory mediators are recruited intravascularly and increase
pancreatic vascular permeability, accelerating the islet inflammatory
response and islet cell destruction (Troullinaki et al., 2020).
Persistently elevated glucose levels in the body might injure
endothelial cells, resulting in declining vasodilatation and
hastening the progression of diabetic panangiopathy (Shi et al.,
2023; Wu et al., 2023).

This study possesses certain advantages. Firstly, this study
innovatively employed Mendelian randomization and single-cell
RNA sequencing to identify and analyze the targets of natural
products according to our knowledge. This provides an analytical
framework for the development of natural medicines and
substantially shortens the drug development cycle. Secondly, the
study utilized the largest diabetes GWAS and the most
comprehensive statistical data on eQTLs to date, which enhanced
the statistical efficacy and further guaranteed the applicability of the
findings. Meanwhile, this study confirms the robustness of the results
based on the mutual validation of multiple analyses. Enrichment and
network analysis elucidated the functional properties and regulatory
interrelationships of the therapeutic targets, while the potent binding
activity frommolecular docking assured the basis of action of the drugs
and targets. Single-cell RNA sequencing data assessed the expression of
these genes in the pancreas. Cellchat and pseudotemporal trajectories
further probed cell-to-cell crosstalk and differentiation, augmenting the
understanding of the pathogenesis of diabetes. Meanwhile, there are
limitations to this study. First, the GWAS data were originated from
European populations. This may limit the applicability of our findings
to other ethnicities. MR effect estimates are susceptible to potential
biases introduced by genetic background and population variation, so
the generalization of the findings requires further research and
validation. Second, MR does not completely generalize to real-world
clinical trials, which simulate lifelong low-dose exposure to a drug and
assume a linear relationship between exposure and outcome, whereas
clinical trials typically study comparatively high doses of a drug over a
much shorter period. Third, drugs also exhibit a broad spectrum of
effects on their targets, and numerous off-target effects cannot be
explored with MR. Finally, enrichment analyses are grounded in
biological mechanisms clearly defined by previous research, yet
unknown biological roles may not be accommodated. Molecular
docking can theoretically boost the efficiency of virtual screening of
drug targets to a great extent, but the specific effects in the clinic are yet
to be verified.

5 Conclusion

In conclusion, our study identifies eight therapeutic targets of
baicalin for diabetes from a genetic perspective and provides an
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analytical framework for natural product development. Expression of
ANPEP, BECN1, HNF1A, and ST6GAL1 increased the risk of T2DM,
whereas the decreased risk of T2DMwas accompanied by expression of
PGF, RXRA, SREBF1, and USP7. These findings contribute new
insights and rationale for the clinical management and early
intervention of diabetes, as well as the directions for future drug
development in diabetes. More basic experimental and clinical
research is warranted to delve into the role of these therapeutic
targets and their molecular mechanisms.

Data availability statement

The raw datasets generated and analyzed in this study are
available in the following repositories: eQTLs were obtained from
the eQTLGen Consortium (https://eqtlgen.org/). Summary-level
GWASs were derived from the DIAGRAM portal (https://
diagram-consortium.org/) and the FinnGen R9 repository
(https://r9.finngen.fi/), and single-cell RNA sequencing dataset
GSE153855 originated from the Gene Expression Omnibus
(GEO) database.

Ethics statement

Ethical approval was not required for the study involving
humans in accordance with the local legislation and institutional
requirements. Written informed consent to participate in this study
was not required from the participants or the participants’ legal
guardians/next of kin in accordance with the national legislation and
the institutional requirements.

Author contributions

Y-CL: Conceptualization, Investigation, Writing–original draft,
Data curation, Formal Analysis, Methodology, Project
administration, Software, Visualization. LL: Investigation,
Methodology, Project administration, Resources, Visualization,
Writing–original draft. J-LL: Investigation, Validation,

Visualization, Writing–original draft. D-LL: Conceptualization,
Funding acquisition, Resources, Supervision, Validation,
Writing–review and editing. Shu-fang S-FC: Project
administration, Supervision, Writing–review and editing. H-LL:
Funding acquisition, Project administration, Supervision,
Writing–review and editing.

Funding

The author(s) declare that financial support was received for
the research, authorship, and/or publication of this article. This
research was funded by the National Natural Science Foundation
of China (grant number: 82274419) and the Natural Science
Foundation of Guangdong Province (grant number:
2020A1515010775).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphar.2024.1403943/
full#supplementary-material

References

1000 Genomes Project Consortium, Auton, A., Brooks, L. D., Durbin, R. M., Garrison,
E. P., Kang, H. M., et al. (2015). A global reference for human genetic variation. Nature
526, 68–74. doi:10.1038/nature15393

Ahmed, T. A., Ahmed, S. M., Elkhenany, H., El-Desouky, M. A., Magdeldin, S.,
Osama, A., et al. (2024). The cross talk between type II diabetic microenvironment and
the regenerative capacities of human adipose tissue-derived pericytes: a promising cell
therapy. Stem Cell. Res. Ther. 15, 36. doi:10.1186/s13287-024-03643-1

Autiero, M., Waltenberger, J., Communi, D., Kranz, A., Moons, L., Lambrechts, D.,
et al. (2003). Role of PlGF in the intra- and intermolecular cross talk between the VEGF
receptors Flt1 and Flk1. Nat. Med. 9, 936–943. doi:10.1038/nm884

Barbara, Z., Eloy, F., Fiona, H., Emma, M., James, B., Sybilla, C., et al. (2024). The
ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity
data types and time periods. Nucleic acids Res. 52, D1180–D1192. doi:10.1093/nar/
gkad1004

Bernal-Mizrachi, E., Fatrai, S., Johnson, J. D., Ohsugi, M., Otani, K., Han, Z., et al.
(2004). Defective insulin secretion and increased susceptibility to experimental diabetes
are induced by reduced Akt activity in pancreatic islet beta cells. J. Clin. Invest 114,
928–936. doi:10.1172/JCI20016

Bowden, J., and Holmes, M. V. (2019). Meta-analysis and Mendelian randomization:
a review. Res. Synth. Methods 10, 486–496. doi:10.1002/jrsm.1346

Brissova, M., Shostak, A., Shiota, M., Wiebe, P. O., Poffenberger, G., Kantz, J., et al.
(2006). Pancreatic islet production of vascular endothelial growth factor--a is essential
for islet vascularization, revascularization, and function.Diabetes 55, 2974–2985. doi:10.
2337/db06-0690

Bu, D., Luo, H., Huo, P., Wang, Z., Zhang, S., He, Z., et al. (2021). KOBAS-i: intelligent
prioritization and exploratory visualization of biological functions for gene enrichment
analysis. Nucleic Acids Res. 49, W317–W325. doi:10.1093/nar/gkab447

Burgess, S., Bowden, J., Fall, T., Ingelsson, E., and Thompson, S. G. (2017). Sensitivity
analyses for robust causal inference from mendelian randomization analyses with
multiple genetic variants. Epidemiology 28, 30–42. doi:10.1097/EDE.0000000000000559

Burgess, S., Davey Smith, G., Davies, N. M., Dudbridge, F., Gill, D., Glymour, M. M.,
et al. (2019). Guidelines for performing Mendelian randomization investigations:
update for summer 2023. Wellcome Open Res. 4, 186. doi:10.12688/
wellcomeopenres.15555.2

Burgess, S., Thompson, S. G., and CRP CHDGenetics Collaboration (2011). Avoiding
bias from weak instruments in Mendelian randomization studies. Int. J. Epidemiol. 40,
755–764. doi:10.1093/ije/dyr036

Cao, Y., Yang, Y., Hu, Q., and Wei, G. (2023). Identification of potential drug targets
for rheumatoid arthritis from genetic insights: a Mendelian randomization study.
J. Transl. Med. 21, 616. doi:10.1186/s12967-023-04474-z

Frontiers in Pharmacology frontiersin.org16

Liang et al. 10.3389/fphar.2024.1403943

https://eqtlgen.org/
https://diagram-consortium.org/
https://diagram-consortium.org/
https://r9.finngen.fi/
https://www.frontiersin.org/articles/10.3389/fphar.2024.1403943/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2024.1403943/full#supplementary-material
https://doi.org/10.1038/nature15393
https://doi.org/10.1186/s13287-024-03643-1
https://doi.org/10.1038/nm884
https://doi.org/10.1093/nar/gkad1004
https://doi.org/10.1093/nar/gkad1004
https://doi.org/10.1172/JCI20016
https://doi.org/10.1002/jrsm.1346
https://doi.org/10.2337/db06-0690
https://doi.org/10.2337/db06-0690
https://doi.org/10.1093/nar/gkab447
https://doi.org/10.1097/EDE.0000000000000559
https://doi.org/10.12688/wellcomeopenres.15555.2
https://doi.org/10.12688/wellcomeopenres.15555.2
https://doi.org/10.1093/ije/dyr036
https://doi.org/10.1186/s12967-023-04474-z
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1403943


Chauquet, S., Zhu, Z., O’Donovan, M. C., Walters, J. T. R., Wray, N. R., and Shah, S.
(2021). Association of antihypertensive drug target genes with psychiatric disorders: a
mendelian randomization study. JAMA Psychiatry 78, 623–631. doi:10.1001/
jamapsychiatry.2021.0005

Chen, Y., Xu, X., Wang, L., Li, K., Sun, Y., Xiao, L., et al. (2022). Genetic insights into
therapeutic targets for aortic aneurysms: a Mendelian randomization study.
EBioMedicine 83, 104199. doi:10.1016/j.ebiom.2022.104199

Daina, A., Michielin, O., and Zoete, V. (2019). SwissTargetPrediction: updated data
and new features for efficient prediction of protein targets of small molecules. Nucleic
Acids Res. 47, W357–W364. doi:10.1093/nar/gkz382

Davis, A. P., Wiegers, T. C., Johnson, R. J., Sciaky, D., Wiegers, J., and Mattingly, C. J.
(2023). Comparative toxicogenomics database (CTD): update 2023. Nucleic Acids Res.
51, D1257–D1262. doi:10.1093/nar/gkac833

Doke, M., Álvarez-Cubela, S., Klein, D., Altilio, I., Schulz, J., Mateus Gonçalves, L.,
et al. (2023). Dynamic scRNA-seq of live human pancreatic slices reveals functional
endocrine cell neogenesis through an intermediate ducto-acinar stage. Cell. Metab. 35,
1944–1960.e7. doi:10.1016/j.cmet.2023.10.001

Finegood, D. T., Scaglia, L., and Bonner-Weir, S. (1995). Dynamics of beta-cell mass
in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes 44,
249–256. doi:10.2337/diab.44.3.249

Forand, A., Koumakis, E., Rousseau, A., Sassier, Y., Journe, C., Merlin, J.-F., et al.
(2016). Disruption of the phosphate transporter Pit1 in hepatocytes improves glucose
metabolism and insulin signaling by modulating the USP7/IRS1 interaction. Cell. Rep.
16, 2736–2748. doi:10.1016/j.celrep.2016.08.012

Froldi, G., Djeujo, F. M., Bulf, N., Caparelli, E., and Ragazzi, E. (2022). Comparative
evaluation of the antiglycation and anti-α-glucosidase activities of baicalein, baicalin
(baicalein 7-O-glucuronide) and the antidiabetic drug metformin. Pharmaceutics 14,
2141. doi:10.3390/pharmaceutics14102141

GBD 2021 Diabetes Collaborators (2023). Global, regional, and national burden of
diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis
for the Global Burden of Disease Study 2021. Lancet 402, 203–234. doi:10.1016/S0140-
6736(23)01301-6

Hao, Y., Stuart, T., Kowalski, M. H., Choudhary, S., Hoffman, P., Hartman, A., et al.
(2023). Dictionary learning for integrative, multimodal and scalable single-cell analysis.
Nat. Biotechnol. 42, 293–304. doi:10.1038/s41587-023-01767-y

Hemani, G., Zheng, J., Elsworth, B., Wade, K. H., Haberland, V., Baird, D., et al.
(2018). The MR-Base platform supports systematic causal inference across the human
phenome. Elife 7, e34408. doi:10.7554/eLife.34408

Hermann, F. M., Kjærgaard, M. F., Tian, C., Tiemann, U., Jackson, A., Olsen, L. R.,
et al. (2023). An insulin hypersecretion phenotype precedes pancreatic β cell failure in
MODY3 patient-specific cells. Cell. Stem Cell. 30, 38–51. doi:10.1016/j.stem.2022.12.001

Huang, J. L., Pourhosseinzadeh, M. S., Lee, S., Krämer, N., Guillen, J. V., Cinque, N.
H., et al. (2024). Paracrine signalling by pancreatic δ cells determines the glycaemic set
point in mice. Nat. Metab. 6, 61–77. doi:10.1038/s42255-023-00944-2

Ide, T., Shimano, H., Yahagi, N., Matsuzaka, T., Nakakuki, M., Yamamoto, T., et al.
(2004). SREBPs suppress IRS-2-mediated insulin signalling in the liver.Nat. Cell. Biol. 6,
351–357. doi:10.1038/ncb1111

Jin, S., Guerrero-Juarez, C. F., Zhang, L., Chang, I., Ramos, R., Kuan, C.-H., et al.
(2021). Inference and analysis of cell-cell communication using CellChat. Nat.
Commun. 12, 1088. doi:10.1038/s41467-021-21246-9

Kato, T., Shimano, H., Yamamoto, T., Ishikawa, M., Kumadaki, S., Matsuzaka, T., et al.
(2008). Palmitate impairs and eicosapentaenoate restores insulin secretion through regulation
of SREBP-1c in pancreatic islets. Diabetes 57, 2382–2392. doi:10.2337/db06-1806

Keiser, M. J., Roth, B. L., Armbruster, B. N., Ernsberger, P., Irwin, J. J., and Shoichet, B.
K. (2007). Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 25,
197–206. doi:10.1038/nbt1284

Klyosova, E., Azarova, I., Buikin, S., and Polonikov, A. (2023). Differentially expressed
genes regulating glutathione metabolism, protein-folding, and unfolded protein
response in pancreatic β-cells in type 2 diabetes mellitus. Int. J. Mol. Sci. 24, 12059.
doi:10.3390/ijms241512059

Kong, X., Liu, C., Zhang, Z., Cheng, M., Mei, Z., Li, X., et al. (2024). BATMAN-TCM
2.0: an enhanced integrative database for known and predicted interactions between
traditional Chinese medicine ingredients and target proteins. Nucleic Acids Res. 52,
D1110–D1120. doi:10.1093/nar/gkad926

Kooner, J. S., Saleheen, D., Sim, X., Sehmi, J., Zhang, W., Frossard, P., et al. (2011).
Genome-wide association study in individuals of South Asian ancestry identifies six new
type 2 diabetes susceptibility loci. Nat. Genet. 43, 984–989. doi:10.1038/ng.921

Ku, S.-K., and Bae, J.-S. (2015). Baicalin, baicalein and wogonin inhibits high glucose-
induced vascular inflammation in vitro and in vivo. BMB Rep. 48, 519–524. doi:10.5483/
bmbrep.2015.48.9.017

Kuramoto, K., and He, C. (2021). The secretory function of BECN1 in metabolic
regulation. Autophagy 17, 3262–3263. doi:10.1080/15548627.2021.1953849

Kurki, M. I., Karjalainen, J., Palta, P., Sipilä, T. P., Kristiansson, K., Donner, K. M.,
et al. (2023). FinnGen provides genetic insights from a well-phenotyped isolated
population. Nature 613, 508–518. doi:10.1038/s41586-022-05473-8

Lee, G., Jang, H., Kim, Y. Y., Choe, S. S., Kong, J., Hwang, I., et al. (2019). SREBP1c-
PAX4 Axis mediates pancreatic β-cell compensatory responses upon metabolic stress.
Diabetes 68, 81–94. doi:10.2337/db18-0556

Lee, K. W., Cho, J. G., Kim, C. M., Kang, A. Y., Kim, M., Ahn, B. Y., et al. (2013).
Herpesvirus-associated ubiquitin-specific protease (HAUSP) modulates peroxisome
proliferator-activated receptor γ (PPARγ) stability through its deubiquitinating activity.
J. Biol. Chem. 288, 32886–32896. doi:10.1074/jbc.M113.496331

Li, W., Cavelti-Weder, C., Zhang, Y., Clement, K., Donovan, S., Gonzalez, G., et al.
(2014). Long-term persistence and development of induced pancreatic beta cells
generated by lineage conversion of acinar cells. Nat. Biotechnol. 32, 1223–1230.
doi:10.1038/nbt.3082

Li, Z., Zhang, B., Liu, Q., Tao, Z., Ding, L., Guo, B., et al. (2023). Genetic association of
lipids and lipid-lowering drug target genes with non-alcoholic fatty liver disease.
EBioMedicine 90, 104543. doi:10.1016/j.ebiom.2023.104543

Liu, Y., Yang, X., Gan, J., Chen, S., Xiao, Z.-X., and Cao, Y. (2022). CB-Dock2:
improved protein-ligand blind docking by integrating cavity detection, docking and
homologous template fitting. Nucleic Acids Res. 50, W159–W164. doi:10.1093/nar/
gkac394

Locke, J. M., Hysenaj, G., Wood, A. R., Weedon, M. N., and Harries, L. W. (2015).
Targeted allelic expression profiling in human islets identifies cis-regulatory effects for
multiple variants identified by type 2 diabetes genome-wide association studies.
Diabetes 64, 1484–1491. doi:10.2337/db14-0957

Mahajan, A., Taliun, D., Thurner, M., Robertson, N. R., Torres, J. M., Rayner, N. W.,
et al. (2018). Fine-mapping type 2 diabetes loci to single-variant resolution using high-
density imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505–1513.
doi:10.1038/s41588-018-0241-6

Maruthur, N. M., Tseng, E., Hutfless, S., Wilson, L. M., Suarez-Cuervo, C., Berger, Z.,
et al. (2016). Diabetes medications as monotherapy or metformin-based combination
therapy for type 2 diabetes: a systematic review and meta-analysis. Ann. Intern Med.
164, 740–751. doi:10.7326/M15-2650

Miao, L., Zhang, X., Zhang, H., Cheong, M. S., Chen, X., Farag, M. A., et al. (2024).
Baicalin ameliorates insulin resistance and regulates hepatic glucose metabolism via
activating insulin signaling pathway in obese pre-diabetic mice. Phytomedicine 124,
155296. doi:10.1016/j.phymed.2023.155296

Ngara, M., and Wierup, N. (2022). Lessons from single-cell RNA sequencing of
human islets. Diabetologia 65, 1241–1250. doi:10.1007/s00125-022-05699-1

Nickel, J., Gohlke, B.-O., Erehman, J., Banerjee, P., Rong, W. W., Goede, A., et al.
(2014). SuperPred: update on drug classification and target prediction. Nucleic Acids
Res. 42, W26–W31. doi:10.1093/nar/gku477

Papadimitriou, N., Dimou, N., Tsilidis, K. K., Banbury, B., Martin, R. M., Lewis, S. J.,
et al. (2020). Physical activity and risks of breast and colorectal cancer: a Mendelian
randomisation analysis. Nat. Commun. 11, 597. doi:10.1038/s41467-020-14389-8

Papalexi, E., and Satija, R. (2018). Single-cell RNA sequencing to explore immune cell
heterogeneity. Nat. Rev. Immunol. 18, 35–45. doi:10.1038/nri.2017.76

Pinzi, L., and Rastelli, G. (2019). Molecular docking: shifting paradigms in drug
discovery. Int. J. Mol. Sci. 20, 4331. doi:10.3390/ijms20184331

Qian, M. F., Bevacqua, R. J., Coykendall, V. M., Liu, X., Zhao, W., Chang, C. A., et al.
(2023). HNF1αmaintains pancreatic α and β cell functions in primary human islets. JCI
Insight. 8, e170884. doi:10.1172/jci.insight.170884

Qiu, X., Mao, Q., Tang, Y., Wang, L., Chawla, R., Pliner, H. A., et al. (2017). Reversed
graph embedding resolves complex single-cell trajectories. Nat. Methods. 14, 979–982.
doi:10.1038/nmeth.4402

Reay, W. R., and Cairns, M. J. (2021). Advancing the use of genome-wide association
studies for drug repurposing. Nat. Rev. Genet. 22, 658–671. doi:10.1038/s41576-021-
00387-z

Reinert, R. B., Brissova, M., Shostak, A., Pan, F. C., Poffenberger, G., Cai, Q., et al. (2013).
Vascular endothelial growth factor-a and islet vascularization are necessary in developing, but
not adult, pancreatic islets. Diabetes. 62, 4154–4164. doi:10.2337/db13-0071

Rudman, N., Kaur, S., Simunović, V., Kifer, D., Šoić, D., Keser, T., et al. (2023).
Integrated glycomics and genetics analyses reveal a potential role for N-glycosylation of
plasma proteins and IgGs, as well as the complement system, in the development of type
1 diabetes. Diabetologia. 66, 1071–1083. doi:10.1007/s00125-023-05881-z

Sabiha, B., Bhatti, A., Fan, K.-H., John, P., Aslam, M. M., Ali, J., et al. (2021).
Assessment of genetic risk of type 2 diabetes among Pakistanis based on GWAS-
implicated loci. Gene 783, 145563. doi:10.1016/j.gene.2021.145563

Sajan, M. P., Lee, M. C., Foufelle, F., Sajan, J., Cleland, C., and Farese, R. V. (2018).
Coordinated regulation of hepatic FoxO1, PGC-1α and SREBP-1c facilitates insulin
action and resistance. Cell. Signal 43, 62–70. doi:10.1016/j.cellsig.2017.12.005

Sasson, A., Rachi, E., Sakhneny, L., Baer, D., Lisnyansky, M., Epshtein, A., et al. (2016).
Islet pericytes are required for β-cell maturity. Diabetes 65, 3008–3014. doi:10.2337/
db16-0365

Servitja, J.-M., Pignatelli, M., Maestro, M. A., Cardalda, C., Boj, S. F., Lozano, J., et al.
(2009). Hnf1alpha (MODY3) controls tissue-specific transcriptional programs and
exerts opposed effects on cell growth in pancreatic islets and liver. Mol. Cell. Biol. 29,
2945–2959. doi:10.1128/MCB.01389-08

Frontiers in Pharmacology frontiersin.org17

Liang et al. 10.3389/fphar.2024.1403943

https://doi.org/10.1001/jamapsychiatry.2021.0005
https://doi.org/10.1001/jamapsychiatry.2021.0005
https://doi.org/10.1016/j.ebiom.2022.104199
https://doi.org/10.1093/nar/gkz382
https://doi.org/10.1093/nar/gkac833
https://doi.org/10.1016/j.cmet.2023.10.001
https://doi.org/10.2337/diab.44.3.249
https://doi.org/10.1016/j.celrep.2016.08.012
https://doi.org/10.3390/pharmaceutics14102141
https://doi.org/10.1016/S0140-6736(23)01301-6
https://doi.org/10.1016/S0140-6736(23)01301-6
https://doi.org/10.1038/s41587-023-01767-y
https://doi.org/10.7554/eLife.34408
https://doi.org/10.1016/j.stem.2022.12.001
https://doi.org/10.1038/s42255-023-00944-2
https://doi.org/10.1038/ncb1111
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.2337/db06-1806
https://doi.org/10.1038/nbt1284
https://doi.org/10.3390/ijms241512059
https://doi.org/10.1093/nar/gkad926
https://doi.org/10.1038/ng.921
https://doi.org/10.5483/bmbrep.2015.48.9.017
https://doi.org/10.5483/bmbrep.2015.48.9.017
https://doi.org/10.1080/15548627.2021.1953849
https://doi.org/10.1038/s41586-022-05473-8
https://doi.org/10.2337/db18-0556
https://doi.org/10.1074/jbc.M113.496331
https://doi.org/10.1038/nbt.3082
https://doi.org/10.1016/j.ebiom.2023.104543
https://doi.org/10.1093/nar/gkac394
https://doi.org/10.1093/nar/gkac394
https://doi.org/10.2337/db14-0957
https://doi.org/10.1038/s41588-018-0241-6
https://doi.org/10.7326/M15-2650
https://doi.org/10.1016/j.phymed.2023.155296
https://doi.org/10.1007/s00125-022-05699-1
https://doi.org/10.1093/nar/gku477
https://doi.org/10.1038/s41467-020-14389-8
https://doi.org/10.1038/nri.2017.76
https://doi.org/10.3390/ijms20184331
https://doi.org/10.1172/jci.insight.170884
https://doi.org/10.1038/nmeth.4402
https://doi.org/10.1038/s41576-021-00387-z
https://doi.org/10.1038/s41576-021-00387-z
https://doi.org/10.2337/db13-0071
https://doi.org/10.1007/s00125-023-05881-z
https://doi.org/10.1016/j.gene.2021.145563
https://doi.org/10.1016/j.cellsig.2017.12.005
https://doi.org/10.2337/db16-0365
https://doi.org/10.2337/db16-0365
https://doi.org/10.1128/MCB.01389-08
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1403943


Shi, Y., Fan, X., Zhang, K., and Ma, Y. (2023). Association of the endothelial nitric
oxide synthase (eNOS) 4a/b polymorphism with the risk of incident diabetic
retinopathy in patients with type 2 diabetes mellitus: a systematic review and
updated meta-analysis. Ann. Med. 55, 2226908. doi:10.1080/07853890.2023.2226908

Shimano, H., Amemiya-Kudo, M., Takahashi, A., Kato, T., Ishikawa, M., and
Yamada, N. (2007). Sterol regulatory element-binding protein-1c and pancreatic
beta-cell dysfunction. Diabetes Obes. Metab. 9 (Suppl. 2), 133–139. doi:10.1111/j.
1463-1326.2007.00779.x

Skrivankova, V. W., Richmond, R. C., Woolf, B. A. R., Davies, N. M., Swanson, S. A.,
VanderWeele, T. J., et al. (2021). Strengthening the reporting of observational studies in
epidemiology using mendelian randomisation (STROBE-MR): explanation and
elaboration. BMJ 375, n2233. doi:10.1136/bmj.n2233

Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B. B., et al.
(2022). IDF Diabetes Atlas: global, regional and country-level diabetes prevalence
estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 183, 109119.
doi:10.1016/j.diabres.2021.109119

Szklarczyk, D., Santos, A., vonMering, C., Jensen, L. J., Bork, P., and Kuhn, M. (2016).
STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity
data. Nucleic Acids Res. 44, D380–D384. doi:10.1093/nar/gkv1277

Szkudelski, T., and Szkudelska, K. (2023). The anti-diabetic potential of baicalin:
evidence from rodent studies. Int. J. Mol. Sci. 25, 431. doi:10.3390/ijms25010431

Trajanoska, K., Bhérer, C., Taliun, D., Zhou, S., Richards, J. B., and Mooser, V. (2023).
From target discovery to clinical drug development with human genetics. Nature 620,
737–745. doi:10.1038/s41586-023-06388-8

Troullinaki, M., Chen, L.-S., Witt, A., Pyrina, I., Phieler, J., Kourtzelis, I., et al. (2020).
Robo4-mediated pancreatic endothelial integrity decreases inflammation and islet
destruction in autoimmune diabetes. FASEB J. 34, 3336–3346. doi:10.1096/fj.
201900125RR

Tsiakkas, A., Duvdevani, N., Wright, A., Wright, D., and Nicolaides, K. H. (2015).
Serum placental growth factor in the three trimesters of pregnancy: effects of maternal
characteristics and medical history. Ultrasound Obstet. Gynecol. 45, 591–598. doi:10.
1002/uog.14811

Tsunekawa, S., Demozay, D., Briaud, I., McCuaig, J., Accili, D., Stein, R., et al. (2011).
FoxO feedback control of basal IRS-2 expression in pancreatic β-cells is distinct from
that in hepatocytes. Diabetes 60, 2883–2891. doi:10.2337/db11-0340

Võsa, U., Claringbould, A., Westra, H.-J., Bonder, M. J., Deelen, P., Zeng, B., et al.
(2021). Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and
polygenic scores that regulate blood gene expression.Nat. Genet. 53, 1300–1310. doi:10.
1038/s41588-021-00913-z

Waisundara, V. Y., Siu, S. Y., Hsu, A., Huang, D., and Tan, B. K. H. (2011). Baicalin
upregulates the genetic expression of antioxidant enzymes in Type-2 diabetic Goto-
Kakizaki rats. Life Sci. 88, 1016–1025. doi:10.1016/j.lfs.2011.03.009

Wallace, C. (2020). Eliciting priors and relaxing the single causal variant assumption
in colocalisation analyses. PLoS Genet. 16, e1008720. doi:10.1371/journal.pgen.1008720

Wang, X., Shen, Y., Wang, S., Li, S., Zhang, W., Liu, X., et al. (2017). PharmMapper
2017 update: a web server for potential drug target identification with a comprehensive

target pharmacophore database. Nucleic Acids Res. 45, W356–W360. doi:10.1093/nar/
gkx374

Wu, J., Wang, Z., Cai, M., Wang, X., Lo, B., Li, Q., et al. (2023). GPR56 promotes
diabetic kidney disease through eNOS regulation in glomerular endothelial cells.
Diabetes 72, 1652–1663. doi:10.2337/db23-0124

Wu, Y., Zhang, F., Yang, K., Fang, S., Bu, D., Li, H., et al. (2019). SymMap: an
integrative database of traditional Chinese medicine enhanced by symptom mapping.
Nucleic Acids Res. 47, D1110–D1117. doi:10.1093/nar/gky1021

Xin, Y., Kim, J., Okamoto, H., Ni, M.,Wei, Y., Adler, C., et al. (2016). RNA sequencing
of single human islet cells reveals type 2 diabetes genes. Cell. Metab. 24, 608–615. doi:10.
1016/j.cmet.2016.08.018

Xu, H.-Y., Zhang, Y.-Q., Liu, Z.-M., Chen, T., Lv, C.-Y., Tang, S.-H., et al. (2019).
ETCM: an encyclopaedia of traditional Chinese medicine. Nucleic Acids Res. 47,
D976–D982. doi:10.1093/nar/gky987

Yamamoto, S., Kuramoto, K., Wang, N., Situ, X., Priyadarshini, M., Zhang, W., et al.
(2018). Autophagy differentially regulates insulin production and insulin sensitivity.
Cell. Rep. 23, 3286–3299. doi:10.1016/j.celrep.2018.05.032

Yang, H.-Y., Liu, M., Sheng, Y., Zhu, L., Jin, M.-M., Jiang, T.-X., et al. (2022a). All-
trans retinoic acid impairs glucose-stimulated insulin secretion by activating the RXR/
SREBP-1c/UCP2 pathway. Acta Pharmacol. Sin. 43, 1441–1452. doi:10.1038/s41401-
021-00740-2

Yang, X., Liu, Y., Gan, J., Xiao, Z.-X., and Cao, Y. (2022b). FitDock: protein-
ligand docking by template fitting. Brief. Bioinform 23, bbac087. doi:10.1093/bib/
bbac087

Yu, M., Han, S., Wang, M., Han, L., Huang, Y., Bo, P., et al. (2022). Baicalin
protects against insulin resistance and metabolic dysfunction through activation of
GALR2/GLUT4 signaling. Phytomedicine 95, 153869. doi:10.1016/j.phymed.2021.
153869

Zen, M., Padmanabhan, S., Zhang, K., Kirby, A., Cheung, N. W., Lee, V. W., et al.
(2020). Urinary and Serum angiogenic markers in women with preexisting diabetes
during pregnancy and their role in preeclampsia prediction. Diabetes Care 43, 67–73.
doi:10.2337/dc19-0967

Zhao, H., Huang, X., Liu, Z., Lai, L., Sun, R., Shen, R., et al. (2023a). Use of a dual
genetic system to decipher exocrine cell fate conversions in the adult pancreas. Cell.
Discov. 9, 1. doi:10.1038/s41421-022-00485-0

Zhao, Y., Lei, Y., Ning, H., Zhang, Y., Chen, G., Wang, C., et al. (2023b). PGF2α
facilitates pathological retinal angiogenesis by modulating endothelial FOS-driven
ELR+ CXC chemokine expression. EMBO Mol. Med. 15, e16373. doi:10.15252/
emmm.202216373

Zhao, Z.-F., Zhang, Y., Sun, Y., Zhang, C.-H., and Liu, M.-W. (2021). Protective
effects of baicalin on caerulein-induced AR42J pancreatic acinar cells by attenuating
oxidative stress through miR-136-5p downregulation. Sci. Prog. 104, 368504211026118.
doi:10.1177/00368504211026118

Zhi, M., Zhu, X., Lugea, A.,Waldron, R. T., Pandol, S. J., and Li, L. (2019). Incidence of
new onset diabetes mellitus secondary to acute pancreatitis: a systematic review and
meta-analysis. Front. Physiol. 10, 637. doi:10.3389/fphys.2019.00637

Frontiers in Pharmacology frontiersin.org18

Liang et al. 10.3389/fphar.2024.1403943

https://doi.org/10.1080/07853890.2023.2226908
https://doi.org/10.1111/j.1463-1326.2007.00779.x
https://doi.org/10.1111/j.1463-1326.2007.00779.x
https://doi.org/10.1136/bmj.n2233
https://doi.org/10.1016/j.diabres.2021.109119
https://doi.org/10.1093/nar/gkv1277
https://doi.org/10.3390/ijms25010431
https://doi.org/10.1038/s41586-023-06388-8
https://doi.org/10.1096/fj.201900125RR
https://doi.org/10.1096/fj.201900125RR
https://doi.org/10.1002/uog.14811
https://doi.org/10.1002/uog.14811
https://doi.org/10.2337/db11-0340
https://doi.org/10.1038/s41588-021-00913-z
https://doi.org/10.1038/s41588-021-00913-z
https://doi.org/10.1016/j.lfs.2011.03.009
https://doi.org/10.1371/journal.pgen.1008720
https://doi.org/10.1093/nar/gkx374
https://doi.org/10.1093/nar/gkx374
https://doi.org/10.2337/db23-0124
https://doi.org/10.1093/nar/gky1021
https://doi.org/10.1016/j.cmet.2016.08.018
https://doi.org/10.1016/j.cmet.2016.08.018
https://doi.org/10.1093/nar/gky987
https://doi.org/10.1016/j.celrep.2018.05.032
https://doi.org/10.1038/s41401-021-00740-2
https://doi.org/10.1038/s41401-021-00740-2
https://doi.org/10.1093/bib/bbac087
https://doi.org/10.1093/bib/bbac087
https://doi.org/10.1016/j.phymed.2021.153869
https://doi.org/10.1016/j.phymed.2021.153869
https://doi.org/10.2337/dc19-0967
https://doi.org/10.1038/s41421-022-00485-0
https://doi.org/10.15252/emmm.202216373
https://doi.org/10.15252/emmm.202216373
https://doi.org/10.1177/00368504211026118
https://doi.org/10.3389/fphys.2019.00637
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1403943

	Integrating Mendelian randomization and single-cell RNA sequencing to identify therapeutic targets of baicalin for type 2 d ...
	1 Introduction
	2 Materials and methods
	2.1 Data sources for the expression quantitative trait locus
	2.2 Acquisition of potential targets for baicalin
	2.3 Data sources for type 2 diabetes
	2.4 Mendelian randomization
	2.5 Network construction and functional enrichment analysis
	2.6 Bayesian colocalization analysis
	2.7 Molecular docking
	2.8 Quality control, cluster analysis and identification of cell types for single cell expression data
	2.9 Inference of intercellular communication
	2.10 Pseudotime trajectory analysis

	3 Results
	3.1 Acquisition of potential targets for baicalin
	3.2 Association of baicalin-related targets with T2D in the discovery cohort
	3.3 Association of baicalin-related targets with T2D in the validation cohort
	3.4 Functional enrichment and protein-protein interaction analysis of baicalin targets
	3.5 Colocalization analysis of baicalin-related targets
	3.6 Molecular docking of baicalin-related targets
	3.7 Expression pattern of the target genes in pancreas cells
	3.8 Cell-cell communication
	3.9 Pseudotime trajectory analysis

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


