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Epilepsy is one of the most common, severe, chronic, potentially life-shortening
neurological disorders, characterized by a persisting predisposition to generate
seizures. It affects more than 60 million individuals globally, which is one of the
major burdens in seizure-related mortality, comorbidities, disabilities, and cost.
Different treatment options have been used for the management of epilepsy.
More than 30 drugs have been approved by the US FDA against epilepsy.
However, one-quarter of epileptic individuals still show resistance to the
current medications. About 90% of individuals in low and middle-income
countries do not have access to the current medication. In these countries,
plant extracts have been used to treat various diseases, including epilepsy. These
medicinal plants have high therapeutic value and contain valuable
phytochemicals with diverse biomedical applications. Epilepsy is a
multifactorial disease, and therefore, multitarget approaches such as plant
extracts or extracted phytochemicals are needed, which can target multiple
pathways. Numerous plant extracts and phytochemicals have been shown to
treat epilepsy in various animal models by targeting various receptors, enzymes,
and metabolic pathways. These extracts and phytochemicals could be used for
the treatment of epilepsy in humans in the future; however, further research is
needed to study the exact mechanism of action, toxicity, and dosage to reduce
their side effects. In this narrative review, we comprehensively summarized the
extracts of various plant species and purified phytochemicals isolated fromplants,
their targets andmechanism of action, and dosage used in various animal models
against epilepsy.
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1 Introduction

Epilepsy is one of the most common chronic and heterogeneous
neurological disorders, affecting more than 60 million individuals
worldwide (Moshé et al., 2015). Epilepsy is characterized by seizures,
which are abnormal electrical activities in the brain resulting inmotor,
sensory, or psychomotor experiences (Potnis et al., 2020). These
activities in the brain occur due to the imbalance of excitatory and
inhibitory neuronal pathways, and the tendency to develop seizures
again and again leads to epilepsy. According to the latest report of the
International League Against Epilepsy (ILAE), epilepsy is defined as”
two or more unprovoked seizures greater than 24 h apart, or single
unprovoked seizure in an individual with 60% chances of having
another seizure in the next 10 years, or an epilepsy syndrome (clinical,
EEG, clinical, genetics and age-dependent features) (Falco-Walter,
2020; Specchio et al., 2022; Wirrell et al., 2022). The signs and
symptoms of epilepsy are shown in Figure 1A. The global
prevalence of epilepsy is 1%, and among them, 80% of inhabitants
live in low-income and lower-middle-income countries. According to
the World Health Organization (WHO), about 75% of the affected
individuals do not get proper treatment for the management of

epilepsy, and this percentage has also reached 90% in some low-
income countries, as these anti-epileptic drugs (AEDs) are
inaccessible, too expensive, or have unwanted side effects
(O’Donohoe et al., 2020; Pironi et al., 2022). Currently, more than
thirty pharmacological drugs have been approved by the United States
Food and Drug Administration (USFDA) and are available in the
market (Perucca, 2021), as shown in Figure 1B. Almost 70% of the
affected people become seizure-free after proper medication with the
available AEDs. Still, 25%–35% of people show resistance to the
current medications and are termed refractory, intractable, or drug-
resistant epilepsy, and almost 50% of the sudden deaths from epilepsy
belong to the drug-resistant epilepsy group (Mula, 2021; Borowicz-
Reutt et al., 2023; Rocha et al., 2023). Currently, different treatment
options are available, as shown in Figure 1C, including
pharmacological treatment, but every treatment strategy has its
own limiting factors. Due to the different limitations of the
treatment options against epilepsy, phytotherapeutic treatment or
herbal medicines got huge attention worldwide due to its safety, low
toxicity, easy availability, cost-effectiveness, and multitargeting ability
to focus on the various medicinal plants and their phytochemicals for
the treatment of epilepsy.

FIGURE 1
(A) Signs and symptoms of seizure and epilepsy, (B) Approved and Marketed AEDs by USFDA, (C) Different treatment options for the treatment of
epilepsy. (Figures were generated using Biorender online version).
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Medicinal plants are the main sources of pharmaceuticals in
early discovery. Even in the 21st century, 80% of the population in
lower-income countries depends on extracts of various plants for the
preventive and curative treatment of various diseases, including
neurological disorders, malaria, mycetoma, etc. Plant species such as
Bacopa monnieri, Centella Asiatica, Curcuma longa, Cyperus
rotundus, Morinda citrifolia, and Withania somnifera are among
the most common plants used for treating neurological disorders
(Berdigaliyev and Aljofan, 2020; Bhat and Sharma, 2020; Fitzgerald
et al., 2020; Porras et al., 2020). Medicinal plants generate different
types of substances that have promising therapeutic potential, which
are termed phytochemicals or bioactive compounds. These
phytochemicals have the potential to target specific receptors in
various diseases and perform therapeutic activities. The WHO also
recommends the use of plant-derived medicines with better safety
and therapeutic efficacy in various countries (Palhares et al., 2015).
In the last few years, scientists have focused on natural products,
especially medicinal plants, to find cost-effective, safer, and potent
agents for preventive, prophylactic, and other medicinal purposes.
Many studies have been carried out to evaluate the therapeutic
potential of various types of phytochemicals against epilepsy at a
pre-clinal stage. (Kaur et al., 2021; He et al., 2023). It has been
reported that numerous phytochemicals isolated from plants have
promising potential to reach various drug targets in epileptic animal
models (Chipiti et al., 2021; Subedi and Gaire, 2021; Zadali et al.,
2022; Carreño-González et al., 2023). These phytochemicals can
interact with different types of receptors in the central nervous
system (CNS), such as N-methyl-D-aspartate receptor (NMDAR),
Gamma-aminobutyric acid receptor (GABAAR), and α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR),
channels like voltage gated sodium, potassium, and calcium
channels, and other enzymes and pathways that play a significant
role in the initiation and propagation of epileptic seizures. In this
narrative review, we summarized the up-to-date information on
various plants/medicinal plant extracts, specific phytochemicals
isolated from various plants, their mechanism of action, and how
these interact with various targets and help in the control of seizures
and treatment of epilepsy.

2 Approved drugs and
pharmacological targets

2.1 Current treatment options

Epilepsy affects people of all ages, with a high prevalence in
people aged more than 65. Overall, 25%–35% of people still show
resistance to the available AEDs. (Campos-Bedolla et al., 2022;
Asadi-Pooya et al., 2023). To overcome this issue, different
treatment options have been developed, such as surgery (if the
seizure is focal, i.e., originated from a specific region of a brain such
as in the case of temporal lobe epilepsy in which the seizure
originated from the hippocampus), ketogenic diet, deep brain
stimulation (DBS), vagus nerve stimulation (VNS), transcranial
magnetic stimulation (TMS), and transcranial direct current
stimulation (tDCR) (Harris and Angus-Leppan, 2020; Löscher
et al., 2020; Asadi-Pooya et al., 2023). Each of these approaches
has its own limitations, such as availability, cost, success rate, etc

(Thijs et al., 2019). Currently, the most common way to treat
epilepsy is pharmacological drugs, as it is easily available and
used, have a high success rate, and are cost-effective as compared
to other treatment approaches. In the 19th century, potassium
bromide and some medicinal plants were used to treat seizures
and epilepsy. Then, at the start of the 20th century, phenobarbital,
which is a GABAA receptor agonist, was officially approved for the
treatment of epilepsy in 1912. From 1850 to 1960, mostly five drugs
were commonly used to treat seizures and epilepsy (Perucca, 2021;
Tomson et al., 2023), as shown in Figure 1B. Then, until 1980, eight
more drugs were approved by the USFDA for the treatment of
epilepsy. Later in the 21st century, the advancement in the field of
neurosciences, especially in the mechanism of disease and diagnostic
approaches, the development of drugs against various neurological
disorders, especially epilepsy, got much attention, and within the last
3 decades, more than twenty drugs have been approved by the
USFDA for the treatment of epilepsy (Perucca, 2021). AEDs that
have been approved by the US FDA from 1950 till 2024 are
summarized in Figure 1B. Researchers are now focusing on the
drugs’ cost-effectiveness and high success rate, and several drugs and
other treatment approaches are currently in various phases of
clinical trials (ClinicalTrials.gov 2024).

2.2 Pharmacological targets of the
approved AEDs

Epilepsy develops due to the imbalance of action or resting
membrane potential (Scharfman, 2007). Various receptors,
membrane channels, and enzymes have been involved in the
imbalance of depolarization and hyperpolarization of neurons,
which then leads to a seizure (Armijo et al., 2005). Some of these
are present on the presynaptic neuron, while some are on
postsynaptic neurons. These protein or membrane channels
include voltage-gated sodium channels responsible for the
sodium ion (Na+) influx in the cell during normal functioning
(Mantegazza et al., 2010). The sodium channels are normally
found in three states (see Section 7); in case of seizure, these
channels are in an active state for a longer time, or it takes more
time to go to an inactive state due to mutation occurring in the
proteins subunits of the channels or due to any other brain insult
(Crill, 1996; Mantegazza et al., 2010). So when more sodium
channels are active for a longer time, a high influx of Na+ will
occur in presynaptic neurons, leading to the imbalance of normal
signalling in the neuron and generating an imbalance in the
excitatory and inhibitory system of the neurons, leading to a
seizure. (Kaplan et al., 2016). Some approved drugs such as
Rufinamide, Oxcarbazepine, and Phenytoin targeting Na+

channels to control the seizures and the treatment of epilepsy
(Perucca, 2021).

At the end of presynaptic neurons, calcium channels are
present, which allow the calcium ion (Ca2+) to go inside the
cell and perform normal function, which helps in the release of
the neurotransmitter (Meir et al., 1999). However, in the case of
epilepsy, dysfunction of these important channels occurs due to
mutations in the subunits or any other brain insult. Therefore,
the concentration of Ca2+ in the cell is out of control, and hence,
an influx of more Ca2+ occurs, which leads to the release of more
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neurotransmitters and disturbs the normal function of the cell
(Carvill, 2019). Several clinically approved drugs such as
Gabapentin, Pregabalin, and Ethosuximide block these
channels and hence control the seizure and epilepsy (Tomson
et al., 2023).

Similarly, during normal cell functioning, Na+ influx and
potassium (K+) outflux occur to maintain normal cell function.
However, during the seizure, the voltage-gated potassium channels
(Kv) fail to efflux enough K+ ions out of the cell to maintain a normal
level of ions inside the cell, which causes an imbalance of the action
potential and again leads to the disturbance of excitatory and
inhibitory cycle of the neurons and finally develops seizure (Gao
et al., 2022). In addition, a few more channels and enzymes are
involved in the initiation and propagation of seizure (Rho and
Boison, 2022; Perucca et al., 2023a; Perucca et al., 2023b).

Similarly, on postsynaptic neurons, three main important
receptors are present, which play a pivotal role in the cell
signalling and development of epilepsy and are also the main
target of the current and development of new AEDs. These
receptors or channels include NMDARs and AMPARs to which
glutamate, a primary excitatory neurotransmitter attached, opens
the channels and allows more positive ions (Na+/Ca2+) to go inside
the postsynaptic neuron and generate an action potential
(Sivakumar et al., 2022; Chen et al., 2023). Some clinically
approved AEDs, such as Perampanel and Valproate, target these
two receptors on the postsynaptic neuron to control the generation
or propagation of the action potential in epilepsy (Tomson et al.,
2023). In addition, GABARs, to which GABA, an inhibitory
neurotransmitter, binds, are the most important target to control
seizures and treat epilepsy; they are also present on the postsynaptic
neuron, which allows chlorine ions (Cl-) to go inside the cell to
maintain and balance the internal environment (Fu et al., 2022;
Akyuz et al., 2023; Bryson et al., 2023). Among the currently

approved AEDs, more than 35% of the drug target is GABAR,
which acts as an agonist to open the channels for a longer time.
These includes Stiripentol, Vigabatrin, Diazepam, and Clonazepam
(Perucca, 2021). Similarly, some drugs target various enzymes
involved in the development of seizures and epilepsy. The details
of channels, receptors, and enzymes involved in the development of
seizures and epilepsy, as well as the main target of the drugs, are
shown in Figure 2.

3 Plants/medicinal plants and
phytochemicals

Phytochemicals, also termed phytonutrients, are bioactive
compounds produced by different plants in various parts such as
stem, leaves, roots, and flowers as a result of primary and secondary
metabolism (Nahar et al., 2020). These bioactive compounds play a
significant role in the growth of plants or a host’s defense against
various pathogens and competitors (Bose et al., 2020). There are
countless phytochemicals, however, only a small number have been
identified (Xiao and Bai, 2019). Phytochemicals include
polyphenols, alkaloids, carotenoids, terpenoids, flavonoids,
limonoids, coumarins, indoles, isoflavones, lignans, organosulfur,
catechins, furyl compounds, phenolic acids, stilbenoids,
isothiocyanates, saponins, procyanidins, phenylpropanoids,
anthraquinones, ginsenosides and so on (Xiao and Bai, 2019;
Welcome, 2020). These phytochemicals have been considered one
of the most widely used treatment options in different countries for
the treatment of various diseases such as cancer, neurological
disorders, and other virological infections (Behl et al., 2021;
George et al., 2021; Yadav, 2021; Lim and Park, 2023). These
phytochemicals have multifunctional properties such as
antioxidant, anti-inflammatory, antidiabetic, antimicrobial,

FIGURE 2
Various receptors, membrane protein channels, and enzymes involved in the initiation and propagation of seizure and the targets for the current
AEDs and future drugs. (Bio-render online version was used for this figure; for abbreviations, please see the list of abbreviations).
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anticancer, and immunomodulatory, and they act as antagonists and
agonists for various types of inhibitory and excitatory receptors in
the body, especially in the CNS. Blood brain barrier (BBB) is one of
the main hurdles in developing drugs against various neurological
disorders, as most of the compounds with high molecular weight
cannot cross and attenuate BBB (Akhtar et al., 2021; Chowdhury
et al., 2021; Xiong et al., 2021; Yadav, 2021; Correia et al., 2022).
However, it has been reported that most phytochemicals such as
allopregnanolone, asiaticoside, berberine, catalpol, curcumin, and
many more can cross BBB and attenuate the inflammation and
hyperpermeability in various pathological conditions (Yadav, 2021).

Several studies have been reported on the efficacy of plant
extracts and phytochemicals against various diseases related to
the central nervous system (Ayeni et al., 2022; Luthra and Roy,
2022). Curcumin, generally used as a spice in food, is reported to
have a promising anti neurodegenerative effect in animal models
and also in humans, especially against dementia. In addition,
spicatoside, resveratrol, broccoli, and many more have been
studied for their effect against various neurological and
neuroprotective efficacy (Subedi et al., 2020). Moreover,
medicinal plants (phytochemicals and metabolites) have been
extensively used for the treatment of various neurological
diseases, especially epilepsy in most of the low- or middle-
income countries (Asiimwe et al., 2021; Birhan, 2022). These
plants, as a treatment option for epilepsy, have very low cost,
high availability, and fewer side effects as compared to other
treatment options (Sucher and Carles, 2015; Kaur et al., 2021).
These play a significant role in the treatment of epilepsy by
interfering with the excitatory pathway or inhibitory pathway.
Hundreds of plants have been extensively studied in vitro and in
vivo (Khan et al., 2020; Kaur et al., 2021). However, only a few have
reached clinical trials. Similarly, Cannabidiol is a bioactive
metabolite found in marijuana, a plant species that has high
antiepileptic properties (Kaur et al., 2021). Therefore, in 2018,
the USFDA approved CBD-rich Epidiolex against two severe
forms of epilepsy in children (Golub and Reddy, 2021). In
addition, CBD-based treatment is currently in phase 4 clinical
trials for the treatment of refractory epilepsy (Kaur et al., 2021).
A lot of work has been done on the use of plant extract and isolated
phytochemicals against epilepsy; we will discuss their targets and the
mechanism for the treatment of epilepsy.

4 Modulation of the inhibitory system

The imbalance in the excitatory and inhibitory neuronal systems
in the brain leads to seizures and epilepsy. Different types of
neurotransmitters in the brain play an important role in the
pathophysiology of epilepsy. Among them, GABA and glutamate
are the key neurotransmitters directly involved in the excitatory and
inhibitory pathways (Jangra and Budhwar, 2022). Among inhibitory
neurons and neurotransmitters, GABA is the key inhibitory
neurotransmitter released in the brain synapses, accounting for
more than 40% (Treiman, 2001). Glutamic acid decarboxylase
(GAD) enzyme converts glutamate to GABA, which is then
released from the presynaptic GABAergic neuron and acts on the
post-synaptic neuron. GABA has three receptors, i.e., GABAA,
GABAB, and GABAC, on the post-synaptic neurons (Briggs and

Galanopoulou, 2011), and among them, GABAA is of critical
importance as this receptor is involved in controlling and
balancing action potential and main target of the AEDs. When
GABA is releases from the presynaptic neuron, it attaches to the
GABAAR on the post-synaptic neuron, allowing the influx of Cl− ion
and hence controlling the action potential by balancing the internal
environment (Kullmann et al., 2005). In addition, there is a GABA
reuptake channel on the presynaptic neuron, which allows the influx
of GABA after performing function or extra GABA released in the
synapses, as shown in Figure 2. In the case of epilepsy, dysregulation
occurs in the inhibitory system, especially in GABAAR, lower
production of GABA by GABAergic neurons, and/or catabolism
of GABA, and hence, imbalance occurs, which leads to epilepsy (He
et al., 2023). These inhibitory neurotransmitters and receptors are
the main target of the drugs, and about 35% of the available
pharmacological drugs target the inhibitory pathway of CNS.

It has been reported that several plant extracts and isolated
phytochemicals from various plants have the ability to modulate the
inhibitory system in several ways. (Kennedy and Wightman, 2011).
One of the possible mechanisms reported is plant extracts, and their
phytochemicals could increase the levels of GABA in the brain by
activating enzymes responsible for the synthesis of GABA. Recently,
Ali Mohammad and coworkers evaluated the epileptic potential of
the stem bark extract of the medicinal plant Vateria indica Linn,
which is commonly known as White Damamr. The authors first
analyzed the phytochemical profile of the plant and found that the
plant is rich in various bioactive compounds, especially flavonoids,
glycosides, phenolics, tannins, saponins, polysaccharides, and
steroids. They used three different mice models, the maximal
electrical shock (MES) model of epilepsy, ionized (INH) induced
model, and pentylenetetrazol (PTZ) model, and evaluated the effect
of the stem bark extract against various parameters such as seizure
onset time, duration of convulsions, as well as estimated the level of
GABA in the brain using two different doses of 250 and 500 mg/kg
and compared with the standard AEDs diazepam. The authors
concluded that the plant extract showed strong antiepileptic
activities by increasing the onset time of the seizure and
decreasing the duration of convulsions. The authors documented
that the extracts lead to an increase in the level of GABA in the brain,
especially in INH and PTZ models, which could be the possible
mechanism of the extract (Alshabi et al., 2022). The authors did not
mention the mechanism of how the extract, or its phytochemicals,
increases the GABA level in the brain. However, as previously
reported, some phytochemicals increase the activity of
L-glutamate decarboxylase (L-GAD), an enzyme responsible for
the conversion of L-glutamate to GABA, and therefore, the level of
GABA increases in the brain, especially in the hippocampus which
leads to the activation of inhibitory pathway and help in the control
of seizure (Kandeda et al., 2021a). In addition, there are some author
limitations of this study, such as the death rate in the MES group,
which was 50%, which is higher and could not be acceptable as no
reasons were provided. Similarly, further extensive investigation
could be carried out to study the proper mechanism of action of
the extracts; safety, cytotoxicity, other side effects, and specific
dosage are critical.

Similar results on the effect of plant extract on the alteration of
GABA levels have been reported by Kandeda et al. (2021b). They
used a hydroethanolic extract of roots of Pergularia daemia against a
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TABLE 1 Effect of plant extracts and isolated phytochemicals from various plants, their mechanism of action, against various models epilepsy through the modulation of inhibitory system.

S.
No

Plant (s) Phytochemical Plant extract/
Isolated
phytochemical used

Model(s) used Specie (s) used Dose (s) Target(s)/Mechanism
of action

References

1 Eriobotrya japonica and
Hedyotis diffusa

Ursolic acid Phytochemical PILO induced Male Sprague–Dawley
rats

20 and 100 mg/kg Attenuated GABAergic
interneuron loss

Liu et al. (2022)

2 Prunus dulcis and
Chlorophora tinctoria

Morin Phytochemical PTZ induced Swiss albino mice 20, 40 mg/kg Increased GABA levels Kandhare et al. (2018)

3 Ginkgo biloba Rutin Phytochemical KA induced BALB/c mice 100 and 200 mg/kg Interacted with GABAAR Nassiri-Asl et al.
(2013)

4 Canarium sweinfurthii Flavonoids, sterols, phenolic
compounds, tannins,
terpenes, and alkaloids

Stem barks extract 4-AP, PILO and PTZ Swiss albino mice 11.9 mg/kg Increased GABA and decreased
GABA-T

Kandeda et al. (2021c)

6 Asparagus racemosus Quercetin Roots extract Strychnine, MES
and PTX

Swiss albino mice (250 and
500 mg/kg

Modulation of GABAA
receptors

Shastry et al. (2015)

7 Coleus amboinicus Alkaloids, flavanoids, tannins,
triterpenoids, saponins

Whole plant extract MES and PTZ induced Swiss albino mice 100 mg/kg Increased GABA levels Bhattacharjee and
Majumder, (2013)

8 Annona senegalensis Pers alkaloids, terpinoids and
saponins

Roots extract PILO and PTX induced Mice 150 mg/kg Increased GABA levels Konate et al. (2012)

9 Tapinanthus globiferus Saponins, Tannins,
Glycosides, Protein, Steroids
and Flavonoids

Whole plant extract PTZ and MES induced Mice 250, 500, and
1,000 mg/kg

GABAAR modulation and
activation of benzodiazepines

Abubakar et al. (2016)

10 Coffea canephora Ferulic aci Phytochemical PTZ induced Wistar rats 75 and 100 mg/kg Increased GABAergic
neurotransmission

Hassanzadeh et al.
(2017)

11 Globimetula braunii Saponins, carbohydrates,
flavonoids, tannins,
anthraquinones and steroids

Leaves extract PTZ induced Swiss albino mice 150 mg/kg Enhancement of GABAergic
neurotransmission

Aliyu et al. (2014)

12 Bixa orellana Alkaloids, tannins, proteins,
terpenoids, flavonoids, and
steroid

Leaves extract INH induced Swiss albino mice 200, 400and
800 mg/kg

Modulation of GABAAR Offiah et al. (2023)

13 Swertia corymbosa Gentiopicroside and
swertianin

Aerial parts extract PTZ, INH, and MES
induced

Swiss albino mice 125–500 mg/kg Modulation of benzodiazepines
receptor of GABAAR

Mahendran et al.
(2014)

14 Amaranthus spinosus Alkaloids, saponins, cardiac
glycosides, flavonoids,
carbohydrates,
anthraquinones, tannins, and
triterpenes

Leaves extract PTZ induced Albino mice 400 and 800 mg/kg Enhancement of GABA Usman et al. (2023)

15 Culcasia falcifolia Alkaloids, flavonoids,
saponins, tannins,
polyphenols, and glycosides

Leaves extract PTZ induced Mice 200 and 400 mg/kg Activating GABAA receptors Gracelyn Portia et al.
(2018)
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TABLE 1 (Continued) Effect of plant extracts and isolated phytochemicals from various plants, their mechanism of action, against various models epilepsy through the modulation of inhibitory system.

S.
No

Plant (s) Phytochemical Plant extract/
Isolated
phytochemical used

Model(s) used Specie (s) used Dose (s) Target(s)/Mechanism
of action

References

16 Pandanus odoratissimus
Linn

Alkaloids, lipids, terpenes,
triterpenoids, flavonoids and
coumarins

Leaves extract MES, PTX, and
strychnine induced

Swiss Albino mice 100 and 200 mg/kg Increased GABA-mediated
inhibition

Adkar et al. (2014)

17 Acalypha fruticosa Alkaloids, steroids, flavanoids
and lipids

Aerial parts extract PTZ, MES, and INH
induced

Swiss albino mice 300 mg/kg enhanced GABAergic
neurotransmission

Govindu and Adikay,
(2014)

18 Achyranthes aspera Linn Alkaloids, carbohydrates,
glycosides, flavonoids, saponins,
phenolic compounds, amino
acids and steroids

Roots extracts PTZ, picrotoxin and
bicuculline induced

Swiss Albino mice 5 and 10 mg/kg Increased GABA levels Gawande et al. (2017)

19 Annona senegalensis Kaurenoic acid, a diterpenoid Roots extract PTZ induced albino mice 200, 400 and
800 mg/kg

Modulation of GABAAR Okoye et al. (2013)

20 Viscum album L Alkaloids, glycosides,
flavonoids, saponins, sterols,
tannins, phenolic compounds,
amino acids, proteins, fatty
acids, carbohydrates, volatile
oils and terpenes

Leaves extract MES, INH and PTZ
induced

Swiss albino mice and
Wistar albino rats

50 and 150 mg/kg Enhancing the GABAergic
system

Gupta et al. (2012)

21 Viola tricolor ethyl acetate and n-butanol
fractions

Whole plant extract PTZ and MES induced Albino mice 100, 200, and
400 mg/kg

Modulation of the GABAA
receptor complex

Rahimi et al. (2019)

22 Trachyspermum
ammi (L.)

Thymol Seeds extract Strychnine induced Rates 50 mg/kg GABAA receptors Rajput et al. (2013)

23 Silybum marianum Phenols and flavonoids Seeds extract PTZ induced Albino mice 300 mg/kg Modulation of GABAAR Waqar et al. (2016)

24 Caralluma dalzielii Flavonoids, tannins, saponins,
carbohydrates, steroids,
glycosides, cardiac glycosides
and phenols, Hexadecanoic acid
methyl ester (palmitic acid)

Aerial parts extract strychnine, PTZ, MES
induced

Ranger cockerel 250, 500 and
1,000 mg/kg

Activation of GABAAR Ugwah-Oguejiofor
et al. (2023)

25 Ceiba pentandra (L.) Tannins, terpenoids,
saponins, phytosterols,
glycosides, flavonoids and
alkaloids

Leaves extract MES, 4-AP, PTZ), and
PIC induced

ICR mice 100 mg/kg Modulation of GABAergic
Pathway

Sarfo et al. (2022)

26 Newbouldia laevis Tannins, flavonoids, alkaloids,
triterpenes, saponins, and
carbohydrates

Leaves extract Strychnine, PTZ, and
MES induced

Albino mice 400 mg/kg Increased GABA levels Ukwubile et al. (2023)

27 Caladium bicolor aiton Carbohydrate, tannins,
proteins, alkaloids, flavonoids,
steroidal nucleus, cardiac
glycosides and phenolic
compounds

Leaves extract Strychnine, PTZ, and
MES induced

Swiss albino mice 100 and 200 mg/kg activation of inhibitory
GABAergic receptors

Akhigbemen et al.
(2019)

(Continued on following page)
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TABLE 1 (Continued) Effect of plant extracts and isolated phytochemicals from various plants, their mechanism of action, against various models epilepsy through the modulation of inhibitory system.

S.
No

Plant (s) Phytochemical Plant extract/
Isolated
phytochemical used

Model(s) used Specie (s) used Dose (s) Target(s)/Mechanism
of action

References

28 Benkara malabarica Scopoletin Roots extract Strychnine and INH
induced

Swiss albino mice 25 mg/kg and
50 mg/kg

inhibitor of GABA-T Mishra et al. (2010)

29 Canarium sweinfurthii Alkaloids, flavonoids,
saponins, and a variety of
terpenes (monoterpenes,
triterpenes, carotenoids,
sesquiterpenes, cyclohexanes,
and sterols), tannins, and
steroids

Stem barks extract MES, 4-AP, PTZ induced Swiss albino mice 11.9 mg/kg Increased GABA levels and
decrease GABA-T

Kandeda et al. (2021c)

30 Satchys Lavandulifolia Phenylethanoid, terpenoid,
and flavonoid

Aerial parts extract PTZ induced Mice 50 mg/kg Modulation of benzodiazepine
receptor of GABAA

Nia et al. (2022)

31 Sambucus nigra Anthocyanins, vitamins,
calcium and iron, tannins,
sterols

Aerial parts extract PTZ and MES induced Mice 250, 500 and
1,000 mg kg-

Increased GABA levels Ataee et al. (2016)

32 Valeriana edulis Valepotriate fraction Roots extract PTZ induced Wistar rats 100 mg/kg Enhanced expression of
GABAAR

González-Trujano
et al. (2021)

33 Morus nigra Prenyl flavonoid (Morusin) Fruits extract Strychnine induced Albino Wistar mice 125, 250, and
500 mg/kg

increasing the GABA levels Zehra et al. (2021)

34 Magnolia officinalis Magnolol and Honokiol Whole plant extract PTZ and EKP induced Zebrafish 200 mg/kg increasing the GABA levels Li et al. (2020)

35 Decalepis nervosa Alkaloids, flavonoids,
glycosides, Quercetin and
Gallic acid and phenols

Roots extract PTZ and INH induced Mice 250 and 500 mg/kg increasing the GABA levels Das et al. (2022)

36 Scutellaria baicalensis
Georgi

Baicalin Phytochemical PILO induced Sprague-Dawley rats 100 mg/kg Enhanced GABAAR Liu et al. (2012)

37 Lantana camara L Ursolic acids stearoyl
glucoside (UASG)

Whole plant extract MES and INH induced Wistar albino rats 50 mg/kg Increasing GABA levels and
inhibiting GAD

Kazmi et al. (2012)

38 Artemisia indica Linn Ursolic acid, and oleanolic
acid

Whole plant extract PTZ induced Swiss mice 10, 30, and
100 mg/kg

Interact with GABAA receptors
via the benzodiazepine binding
site

Khan et al. (2016)

39 Dennettia tripetala G 1-nitro-2-phenylethane Leaf, fruit and seeds oil PTZ induced Mice (50–400 mg/kg Increasing inhibitory effects of
GABA

Oyemitan et al. (2013)

40 Hippeastrum vittatum Montanine Phytochemical PTZ induced Swiss albino mice 60 mg/kg Modulation of BDZ site of the
GABA receptor

Da Silva et al. (2006)

41 Eucalyptus citriodora
Hook and Zanthoxylum
schinifolium

Isopulegol Phytochemical PTZ induced Swiss mice 100 and 200 mg/kg Positive modulation of GABAA
receptors

Silva et al. (2009)

(Continued on following page)
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TABLE 1 (Continued) Effect of plant extracts and isolated phytochemicals from various plants, their mechanism of action, against various models epilepsy through the modulation of inhibitory system.

S.
No

Plant (s) Phytochemical Plant extract/
Isolated
phytochemical used

Model(s) used Specie (s) used Dose (s) Target(s)/Mechanism
of action

References

42 Carum carvi Epoxycarvone Phytochemical PTZ and MES induced Swiss albino mice 300 mg/kg Positive modulation of GABAA
receptors

Salgado et al. (2015)

43 Erythrina mulungu Erysothrine Flowers extract Bicuculline, PTZ, and KA
induced

Wistar rats 0.001–10 μg/mL GABA modulation Rosa et al. (2012)

44 Nectandra grandiflora (+)-Dehydrofukinone (DHF) Phytochemical PTZ induced Swiss mice 10, 30 and
100 mg/kg

Positive GABAergic neuronal
inhibition

Garlet et al. (2017)

45 Scutellaria baicalensis Wogonin Phytochemical PTZ, MES, and
Strychnine induced

Sprague-Dawley rats 5 and 10 mg/kg Modulation of GABAergic
neuron

Park et al. (2007)

46 Passiflora sp Vitexin Phytochemical PTZ induced Wistar rats 100 and 200 GABAA–benzodiazepine
receptor modulation

Abbasi et al. (2012)

47 Nepeta sibthorpii
Bentham

Ursolic acid Phytochemical PTZ induced Swiss mice 2.3 mg/kg Modulation of GABAergic
system

Taviano et al. (2007)

48 Ginkgo biloba L Bilobalide Phytochemical 4-AP induced ddY strain mice 30 mg/kg Inhibition of GAD activity Sasaki et al. (2000)

49 Origanum, Satureja Carvacrol Phytochemical PTZ and MES induced Swiss mice 50, 100, and
200 mg/kg

GABAergic neurotransmitter
system

Quintans-Júnior et al.
(2010a)

50 Crocus sativus L Safranal Phytochemical PTZ induced Wistar rats 145 mg/kg Interaction GABAA-
benzodiazepine receptor
complex

Hosseinzadeh and
Sadeghnia, (2007)

51 Harungana
madagascariensis

Flavonoids, alkaloids,
phenols, glycosides, saponins,
terpenoids and steroids

Leaves extract INH induced Mice 100, 500,
11,000 mg/kg

Increase GABA levels Nnamdi et al. (2022)

52 Malvaviscus arboreus Phenolic acids, β-resorcylic,
caffeic, protocatechuic, and 4-
hydroxyphenylacetic acids, in
addition to two flavonoids;
trifolin and astragalin

Whole plant extract PTZ, PIC and Strychnine
induced

Mus musculus Swiss 122.5, 245 and
490 mg/kg

Interact with GABAergic system Adassi et al. (2023)

53 Ipomoea asarifolia Alkaloids, cardiac glycosides,
flavonoids, saponins, tannins,
triterpenes and steroids (

Leaf extract PTZ and MES induced Swiss albino mice 300 mg/kg Interact GABAergic pathway Chiroma et al. (2022a)

54 Biophytum umbraculum
Welw. Syn

Flavonoids, saponins, tannins,
steroids, phenols, and
terpenoids

Roots extract MES and PTZ induced Swiss albino mice 100, 200, and
400 mg/kg

increase in GABAergic
neurotransmission

Fisseha et al. (2022)

55 Urtica dioica Linn Steroids, terpenoids,
flavonoids specially quercetin,
isoquercitrin, astragalin,
kaempferol, isorhamnetin and

Roots extract MES and PTZ induced Swiss albino mice 100 and 200 mg/kg modulating the (GABA)
receptor-Cl- channel complex

Loshali et al. (2021)

(Continued on following page)
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TABLE 1 (Continued) Effect of plant extracts and isolated phytochemicals from various plants, their mechanism of action, against various models epilepsy through the modulation of inhibitory system.

S.
No

Plant (s) Phytochemical Plant extract/
Isolated
phytochemical used

Model(s) used Specie (s) used Dose (s) Target(s)/Mechanism
of action

References

rutin, phenolics,
i.e., phenylpropanes,
scopoletin, caffeic acid and
chlorogenic acid, coumarins,
polysaccharides, proteins,
lectins, vitamins and minerals

56 Pentas schimperiana Tannins, alkaloids,
terpenoids, flavonoids,
steroids, phenolic
compounds, and proteins

Roots extract MES and PTZ induced Swiss albino mice 100, 200, and
400 mg/kg

modulate GABA-mediated
chloride channels

Fisseha et al. (2021)

57 Dennettia tripetala Alkaloidal compounds
(uvariopsine, Stephan thrine,
argintinine), vanillin, tannins,
steroids, flavonoids, cardiac
glycosides, saponins, and
terpenoids

Seeds extract PTZ induced Swiss albino mice 61.25, 122.5 and
245 mg/kg)

enhancement of GABAergic
activity

Uruaka and Georgwill,
(2020)

58 Bambusa vulgaris Alkaloidal compounds
(uvariopsine, Stephan thrine,
argintinine), vanillin, tannins,
steroids, flavonoids, cardiac
glycosides, saponins, and
terpenoids

Leaves extract PTZ induced Mice 100, 200 and
400 mg/kg

GABAA-benzodiazepine
receptor neurotransmission

Adebayo et al. (2020)

59 Artemisia afra Alkaloids, tannins, flavonoids,
and phenolic compounds

Whole plant extract PTZ induced BALB/c mice 250, 500, and
1,000 mg/kg

Enhanced GABA transmission Kediso et al. (2021)

60 Psychotria camptopus
Verdc

Flavonoids: Rutin and Butin;
two triterpenoid saponins
Psycotrianoside B and
Bauerenone and four
alkaloids 10-Hydroxy-
antirhine, 10-hydroxy-iso-
deppeaninol, Emetine and
Hodkinsine

Trunk bark extract Strychnine, PIC, and
thiosemicarbazide
induced

Wistar rats 40, 80 and
120 mg/kg

Interact with benzodiazepine site
of GABAA receptors

Fokoua et al. (2021b)

61 hrysanthellum
americanum (L.)

Alkaloids, anthraquinones,
flavonoids, glycosides,
phenols, glycosides, saponins,
sterol, coumarins and tannins

Whole plant extract PTZ induced Mice 27.69, 69.22,
138.45,
276.9 mg/kg

Activation of GABAA complex
receptor

Nguezeye et al. (2023)

62 Combretum lanceolatum Flavonoids, lignan
triterpenoids, non-protein
amino acids, phenolic
compounds and tannins

Leaves extract PTZ induced Zebrafish 01–10 interaction with the GABAA
receptor

da Silva et al. (2022)

(Continued on following page)
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TABLE 1 (Continued) Effect of plant extracts and isolated phytochemicals from various plants, their mechanism of action, against various models epilepsy through the modulation of inhibitory system.

S.
No

Plant (s) Phytochemical Plant extract/
Isolated
phytochemical used

Model(s) used Specie (s) used Dose (s) Target(s)/Mechanism
of action

References

63 Detarium senegalense Tannins, saponins, alkaloids,
flavonoids, terpenoids,
steroids, anthraquinones,
glycosides, reducing sugars
and resins

Leaves extract PTZ, Brucine, and INH
induced

Swiss mice 100, 200, and
400 mg/kg

Modulation GABA receptors Nwachukwu et al.
(2022)

64 Calotropis procera Morphine, digoxin, quinine,
and atropine

Leaves extract Strychnine, PIC, PTZ,
and PILO induced

ICR mice 100–300 mg/kg Interaction Benzodiazepine site
of GABARs

Obese et al. (2021)

65 Gastrodia elata B1 Vanillin Roots extract PTZ, 4-AP induced Sprague-Dawley rats 25 and 50 mg/kg Inhibition GABA transaminase Ha et al. (2000)

66 Musa paradisiaca Alkaloids, saponins, tannin
and flavonoids

Stem extract PTZ induced Albino rats 75% (v/v) Increasing GABA levels and
inhibiting GABA-T

UGWUOKE et al.
(2023)

67 Sarcostemma acidum Alkaloids, flavonoids,
phenolic compounds, and
steroids

Aerial parts extract MES and Phenobarbitone Albino mice (200 and
400 mg/kg

Increasing GABA transmission Parmar et al. (2022)

68 Alchemilla Kiwuensis
Engl

Flavonoids, alkaloids, and
tennins

Whole plant extract PTZ induced Albinos Wistar rats 40 mg/kg,
80 mg/kg

Inhibiting GABA-Transaminase Foutsop et al. (2023)

69 Cocos nucifera L Flavonoids, alkaloids, phenols Flowers extract MES and PTZ induced Wistar rats 125, 250, and
500 mg/kg

Elevated level of GABA Archana et al. (2021)

70 Paullinia pinnata Flavonoids, tannins, other
phenolic compounds; and
alkaloids

Leaves extract INH induced Swiss albino mice 100, 200, and
400 mg/kg

Increase GAD activity and
decrease GABA-T

Ajibade et al. (2022)

71 Afzelia africana Alkaloids, saponins, steroids,
tannins, cardiac flavonoids,
and glycosides

Leaves extract PILO induced Wistar rats 100 mg/kg Interact with BZD site on the
GABAAR

Kinsou et al. (2019)

72 Boswellia dalzielii Saponins, tannins, steroids/
terpenoids and flavonoids

Stem extract PTZ and MES induced Swiss albino mice 500 mg/kg Modulation of GABAAR Medugu et al. (2020)

73 Amaranthus spinosus alkaloids, anthraquinones,
saponins, cardiac glycosides,
tannins, flavonoids,
carbohydrates, and
triterpenes

Leaves extract PTZ induced Albino mice 400 and 800 mg/kg Enhanced GABA mediated
inhibitory neurotransmission

Usman et al. (2023)
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PTZ-induced temporal lobe epileptic mice model. The authors used
four different concentrations of 1.6, 4, 8, and 16 mg/kg and
compared the results with the clinically approved drugs sodium
valproate. They reported that the concentrations 4–16 mg/kg have a
promising antiepileptic potential and protected the mice against
myoclonic jerk and generalized tonic-clonic jerk compared to the
sodium valproate. Similarly, all the doses increased the seizure score.
As altered GABA, GABA-T and L-GAD have been reported in PTZ
kindling-induced models. Here in this study, the authors revealed
that this plant extract increased the concentration of GABA by 240%
in groups treated with 4 and 8 mg/kg, which is almost 3-fold higher
than the increase in the sodium valproate group (96%). They also
confirmed that PTZ leads to the reduction of GABA levels by 71%.
In addition, they also documented the effect of this plant’s extract
against the inflammatory biomarker, cognitive functions,
hippocampal neuronal damage, and oxidative stress marker, and
revealed that it leads to the improvement of all these parameters as
this plant is rich in bioactive compounds such as cardenolides,
phenols, alkaloids, flavonoids, triterpenes, saponins, glycosides,
cardiac glycosides, saponins, and carbohydrates (Sridevi et al.,
2014; Chandak and Dighe, 2019). Similarly, the roots extract of
P. daemia has also been investigated against the pilocarpine (PILO)-
induced (Kandeda et al., 2017) and kainic acid (KA) induced mice
models (Kandeda et al., 2021a); in both studies, it showed promising
potential against epilepsy. Therefore, this plant could be used as a
treatment option against temporal lobe epilepsy after further
investigation of its safety and toxicity. Similar studies including
(Yempala et al., 2014; Kandeda et al., 2022) have also been reported
on the alteration of GABA level by various isolated phytochemicals
or plant extracts. Different types of plant extracts extracted
phytochemicals, the model and species used, and the dosage
reported against epilepsy targeting GABA have been summarized
in Table 1.

Secondly, the extracts and phytochemicals can also interact with
the GABAAR. GABAAR is also a ligand-gated channel, and GABA
neurotransmitters act as a ligand. When GABA neurotransmitters
bind with the GABAAR on postsynaptic neurons, that leads to the
opening of chlorine channels and, finally, the influx of Cl− into the
cell, which reduces neuronal excitability by hyperpolarization of the
membrane (Ghit et al., 2021). Dysfunction or mutation in the
subunit(s) of GABAAR fails to hyperpolarize the membrane
(Mele et al., 2019). Several studies have reported the interaction
of phytochemicals and plant extracts with GABAAR, causing
hyperpolarization and reducing neuronal excitability. Arenaria
kansuensis Maxim. (AKM) and Asterothamnus centrali-asiaticus
Novopokr. (ACN) are considered the two important medicinal
herbs worldwide, especially in Chinese medicine, Persian, ancient
Greek, Central Asian, and Ayurved. The phytochemicals analysis of
these plants showed that they are rich in alkaloids and flavonoids
and possess various medicinal properties (Wang et al., 2016a; Wang
et al., 2016b). Liu et al. investigated the structure-activity relation of
flavonoids isolated from these plants with the benzodiazepine site of
GABAAR and searched for anticonvulsive compounds in the PTZ-
induced epilepsy mice model. They revealed that several flavonoids
isolated from the whole plant extract of these plants had a strong
binding affinity with GABAAR. In addition, 2′,4′,5,7-tetrahydroxy-
5′, 6-dimethoxyflavone, a flavonoid compound isolated from the
ACN, exhibited potent anticonvulsant activity. Finally, the authors

concluded that flavones could be considered strong antiepileptic
drugs that have a strong affinity for the GABAAR receptor and can
be used for the treatment of seizures (Liu et al., 2018). However,
further studies are required to determine the safety, further efficacy,
side effects, and dosage of the extract or isolated phytochemical
flavone. Similarly, the interaction of Euterpe oleracea Martius (Açai)
extract with GABAAR has also been reported (Muto et al., 2022).
HPLC/MS analysis of Acai revealed that Açai stone possesses high
levels of various polyphenolic compounds such as caffeic acid,
cinnamtannin, procyanidin, catechin, polymeric
proanthocyanidins, followed by traces of another phenolic
compound (Muto et al., 2021). In this study, the authors used
PTZ-induced epileptic rats as an epilepsy model and used a
specific dose of 300 mg/kg and compared with the marketed drug
diazepam and evaluated by electroencephalographic (EEG)
profiling. The authors reported that there is no significant
difference between the experimental group and the treatment
group with diazepam. They further conclude that Euterpe
oleracea stone (EEOS) extract interacts with the benzodiazepine
subunit of GABAAR and exerts anticonvulsive activity. Therefore,
this extract could also be used to treat epilepsy. However, extensive
investigation could be required on the safety and further efficacy.
Similarly, several studies have been reported on the interaction of
plant extract and phytochemicals with GABAAR, which could
alleviate or treat seizures and epilepsy, summarized in Table 1.

The third possible mechanism through which the extract or
phytochemicals interact with the inhibitory pathway is the targeting
of GABA-T. In the pre-synaptic neurons, the GABA-T converts the
GABA into succinic semialdehyde (SSA) and, therefore, makes the
neuron GABA deficient and elevates the glutamate levels, which are
excitatory neurotransmitters (Lu et al., 2023). It has been reported
that various phytochemicals and bioactive molecules from various
medicinal plants can interact with this enzyme, leading to increased
GABA levels and decreased glutamate levels to balance the
excitatory and inhibitory potential, hence alleviating seizure.
Mishra et al. investigated the anticonvulsive effect of Benkara
malabarica (Linn.) ethanolic roots extract in strychnine-induced
and INH-induced acute convulsion mice model (Mishra et al.,
2010). This is a medicinal plant and is commonly used in
various regions of India for the treatment of various types of
diseases, including epilepsy (Nadkarni, 1954). The authors used
2 mg/kg for strychnine and 300 mg/kg for the INH model and
compared with the group treated with standard drugs like phenytoin
and diazepam. The authors reported that the plant extract has strong
antiepileptic properties and could be used as a treatment option after
further investigation. The authors hypothesized that the
antiepileptic activities of the plant extract are due to the
interaction of phytochemicals with GABA-T. To prove this
hypothesis, the authors performed a GABA-T activity assay as
described by Salvador and Albers (Salvador and Albers, 1959).
The authors documented that the plant extract had GABA-T
inhibitory activity (IC50 = 0.721 mg/mL). In addition, the GABA-
T inhibitory activity of Scopoletin, which is a major constituent of
the extract, was IC50 = 10.57 μM. They further concluded that
GABA-T inhibitory activity might be due to scopoletin alone or
in combination with other compounds in the extract.

Similarly, another study has reported that the aqueous stem bark
extract of C. schweinfurthii alleviates seizures (Kandeda et al.,
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2021c). They also reported that the GABA pathway is involved. The
authors used various doses against different animal models of
epilepsy and reported that the different doses of extract showed
significant antiepileptic activity against various animal models.
Further studying the mechanism of action of the extract, they
concluded that the phytochemicals in the plant extract interacts
with the GABA pathway as after treatment with the extract, the
GABA levels increased while the GABA-T levels were reduced. They
concluded that the antiepileptic activity of Canarium schweinfurthii
was due to the inhibition of GABA-T by the bioactive compounds
present in the extract, which could be used alone or in combination
with other drugs for seizure control. Furthermore, this plant has a
double mechanism of action (increased GABA and decreased
GABA-T); therefore, it could be a strong AED in the near future
after further investigation. Several other studies have been reported
on the interaction of extracts and various phytochemicals with the
GABA-T, as summarized in Table 1.

5 Modulation of excitatory pathway

Glutamate is one of the principal excitatory neurotransmitters in
the CNS that plays a critical role and performs various functions
such as learning, memory, synaptic plasticity, nerve degeneration,
neurogenesis, and many more (Haroon et al., 2017). However,
excessive glutamate in the body leads to severe pathogenic events
that may then cause diseases such as Alzheimer’s disease,
Parkinson’s, and epilepsy. The receptors for glutamate are
broadly categorized into two classes, i.e., ionotropic glutamate
and metabotropic receptors (Afshari et al., 2020). The ionotropic
receptors include NMDA (Ca2+ influx), kainate, and AMPA (Na+

Influx) receptors, while the latter one includes G protein-coupled
receptors that activate the intracellular cascade (Crupi et al., 2019).
Among these receptors, the NMDA and AMPA play a significant
role in the initiation and propagation of epileptic seizure as these
both allow the high influx of Ca+ and Na+ ions, respectively, which
leads to the imbalance of excitatory and inhibitory pathways and
therefore, these two receptors represent key clinical research targets
(Hanada, 2020). It is well known that the agonists for these two
receptors lead to the development of epilepsy in animals or humans.
While antagonist leads to the inhibition of seizures by blocking
respective receptors, and therefore, these are potential targets for the
development of drugs against epilepsy. Several studies have reported
that medicinal plants and phytochemicals can also lead to the
modulation and inhibition of these receptors, which may lead to
the development of potent drugs against epilepsy.

Zizyphi Spinosi Semen (ZSS) is a medicinal plant widely used in
Chinese medicine for the treatment of various diseases, including
insomnia and some other psychiatric disorders (Zhao et al., 2016).
The phytochemical analysis of this plant has reported that it
contains various types of bioactive compounds that have strong
medicinal values and are used for the treatment of various diseases.
Several saponins have been identified from ZSS, including seven
types of jujuboside (A-H) (Xiao et al., 2018; He et al., 2020). XiWang
reported that Jujuboside A has strong antiepileptic activities by
increasing the levels of GABA in the hippocampus, which are
inhibitory neurotransmitters (Wang et al., 2015). Similarly,
Panpan Song et al. reported that jujuboside B (jub B) also leads

to an increase of the GABA as well as overexpression of GABAAR,
which plays a critical role in the control of seizures. A febrile seizure
is a non-epileptic seizure affecting children between 3 months and
5 years, and phytotherapeutic treatment could also help in the
control of this seizure by targeting the excitatory pathway of the
CNS (Song et al., 2017; Jin et al., 2023 hypothesized and then proved
that jujuboside can modulate the excitatory pathway by inhibiting
the glutamate receptor AMPA and could be used as a potent agent
against febrile seizure (Jin et al., 2023). In this study, they used EEG
recording for the monitoring of current in the mouse model of
febrile seizure and to evaluate the efficacy of the Jub B as shown in
Figure 3A. The mass spectroscopy was used for the identification of
Jub B in the brain, and they revealed that significant amount of Jub B
was present in the brain, it means that it can easily cross the BBB
which is one the main barrier in the development of drugs against
neurological disorders. The authors then finally concluded that Jub
B can suppress the neuronal excitation in the hippocampus by
inhibiting the activity of AMPAR and, therefore, cause relief from
febrile seizure. JuB B showed a strong antiseizure effect against
epileptic seizures; however, similar targets are also involved in
epileptic seizures. Therefore, it could be used against various
animal models of epilepsy and could show a strong antiepileptic
activity based on the above results.

Similarly, apigenin-8-C-glycoside (AP8CG), commonly known
as vitexin, and Chlorogenic acid (CA), are two important
phytochemicals present in various plants and widely used in
medicines (Liang and Kitts, 2015). The antiepileptic activities of
these two compounds have been reported in PILO-induced epilepsy
mice models (Aseervatham et al., 2016). The authors reported that
they administered a 10 mg/kg dose of AP8CG and a 5 mg/kg dose of
CA to mice, and the results were compared with the standard drug
diazepam. The authors reported that both compounds showed
potential antiepileptic activities. However, CA showed stronger
activities on the levels of glutamate and GABA than AP8CG, as
shown in Figure 3B. By explaining the mechanism of action, the
authors revealed that these compounds selectively inhibit the
expression of NMDAR, Metabotropic glutamate receptor 1
(mGlu1), and Metabotropic glutamate receptor 5 (mGlu5). They
also evaluated the mRNA profile of NMDAR, mGlu1, and
mGLU5 and compared them with the standard drugs and
control groups and reported that a significant association was
observed in the experimental groups and other groups, as shown
in Figure 3C. Therefore, these two compounds need further
investigation and could be used for the treatment of epilepsy.

Recently, Ankita Rajput and colleagues carried out a
comprehensive study on the antiepileptic activity of aerial parts
extract of Grewia tiliaefolia in the PTZ induced mice model of
epilepsy and further screening of the plant followed by in silico
analysis of the phytochemical as shown in Figure 3D (Rajput et al.,
2023). The other members of the family of this plant showed
neuroprotective activities, antidepressants, anti-anxiety, etc (Jebin
et al., 2019). Here in this study, the authors reported that the plant
extract significantly increased the latency of myoclonic jerks and
generalized tonic-clonic seizures (GTCS). In addition, it also reduced
the severity of seizures associated with the GTCS. Further, they
analyzed the extract with HPLC for phytochemical profile and
found that the extracts have several bioactive compounds that
could be used for various neurological diseases. From the in silico
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FIGURE 3
Phytochemicals can modulate NMDAR and AMPAR in the animal model of epilepsy. (A) Mechanistic overview of the effect of Jujuboside B from
medicinal plants against febrile seizures and the mechanism of action on AMPA receptor (Jin et al., 2023). Copyright permission@ Elsevier 2023. (B)
apigenin-8-C-glycoside (AP8CG) and Chlorogenic acid (CA) effects on the levels of glutamate and GABA in the hippocampus of mice and their
comparison with standard drugs and control group. (C)mRNA profile of NMDAR, mGlu1, and mGLU5 in experimental groups (treated with AP8CG
and CA and control groups (Aseervatham et al., 2016). Copyright permission@ Elsevier 2023. (D) A mechanistic overview of the antiepileptic activity of
Grewia tiliaefolia in mice followed by in silico analysis of important phytochemical that involved in the modulation of NMDAR. (E) Possible antiepileptic
mechanism of Grewia tiliaefolia (Rajput et al., 2023). Copyright permission@ Springer Nature 2023.
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TABLE 2 The antiepileptic properties of plant extract and purified phytochemicals through the modulation of the glutamatergic pathway (especially NMDARs and AMPARs).

S.
No

Plant Phytochemical Plant extract/Isolated
phytochemical used

Model(s) used Specie (s) Dose (s) Target(s) References

1 Artemisia persica Apigenin, luteolin, quercetin, ruti, caffeic acid Whole plant extract PTZ induced NMRI mice 100, 200, 400 mg/k Reduced the expression of
NMDA

Nasiri-Boroujeni
et al. (2021)

2 Vitis vinifera Proanthocyanidin Phytochemical PILO, PIC, and
strychnine induced

Albino mice 200, 100, 50 mg/kg Inhibition of glutamatergic/
NMDA transmission

Osuntokun et al.
(2022)

3 Ipomoea asarifolia Alkaloids, cardiac glycosides, flavonoids, saponins,
tannins, triterpenes and steroids

Leaves extract PTZ and MES
induced

Swiss albino mice 75 mg/kg Acting on glutamatergic
pathway

Chiroma et al.
(2022b)

4 Grewia tiliaefolia Gallic acid and kaempferol Aerial parts PTZ induced Mice 400 mg/kg Antagonistic interaction for
Glu-AMPA receptor

Rajput et al. (2023)

5 Rubus idaeus Ellagic acid (EA) Phytochemical PTZ induced NMRI mice 6.25, 12.5, and
25 mg/kg

Attenuation of the NMDA-
R pathway

Rahimi-Madiseh
et al. (2022)

6 Uncaria
rhynchophylla

Rhynchophylline (RIN) Phytochemical PILO induced Sprague–Dawley
rats

100 μM Alternation of NMDA
currents and NR2B
expression

Shao et al. (2016)

7 Melissa
officinalis L

Alkaloids and other phytochemicals Essential oil PTZ induced Adult Swiss mice 50 and 100 mg/kg Inhibition of glutamate
release

Chindo et al. (2021)

8 Grewia tiliaefolia Caffeic acid, Umbelliferone, Coumaric acid,
Ellagic acid, Quercetin, Kaempferol

Aerial parts extract PTZ induced Mice 400 mg/kg Antagonistic interaction
with Glutamate AMPA
receptor

Rajput et al. (2022)

9 Eugenia
caryophyllata

Eugenol Essential oil PILO induced Sprague Dawley
male rats

0.1 mL/kg Interact with NMDA
receptors

Parvizi et al. (2022)

10 Ilex paraguariensis
St. Hilaire

Polyphenols, xanthines, cafeolyl derivatives,
saponins, and minerals

Extract KTM induced Wistar rats 10 mg/kg Modulation of AMPA
receptors

dos Santos Branco
et al. (2013)

11 Berberis vulgaris L Berberine Phytochemical KA induced Male albino Wistar
rats

25, 50 and
100 mg/kg

Interact NMDA receptors Mojarad and
Roghani, (2014)

12 Rosemarinus
officinalis

β-Caryophyllene Phytochemical PIC induced Adult C57BL/
6 mice

100 mg/kg Modulation of
glutamatergic pathway

de Oliveira et al.
(2016)

13 Mallotus
oppositifolius

Alkaloids, cardiac glycosides, flavonoids, saponins,
tannins, triterpenes and steroids

Whole plant extract PTZ induced Mice 1,000–3,000 mg
kg-1

Modulation of NMDA Kukuia, (2012)

14 Rauvolfia
ligustrina Willd

Alkaloids and flavonoids Root extract PTZ, PIC, and MES
induced

Male Wistar rats 62,5 mg/kg Glutamatergic
neurotransmitter system

Quintans-Júnior
et al. (2010b)

15 Bacopa monnieri Saponins, bacosides A and B Extract PILO induced Mice 1 mg/kg Interact with the NMDA
R1 gene expression

16 Crassula
arborescens (Mill.)

Flavonoids, tannins, reducing sugar, saponins
and triterpene steroids

Leaves extract bicuculline,
picrotoxin, and PTZ
induced

Mice 4,000 mg/k Modulation of
glutamatergic pathway

Amabeoku et al.
(2014)
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analysis of these phytochemicals, the authors revealed that gallic acid
and kaempferol compounds from the extract have shown interaction
as agonists with GABA and antagonists with Glu-NMDA. Therefore,
they concluded that the possible antiepileptic effect of the extract is
due to the increase of GABA and the decrease of Glu-NMDA. They
further revealed that this effect could be due to these two compounds,
and the possible mechanism can be, as shown in Figure 3E. However,
further studies could be carried out to confirm the involvement of
these two compounds that can be used then as a potent antiepileptic
agent in the future. A similar study has been reported on the
computational investigation of W. somnifera and their in silico
analysis of the phytochemicals (Kumar and Patnaik, 2016). The
authors analyzed 25 different phytochemicals that showed related
activities and found that Anaferine, Beta-Sitosterol, Withaferin A,
Withanolide A, Withanolide B, and Withanolide D have shown the
interaction with GluN2B containing NMDAR, which is one of the
main targets to control the seizure. Therefore, these compounds could
be used in vivo first, and after confirmation and thorough
investigation of safety and efficacy, they can be used as potent
antiepileptic agents in the future.

Several studies have reported that the phytotherapeutic
treatment can modulate NMDAR and AMPAR, which can
alleviate seizures and epilepsy. However, there are some
limitations to every study. Therefore, to develop a potent
antiepileptic agent, extensive investigation could be carried out
not only on the reduction of seizure and severity but also on the
side effects or safety of the plant or phytochemicals. We have
summarized the literature on phytochemicals and plant extracts
that modulate the excitatory pathway, especially NMDAR and
AMPAR, as shown in Table 2.

6 Interaction with Voltage Gated
Calcium Channels

Voltage Gated Calcium Channels (VGCCs), also termed Voltage-
Dependent Calcium Channels (VDCCs), are widely expressed in the
CNS of humans and other mammalian and play a critical role in the
regulation of synaptic transmission, phosphorylation/
dephosphorylation of protein, gene transcription, as well as
perform various other functions including the survival and death
of the cell and adaptive responses to the synaptic activity (Xu and
Tang, 2018). However, alteration in these channels leads to the
imbalance of cellular events that causes pathological consequences
(Djamshidian et al., 2002). The abnormal activation of these channels
leads to the influx of Ca2+ into the cell, which plays a critical role in the
imbalance of the action potential and finally helps in the triggering
and propagation of seizure. Based on the electrophysiological studies,
the VGCCs are classified into five different types, i.e., L-, N-, P/Q-, R-,
and T-type (Catterall, 2000). The detailed explanation of VGCCs
regarding structure, function, types, and role in the pathophysiology
of epilepsy has been comprehensively explained by Jie and Feng, as
shown in Figure 4A (Xu and Tang, 2018), and Rajakulendran and
Michael. Several clinically approved drugs target these channels for
the control of seizures and the treatment of epilepsy. Similarly,
medicinal plants have diverse bioactive compounds that can
effectively block these channels and can control seizures. Currently,
various studies on the use of plant extracts and phytochemicals againstT
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epilepsy targeting VGCCs have been reported. We suggest that if
extensive investigations of these phytotherapeutics are carried out to
determine their safety, efficacy, and dosage, then these could be used
as potential agents for the treatment of epilepsy.

Mandeep and Rajesh evaluated the anticonvulsive activity of dried
root extract of Boerhaavia diffusa (BD) in the PTZ-induced model of
Swiss albino mice (Kaur and Goel, 2009). BD contains several
phytochemicals that have a potential medicinal value, including
flavonoids, terpenoids, punarnavoside, Liriodendrin, liriodendrin,
and many more (Sahu et al., 2008). At the end of the 20th century,
it was reported that the liriodendrin isolated from the methanolic
extract of BD showed antagonistic activity for calcium channels (Lami
et al., 1990; Lami et al., 1991). In addition, the root extract of BD can be
used for the treatment of epilepsy (Adesina, 1979). Therefore, the
authors decided to investigate the anticonvulsive activity of whole root
extract, phenolic compounds, and liriodendrin in various doses and

compared the results with the standard drug diazepam-treated
group. The authors reported that more than 80% protection and
recovery were observed in the group treated with BD crude extract and
liriodendrin. The authors concluded this activity could be due to the
antagonistic activity of the liriodendrin, and they designed a
mechanistic pathway of the possible mechanism of the plant extract
against VGCCs, as shown in Figure 4B. Briefly, the authors concluded
that the observed anti-convulsant activity was attributed to its VGCCs
antagonistic action. This activity was retained only in the liriodendrin-
rich fraction isolated from Boerhaavia diffusa. Additionally, this was
confirmed by the significant anti-convulsant activity of the
liriodendrin-rich fraction in BAY k-8644-induced seizures. In
addition to extracts and fractions having antiepileptic activity, they
act on i) other ionic channels such as sodium and potassium, ii)
antioxidant activity, iii) neurotransmitter modulation, and iv) anti-
inflammatory activity (Kaur and Goel, 2011).

FIGURE 4
Schematic representation of the role of VGCCs in epilepsy and pharmacological targets for phytochemicals. (A) Role of Ca+2 channels in the
development of epilepsy. Adopted from (Xu and Tang, 2018). Copyright permission@ MDPI 2018, (B) Possible anti-convulsant mechanism of (B). diffusa on
the inhibition of VGCCs. Adopted from (Kaur and Goel, 2011). Copyright permission@ Hindawi 2011. (C) Schematic representation of inhibition of CaV2.3
(R-Type) and CaV2.2 (N-Type) Voltage-Gated Calcium Channels by Physalin F in pain model (Shan et al., 2019). Copyright permission@ ACS 2019.
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Recently, a very interesting study carried out by Paz and
colleagues used a natural product, Argentina C, derived from the
native American medicinal plant species Parthenium incanum
against mouse model of postoperative pain (Duran et al., 2023).
The authors reported that this compound attenuates the pain by
inhibiting the two most important VGSCs and VGCCs. They
concluded that the compounds have very strong dual inhibiting
properties and could be used for the treatment of pain. On the other
hand, these two channels also play a significant role in the
pathophysiology of epilepsy and are two important
pharmacological targets in epilepsy. In addition, drug-resistant
epilepsy is mostly treated by a combination of two drugs with
different mechanisms of action. Here, this plant-derived
compound targets and inhibits two different channels. Therefore,
if this compound is used against various epileptic models, especially
drug-resistant models, it could show strong activity against seizure
and can be used as a potent antiepileptic agent in the future.
Similarly, another natural compound, Physalin F, isolated from
the aerial parts extract of medicinal herb, Physalis acutifolia, has
been used against neuropathic pain. They also reported that this
compound blocks CaV2.3 (R-type) and CaV2.2 (N-type) VGCCs
and decreases excitation in the spinal card, as shown in Figure 4C
(Shan et al., 2019). This compound can also be used against epilepsy
in animal models, and it could give promising results as these
VGCCs are also the main targets in the development of drugs
against epilepsy. In addition, another study reported the use of
Betulinic acid (BA) derived from lavender Hyptis emoryi and
reported that it attenuates nerve injury-associated peripheral
sensory neuropathy by inhibiting the N and T-type calcium
channels, which are also the main target of epileptic drugs. The
results indicated that the BA leads to the downregulation and
inhibition of the Cav3.2 and Cav3.3 calcium channels
(Bellampalli et al., 2019). BA could also be evaluated against
epilepsy and seizure. As here in this study, it showed promising
results in neuropathy.

Several studies have been reported on the inhibitory effect of
various types of plant extracts and derived compounds in various
diseases. These compounds could be investigated against epilepsy.
We summarized the details of some studies that reported various
medicinal plants and phytochemicals for the treatment of seizures
and epilepsy, as shown in Table 3.

7 Modulation of the voltage-gated
sodium channels

Voltage-gated sodium channels (VGSCs or NaVs) are
membrane proteins that selectively conduct Na+ across the
membrane. These channels are the mediators of intrinsic
neuronal excitability and are responsible for the generation and
propagation of action potential (Kwong and Carr, 2015). However,
the abnormal expression and function of these channels lead to
neurological disorders such as migraine, epilepsy, neuropathy, and
pain. VGSCs have three functional states, as shown in Figure 5
(Mantegazza et al., 2010). During the resting membrane stage of the
neuron, these are in the closed state. It opens in a few hundred
microseconds in response to membrane depolarization by the
process called activation and allows the influx of Na + to the cell,

which is then inactivated in a fewmilliseconds by the process termed
fast inactivation. The time from the activated state to the inactivated
state is the most important, and the activation of channels for a
longer time or longer time required from the activated state to the
inactivated state is the main cause of imbalance in excitatory and
inhibitory pathways that leads to epilepsy and other neurological
disorders. The inhibition or blocking of VGSCs can control the
seizure (Agbo et al., 2023). Therefore, several clinically approved
AEDs are targeting VGSCs, including the widely used phenytoin,
lamotrigine, and carbamazepine. Several drugs that are currently in
various phases of clinical trials are also targeting these channels.
Much research has been carried out on the use of plant extract and
phytochemicals to inhibit VGSCs, which are widely used in various
countries for the control of seizures and treated epilepsy.

The USFDA and the European Medicines Agency (EMA)
approved cannabidiol (CBD) in the purified form from the
cannabis plant against Dravet syndrome and Lennox−Gastaut
syndrome and are currently available under the trade name of
Epidiolex (Anderson et al., 2021a). The approval and strong
anticonvulsive effect of CBD attract the researcher whether other
phytocannabinoids also have similar anticonvulsive properties.
Therefore, Anderson et al. also evaluated the four different types
of lesser studies of phytocannabinoids against different types of
epilepsy and found that these compounds show stronger
anticonvulsive properties (Anderson et al., 2021a; Anderson et al.
2021b; Anderson et al. 2022). However, the mechanism was
unknown. Recently, they hypothesized that as the CBD has Na+

channel modulation properties, it is possible that the other
phytocannabinoids could modulate the sodium channels. They
investigated the mechanism of action of these phytocannabinoids
and found that, among five studied compounds, two were sodium
channel blockers and had an almost similar mechanism of action as
CBD (Milligan et al., 2023). However, further confirmation could be
carried out in animal models followed by humans. From these
results, we can conclude that the cannabis family has manymembers
of different plant species, and it could contain different types of
phytochemicals and metabolites that have similar mechanisms of
action and could control the seizure by action on sodium or can treat
any other channels that can control the seizures. Saponins are
produced by plants and lower animals, as well as bacteria (Singh
and Goel, 2016). These play a central role in various diseases, such as
hypertension, atherosclerosis, inflammation, cognitive impairments,
allergic reactions, and cancer. Singh et al. reported the
anticonvulsive effect of saponins extracted from the roots of
Ficus religiosa. The authors used various epileptic mice models
and found that the saponins showed strong anticonvulsive effects
in various models. In addition, they concluded that they modulated
the GABAergic, Na+, and Ca2+. Furthermore, they documented that
they only deactivated the VGSCs and VGCCs without affecting the
ligand-gated channels (Singh and Goel, 2016). These results are very
interesting as they target three different channels and could be used
against intractable epilepsy (When an individual seizure does not
respond to at least two clinically approved drugs with different
mechanisms of action, termed intractable epilepsy). Further research
is needed to study this compound in drug-resistant epilepsy models
and investigate the safety and efficacy of specific doses. The plant
extracts, various isolated phytochemicals, and their mechanism of
action on the VGSCs are summarized in Table 3.
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TABLE 3 Anticonvulsive effect of plant extract and phytochemicals isolated from various plants targeting VGCCs, VGSCs, and Kv.

S.
No

Plant Phytochemical Plant extract/
Isolated
phytochemical
used

Model(s)
used

Specie
(s)

Dose (s) Target(s) References

1 Globimetula
braunii

Saponins,
anthraquinones
carbohydrates,
flavonoids, steroids,
and tannins

Leaf Extract PTZ induced Swiss albino
mice

150 mg/kg Inhibition of
T-type Ca2+
channels

Aliyu et al. (2014)

2 Culcasia
falcifolia

Alkaloids, polyphenols,
flavonoids, glycosides,
saponins, and tannins

Leaf Extract PTZ induced Mice 200 and
400 mg/kg

Reducing the
T-type of Ca2+

currents

Gracelyn Portia
et al. (2018)

3 Annona
senegalensis Pers

Flavonoids, terpenoids,
and diterpenoids

Root barks extract MES induced Male Wistar
rats

1, 10, 100 and
300 µM

Targets
VGSCs

Almamy et al.
(2021)

4 Pseudospondias
microcarpa

Flavonoids, saponins,
phenols, terpenoids,
coumarines, and
cardiac glycosides

Stem bark extract PTZ, PIC,
PILO,
picrotoxin and
4-AP induced

- 30, 100 and
300 mg/kg

Activated
voltage
dependent K+

channels

Wabo et al. (2009)

5 Ageratum
Conyzoides L

Tannins, alkaloids, and
small amount of
reducing sugars,
flavonoids,
anthocyanins, steroids
and terpenoids

Leaves extract PIC and MES
induced

Swiss albino
mice

200, 400 and
800 mg/kg

Blocking Na+

channels
Viswanatha et al.
(2016)

6 Imperata
cylindrica (L.)

Flavonoids,
polyphenols, and
chromones (1 and 2)

Whole plant extract Mechanical
stress

D.
melanogaster

0.1–0.5 g/
mL

Voltage-gated
sodium ion
channels’
inhibitory
properties

Ssempijja et al.
(2023)

7 Eclipta alba
(linn.)

Alkaloids,
carbohydrates,
phenolic compounds
and coumarins

Leaves extract MES induced Mice 50 mg/kg Inhibition of
voltage gated
sodium
channels

Shaikh et al. (2012)

8 Ipomoea
asarifolia

Flavonoids and
saponins

Leaves extract 4-AP induced Chicks
(cockerel) and
Swiss mice

300 mg/kg Interfering with
potassium
channels

Chiroma et al.
(2022a)

9 Urtica dioica
Linn

Steroids, terpenoids,
flavonoids specially
quercetin, isoquercitrin,
astragalin, kaempferol,
isorhamnetin and rutin,
phenolics,
i.e., phenylpropanes,
scopoletin, caffeic acid
and chlorogenic acid,
coumarins,
polysaccharides,
proteins, lectins, vitamins
and minerals

Root extract MES and PTZ
induced

Swiss albino
mice

100 and
200 mg/kg

inhibition of
Na+ channels

Loshali et al. (2021)

10 Phyllanthus
Amarus

Phyllathin Arial parts extract PTZ induced Male Swiss
albino mic

50, 100, and
200 mg/kg)

Inhibition of
voltage-gated
ion channels
(Na+, K+/Ca+2-
ATPase)

Tao et al. (2020)

11 Hippophae
rhamnoides

Various
phytochemicals

Whole plant extract Intracortical
iron (5 μL of
100 mM
FeCl3)
injection

Male adult
Wistar rats

1 mL/kg Modulation of
Na+, K+

ATPase
activity, and
regulate the
expression of
sodium
channel Nav.
1.1 and
Nav 1.6

Ladol and Sharma,
(2021)

(Continued on following page)
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TABLE 3 (Continued) Anticonvulsive effect of plant extract and phytochemicals isolated from various plants targeting VGCCs, VGSCs, and Kv.

S.
No

Plant Phytochemical Plant extract/
Isolated
phytochemical
used

Model(s)
used

Specie
(s)

Dose (s) Target(s) References

12 Ageratum
Conyzoides L

Flavonoids, alkaloids or
terpenes

Whole plant extract MES and PIC
induced

Male Swiss
albino mic

200, 400 and
800 mg/kg

Blocking Na+

or K+ channels
Randrianavony
et al. (2020)

13 Magnolia
officinalis

Magnolol Phytochemical PTZ induced - - Inhibition of
both VGSC
and Kv
channels

Gong et al. (2012)

14 Wedelia
chinensis

Alkaloids, flavonoids,
saponins, and steroids

Whole plant extract MES and PTZ Swiss albino
mice

250, 500 and
750 mg/kg

Sodium
channel
blockage

Mishra et al. (2011)

15 Carum copticum
Benth

Thymol Phytochemical MES, PTZ, and
4-AP induced

Adult male
Wistar rats

5–25 mg/kg Inhibition of
voltage-gated
Na+ channels

Sancheti et al.
(2014)

16 Cassia auriculata Flavonoids, tannins,
lipids, polyphenols,
triterpenoids and
steroids

Seed extract PTZ and MES
induced

Mice 1000 mg/kg Sodium
channel
blockage

Nanumala et al.
(2018)

17 Sapindus
Emarginatus and
Acorus calamus

Alkaloids, flavonoids,
saponins and tannins

Leaves extract MES and PTZ
induced

Albino mice 200 and
400 mg/kg

Inhibition of
voltage-
dependent
sodium and
calcium
currents

SHOUGRAKPAM
et al. (2021)

18 Cyperus
rotundus

Contain β -sitosterol,
cyperene, cyperol,
flavonoids,
sesquiterpenoids,
vitamins and
polyphenols

Roots extract MES and PTZ
induced

Albino rats 100 mg/kg Inhibition of
voltage gated
Na+ channels

Shivakumar et al.
(2009)

19 Pandanus
odoratissimus
Linn

Alkaloids, lipids,
terpenes, triterpenoids,
flavonoids and
coumarins

Leaves extract MES, PTX, and
strychnine
induced

Swiss Albino
mice

100 and
200 mg/kg

Activation of
potassium ion
channels

Adkar et al. (2014)

20 Carissa edulis saponins, tannins,
flavonoids, and cardiac
glycosides

Root bark extract Strychnine,
MES, PIC,
INH, and PTZ
induced

Swiss Albino
mice

5,000 mg/kg Inhibiting
voltage gated
sodium
channels

Ya’u et al. (2015)

21 Marsilea
quadrifolia Linn

Alkaloids, Saponins,
Phenolic compounds
and tannins

Whole plant extract MES and PTZ
induced

Male Wistar
rats

200, 400,
and
600 mg/kg

Inhibiting
voltage gated
sodium
channels

Snehunsu et al.
(2013)

22 Solanum
sisymbriifolium
Lam

Solasodine Fruits extract MES, PIC, and
PTZ induced

Wistar albino
rats

25, 50, and
100 mg/kg

Inhibition of
voltage-
dependent Na
+ channels

Chauhan et al.
(2011)

23 Psydrax
subcordata (DC.)

Anthiumosides 1–5,
together with nine
known compounds,
shanzhigenin methyl
ester, 1-
epishanzhigenin
methyl ester, linearin,
1-epilinearin,
mussaenoside,
shanzhiside methyl
ester, 3′,4′,7-
trihydroxyflavone,
betulinic acid and
oleanolic acid

Leaves extract 4-AP, PTZ,
PIC, and INH
induced

Albino mice 30, 100 and
300 mg/kg

Activation of
potassium ion
channels

Daanaa et al.
(2018)

(Continued on following page)
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Moreover, several studies have been reported on various types of
phytochemicals, and medicinal plant extracts invitro against
epilepsy by modulation of the Na + channels and show
promising activities (Lai et al., 2022; Milligan et al., 2022). These
plants and compounds could be investigated on the animal models
to further evaluate their efficacy, toxicity, safety, and dose
determination.

8 Modulation of voltage-gated
potassium channels

Potassium channels (Kv channels) are the largest family, consisting
of twelve sub-families. There is a total of 350 expressed ion channels
have been reported in the mammalian brain, of which 145 are voltage-
gated channels. Among the voltage-gated channels, 40 are Kv channels,

TABLE 3 (Continued) Anticonvulsive effect of plant extract and phytochemicals isolated from various plants targeting VGCCs, VGSCs, and Kv.

S.
No

Plant Phytochemical Plant extract/
Isolated
phytochemical
used

Model(s)
used

Specie
(s)

Dose (s) Target(s) References

24 Jatropha curcas alkaloids, tannins,
saponins,
carbohydrates,
anthraquinones, and
other phenolic
compound

Leaves extract MES induced Male albino
mice

200 and
400 mg/kg

Inhibit
voltage.
Dependent
sodium
channels

Bolanle et al. (2018)

25 Anogeissus
latifolia (Roxb.)

Ellagic acid Stem bark extract MES and PTZ
induced

Swiss albino
mice

200, 400,
and
600 mg/kg

Inhibition of
voltage-gated
Na + channel

Sharma and
Kaushik, (2018)

26 Anisomeles
malabarica

Flavonoids and other
important
phytochemicals

Leaves extract PTZ and MES
induced

Male Wistar
rats

200 and
400 mg/kg

Inhibition of
voltage-gated
Na + channel

Choudhary et al.
(2011)

FIGURE 5
Three states of the VGSCs, i.e., closed, open, and inactivated states (Mantegazza et al., 2010). Copyright permission@ Elsevier 2010.
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which are further classified into 12 subfamilies (Kv1-Kv12) and
represent the largest group of channels (Köhling and Wolfart, 2016).
These are activated by the depolarization and deactivated by the
repolarization (Köhling and Wolfart, 2016; Ranjan et al., 2019). Kv
channels plays a significant role in the homeostasis of the cell’s internal
environment by the efflux of potassium (K+) ions from the cell and,
therefore, plays a role in the control of action potential and
hyperpolarization. However, when dysregulation occurs in the
normal function of these channels, such as the mutation in the
subunits of Kv channels is one of the causes of inherited epilepsy
(Nikitin and Vinogradova, 2021). Therefore, these are considered the
main targets for the development of drugs against epilepsy. It has been
reported that the extract of several plants and phytochemicals has the
potential to modulate these receptors to help in the control of seizures
(Khan et al., 2020).

4-hydroxybenzoic acid (4-hba) is a benzoic acid derivative and is
present in various plants, including Dendrocalamus asper, commonly
known as bamboo. 4-hba has a lower molecular weight of 138.12 and,
therefore, can cross the BBB and cerebrospinal fluid (CSF) (Camusso
et al., 2007). In addition, no cytotoxic activities have been reported.
Jingli and colleagues investigated the effect of the 4hba on the Kv, and
they reported that 4hba enhanced the activity of the potassium channels
family Kv1.4 and contributed to the reduction of membrane excitation
(Zhang et al., 2018). Therefore, from these results, we can conclude that
the 4hba compound could help in controlling the depolarization and
excitation of neurons in seizures and, therefore, can be a potent agent
against epilepsy in the future. In addition, further investigation can be
carried out for the study of other phytochemicals from the same plant
and evaluation of their anticonvulsive properties.

Pseudospondias macrocarpa is widely used for the treatment of
various diseases, especially for neurological disorders in Africa. It has
been traditionally reported that, the plant has a sedative effect on the
people who can sit or sleep under this plant (Wickens, 1986). The
anticonvulsive activity in six various epilepsy animal models has been
reported. The authors reported that 30, 100, and 300 mg/kg ethanolic
leaves extract significantly increased the seizure onset time and
reduced the frequency and duration of the seizures. In addition,
the prophylactic use of the extracts significantly improved the survival
rate. The authors did not investigate the mechanism of action of the
extract; however, from the previous studies on the other plants and
phytochemicals from the same groups, they concluded that the
promising ability of the plant extract may probably be due to
affecting the GABAergic, NMDA, Kv channels, and nitric oxide
cGMP pathways (Adongo et al., 2017). However, further studies
should be carried out to find out the exact mechanism of action
for further use to treat epilepsy and other diseases. Recently, a similar
study was reported by Manville et al., 2023. In this study, they used
Salvia rosmarinus, commonly known as Rosemary extract, against
epilepsy. In this article, the authors reported that this plant contains
two important compounds, carnosic acid and phenolic diterpene, and
both showed promising activities on the selective isoforms of KCNQ
(Manville et al., 2023). These compounds could be used as potential
antiepileptic agents alone or in combination with other drugs.

The type of drug and dosage varies from person to person based on
the types and severity of epilepsy. For example, a combination of drugs
will be given to control the seizure. It has also been reported that the
phytochemicals in combination with modern drugs have a strong
antiepileptic effect as compared to the modern drug alone. Manville

and Abbott 2018 conducted a very interesting study in which they used
two components, mallotoxin (MTX) and isovaleric acid (IVA), of
Mallotus oppositifolius leaf extract (Manville and Abbott, 2018).
First, the authors evaluated the anticonvulsive effect of these two
compounds separately, and they were ineffective. Then they tested
the synergistic effect of these two compounds, and interestingly, they
showed promising results on the modulation and opening of Kv
channels isoform KCNQ2–5, and the activation of these channels is
of critical importance in the control of seizure, action potential, and
repolarization. After that, they co-administered these two compounds
in combination with themodern antiepileptic drug retigabine. From the
results, they concluded that the two Phyto flavonoids in combination
with the modern molecules were more effective than the two
phytocompounds alone (Manville and Abbott, 2018). We can
conclude that the medicinal plant extract and phytochemicals have
antiepileptic activities alone; however, if we use them in combination
with modern drugs, it could further enhance the efficacy of the drug.
However, further research could be carried out to determine the effect of
the current phytochemicals tested in combination with modern drugs.

Several studies have been reported on the use of plant extract or
isolated phytochemicals against various types of epilepsy models.
We summarized the recent literature, and Table 3 shows all those
plants and phytochemicals that play a significant role in controlling
seizures by affecting the Kv channels.

9 Antioxidant and anti-inflammatory
activity of plant extracts and
phytochemicals

We discussed how a specific receptor, channel, or enzymes play a
significant role in the development of epilepsy. In addition, we also
discussed that epilepsy is basically the imbalance of the excitatory and
inhibitory neuronal pathways, in which when excitation occurs then,
the inhibitory neurons fail to control the action potential and repolarize
the membrane. However, the dysfunction of these molecular entities
involved is not only due to mutations in the genes. There are several
reasons which directly or indirectly contribute to the development of
epilepsy. For example, different types of microorganisms, such as
bacteria, viruses, and fungi, can cause epilepsy. When these
microorganisms enter the body or specifically the brain, it causes
inflammation due to which different types of interleukins or
cytokines are released; it also can activate the autoimmune system,
which releases antibodies that can attack different types of receptors and
contribute to epileptogenesis and hence considered the cause of
epilepsy. Vezzani et al., 2016 summarized comprehensive
information on the causes and mechanism of infection and
inflammation in epilepsy. In addition, some metabolites and other
signalling pathways and receptors are directly or indirectly involved.
Plants and phytochemicals can also act on thesemolecules and can help
control seizures and treat epilepsy (Vezzani et al., 2016).

The excessive increase of reactive oxygen species (ROS) leads to
an increase in levels of Ca+2 ions, which play a critical role in the
initiation and propagation of seizure, as well as results in the entry of
the neurotoxin and inflammatory cells, which are considered
mediators of seizure (DeLorenzo et al., 2006). Therefore, the
reduction and control of ROS help in the control of seizures. The
effect of ferulic acid, a phenolic compound found in many plants,
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TABLE 4 Effect of plant extracts and isolated phytochemicals from various plants on inflammation, reactive oxygen species, oxidative stress, and other pathways for the control of seizure and treatment of epilepsy.

S.
No

Plant Phytochemical Plant extract/Isolated
phytochemical (s)

Model (s)
used

Specie(s) used Dose (s) Target(s)/Mechanism of
action

References

1 Zingiber officinale Zingerone Phytochemical PILO Induced Male Swiss albino
mice

25 and 50 mg/kg Precluded oxidative stress and
inflammation

Rashid et al. (2021)

2 Passiflora caerulea Ginsenoside, naringenin, apigenin-
6,8-di-C-β-D-glucopyranoside,
chrysoeriol 8-c-glucoside, luteolin-
6-C-glucoside

Fruit extract PILO Induced Male Swiss albino
mice

200 mg/kg Reduced the oxidative damage Smilin Bell
Aseervatham et al.
(2020)

3 Siparuna guianensis and
Matricaria chamomilla

(−)-α-bisabolol Phytochemical PTZ Induced Male Wistar rats 50 and 100 mg/kg Reduced levels of TNF-α, IL-1β, and
MDA oxidative markers

Nazarinia et al. (2023)

4 Curcuma longa Curcumin Phytochemical MES Induced Male Sprague Dawley
rats

- Modulated the MAPK pathway Drion, et al. (2018)

5 Cannabis sativa L.,
Origanum vulgare L

Trans-caryophyllene Phytochemical KA Induced - 30 and 60 mg/kg Exerted anti-inflammatory effects by
suppression of proinflammatory
cytokines, such as TNF-α and IL-1β

Liu et al. (2015)

6 Maerua angolensis DC - Stem bark extract PTZ induced Sprague-Dawley rats 100–1,000 mg/kg Provided protection against free
radicals and the oxidative stress

Benneh et al. (2018)

7 Scutellaria Baicalensis
Georgi

Baicalein Phytochemical PILO induced Male Sprague-Dawley
rats

40 mg/kg Reduces pro-inflammatory cytokines
levels

Qian et al. (2019)

8 Various vegatables Luteolin Phytochemical KA induced Male
Sprague–Dawley rats

10 or 50 mg/kg Mitigating inflammation, and
enhancing Akt activation in the
hippocampus

Lin et al. (2016)

9 - Hispidulin Phytochemical KA induced Sprague-Dawley rats 10 or 50 mg/kg Suppressed the production of
proinflammatory cytokines such as
IL-1β, 6, and TNF-α in the
hippocampus

Lin et al. (2015)

10 Piper nigrum Piperine Phytochemical PILO induced Sprague Dawley rats 40 mg/kg Decreased inflammation and
oxidative stress

Mao et al. (2017)

11 Scutellaria baicalensis
Georgi

Baicalin Phytochemical PTZ induced Male Sprague Dawley
rats

50 mg/kg Modulated TLR4/MYD88/Caspase-
3 pathway

Yang et al. (2021a)

12 Anacyclus pyrethrum Polyphenols, tannins, coumarins,
sterols, triterpenes, alkaloids

Root extract KA induced Male Swiss mice 5 g/L Neuroprotective effect Manouze et al. (2019)

13 Various plants Esculetin Phytochemical PTZ induced Male Wistar rats 10 mg/kg Anti-neuroinflammatory effects Danis et al. (2023)

14 Sinomenium acutum Sinomenine Phytochemical PTZ induced Male Sprague-Dawley
rats

20, 40, and
80 mg/kg

Inhibited NLRP1 inflammasome-
mediated inflammatory process

Gao et al. (2018)

15 Amomum tsaoko - Fruit extract PTZ induced Male Swiss albino
mice

50, 75, and
100 mg/kg

Suppressed the mRNA expressions of
NF-κB, IL-1β, TLR-4, TNF-α, and
COX-2

Wang et al. (2021)
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TABLE 4 (Continued) Effect of plant extracts and isolated phytochemicals from various plants on inflammation, reactive oxygen species, oxidative stress, and other pathways for the control of seizure and treatment of
epilepsy.

S.
No

Plant Phytochemical Plant extract/Isolated
phytochemical (s)

Model (s)
used

Specie(s) used Dose (s) Target(s)/Mechanism of
action

References

16 Pergularia daemia Flavonoids, cardenolides, alkaloids,
phenols, saponins, triterpenes,
glycosides, carbohydrates, saponin,
carbohydrates, glycosides, proteins,
cardiac and tannins

Roots extract PTZ induced Mice 1.6, 4, 8 and
16 mg/kg

Suppressed oxidative stress, and
neuroinflammation

Kandeda et al. (2021a)

17 Phyllanthus amarus Phyllathin Phytochemical PTZ induced Male Swiss albino
mice (weight

100 and 200 mg/kg Downregulated brain mRNA
expressions of NF-κB, TNF-α, IL-1β,
COX-2, and TLR-4

Tao et al. (2020)

18 Prunes Alleviates Pinoresinol-4-O-β-d-
glucopyranoside

Phytochemical PILO induced Male Wister rats 50 mg/kg Alleviation of neuroinflammation Youssef et al. (2020)

19 Otostegia limbata Phenols and flavonoids Whole plant extract PTZ induced Male Swiss albino
mice

100, 200, and
300 mg/kg

Downregulated p-NFκB and TNF-α
expression

Amin et al. (2022)

20 Cnestis ferruginea - Root extract KA induced Mice 400 mg/kg Attenuation of neuro-inflammatory
transcription factors

Ojo et al. (2019)

21 Passiflora incarnata Amino acids, and a cyanogenic
glycoside gynocardin, nonflavonoid

Flowers extract PILO induced Sprague Dawley adult
male rats

200 mg/kg Exerted antioxidant and anti-
inflammatory cascade activities

Gad et al. (2022)

22 Stevia rebaudiana
Bertoni

- Leaves extract PTZ induced Sprague-Dawley rats 200 mg/kg Downregulated GFAP, IL-6, NF-kB,
caspase-3, and p53

El Nashar et al. (2022)

23 Genipa americana Polysaccharides and many more Leaves extract PTZ induced Male Swiss mice 1 or 9 mg/kg Possess anti-inflammatory and
antioxidant activities

Nonato et al. (2024)

24 Rosa webbiana - Fruits extract PTZ induced Male
Sprague–Dawley rats

50, 150 and
300 mg/kg

Downregulation of neuro-
inflammation, p-TNF-α and
p-NF-κB

Firdous et al. (2021)

25 Echinops spinosus Polyacetylene, thiophene, flavone
glycoside, alkaloids, and
benzothiophene glycoside

Whole plant extract PTZ induced Male Wistar rats 250 mg/kg Exerted neuromodulatory,
antioxidant, anti-inflammatory effect

Alkhudhayri et al.
(2023)

26 Nelumbo nucifera
Gaertn

Neferine Phytochemical KA induced Male Sprague-Dawley
rats

10 and 50 mg/kg Inhibiting NLRP3 inflammasome
activation and decreasing
inflammatory cytokine secretion

Lin et al. (2022)

27 Glycyrrhiza radix Glycyrrhizin Phytochemical PTZ induced Zebrafish 25, 50, and
100 mg/kg

Downregulated level of HMGB1,
TLR4, NF-kB, and TNF-α mRNA
expression

Paudel et al. (2021)

28 Albizia adianthifolia Apocarotenoids, imidazolyl
carboxylic acids, alkaloids, steroids,
flavonoids, triterpenoids,
elliptosides, fatty acids, saponins,
and saponins

Leaves extract PTZ induced Male mice Mus
musculus Swiss

40, 80, or
160 mg/kg

melioration of oxidative stress and
neuroinflammation

Nkwingwa et al.
(2023)
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TABLE 4 (Continued) Effect of plant extracts and isolated phytochemicals from various plants on inflammation, reactive oxygen species, oxidative stress, and other pathways for the control of seizure and treatment of
epilepsy.

S.
No

Plant Phytochemical Plant extract/Isolated
phytochemical (s)

Model (s)
used

Specie(s) used Dose (s) Target(s)/Mechanism of
action

References

29 Rhodiola rosea Salidroside Phytochemical PTZ induced Male Wistar rats 50 mg/kg Activating the Nrf2-ARE signal
pathway

Wu et al. (2020)

30 Ginkgo biloba - Whole plant extract PILO induced Male C57BL/6 mice 100 mg/kg Inhibiting lncRNA-COX2/NF-κB
inflammation signalling

Zou et al. (2023)

31 Psychotria camptopus - Stem bark extract PTZ induced Male Wistar rats 40, 80 and
120 mg/kg

Augmentation of antioxidant and
neuroprotective defense mechanisms

Fokoua et al. (2021a)

32 Boraginaceae species Rosmarinic acid Phytochemical KA induced Male Wistar rats 10 or 300 mg/kg Mitigates oxidative stress Khamse et al. (2015)

33 Rosmarinus officinalis Homoplantaginin, gallocatechin, 6-
hydroxyluteolin-7-glucoside,
genkwanin, cirsimaritin, luteolin-3′-
glucuronide

Leaves extract PTZ induced Male Wistar rats 100 mg/kg Increased antioxidation Alrashdi et al. (2023)

34 Various plants Luteolin Phytochemical PTZ induced Rats - inhibition of the TLR4/IκBα/NF-κB
pathway

Cheng et al. (2024)

35 Vanilla planifolia Vanillin Phytochemical PTZ induced Male Swiss albino
mice

40 mg/kg Downregulating the HMGB1/RAGE/
TLR4/NFκB pathway

Almostafa et al. (2024)

36 Tephrosia species (−) Pseudosemiglabrin Phytochemical PILO induced BALB/c mice 12.5, 25, or
50 mg/kg

Suppressed TLR-4/NF-κB and the
enhancement of the Nrf2/HO-1 and
PI3K/Akt pathways

Balaha et al. (2023)

37 Alchemilla Kiwuensis
Engl

Flavonoids, alkaloids, and tennins Whole plant extract PTZ induced Albinos Wistar rats 40 mg/kg,
80 mg/kg

Modulation of neuroinflammatory
pathways

Foutsop et al. (2023)

aFor abbreviations, see List of abbreviations.
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has been evaluated against the PTZ-induced model of epilepsy
(Hassanzadeh et al., 2017). The authors administered 70 and
100 mg/kg doses of ferulic acid and reported that both of the
doses significantly reduced seizure scores, myoclonic jerks, and
cognitive decline. The authors investigated the glutathione (GSH)
levels, which are the indicators of ROS, and they found that
significant differences were found in the treatment group and
PTZ controlled group. They finally concluded that the antiseizure
effect of ferulic acid was due to the reduction of GSH content in the
brain (Hassanzadeh et al., 2017). In another study, Smilin Bell
Aseervatham et al., 2020 evaluated Passiflora caerulea L. fruit
extract against the PILO-induced model, and it reported that the
phytochemicals such as apigenin-6,8-di-C-β-D-glucopyranoside
present ameliorate the seizure, cognitive deficit, and oxidative
stress (Smilin Bell Aseervatham et al., 2020). Several studies have
reported that the phytochemicals target the ROS and reduce the
oxidative stress to control the seizure (Table 4).

Tumor necrosis factor (TNF- α), interferon (IFN- γ), and
interleukins such as IL-6 and IL-1β have been reported to cause
the failure of the BBB. Similarly, the disparity in pro and anti-
inflammatory cytokines further worsens organ damage and is
involved in the pathogenesis of epilepsy (Abdallah et al., 2022). IL-
6 is a pro-inflammatory cytokine and is considered one of the
biomarkers found in the blood and brain of epileptic patients
(Youn et al., 2013). Shaimaa and coworkers conducted a
comprehensive study on the use of Moringa oleifera seeds extract

in pilocarpine-induced epileptic rats with temporal lobe epilepsy
(Fayez et al., 2023). The authors used various doses of the extract and
reported that the extract extensively modulates the pro and anti-
inflammatory cytokines. They further clarify that the extract
contained various important phytochemicals that had
anticonvulsive effects by suppressing the pro-inflammatory
cytokines TNF-α, IL-1β, IL-6, and IFN-ɣ and increasing the
levels of anti-inflammatory cytokines TGF-β and IL-10 in the
hippocampal tissue of the animal model. The authors also
compared the results with the standard drug diazepam treatment
group and concluded that the moringa seed extracts possess strong
antiepileptic properties and could be used for the treatment of
seizures Figure 6 (Fayez et al., 2023). In another study, the
authors used P. daemia against a PTZ-induced model of
temporal lobe epilepsy. They also reported that the extract and
reported that the phytochemicals in the extract lead to the
suppression of the pro-inflammatory cytokines such as TNF 1β
and −6 in the hippocampus and, therefore, lead to a decrease in the
latency and duration of seizure and increase the score of seizure. In
addition, they further reported that the extract alleviates kainite-
induced impairment and finally concluded that the extract possesses
strong antiepileptic properties and could be used for the treatment of
epilepsy (Kandeda et al., 2021b). Emblica officinalis hydrochloric
acid extracts also reported that same results in kainic acid induce
model of epilepsy. Many studies have reported that plant extracts
and phytochemicals could suppress the pro-inflammatory

FIGURE 6
A comprehensive summary of moringa extracts in the rat model of temporal lobe epilepsy (Fayez et al., 2023). Copyright permission@ Elsevier 2023.
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phytochemicals as well as increase the anti-inflammatory
phytochemicals (Golechha et al., 2011). Therefore, these plants
could be used for the treatment of epilepsy. We summarized
some phytochemicals and plant sources that have anti-
inflammatory properties and were investigated for the treatment
of epilepsy, as shown in Table 4.

In addition, phytochemicals can also target and modulate
various signalling pathways, which also play a role in the
development and propagation of seizures. Several studies have
been reported, including Inhibition of the NF-κB/TLR-
4 Pathway (Tao et al., 2020), interaction with CREB-BDNF
Pathway (Sharma et al., 2019; Zarneshan et al., 2022), AMPK/
PPAR-α (Yang Y. et al., 2021) and AKT/CREB/BDNF (Yu et al.,
2019) signalling pathways, and GluR2/ERK I/II pathway
inhibition.

10 Conclusion and future prospects

Epilepsy is a complex and multifactorial neurological disease in
which various receptors, membrane protein channels, enzymes, and
pathways are involved in the epileptogenesis and worsening of a
disease condition. Although a plethora of drugs are available in the
market, but still about 30% of individuals show resistance to the
current medication. In addition, these drugs also have some
limitations, such as side effects, high price, and availability,
especially in low-income countries. Therefore, there is a need for
multitargeted approaches that are pocket-friendly, readily available
and have no or fewer side effects.

Since immemorial, medicinal plants have been widely used for the
treatment of various types of ailments, including neurological disorders,
especially epilepsy. There are several advantages of these phytotherapeutic
options compared to the synthetic drugs and pharmacological agents as
mentioned. Plant extracts and isolated phytochemicals have been widely
used in various animal models and have shown promising potential for
the control of seizures and the treatment of epilepsy. These plant-based
materials can target all the known targets for the currently available
AEDs, as shown in Figure 2. In addition, it also targets other important
pathways such as inflammatory, oxidative stress, and many others, as
shown in section 9, as their inherited properties, such as anti-
inflammatory and antioxidants, are mainly responsible for
neuroprotective effects as well. Furthermore, the multitargeted
potential of these plant-based materials has been observed to be
superior to that of synthetic drugs. These can target various types of
targets at the same time. For example, the whole plant extract of
Alchemilla kiwuensis was used against the PTZ-induced epileptic rats
model. The authors document that the extract has a significant
antiepileptic effect, decreasing GABA-T enzymes, which leads to an
increase in the GABA levels in the brain. In addition, it modulates the
glutamatergic pathway and possesses anti-neurotic and antioxidant
properties. This means that a single plant extract can target four
pathways. In the drug resistant epilepsy, which is one of the main
focus of the current antiepileptic research in which, two or more drugs
with different mechanism of action or targets are used for the treatment.
From the current literature, we can conclude that the plant extracts and
isolated phytochemicals possess strong antiepileptic properties and could
be used for the treatment of epilepsy, especially in lower income countries
andpatientswith drug-resistant epilepsy.WHOalso recommends the use

of medicinal plants in various healthcare benefits programs in various
countries. However, before the use, safety, dosage, exact mechanism of
action, and therapeutic efficacy should be properly evaluated.

Until this time, hundreds of plants and their phytochemicals
have been evaluated in vitro and in vivo against epilepsy and showed
a potential effect. Unfortunately, only a few phytochemicals enter
human clinical trials. Most phytochemicals are used in countries
where people have lower purchasing power. Perhaps, in addition to
this fact, the lack of investment in basic research, applied research,
and folk medicine to understand certain plants also occurs.
Similarly, other reasons could be ignorance of side effects, safety,
specific dose, cytotoxicity, exact mechanism of action, complete
knowledge and structure of the phytochemicals, and many more.
Therefore, precise, rigorous, and extensive research could be carried
out to investigate all these before entering into clinical trials. In
addition, traditional methods for the identification of species are also
adequate, and therefore, DNA barcoding could be used for the
identification and screening of plant species. In conclusion,
medicinal plants could be one of the main treatment options
against epilepsy in the near future if we ensure the safety,
efficacy, and effective dosage. This treatment strategy will be
cost-effective, easily available worldwide, lower toxicity on health
cells, and could eliminate the burden of epilepsy.
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Glossary

WHO World Health Organization

ILAE International League Against Epilepsy

AEDs Antiepileptic Drugs

NMDAR N-methyl-D-aspartate receptor

GABAR gamma-aminobutyric acid receptor

AMPAR α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

USFDA United States food and drug administration

MES maximal electrical shock

PTZ pentylenetetrazol

L-GAD l-glutamate decarboxylase

TNF Tumor necrosis factor

IFN interferon

IL Interleukins

BBB Blood brain barrier

GSH glutathione

ROS reactive oxygen species

Ca+ calcium ion

Na+ Sodium ion

K+ potassium ion

Kv Voltage Gated potassium channel

VGSCs Voltage gated sodium channels

VGCCs Voltage gated calcium channels

CBD cannabidiol

HPLC/MS High performance liquid chromatography mass spectrometry

EEG electroencephalography

GABA-T Gamma-aminobutyric acid transaminase

PILO Pilocarpine

PIC Picrotoxin

4-AP 4-aminopyridine

KA Kainic acid

Nrf2 Nuclear factor erythroid 2 [NF-E2]–related factor 2

HMGB1 High mobility group box 1

NLRP3 NOD-LRR- and pyrin domain-containing protein 3

GFAP Glial fibrillary acidic protein

COX-2 Cyclooxygenase-2 inhibitors

MYD88 Myeloid Differentiation Primary Response Protein 88

TLR4 Toll-like receptor 4

NF-κB nuclear factor-kappa B
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