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Pituitary neuroendocrine tumors (PitNETs) are a special class of tumors of the
central nervous system that are closely related to metabolism, endocrine
functions, and immunity. In this study, network pharmacology was used to
explore the metabolites and pharmacological mechanisms of PitNET
regulation by gut microbiota. The metabolites of the gut microbiota were
obtained from the gutMGene database, and the targets related to the
metabolites and PitNETs were determined using public databases. A total of
208 metabolites were mined from the gutMGene database; 1,192 metabolite
targets were screened from the similarity ensemble approach database; and
2,303 PitNET-related targets were screened from the GeneCards database. From
these, 392 overlapping targets were screened between the metabolite and
PitNET-related targets, and the intersection between these overlapping and
gutMGene database targets (223 targets) were obtained as the core targets
(43 targets). Using the protein–protein interaction (PPI) network analysis,
Kyoto encyclopedia of genes and genomes (KEGG) signaling pathway and
metabolic pathway analysis, CXCL8 was obtained as a hub target, tryptophan
metabolism was found to be a key metabolic pathway, and IL-17 signaling was
screened as the key KEGG signaling pathway. In addition, molecular docking
analysis of the active metabolites and target were performed, and the results
showed that baicalin, baicalein, and compound K had good binding activities with
CXCL8. We also describe the potential mechanisms for treating PitNETs using the
information on the microbiota (Bifidobacterium adolescentis), signaling pathway
(IL-17), target (CXCL8), andmetabolites (baicalin, baicalein, and compound K); we
expect that these will provide a scientific basis for further study.
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1 Introduction

Pituitary neuroendocrine tumors (PitNETs) constitute a special class of tumors of the
central nervous system that are closely related to metabolism, endocrine functions, and
immunity (Nie et al., 2023). A recent epidemiological study showed that PitNETs affect
more than 5% of the global population (Wang et al., 2023a). Intestinal flora interact with the
central nervous system via the gut–brain axis, which includes the vagus nerve, enteric
nervous system, immune system, and microbial metabolites. Gut microbiota are closely
related to the functions of the central nervous system as well as the endocrine and
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neuroendocrine systems (Leistner and Menke, 2020; Tafet and
Nemeroff, 2020; Wang et al., 2023b; Berding et al., 2021; Longo
et al., 2023), but their relationships with PitNETs are not
completely clear.

Research has shown that the gut microbiomes of patients with
PitNETs are significantly different from those of healthy subjects.
Compared with the control group, Clostridium innocuum was
enriched while Oscillibacter sp.57_20 and Fusobacterium
mortiferum populations were poorer in patients with invasive
and non-invasive PitNETs (Hu et al., 2022). Another study
showed that there were differences in the structures and
quantities of intestinal flora among growth-hormone-secreting
PitNET patients, non-functional PitNET patients, and healthy
controls. In the mouse model, following transplantation of fecal
microflora, the intestinal flora of growth-hormone-secreting
PitNETs patients promoted the growth of tumor (Nie et al.,
2022). Another study showed that compared with healthy
controls, growth-hormone-secreting PitNETs not only reduce the
alpha diversity of the intestinal flora but also change the beta
diversity significantly (Lin et al., 2022). Among the metabolites,
the short-chain fatty acid butyrate was shown to enhance growth
hormone secretion in the rat anterior pituitary cells through
activation of the G-protein-coupled receptors GPR41 and GPR43
(Miletta et al., 2014). These studies indicate that there are potential
relationships among PitNETs, intestinal flora, and metabolites.
Although some of these relationships have been reported in
literature, their specific mechanisms and action pathways need to
be clarified through further research. Network pharmacology can
comprehensively consider the interactions between metabolites and
multiple targets, thereby offering more insights into the
comprehensive effect mechanisms (Oh et al., 2023).

In the present study, the key targets, signaling pathways,
metabolites, and microbiota that regulate PitNETs were identified
via network pharmacology, and their relationships were revealed.
First, the gutMGene v1.0 database (http://bio-annotation.cn/
gutmgene/) (Cheng et al., 2022) was used to retrieve the
metabolites and targets related to the gut microbiota; then, the
metabolite-related and PitNET-related targets were determined
through public databases. Second, the overlapping targets
between the metabolite-related and PitNET-related targets were
obtained via Venn diagram; these overlapping targets were
further intersected with the targets obtained from the gutMGene
database via a Venn diagram to determine the final common targets.
These final overlapping targets were considered as the core targets.
Third, the protein–protein interaction (PPI) network and Kyoto
encyclopedia of genes and genomes (KEGG) pathway enrichment
diagram were constructed using the core targets; the metabolic
pathways were then analyzed using the corresponding
metabolites of the core targets to identify the key signaling
pathways and targets in PitNETs. Once the key target was
identified, molecular docking analysis was used to predict the
potential metabolites that acted on the key target. Finally, the
relationships among the identified microbiota, signaling
pathways, targets, and metabolites were examined to reveal their
roles in PitNETs. Therefore, this study is expected to be an
important reference for further experimental research and
regulation of metabolites with regard to PitNETs. The steps in
the workflow of this study are shown in Figure 1A.

2 Methods

2.1 Data collection and target acquisition

The metabolites and targets used in the analyses were retrieved
from the gutMGene v1.0 database. The related targets of themetabolites
were predicted using the similarity ensemble approach (SEA) (https://
sea.bkslab.org/) (Keiser et al., 2007) database. The disease targets were
obtained from the GeneCards database (https://www.genecards.org/)
(Safran et al., 2010), and targets that were larger than the median were
selected for subsequent analyses. The intersection of metabolite targets
and disease targets were obtained by Venn analysis. Finally, the core
targets were obtained from the intersection of all targets from the three
databases; we believe that these core targets are important factors
in PitNETs.

2.2 Protein–protein interaction network

The core targets were mapped to the PPI network to identify
their interactions. The STRING database (https://string-db.org/)
was used to perform the PPI analysis.

2.3 KEGG pathway and gene ontology
(GO) analyses

R package (Yu et al., 2012) was used to perform KEGG pathway
enrichment (Draghici et al., 2007) and GO analysis to analyze targets
functions (Luo et al., 2017). Furthermore, the interactions between
the key regulatory pathways were analyzed using R software.

2.4 Metabolic pathway analysis

MetaboAnalyst 6.0 (https://www.metaboanalyst.ca/) was used
for the metabolic pathway analysis. Here, 31 metabolites
corresponding to the 43 core targets were input into the online
website for the pathway analysis.

2.5 Molecular docking test

The structured data files of the metabolites were acquired from
the PubChem database (https://pubchem.ncbi.nlm.nih.gov/), and
the target protein structure was downloaded from the PDB database
(https://www1.rcsb.org/). The ligands and protein needed for
molecular docking analysis were prepared using AutoDock, and
the molecular docking was carried out using Vina in PyRx. The
docking results were finally visualized using PyMOL software.

2.6 Construction of the microbiota-
signaling pathways-targets-
metabolites network

Based on the KEGG enrichment results of the 43 core targets, the
top-20 significant signaling pathways were determined as the main

Frontiers in Pharmacology frontiersin.org02

Cao et al. 10.3389/fphar.2024.1403864

http://bio-annotation.cn/gutmgene/
http://bio-annotation.cn/gutmgene/
https://sea.bkslab.org/
https://sea.bkslab.org/
https://www.genecards.org/
https://string-db.org/
https://www.metaboanalyst.ca/
https://pubchem.ncbi.nlm.nih.gov/)
https://www1.rcsb.org/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1403864


signaling pathways. Then, the microbiota and metabolites that were
directly related to these top-20 pathways’ targets were selected using
the gutMGene database. We chose the top-10 results based on the
degree of microbiota to construct the microbiota–signaling
pathways–targets–metabolites network, which was then visualized
using Cytoscape 3.10.1 (Shannon et al., 2003).

3 Results

3.1 Core targets of the gut microbial
metabolites

A total of 208 metabolites were obtained from the gutMGene
database. The targets related to these metabolites were identified
using the SEA database, through which 1,192 metabolite targets
were found. A total of 392 overlapping targets were then identified
between the 1,192 metabolite targets and 2,303 PitNET-related
targets, as shown in Figure 1B. Finally, the intersection between
these 392 overlapping targets and 223 targets from the gutMGene
database yielded 43 core targets that were used in the follow-up
analyses (Figure 1C) (Supplementary Table S1).

3.2 Protein–protein interaction
network analysis

The 43 core targets were used in the PPI network analysis to
highlight the important proteins. The protein AKT1 has the
highest degree of 31, indicating that it may be an important
target related to PitNETs. To date, many studies have shown that
AKT1 is closely related to PitNETs (Huang et al., 2020;
Dworakowska et al., 2009). Therefore, our findings are
consistent with those reported in previous studies. In the
present study, the top-13 proteins based on degree are AKT1
(31), IL1B (29), IL6 (29), PPARG (29), JUN (27), MYC (26),
NFKB1 (26), CASP3 (25), EGFR (24), PTGS2 (24), FOS (23),
CXCL8 (22), and RELA (22) (Figure 2), indicating that these
proteins may be related to PitNETs.

3.3 Signaling pathway and GO
enrichment analyses

The 43 core targets were used in the KEGG (Figure 3A) and GO
(Figure 3B) enrichment analyses using R programming language.

FIGURE 1
(A)Workflow of the steps in this study. (B)Overlapping targets (392) betweenmetabolite targets predicted by the similarity ensemble approach (SEA)
database and PitNET-related targets. (C) Identification of 43 core targets between the 392 overlapping targets and gutMGene database (223 targets).
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The KEGG results showed that these pathways related to these
targets mainly involved inflammation, immune responses, infection,
and cancer. The IL-17 signaling pathway is related to inflammation
(Amatya et al., 2017), and inflammation has been observed to be
closely related to the development of PitNETs (Wang et al., 2021;
Chen et al., 2015); and the IL-17 signaling pathway (has04657) has a
significant enrichment effect. Studies have shown that IL-17 is a
proinflammatory cytokine that promotes the growth and
progression of cancer by activating various signaling pathways
(Inthanon et al., 2023). In addition, the serum IL-17 levels in
patients with invasive PitNETs are significantly higher than those
in patients with non-invasive PitNETs (Qiu et al., 2011); the median
serum IL-17A level in patients with PitNETs is higher than that in
the control group (Glebauskiene et al., 2018). This suggests that the
IL-17 signaling pathway may play an important role in the

development and invasive behaviors of PitNETs. The GO
enrichment analysis results showed that biological processes were
related to immune and inflammatory responses, oxidative stress,
antioxidant responses, and cell proliferation and differentiation. We
further analyzed the interactions between the top-20 significant
regulatory pathways (Figure 3C), whose interaction degrees were all
equal to 19. Furthermore, 31 metabolites corresponding to the
43 core targets were input into MetaboAnalyst 6.0 for the
metabolic pathway analysis (Figure 3D), and pathway impacts
exceeding 0.1 were selected as the potential metabolic pathways.
In this study, only one potential metabolic pathway of tryptophan
metabolism was observed to be enriched. A recent study shown that
tryptophan metabolism was closely related to tumor growth (Liu
et al., 2023). Based on the above results and published literature, it
was found that tryptophan metabolism was related to the protein

FIGURE 2
Protein–protein interaction network in this study.
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CXCL8. Tryptophan metabolizing enzymes can accelerate tumor
progression by upregulating CXCL8 (Zhao et al., 2021), which is also
a chemokine in the IL-17 signaling pathway, and CXCL8 has a high
degree value in PPI network; hence, we speculate that CXCL8 could
be a potential target in the treatment of PitNETs.

3.4 Molecular docking analysis

Molecular docking was used to evaluate the binding energies of
CXCL8 (PDB ID: 6WZM) with six potentially related metabolites from
the gutMGene database. These metabolites included succinate; acetate;
1-piperazinepentanamide, N-((1S,2R)-2,3-dihydro-2-hydroxy-1H-
inden-1-yl)-2-(((1,1-dimethylethyl)amino)carbonyl)-4-(furo(2,3-b)
pyridin-5-ylmethyl)-gamma-hydroxy-alpha-(phenylmethyl)-, (alphaR,
gammaS,2S)- (also known as compound K); butyrate; baicalein; and
baicalin. When the binding energy for docking is less than −5 kcal/mol,
it indicates that there is good binding activity between the protein and
metabolite. The results showed that the binding energy of CXCL8 with
baicalin was −7.0 kcal/mol (Figure 4A), that with baicalein
was −6.3 kcal/mol (Figure 4B), and that with compound K
was −5.8 kcal/mol (Figure 4C) (Supplementary Table S2). The

binding energies of CXCL8 with the other three metabolites
exceeded −5 kcal/mol. These results show that baicalin, baicalein,
and compound K may be potential metabolites affecting PitNETs.

3.5 Analysis of the microbiota-signaling
pathways-targets-metabolites network

The microbiota and metabolites directly related to the top-20
significant signaling pathway targets were selected from the
gutMGene database. In this study, we only selected the top-10
results based on the degree of microbiota for subsequent analyses.
The microbiota–signaling pathways–targets–metabolites
network consisted of 89 nodes (10 microbiota, 20 signaling
pathways, 29 targets, and 30 metabolites) and 479 edges
(Figure 5A). To show the relationships between the signaling
pathways and targets more clearly, we indicate the relationships
between the signaling pathways and targets in the network
separately (Figure 5B). Here, the orange boxes represent the
gut microbiota, green boxes represent the signaling pathways,
yellow boxes represent the targets, and red boxes represent the
metabolites. We found that these top-10 microbiota had the same

FIGURE 3
(A) KEGG enrichment analysis of the 43 core targets. (B) GOBP enrichment analysis of the 43 core targets. (C) Pathway interaction diagram. (D)
Metabolic pathway analysis of the 31 metabolites identified from the 43 core targets. The colors of the dots represent their p-values from the pathway
enrichment analyses; color variation from yellow to red indicates that the p-value is decreasing. The size of the dot represents the pathway impact value
from the pathway topology analysis, where the larger the dot, the greater the pathway impact.
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interaction degrees: Bifidobacterium adolescentis, Escherichia coli
K-12, Streptococcus salivarius K12, Streptococcus salivarius
JIM8772, Lactobacillus acidophilus ATCC 4357,
Faecalibacterium prausnitzii, Streptococcus salivarius,
Bacteroides distasonis, Bacteroides vulgatus, and
Faecalibacterium prausnitzii A2-165. Studies have found that
B. adolescentis displays distinct anti-inflammatory effects (Guo
et al., 2019) and can suppress tumorigenesis (Lin et al., 2023;
Chen et al., 2023). Previous studies have also shown that

inflammation is closely related to the development of PitNETs
(Wang et al., 2021; Chen et al., 2015). Therefore, we speculate
that B. adolescentis may be an important microbe related to
PitNETs. These findings, along with the results of our
previous research, show that tryptophan metabolism could be
a potential metabolic pathway and could be related to CXCL8.
The molecular docking analysis results show that baicalin,
baicalein, and compound K have good binding activities with
CXCL8 that participates in the IL-17 signaling pathway;

FIGURE 4
Molecular docking visualization of (A) baicalin–CXCL8, (B) baicalein–CXCL8, and (C) compound-K–CXCL8.

FIGURE 5
(A) Proposed microbiota-signaling pathways-targets-metabolites network. To show the relationships between the microbiota and pathways more
clearly, only the top 10 microbiota are shown based on their interaction degrees. (B) Network showing the signaling pathways and targets.

Frontiers in Pharmacology frontiersin.org06

Cao et al. 10.3389/fphar.2024.1403864

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1403864


furthermore, the IL-17 signaling pathway is related to
inflammation, and B. adolescentis plays an important role in
inflammatory response. Thus, in the microbiota–signaling
pathways–targets–metabolites network, we found that baicalin,
baicalein, and compound K were potentially related to CXCL8,
the IL-17 signaling pathway, and B. adolescentis. These results
show that these six elements could be used as potential markers in
the treatment of PitNETs.

4 Discussion

PitNETs are commonly divided into functional and non-
functional PitNETs. Functional PitNETs can be further divided
into various types based on the secretion of hormones, among
which prolactinoma is the most common, followed by growth
hormone and adrenocorticotropic hormone. We screened the
43 core targets related to PitNETs from the gutMGene
v1.0 database and noted that 31 key metabolites
corresponding to the 43 core targets were enriched in the
tryptophan metabolism pathway. A prior study reported that
prolactinoma was related to tryptophan metabolism (Zhou et al.,
2015). The change in amino acid metabolism has been considered
as a characteristic of tumor cells, which significantly impact the
tumor cells and the immune regulation mechanisms in the tumor
microenvironment (Xu et al., 2021). Tryptophan is an essential
amino acid and a precursor to serotonin; serotonin is a key
neurotransmitter in the enteric system and central nervous
system. Gut microbiota can potentially affect the brain and
behaviors by controlling the availability of the serotonin
precursor tryptophan. Gut microbiota also indirectly
controlled the hypothalamic–pituitary–adrenal axis (Clarke
et al., 2014). This suggests that tryptophan metabolism may
play a key role in the development of PitNETs and may be a
key metabolic pathway in the regulation of PitNETs.

KEGG enrichment analysis of the 43 core targets showed that
IL-17 was a key signaling pathway in the regulation of PitNETs;
the IL-17 signaling pathway also plays a key role in
inflammation-related diseases (Bunte and Beikler, 2019; Chang
and Dong, 2011). IL-17 signaling is known to promote gut barrier
immunity via regulation of microbes as well as drive tumor
growth (Chandra et al., 2024). Inflammation is closely related
to the development of PitNETs (Wang et al., 2021; Chen et al.,
2015). Studies have shown that the serum IL-17 levels in patients
with invasive PitNETs are significantly higher than those in
patients with non-invasive PitNETs (Qiu et al., 2011);
furthermore, the median serum IL-17A level in patients with
PitNETs is higher than that in the control group (Glebauskiene
et al., 2018). CXCL8 participated in the IL-17 signaling pathway
(Jain, 2022) and is known to be closely related to tryptophan
metabolism. The conversion of tryptophan into kynurenine has
been shown to be related to inflammation (Gustafsson et al.,
2020), which indicates that CXCL8 may be a potential target for
PitNET treatment. Chronic inflammation is an important factor
in the occurrence and development of tumors (Coussens and
Werb, 2002; Liu et al., 2016). CXCL8 is a PitNET-derived
cytokine that plays an important role in the tumor
microenvironment (Marques et al., 2019) to regulate tumor

proliferation, invasion, and migration in an autocrine or a
paracrine manner. CXCL8 can be integrated with multiple
intracellular signaling pathways to produce synergistic effects
(Liu et al., 2016); it is important for the activation and transport
of inflammatory mediators as well as progression and metastasis
of tumors (Ha et al., 2017).

B. adolescentis may be an important microbe related to
PitNETs. A recent study showed that B. adolescentis produces
the microbial metabolite hypaphorine, which inhibits
inflammatory responses and hepatic oxidative stress (Qin
et al., 2024). Furthermore, dietary supplementation with B.
adolescentis has been shown to augment tightening of the
intestinal barrier, dampened inflammatory (Roberts et al.,
2020) and B.adolescentis can suppress tumorigenesis (Lin
et al., 2023; Chen et al., 2023). Preincubation of HT-29 cells
with B. adolescentis FRP 61 was shown to significantly inhibit
CXCL8 secretion (Carey and Kostrzynska, 2013).

Herein, we found that baicalin, baicalein, and compound K
have good binding activities with CXCL8. Baicalin is an
important flavonoid isolated from Scutellaria baicalensis
Georgi and exhibits important anti-inflammatory, anti-
infection, and antitumor functions (Zhao et al., 2020).
Baicalein is an important medicinal flavonoid derivative of S.
baicalensis Georgi that has anti-inflammatory and anticancer
properties (Gupta et al., 2022), in addition to being able to
regulate the tumor microenvironment (Wang et al., 2024).
Compound K is a rare protopanaxadiol type of ginsenoside
that inhibits tumor growth by inducing tumor apoptosis and
tumor cell differentiation; it also regulates the tumor
microenvironment by inhibiting tumor-angiogenesis-related
proteins (Liu et al., 2022). And compound K can be used to
treat chronic inflammatory diseases (Tian et al., 2023). These
findings indicate that baicalin, baicalein, and compound K could
be promising effectors in the treatment of PitNETs.

Thus, this study shows that B. adolescentismay be an important
microbe related to PitNETs and that tryptophan metabolism may be
a key metabolic pathway in PitNETs treatment and it is closely
related to CXCL8. In addition, the results suggest that baicalin,
baicalein, and compound K may affect the IL-17 signaling pathway
in PitNETs through CXCL8. These findings provide important
viewpoints for further research.

As a new interdisciplinary research method, network
pharmacology shows great potential in revealing the actions
mechanisms, targets, and biological effects of metabolites;
therefore, it has significance for comprehensively and deeply
understanding the interactions between metabolites and
organisms. However, there are some limitations and challenges to
using this approach, including imperfect information in the
databases used, incomplete data, and the need to verify the
accuracies of the target predictions. Thus, in the future, we
intend to further verify our current findings through experiments.
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