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As global population and lifestyles change, osteoarthritis (OA) is becoming a
major healthcare challenge world. OA, a chronic condition characterized by
inflammatory and degeneration, often present with joint pain and can lead to
irreversible disability. While there is currently no cure for OA, it is commonly
managed using nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids,
and glucosamine. Although these treatments can alleviate symptoms, it is difficult
to effectively deliver and sustain therapeutic agents within joints. The emergence
of nanotechnology, particularly in form of smart nanomedicine, has introduced
innovative therapeutic approaches for OA treatment. Nanotherapeutic strategies
offer promising advantages, including more precise targeting of affected areas,
prolonged therapeutic effects, enhanced bioavailability, and reduced systemic
toxicity compared to traditional treatments. While nanoparticles show potential
as a viable delivery system for OA therapies based on encouraging lab-based and
clinical trials results, there remails a considerable gap between current research
and clinical application. This review highlights recent advances in nanotherapy for
OA and explore future pathways to refine and optimize OA treatments strategies.
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1 Introduction

Osteoarthritis (OA) is a prevalent condition, affecting over 500 million people
worldwide, which is equates to approximately 7% of the world’s population (Duan
et al., 2023). From 1990 to 2019, the prevalence of OA increased by 48% (Hunter et al.,
2020), underscoring its growing impact. Research increasingly indicates that factors such as
obesity, aging, poor dietary habits, and hypertension significantly contribute to the
progression of OA (Colletti and Cicero, 2021). The primary objectives in managing OA
are pain relief, reduce of joint inflammation, enhancing joint function, and minimizing
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overall disability (Filardo et al., 2015; De Faro Silva et al., 2022).
Standard treatment typically involves intra-articular drug injections
and surgical interventions (Ebert et al., 2013); however, these
approaches often fall short in efficacy. Surgical treatments, in
particular, are complex and require prolonged recovery periods
(Conaghan et al., 2019). While commonly used clinical
treatments like NSAIDs, glucocorticoids, and glycosaminoglycan
can provide symptomatic relief, but do little to halt the progression
of OA (Katz et al., 2021), highlighting the urgent need for more
effective treatments.

In recent decades, significant progress has been made in the field
of nanomedicine for treating various diseases (Janowicz et al., 2022;
Zhang Z. et al., 2022; Han and Huang, 2023). In the context of OA,
researchers are working on developing nanocarrier systems to utilize
nanoparticles to extend the duration of drug efficacy, allowing for a
gradual release of the therapeutic agents and improving their
penetration into chondrocytes or synovial cells (Mitchell et al.,
2021; Dilliard et al., 2021; Boehnke et al., 2022). Despite these
promising advancements, no nanotherapeutic drugs for OA have
yet received clinical approval. This review aims to explore recent
developments in nanomedicine for OA treatment, providing a
comprehensive overview of its properties, potential benefits, and
the challenges that must be addressed for clinical application.

2 Pathogenesis of osteoarthritis

Osteoarthritis (OA) is characterized by a complex interplay of
pathological changes within affected joints, including the
deterioration of articular cartilage (Krishnan and Grodzinsky,
2018), inflammation of the synovial membrane (Hu et al., 2019),
remodeling of the subchondral bone (Zhu et al., 2021), and the
development of osteophytes (McCulloch et al., 2017). The widely
accepted theory is that OA arises from an imbalance between
degradation and repair of cartilage (Guilak et al., 2018). Articular
cartilage, which is crucial for smooth joint movement, consists
primarily of chondrocytes embedded in an extracellular matrix
(ECM) rich in type II collagen and proteoglycans (Zou et al.,
2021). Under normal conditions, chondrocytes maintain cartilage
integrity by synthesizing type II collagen and proteoglycans while
also regulating the activity of enzymes such as matrix
metalloproteinases (MMPs). These enzymes are responsible for
maintaining a balance between the breakdown (catabolism) and
synthesis (anabolism) of cartilage components (Guo et al., 2018; Li
T. et al., 2022).

Various factors, including mechanical stress, metabolic changes,
aging, and inflammation, contribute to the progression of OA.
Mechanical stress, such as that caused by joint overuse or injury,
can lead to the release of damage-associated molecular patterns
(DAMPs) from damaged tissues, which activate pattern recognition
receptors (PRRs) on immune cells line macrophages (Li and Wu,
2021). This, in turn, stimulates the production of pro-inflammatory
cytokines, including Tumor Necrosis Factor-alpha (TNF-α) and
Interleukin-1β (IL-1β) (Molnar et al., 2021). Obesity exacerbates this
process through chronic low-grade inflammation, known as
“metaflammation”, where expanded adipose tissue expansion
leads to increased macrophage infiltration pro-inflammatory
M1 phenotype, characterized by high levels of TNF-α and IL-1β

production (Li et al., 2023). Aging further contributes to OA through
“inflammaging,” a state of chronic, low-grade inflammation driven
by the accumulation of senescent cells, oxidative stress, and altered
immune function, all of which contribute to increased production of
inflammatory (Chow and Chin, 2020; Wojdasiewicz et al., 2014; Liu
et al., 2022a).

Inflammatory cytokines have a profound effect on
chondrocytes, leading to phenotypic changes that disrupt
cartilage homeostasis. These cytokines suppress the production of
type II collagen and proteoglycans in chondrocytes by activating
pathways like Mitogen-Activated Protein Kinase (MAPK) and
Nuclear Factor-kappa B (NF-κB), particularly through the
influence of mediator like prostaglandin E2 (PGE-2), Nitric
Oxide (NO), and cyclooxygenase-2 (COX-2) (Ma et al., 2016;
Teng et al., 2023; Chen et al., 2018; Yao et al., 2022; Lu R. et al.,
2023). This shift increases the production of specific MMPs (e.g.,
MMP1, MMP3, MMP9, MMP13) while reducing the synthesis of
collagen and proteoglycans (Ling et al., 2021; Tian et al., 2021),
which collectively contribute to the breakdown of the ECM.

As ECM breaks down, it releases various molecular fragments
that act as DAMPs, further activating PRRs on macrophages and
chondrocytes (Son et al., 2020; Lambert et al., 2021; Foell et al., 2007;
Rahmati et al., 2016; Hügle et al., 2022). This perpetuates the
inflammatory cycle, enhancing the activation of NF-κB and
MAPK pathways, and accelerating cartilage degradation (Moon
et al., 2018; Liao et al., 2020; Xu et al., 2022; Boehme and
Rolauffs, 2018). Additionally, hypoxia within the joint
microenvironment exacerbates inflammation, activating the
NLRP3 inflammasome in macrophages and leading to the release
of pro-inflammatory cytokines such as IL-8, MCP-1, CXCL12,
CCL22, and MIP-1α (Quero et al., 2020; Raghu et al., 2017;
Kuang et al., 2020; Ren et al., 2021; Hou et al., 2020; Zhao et al.,
2020). These cytokines contribute to the recruitment and activation
of additional immune cells, further perpetuating the inflammatory
cycle (Nelson et al., 2011) (Figure 1).

As OA progresses, cartilage degeneration extends into the
calcified layer, promoting pathological changes in the
subchondral bone, including the formation of osteophytes around
the joint periphery (Hu et al., 2021; Roelofs et al., 2020). Addressing
these inflammatory pathways and restoring the balance between
cartilage degradation and synthesis are critical strategies in
preventing and treating OA.

3 Nanomedicines to reduce
inflammation of synovial and
articular cartilage

Current clinical approaches to OA treatment are categorized
into three main types: non-pharmacologic management,
pharmacologic management, and surgical interventions (Emami
et al., 2018; Evans et al., 2014). Non-pharmacologic methods,
such as exercise and physical therapy, are often employed to
alleviate symptoms. However, there strategies primarily address
the symptoms rather than the underlying pathology of OA, and
in some cases, improper application may exacerbate the condition
(Lin et al., 2023; Furtado et al., 2022). Surgical interventions, such as
arthroscopic surgery or joint replacement, provide more direct
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solution but are associated with high costs, invasiveness, and
substantial risks, particularly in elderly patients or those with
comorbidities (Skou et al., 2015).

Pharmacologic treatments, although less invasive than surgery,
also present significant limitations. Commonly used drugs such as
nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids
(GCs), glycosaminoglycans (GAGs), opioid analgesics, steroids,
and hyaluronic acid (HA), can be administered via various
routes, including oral, intravenous, intra-articular, and

transdermal methods (McGuckin et al., 2022; Oo et al., 2021).
Despite their widespread use, these pharmacologic approaches
are hindered by issues such as limited local drug concentration
in the joints, rapid drug clearance from synovial fluid, and systemic
side effects, including gastrointestinal, renal, and cardiovascular
complications, particularly with long-term use (Evans et al., 2014;
Togo et al., 2022; Cooper et al., 2019).

Nanotechnology has emerged as a promising avenue for
overcoming the limitations of traditional OA therapies.

FIGURE 1
Pathogenesis of osteoarthritis. Within the OA-affected joints, macrophages play a critical role by secreting pro-inflammatory cytokines and
chemokines such as IL-8, MCP-1, CXCL12, CCL22, and MIP-1α in response to various stimuli including hypoxia and low molecular HA. These
inflammatory mediators contribute to the activation of chondrocytes. Activated chondrocytes express elevated levels of matrix-degrading proteases,
particularly MMP1, 3, 9, and 13, via the NF-κB and MAPK signaling pathways, induced by pro-inflammatory factors like PGE-2, NO, and COX-2. This
upregulation of proteases leads to the degradation of the extracellularmatrix, a hallmark of OA progression. The figure underscores the importance of the
NF-κB and MAPK pathways in the catabolic processes of cartilage degradation, highlighting potential targets for therapeutic intervention to mitigate the
progression of OA.
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Nanoparticles, when utilized as drug carriers, have the unique ability
to selectively accumulate in affected joints, minimizing systemic
exposure and maximizing local therapeutic effects (Huang et al.,
2022; Li X. et al., 2021). These carriers can also stabilize encapsulated
drugs, enabling controlled and sustained release, which prolongs
drug retention time and reduces site-specific toxicity (Huang et al.,
2022). Moreover, nanomaterials can be engineered as
stimulus–responsive drug delivery systems, triggered by external
stimuli such as temperature, magnetic fields, and electric fields (Said
et al., 2019). This targeted and on-demand drug delivery system
enhances therapeutic efficacy while mitigating the risk of side effects.

Nanomedicine in OA treatment involves the delivery of various
therapeutic agents, including small-molecule drugs, nucleic acids,
and peptides/proteins, via nanomaterials designed to inhibit OA
progression. By offering more precise, sustained, and responsive
drug delivery, nanomedicine holds significant promise for
improving OA management, addressing both symptoms and
underlying pathologies, and overcoming the limitations of
traditional therapies (Dou et al., 2020; Kumar et al., 2019; Xu
et al., 2023).

3.1 Combination of nanotechnology with
anti-inflammatory drugs

OA is a multifactorial disease characterized by the progressive
degradation of joint cartilage and the inflammation of synovial
membranes (Scanzello and Goldring, 2012). Inflammation is a
key driver of OA progression, where inflammatory cytokines,
such as TNF-α and IL-1β, play a central role. Traditional
pharmacological interventions like NSAIDs, glucocorticoids
(GCs), steroids, and Glycosaminoglycans (GAGs), aim to alleviate
symptoms by suppressing inflammation (Strokotova and

Grigorieva, 2022; Magni et al., 2021; Nunes et al., 2021).
However, these treatments often have limited efficacy and are
associated with significant systemic side effects. The development
of nanomedicines offers a promising alternative. Some nanoparticles
are designed to target the inflamed synovium and cartilage directly.
By encapsulating anti-inflammatory agents within these
nanovesicles, these nanomedicines can achieve sustained drug
release and higher local drug concentrations within the joints
(Wang Y. et al., 2022; Wen et al., 2023). This targeted approach
not only enhances the therapeutic potential of existing drugs, but
also minimized the adverse effects. Another strategy explored the
use of metallic nanoparticles. Some metallic particles can directly act
on biological molecules, they can either act as nanoenzyme to reduce
oxidative stress, or act through inhibition of the NF-κB signaling
pathway or activation of NLRP3 inflammasome (Li R. et al., 2022;
Luo et al., 2021; Ma, 2023) (Figure 2). In the following sections, we
will explore the application of nanomedicines for reducing
inflammation in OA, focusing on the mechanisms by which
these advanced therapies can improve clinical outcomes by
targeting the synovial and articular cartilage.

3.1.1 Nonsteroidal anti-inflammatory
drugs (NSAIDs)

NSAIDs such as ibuprofen, flurbiprofen, diclofenac, celecoxib,
indomethacin, meloxicam, piroxicam, and naproxen, are among the
most widely prescribed medications for alleviating symptoms in OA
patients. Their primary mode of action involves robust inhibition of
cyclooxygenase (COX) enzymes, particularly COX-1 and COX-2 at
sites of inflammation, which in turn suppresses the biosynthesis of
prostaglandins (PGs) (Ahmadi et al., 2022; Eisenstein et al., 2022;
Stiller and Hjemdahl, 2022; Busa et al., 2022). PGs play a key role in
sensitizing pain pathways by interacting with TRPV1, Nav1.8 and
other ion channels to reduce their threshold, leading to heightened

FIGURE 2
Nanomedicines and their immune regulatory role in osteoarthritis. This figure depicts the multifaceted mechanisms of action of nanomedicines in
the regulation of immune responses within the pathophysiological context of osteoarthritis. It illustrates the targeted delivery and sustained release of
nanoformulated drugs, highlighting their interactions with cellular and molecular components are integral to the inflammatory process and consequent
cartilage degradation in osteoarthritis. The figure underscores the potential of nanomedicines to reduce inflammation by inhibiting these pathways
and to enhance the bioavailability and efficacy of therapeutic agents, offering a strategic approach in osteoarthritis treatment.
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pain perception, amplifying pain perception (Magni et al., 2021; Zhu
et al., 2020).

Besides their primary COX-inhibitory action, NSAIDs also
modulate various other inflammatory pathways in OA, they
reduce the production of pro-inflammatory cytokines and
leukotrienes, which are central to joint inflammation and tissue
degradation (Alvarez-Soria et al., 2006; Maślanka and Jaroszewski,
2013; Hassan and Ghobara, 2016; Li et al., 2018; Nagy et al., 2017).
Furthermore, NSAIDs exert immunomodulatory effects by
inhibiting the activation and migration of immune cells (Molnar
et al., 2021; Li Z. et al., 2021). This broad spectrum, of anti-
inflammatory actions make NSAIDs effective in managing the
symptoms of OA. However, long-term use of NSAIDs is
associated with several adverse effects, including gastrointestinal
(GI) distress, peptic and duodenal ulcers, small bowl erosion, colitis,
acute renal failure, hypertension, chronic kidney disease, heart
failure, myocardial infarction, stroke, seizures, and delayed
wound healing (Sohail et al., 2023; Chevalier et al., 2009). These
risks have driven research towards improving NSAID delivery
methods to enhance their therapeutic index while minimizing
systemic side effects.

Nanotechnology has significantly advanced the field of drug
delivery, offering innovative solutions to overcome the limitation
associated with traditional drug delivery. Encapsulating NSAIDs
within nanoscale carriers, provides several advantages, including
protection from premature degradation, targeted drug delivery, and
controlled release (Ashfaq et al., 2023). These nanocarriers typically
range from 10–200 nm in size, typical nanocarriers that are used to
encapsulating NSAIDs are liposomes, polymeric nanoparticles, and
solid lipid nanoparticles (SLNs) (Badri et al., 2016; Pontes
et al., 2022).

Liposomes are composed of lipid bilayers, which can encapsulate
both hydrophilic and hydrophobic NSAIDs (Lee, 2020). Liposomes
can be engineered to release the drug in response to specific stimuli,
such as changes in pH or temperature, making them effective for
localized delivery in inflamed joints (Liu P. et al., 2022). This
stimulus-responsive release mechanism is particular effective for
localized drug delivery with inflamed joints thereby reducing
systemic exposure and associated side effects.

Polymeric nanoparticles are made from biocompatible and
biodegradable polymers, these nanoparticles can encapsulate
NSAIDs, ensuring a sustained release over time (Baek et al.,
2017). This controlled release minimizes the need for frequent
dosing and reduces systemic side effects.

SLNs are composed of solid lipids, which remain solid at body
temperature. The surface of SLNs can be further coated with enteric
polymers that are resistant to acidic environments, by using the
combination of solid lipids and enteric coatings, SLNs are designed
to bypass the stomach without releasing their contents (Pandey
et al., 2021). The SLNs then release the NSAID once they reach the
more neutral pH of the intestines or are absorbed into the
bloodstream (Mancini et al., 2021). Once the SLNs reach the
joint environment, their stability is influenced by the specific
modifications made to the nanoparticle (Hsu et al., 2023). For
example, SLNs can be designed to degrade in response to
enzymes that are overexpressed in the inflamed joint, such as
matrix metalloproteinases (MMPs). When these enzymes come
into contact with the SLNs, they break down the solid lipid

matrix, releasing the encapsulated NSAID directly into the
inflamed tissue (Chuang et al., 2018). This coating dissolves only
in the more neutral pH of the small intestine, allowing the SLNs to
remain intact until they are absorbed into the bloodstream. SLNs
offer a stable platform for NSAID delivery, with enhanced
bioavailability and reduced gastrointestinal side effects due to
localized drug release (Singh et al., 2019).

In comparison to SLNs or liposomes, inorganic nanoparticles,
such as silica (SiO2), gold (AuNPs), iron oxide (Fe2O3 or Fe3O4), or
cerium oxide (CeO2), provide a unique advantage in delivering
NSAIDs for OA treatment because of their structural robustness,
precise targeting capabilities, and high stability in various
physiological environments (Corsi et al., 2023; Pourmadadi et al.,
2022; He et al., 2021; Kalashnikova et al., 2020). Inorganic
nanoparticles are inherently stable under a wide range of
pH conditions, including the acidic environment of the stomach,
making them highly effective for drug delivery, including NSAID
encapsulation. Their robust structure prevents the encapsulated
NSAID from being exposed to gastric acid, thereby protecting it
from premature degradation (Hsu et al., 2023). The surface of
inorganic nanoparticles can be modified with targeting ligands,
such as antibodies, peptides, or small molecules that recognize
and bind to specific receptors overexpressed in inflamed joints.
For example,: folate receptors, which are often overexpressed in
inflamed tissues, can be targeted by modifying the surface of
inorganic nanoparticles with folate molecules. This targeting
mechanism can lead to increased drug accumulation in the
inflamed joint, improving therapeutic efficacy while reducing
systemic side effects (Yu et al., 2010; Sanità et al., 2020; Huang
et al., 2024). In the context of OA treatment, inorganic nanoparticles
can enhance the bioavailability and therapeutic action of NSAIDs by
providing protection against premature degradation, enabling
controlled release, and improving tissue targeting (Yi et al., 2024).

3.1.2 Glycosaminoglycans (GAGs)
Glycosaminoglycans (GAGs), such as hyaluronic acid (HA),

chondroitin sulfate, and keratan sulfate, are essential components of
the extracellular matrix in cartilage. They help maintain the structural
integrity and mechanical function of cartilage by providing lubrication
and shock absorption in joints. HA is the most commonly used GAG
in the treatment of OA (Altman et al., 2015; Testa et al., 2021; Jargin,
2012). HA products vary in molecular weight and cross-linking, which
influences their viscosity and duration of action within the joint. These
formulations are either derived from bacterial fermentation or
extracted from rooster combs and must undergo purification to
remove impurities (Serra et al., 2023).

HA is administered via intra-articular injection to restore the
viscoelastic properties of synovial fluid, reducing pain and
improving joint mobility (Legré-Boyer, 2015; Chavda et al.,
2022). Beyond its lubricating function, HA also modulates the
inflammatory response by inhibiting the activity of pro-
inflammatory cytokines and enzymes, such as matrix
metalloproteinases (MMPs), which degrade cartilage (Marinho
et al., 2021). Furthermore, HA can inhibit the activation of the
NF-κB pathway, thereby reducing the expression of inflammatory
mediators like COX-2 and MMPs (Marinho et al., 2021). It may also
influence the MAPK signaling pathway, affecting cell survival and
inflammation (Chen et al., 2019).
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Since HA is typically applied directly into the affected joint,
nanoparticle technologies for HA-based treatments aim to
overcome different challenges than those associated with
NSAIDs. While NSAIDs nanoparticles formulations target tissue-
specific delivery to inflamed joints, HA-based treatments focus on
extending the therapeutic effects, enhancing stability, and improving
cartilage penetration. One key limitation of HA is its rapid
degradation due to enzymatic activity and its large molecular
size, which restricts penetration into deeper cartilage layers (Gan
et al., 2024). To address these issues, various nanoparticle
technologies have been explored. For instance, poly (lactic-co-
glycolic acid) (PLGA) nanoparticles can encapsulate HA,
protecting it from enzymatic degradation and enabling sustained
release over time. Additionally, PLGA nanoparticles can also be
modified with polyethylene glycol (PEG) to increase circulation time
and reduce immune clearance (Pontes et al., 2022; Zerrillo et al.,
2022; Householder et al., 2023). Natural polymers such as chitosan,
alginate, and cellulose derivatives show therapeutic potential for
intra-articular drug delivery. Chitosan is another promising natural
polymer for nanoparticle formation with HA. Its mucoadhesive
properties help retain the nanoparticles in the joint, and its positive
charge facilitates interaction with the negatively charged cartilage,
improving penetration (Pontes et al., 2022). Other nanoparticle
systems, such as hollow mesoporous silica nanoparticles
(HMSNs) and liposomes can also be used to encapsulate HA.
HMSNs offer a porous surface for control release, while
liposomes protect HA from enzymatic degradation and allow for
sustained delivery (Wen et al., 2023; Teixeira et al., 2022).

Overall, the application of nanoparticle technologies in HA-
based OA treatments focuses on prolonging the therapeutic effects
of HA, enhancing its stability, and improving its penetration into
cartilage tissue, rather than focusing on tissue-specific delivery as is
the case with NSAIDs.

3.1.3 Natural products from medicinal plants
Natural plant-derived medicines have gained significant

attention in the treatment of OA due to their potential to offer
anti-inflammatory, analgesic, and cartilage-protective effects with
fewer side effects compared to conventional pharmaceuticals (Fang
et al., 2024; Akhileshwar Jha et al., 2024; Mu et al., 2022). The
significance of plant-based therapies in OA treatment is seen from
multiple perspectives, including their historical use in traditional
medicine, increasing scientific validation, and the growing interest in
integrative approaches to managing chronic diseases like OA
(Kuang et al., 2023). However, many plant-derived compounds
face challenges such as poor bioavailability, rapid metabolism,
and insufficient tissue targeting. Nanoparticle technologies
present a promising solution by enhancing the delivery,
bioavailability, and therapeutic efficacy of these compounds,
improving their potential in OA treatment. While clinical studies
on nanoparticles for OA are still in early stages, preclinical data
suggest that multiple natural products-loaded nanoparticles could
represent a novel and effective approach for mitigating OA
symptoms and slowing disease progression (Fang et al., 2024;
Cao et al., 2022).

Cannabidiol (CBD), a non-psychoactive component of
Cannabis sativa, has been recognized for its anti-inflammatory
and analgesic properties (Lowin et al., 2020). It interacts

primarily with the endocannabinoid system (ECS), specifically
CB1 and CB2 receptors, which play roles in modulating pain,
inflammation, and immune responses (Fine and Rosenfeld, 2013;
Vučković et al., 2018). CBD reduces pro-inflammatory cytokine
production, inhibits immune cell, and mitigates oxidative stress, all
contributing to joint protection in OA. However, due to its lipophilic
nature and poor bioavailability, traditional oral administration of
CBD can be inefficient (Bryk and Starowicz, 2021). Nanotechnology
can enhance CBD’s delivery by encapsulating it in lipid-based
nanoparticles similar as encapsulating NSAIDs. Liposomes,
polymeric nanoparticles, or SLNs, have been employed to
improve CBD’s solubility, bioavailability, and stability (Assadpour
et al., 2023; Alcantara et al., 2024). Nanoparticles, especially those
functionalized with targeting ligands, can direct CBD to inflamed
joints, thereby enhancing its therapeutic potential while minimizing
systemic side effects. For instance, CBD-loaded PLGA nanoparticles
have been shown to enhance bioavailability, allowing for more
effective delivery to target tissues, by reducing inflammation and
improving the therapeutic outcomes associated with OA (Jin
et al., 2023).

3.1.3.1 Curcumin (Curcuma domestica)
Curcumin, a polyphenol derived from turmeric (Curcuma

longa), is well-recognized for its anti-inflammatory properties
(Salehi et al., 2019), particularly its ability to inhibit the NF-κB
pathway, which is central to inflammation in OA (Buhrmann et al.,
2021). Additionally, curcumin scavenges free radicals, reducing
oxidative stress in affected joints. However, curcumin’s low
solubility in water and rapid metabolism limits its clinical use
(Crivelli et al., 2019; Guan et al., 2022). SLNs can enhance the
oral bioavailability of curcumin by protecting it from the acidic
environment of the stomach and enabling sustained release (Ban
et al., 2020). It is also reported that the curcumin can be dissolved
with mPEG (5kD)-PCL(2kD) polymer to produce the curcumin-
loaded polymeric micelles, which has a 74.8 ± 8.68 days nm (Gupta
et al., 2020; Kang et al., 2020). This approach can improve
curcumin’s solubility and enhance its systemic circulation time,
allowing for more effective delivery to the joints (Kang et al., 2020).

3.1.3.2 Boswellia serrata (boswellic acid)
Boswellic acid, from Boswellia serrata (Indian frankincense),

inhibits the 5-lipoxygenase enzyme, reducing leukotriene synthesis,
which is involved in inflammation and pain (Börner et al., 2021;
Gomaa et al., 2021). It also protects cartilage by reducing the
degradation caused by MMPs (Shin et al., 2022). Due to its
hydrophobic nature and poor gastrointestinal absorption,
nanoparticle systems such as nanoemulsion and cyclodextrin
inclusion complex have been developed to improve the
bioavailability of boswellic acid (Ting et al., 2018). Different from
nanocapsules where the drug is confined to a cavity surrounded by a
polymeric membrane and are typically 10–500 nm in size,
nanoemulsions are colloidal dispersions where two immiscible
liquids, typically oil and water, are stabilized by surfactants. The
droplets in nanoemulsions are usually in the range of 20–200 nm,
with the drug is dissolved in the dispersed phase (Borrajo et al.,
2024). Instead of protecting the drug from the harsh acidic
environment of the stomach and the enzymatic activity in the
intestine, nanoemulsions are designed to enhance the digestion of
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encapsulated lipophilic compounds by allowing them to be more
easily absorbed through the intestinal lining. They can enhance
solubility and bioactivity of boswellic acids in the gastrointestinal
tract (Choi and McClements, 2020; Han et al., 2022). The small
droplet size and large surface area of nanoemulsions enable better
absorption and distribution of the boswellic acids, enhancing their
therapeutic effects. Cyclodextrins improve the solubility and
stability of hydrophobic drugs by forming inclusion complexes
where the drug is hosted inside the hydrophobic cavity of the
cyclodextrin molecule. Cyclodextrin complexes can help the
boswellic acids dissolve more easily in the aqueous environment
of the GI tract, improving its bioavailability (Sarabia-Vallejo et al.,
2023). Similarly, cyclodextrin complexations do not protect
boswellic acids from the acidic environment like nanocapsules
but rather enhance the drug’s solubility and absorption in the
intestines (Tambe et al., 2018).

3.1.3.3 Quercetin
Quercetin, a flavonoid found in various fruits and vegetables,

exhibits anti-inflammatory effects by inhibiting the production of
pro-inflammatory cytokines and oxidative stress, as well as
stabilization lysosomal membranes and protecting chondrocytes
(Aldrich et al., 2023). Quercetin’s protective role in cartilage
involves inhibiting MMPs and promoting autophagy, which helps
maintain cartilage healthy (Li W. et al., 2021; Wang L. et al., 2022).
However, like many natural compounds, quercetin has low
bioavailability due to poor absorption and rapid metabolism
(Carrillo-Martinez et al., 2024). Nanoparticle approaches,
including quercetin-loaded liposomes, polymeric nanoparticles,
solid lipid nanoparticles (SLNs), as while as nanostructured lipid
carriers (NLCs) that are lipid-based delivery systems that combine
both solid and liquid lipid, have been developed to enhance
quercetin’s bioavailability, stability, and targeted delivery to
inflamed joints, making it a more viable treatment option for OA
(Carrillo-Martinez et al., 2024). Quercetin-loaded nanoparticles,
when administered intra-articularly, showed prolonged retention
in joint tissues, providing sustained release of quercetin and
improving its anti-inflammatory effects in OA models
(Akhileshwar Jha et al., 2024; Jennings et al., 2016). Besides the
lipid nanoparticles, gold nanoparticles have been explored as
carriers for various bioactive compounds, including quercetin.
Due to their small size, AuNPs can efficiently deliver quercetin to
targeted sites, enhancing cellular uptake and therapeutic efficacy
(Sadalage et al., 2021).

3.1.3.4 Baicalin (Scutellaria baicalensis)
Baicalin, a flavonoid derived from Scutellaria baicalensis, is

known for its potent anti-inflammatory, antioxidant, and
chondroprotective effects, making it an attractive candidate for
the treatment of OA (Hu et al., 2022). However, like many other
natural compounds, baicalin suffers from poor water solubility, low
bioavailability, and rapid systemic clearance, which limit its
therapeutic potential in clinical applications (Huang et al., 2019).
To address these limitations, various nanoparticle-based delivery
systems have emerged as a promising strategy to enhance
effectiveness of baicalin in OA management.

Lipid-based nanoparticles, including liposome, SLNs and NLCs,
have been explored for improving baicalin’s bioavailability and

targeted delivery to inflamed joints (Zhang et al., 2016; Shi et al.,
2016). There nanoparticles protect baicalin from rapid degradation,
facilitate sustained release, and improve its solubility in biological
fluids. For instance, baicalin-loaded SLNs have demonstrated
enhanced anti-inflammatory activity and greater cartilage
protection in OA models, compared to baicalin in its free form
(Gao et al., 2022). Another innovative approach involves the use of
polymeric nanoparticles, particularly those made from
biodegradable materials like PLGA. These nanoparticles allow for
the controlled release of Baicalin, ensuring prolonged therapeutic
effects at the site of inflammation. Functionalization of these
nanoparticles with targeting ligands, such as hyaluronic acid,
further enhances their ability to accumulate in osteoarthritic
joints by targeting CD44 receptors expressed on synovial cells,
which are implicated in OA pathology (Gaio et al., 2020; Salathia
et al., 2023; Bigaj-Józefowska and Grześkowiak, 2022).

Nanoparticles provide sustained release and enhanced targeting
of inflamed tissues. Additionally, lipid-based nanoparticles, such as
SLNs and nanoemulsions, can further improve baicilin’s solubility
and systemic circulation, allowing for more efficient delivery to OA-
affected joints (Ashfaq et al., 2023; Ghasemiyeh and Mohammadi-
Samani, 2018). Moreover, nanofibers and hydrogels have been
employed as localized delivery platforms for baicalin (Wang Z.-Z.
et al., 2022; Liu et al., 2022c). These nanostructures can be injected
directly into the joint space, providing a sustained release of baicalin
over an extended period. This localized administration minimizes
systemic side effects while maintaining high concentrations of the
active compound in the affected joints (Bai et al., 2021).

3.1.3.5 Andrographolide (AG)
Andrographolide (AG), extracted from Andrographis panicula,

is a potent anti-inflammatory compound known for its ability to
modulate immune responses and inhibit pro-inflammatory cytokine
production (Xiong et al., 2021). Its application in OA treatment,
however, is limited due to poor water solubility and rapid systemic
clearance (Zhao et al., 2019). Recent advancements in
nanotechnology have enabled the development of AG-loaded
nanoparticles that can overcome these limitations. For instance,
AG encapsulated in poly (acrylic acid)-modified mesoporous silica
nanoparticles has been shown to provide a pH-responsive platform
for sustained release, allowing the drug to be released more
effectively in the acidic environments of inflamed OA joints (He
et al., 2021). This targeted delivery not only improves AG’s
therapeutic efficacy but also minimizes systemic side effects
(Cheng et al., 2023). Another innovative approach involves the
use of AG-loaded liposomes, which enhance the stability and
bioavailability of AG, while allowing for controlled release in the
affected joint tissues, thereby reducing inflammation and protecting
cartilage from degradation. Although clinical applications of AG
nanoparticles in OA remain in their early stages, preclinical studies
suggest promising therapeutic outcomes (He et al., 2021;
Hodgkinson et al., 2022).

3.1.3.6 Diacerein (DIA)
Diacerein (DIA) is a widely studied anti-inflammatory drug

used to slow the progression of OA (Bernetti et al., 2019). It inhibits
the synthesis of pro-inflammatory cytokines like IL-1β, reducing
cartilage degradation. However, DIA is associated with

Frontiers in Pharmacology frontiersin.org07

Liao et al. 10.3389/fphar.2024.1402825

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1402825


gastrointestinal side effects, which limit its long-term use (Panova
and Jones, 2015). Nanoparticle-based delivery systems, such as
PLGA nanoparticles, have been employed to enhance the
bioavailability and minimize the adverse effects of DIA (Jung
et al., 2020). DIA-loaded PLGA nanoparticles provide a sustained
release profile, ensuring that therapeutic levels of the drug are
maintained for extended periods within the joint space. This not
only reduces the frequency of administration but also improves
patient compliance (Jung et al., 2020). Another advanced approach
involves the development of pH-responsive DIA-loaded
nanoparticles, which allow for drug release specifically in
inflamed environments, minimizing side effects while maximizing
efficacy in OA treatment. Although human clinical trials are still
ongoing, these innovations represent a significant step forward in
enhancing the therapeutic utility of DIA for OA (Hu et al., 2020).

3.1.3.7 Naringin nanoparticles
Naringin, a flavonoid derived from citrus fruits, has gained

attention for its ability to promote cartilage regeneration and inhibit
inflammatory pathways, making it a valuable candidate for OA
therapy (Gan et al., 2023; Peng et al., 2024). However, like many
other natural compounds, its clinical use is hindered by poor
bioavailability and rapid clearance. Nanotechnology has provided
solutions to these challenges through the development of advanced
delivery systems. For example, polycaprolactone/polyethylene
glycol-naringin (PCL/PEG-Nar) nanofiber membranes have been
developed as a pH-responsive system for the sustained release of
Naringin in OA-affected joints (Lan et al., 2020). This innovative
approach ensures a steady release of the compound over time,
reducing the severity of OA symptoms and promoting cartilage
repair. Another promising technique involves the use of Naringin-
loaded SLNs, which enhance the compound’s stability,
bioavailability, and controlled release within joint tissues. SLNs
have the added advantage of being biocompatible and
biodegradable, making them an ideal platform for long-term OA
treatment (Munir et al., 2021). While clinical applications of
Naringin nanoparticles are still under investigation, preclinical
studies have shown promising results, particularly in reducing
inflammation and promoting cartilage regeneration in OA
models (Ravetti et al., 2023).

3.2 Metallic nanoparticles in the treatment
of OA

Oxidative stress, an imbalance between reactive oxygen species
(ROS) and antioxidant defenses, plays a crucial role in the
pathophysiology of OA. Excessive ROS disrupts redox signaling
and damages keymacromolecules such as proteins, lipids, and DNA,
accelerating cartilage degradation and exacerbating joint
inflammation (Ansari et al., 2020). In additionally, OA is also
characterized by the activation of pro-inflammatory pathways,
notably the NF-κB pathway, and the NLRP3 inflammasome, both
of which contribute to the production of pro-inflammatory
cytokines and enzymes responsible for cartilage breakdown
(Ramirez-Perez et al., 2022; Xiao and Zhang, 2023; Yang et al., 2022).

Recent advances in nanotechnology have highlighted metallic
nanoparticles (MNPs) as potential therapeutic agents for OA, not

only as carriers for drugs and natural compounds but also as a
promising therapeutic approach to directly counteract these
destructive processes (Akhileshwar Jha et al., 2024). Metallic
nanoparticles such as gold (AuNPs), silver (AgNPs), cerium
oxide (CeO2NPs), and zinc oxide (ZnONPs) have shown potent
antioxidant properties by scavenging ROS and reducing oxidative
damage. Furthermore, these nanoparticles can directly modulate
inflammatory processes and inhibit cartilage degradation, targeting
key pathways like NF-κB andNLRP3 inflammasome activation, thus
offering new possibility for OA treatment (Nayal et al., 2024).

3.2.1 Gold nanoparticles
Gold nanoparticles (AuNPs) are extensively studied for their

anti-inflammatory and antioxidative effects. AuNPs counteract
oxidative stress, a major driver of OA, by scavenging ROS and
restoring redox balance. Their inhibition of the NF-κB pathway
reduces the production of pro-inflammatory cytokines like IL-1β
and TNF-α, thus mitigating cartilage degradation and synovial
inflammation (Wen et al., 2023; Abdel-Aziz et al., 2021).
Functionalized AuNPs can neutralize ROS through interaction
with protein thiol groups, further preventing cartilage damage.
AuNPs also have favorable biocompatibility and low toxicity,
though their tendency to accumulate raises concerns about long-
term safety. Moreover, the high cost of gold limits large-scale
production (Kus-Liśkiewicz et al., 2021).

3.2.2 Silver nanoparticles
Silver nanoparticles (AgNPs) exhibit strong anti-inflammatory

and antimicrobial properties, offering dual protection by reducing
inflammation and preventing infections that may exacerbate OA
(Ferdous and Nemmar, 2020; Gherasim et al., 2020). AgNPs
effectively scavenge ROS and inhibit the NF-κB pathway, thereby
lowering the production of matrix metalloproteinases (MMPs) and
other cartilage-degrading enzymes (He et al., 2024; Akter et al.,
2018). Furthermore, AgNPs can be incorporated into hydrogels or
nanocomposites to provide sustained anti-inflammatory effects.
However, their relatively higher cytotoxicity poses limitations for
long-term use (Pangli et al., 2021; Nandhini et al., 2024).

3.2.3 Cerium oxide nanoparticles
Cerium oxide nanoparticles (CeO2NPs), or nanoceria, stand out

due to their redox-active properties, mimicking natural antioxidant
enzymes like superoxide dismutase (SOD) and catalase (Dhall and
Self, 2018). These nanoparticles continuously scavenge ROS through
their ability to switch between Ce3+ and Ce4+ oxidation states,
reducing oxidative stress in OA joints (Corsi et al., 2023; Xiong
et al., 2023). CeO2NPs also inhibit NLRP3 inflammasome activation,
which helps lower pro-inflammatory cytokines like IL-1β and IL-18
(Li et al., 2024a). Preclinical studies have shown that CeO2NPs
preserve cartilage integrity and improve joint function, with low
cytotoxicity making them suitable for long-term use (Xiong et al.,
2023). However, the technical challenges in producing precise
CeO2NPs and the need for further investigation into their long-
term effects remain.

3.2.4 Zinc oxide nanoparticles
Zinc oxide nanoparticles (ZnONPs) present a promising

approach to OA treatment due to their antioxidant and anti-
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inflammatory effects (Lopez-Miranda et al., 2023). They modulate
the NF-κB pathway, decreasing the production of pro-inflammatory
mediators such as MMPs and cytokines, while directly scavenging
ROS to prevent oxidative damage in cartilage and synovial tissues
(Azeez et al., 2024). ZnONPs also enhance chondrocyte survival and
promote cartilage regeneration by upregulating anabolic factors and
increasing antioxidant enzyme production (Li et al., 2020; Mirza
et al., 2015). Zinc’s affordability and the non-toxic byproducts of
ZnONP degradation make them an appealing option for large-scale
therapeutic applications, though more research is needed to ensure
their long-term safety in clinical settings (Eker et al., 2024).

3.3 Molecular OA therapies enhanced by
nanotechnologies

Nanotechnologies, when combined with gene-specific inhibitors
like siRNA and shRNA, represent a promising frontier in OA
therapy (Rai et al., 2019). Nanoparticles enhance drug delivery by
increasing stability, targeting capabilities, and sustaining therapeutic
release. This results in more precise modulation of key OA drivers,
such as inflammation, oxidative stress, and cartilage degradation.
Below, we explore the technical applications of various molecular
therapies, such as Protein Kinase D (PKD) inhibitors, p47phox,
p66shc, and the peptide KAFAK inhibitors in combination with the
nanoparticle systems (Kumari et al., 2023; Li et al., 2024b; Yan et al.,
2019; Jeong et al., 2020).

3.3.1 Protein kinase D (PKD) inhibitors in
nanoparticle systems

PKD is critical in regulating extracellular matrix (ECM)
destruction and driving OA progression by activating the NF-κB
pathway, which intensifies inflammation and matrix degradation
(Baker et al., 2018). Nanoparticles, particularly PLGA, have been
shown to deliver PKD inhibitors effectively, offering controlled and
sustained release. This system enhances the inhibition of NF-κB
activation and cytokine production (e.g., IL-1β), minimizing ECM
degradation more effectively than free PKD inhibitors (Cho et al.,
2019). Moreover, biomimetic nanoparticles, such as
M2 macrophage-coated particles, exhibit enhanced targeting
capabilities by mimicking immune responses, allowing for high
concentrations of PKD inhibitors directly in inflamed joints,
thereby reducing local inflammation. Biomimetic nanoparticles
offer enhanced targeting of inflamed tissues, making them ideal
for localized OA therapy (Cho et al., 2019; Rao and Shi, 2022). The
choice of nanoparticle system should depend on the specific
characteristics of the PKD inhibitor (e.g., hydrophobicity) and
more clinical trials are needed for ideal therapeutic outcomes
(e.g., sustained release, targeted delivery, or combination therapy)
(Kumar et al., 2024; Tenchov et al., 2022; Yetisgin et al., 2020).

3.3.2 Peptide KAFAK inhibitors
KAFAK is a peptide known for suppressing pro-inflammatory

cytokines, including IL-1β and IL-6, key factors in OA pathology
(Bartlett et al., 2013). Nanoparticles coated with M2 macrophage
membranes, incorporating KAFAK, have demonstrated precision in
targeting inflamed joints (Zhou et al., 2023). By modifying these
nanoparticles with iRGD peptides and hyaluronic acid, sustained

release is achieved, leading to reduced inflammation and protection
of cartilage (Zhou et al., 2023; Zhang S. et al., 2022). The use of
macrophage membrane coatings enhances precise delivery to
inflamed joints and immune evasion, increasing the therapeutic
efficacy of KAFAK inhibitors. However, the potential immune
response to foreign coatings may necessitate further optimization
through complex clinical trials (Zheng et al., 2023).

3.3.3 shRNA-LEPR encapsulation in
nanoparticle systems

The leptin receptor (LEPR) contributes to inflammation and
cartilage breakdown in OA. Targeting LEPR with shRNA has proven
effective in reducing its expression and mitigating inflammation.
Biomimetic nanoparticles incorporating shRNA-LEPR, along with
polyethylenimine (PEI) for gene delivery, offer sustained intra-
articular release (Zhou et al., 2023; Li S. et al., 2024). Hyaluronic
acid further enhances targeting to joint tissues, while
M2 macrophage coatings improve localization in inflamed areas,
efficient gene silencing on top of sustained release, leading to
effective reduction in cartilage degradation (Li S. et al., 2024).
However, long-term application maybe limited by the potential
off-target effects, which could complicate the regulation of gene
expression (Zha et al., 2021).

3.3.4 siRNA-p47phox in PLGA nanoparticles
The p47phox subunit of NADPH oxidase is involved in

reactive oxygen species (ROS) production, contributing to
OA-related oxidative stress and cartilage damage.
Encapsulating siRNA-p47phox in PLGA nanoparticles
provides sustained release, reducing ROS production and
inflammation (Shin et al., 2020a). This system not only
alleviates oxidative damage but also preserves cartilage
integrity for a prolonged therapeutic effect. The limited
stability of siRNA in biological environments has hindered its
clinical application in OA treatment (Kumari et al., 2023).

3.3.5 siRNA-p66shc in nanoparticles
Overexpression of p66shc contributes to mitochondrial

dysfunction and ROS overproduction in OA. Nanoparticles
encapsulating siRNA-p66shc have shown efficacy in reducing
ROS levels and inflammatory markers (e.g., IL-1β, TNF-α). By
suppressing p66shc expression, these nanoparticles can modulate
oxidative stress and inflammation, providing a targeted approach to
slowOA progression (Shin et al., 2020b). Future studies should focus
on optimizing the nanoparticle delivery efficiency and improving
formulations stability (Liu et al., 2023a).

3.3.6 P16INK4a and synovial inflammation
P16INK4a, a cell cycle regulator, is upregulated in fibroblast-

like synoviocytes (FLS) during OA, contributing to joint damage
(Damerau et al., 2024). siRNA targeting P16INK4a, encapsulated
in PLGA nanoparticles, accumulates in synovial tissues and
reduces inflammation by lowering IL-1β levels in FLS,
providing a localized therapeutic option for specific reduction
of synovial inflammation (Park et al., 2022). However,
challenges such as off-target effects and delivery efficiency to
specific joint compartments remain obstacles for clinical
applications (Kumari et al., 2023; Li et al., 2024b).
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TABLE 1 Nanomedicines to reduce inflammation of synovial and articular cartilage.

Composition Cell Animal Dose Outcome Refernces

MLX-Ca (AC)2Lipo ATDC5 Rats In vitro: 20 μM
In vivo:4 mM

Degenerated cartilage area↓ Hu et al., (2020)

CBD-PLGA-NPs Rats’ primary chondrocytes — In vitro: 20 μg/mL
In vivo:/

IL-1β, IL-6, TNF-α, MMP13↓ Gherasim et al.,
(2020)

SFNs-CXB Human primary chondrocytes — In vitro: 800 μg/mL
In vivo:/

ROS, IL-6↓ Pangli et al., (2021)

CUR-PLGA NPs — Rats In vitro:/
In vivo: 200 mg/kg

NK-κB, Cleaved caspase3↓ Dhall and Self,
(2018)

ACP RAW264.7 Mice In vitro: 10,25 μg/mL
In vivo: 2.5, 5 mg/kg

TNF-α; IL-1β; ROS↓
Aggrecan↑
Degenerated cartilage area↓

Xiong et al., (2023)

PEG-FMN NPs Rats’ primary chondrocytes Rats In vitro: 1.25 μg/mL,
14 μg/mL
In vivo: 1.25 ug/mL

MMP13↓
Degenerated cartilage area↓

Azeez et al., (2024)

AG@MSNs-PAA Rats’ primary chondrocytes Rats In vitro: 8 μM
In vivo: 8 μM

MMP13↓
Aggrecan; COL2↑

Eker et al., (2024)

DIA-PLGA NPs Rats’ primary synoviocytes Rats In vitro: 10 μg/mL
In vivo: 90.61 μg/rat,
470.20 μg/mL

IL-1; IL-6; MMP3; COX-2; TNF-α↓
IL-4; IL-10↑

Li et al., (2024b)

MRC-PPL-PSO Mice Primary chondrocytes Mice In vitro: 15 μM
In vivo:15 μM

IL-1β; MMP3, TNF-α; MMP13; NF-
κB, p-P38, p-AKT↓
COL2↑

Yan et al., (2019)

Ta-NH2 NPs Rats’ primary chondrocytes Rats In vitro: 100 μg/mL
In vivo: 10 μg

iNOS↓
Degenerated cartilage area,
degenerated surface cartilage width,
total osteophyte volume ↓

Bartlett et al.,
(2013)

AuNPs — Rats In vitro:/
In vivo: AuNPs:
30 μg/kg

serum estrogen↓
IL-6, IL-β, TNF-α, COX-1, COX-2↓

Zhang et al.,
(2022b)

E@Au-Ag NPs Rats’ primary chondrocytes Rats In vitro: 12 μg/mL
In vivo:/

ROS↓
Apoptosis↓
Degenerated cartilage area↓

Zheng et al., (2023)

Au@PDA-WL NPs ATDC5 Mice In vitro: 15, 30, 60,
120, 240, 360 p.m.
In vivo: 25 μL

Collage II↑
ROS↓
Degenerated cartilage area↓

Zha et al., (2021)

H-MnO2 NPs — Mice In vitro:/
In vivo: 6 μg

IL-6; IL-1β; TNF-α↓
Degenerated cartilage area,
degenerated surface cartilage width,
total osteophyte volume ↓

Zhuang et al.,
(2024)

Mn3O4@CS SW1353 Mice In vitro: 8 μg/mL
In vivo: 0.4 μg

iNOS, COX2, MMP13↓
SOD, CAT, COL2↑

Knights et al.,
(2023)

Mil-88a nano-enzyme Mice Primary chondrocytes Mice In vitro:1–10 μg/mL
In vivo:/

MMP13↓
SOD, Col2↑
Degenerated cartilage area,
degenerated surface cartilage width,
total osteophyte volume ↓

Van Osch et al.,
(2009)

PLGA NP AB C28/I2 Mice In vitro:10–60 μg/mL
In vivo: 20 μg

Degenerated cartilage area,
degenerated surface cartilage width,
total osteophyte volume ↓

Jeyaraman et al.,
(2024)

PLGA-HA RAW264.7 Mice In vitro:3.9, 7.8, 15.6,
31.25, 62.5, 125 μg/
mL
In vivo: 10 mg/mL

NO↓ Roseti et al., (2019)

HA-NP Mice primary chondrocytes Mice In vitro: 80 μg/mL
In vivo: 0.2 mg/mL

NK-κB, MMP3, MMP13,COX-2,
PGE2↓
Degenerated cartilage area↓

Liang et al., (2023)

(Continued on following page)

Frontiers in Pharmacology frontiersin.org10

Liao et al. 10.3389/fphar.2024.1402825

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1402825


3.3.7 Black phosphorus nanosheets for cartilage
and bone repair

Black phosphorus nanosheets represent a novel platform for OA
treatment due to their pH-responsive behavior and ability to
scavenge ROS (Zhang X. et al., 2022). These nanosheets promote
cartilage regeneration and subchondral bone repair by protecting
tissues from oxidative stress and modulating the joint’s
inflammatory environment (Lu H. et al., 2023) (Table 1).
However, research on black phosphorus nanosheet for OA
treatment is still in the early-stages. Comprehensive clinical data
are needed, particularly regarding sustained release, targeted
delivery, combination therapies, and potential toxicity concerns
(Zhuang et al., 2024).

In summary, nanoparticle-based delivery systems for molecular
OA treatments offer numerous advantages, including enhanced
targeting, sustained release, and reduced side effects. However,
challenges such as off-target effects, nanoparticle stability, and
scaling up for clinical applications remain. Future studies should
prioritize optimizing nanoparticle formulations, enhancing
bioavailability, and conducing long-term safety evaluations.

4 Nanomedicines for cartilage
regeneration in OA

While inflammation plays a significant role in the progression of
OA, regenerating damaged cartilage is key to achieving long-term
disease modification (Knights et al., 2023). The unique challenges
posed by cartilage, such as its avascularity and limited cellular repair
mechanisms, make effective regeneration difficult (Van Osch et al.,

2009; Jeyaraman et al., 2024; Roseti et al., 2019). Nanotechnology
offers a promising avenue for overcoming these obstacles, providing
innovative strategies that focus on cartilage repair and regeneration.
In this chapter, we explore advanced nanomedicine approaches that
aim to restore cartilage integrity, utilizing nanoparticles, scaffolds,
and biologically active molecules for sustained, localized, and
effective treatment (Eftekhari et al., 2020; Liang et al., 2023).

4.1 Key nanomedicines that promote
cartilage regeneration

While inflammation is a significant contributor to OA
progression, the ability to regenerate damaged cartilage remains a
critical challenge in achieving meaningful disease modification
(Roseti et al., 2019). Current pharmacological and surgical
interventions often fail to fully restore articular cartilage due to
the tissue’s limited self-repair capabilities. The avascular nature of
cartilage, combined with its low density of chondrocytes, restricts its
ability to recover from injury, leading to the gradual deterioration of
joint function (Wang et al., 2024).

Traditional regenerative approaches, such as cell-based
therapies and growth factor injections, have shown potential but
are hampered by issues such as poor cell survival, lack of integration
with native tissues, and the inability to control the precise delivery of
therapeutic agents over time (Tsujii et al., 2024). These limitations
highlight the need for advanced strategies that can enhance cartilage
repair while ensuring sustained, localized effects (Wang et al., 2024).

Nanotechnology offers transformative solutions to these
challenges by enabling the controlled and targeted delivery of

TABLE 1 (Continued) Nanomedicines to reduce inflammation of synovial and articular cartilage.

Composition Cell Animal Dose Outcome Refernces

PEG-PLGA-HA C28/I2 Mice In vivo: 2.3 mg/mL Degenerated cartilage area,
degenerated surface cartilage width,
total osteophyte volume ↓

Wang et al., (2024)

PLEL@PL-NPs ATDC5; primary human articular
chondrocytes

Rats In vitro: 0–2,500 μg/
mL
In vivo: 50 μL

IL-6, TNF-α, iNOS, COX-2,CD68↓
COL2↑
Degenerated cartilage area↓

Wu et al., (2024)

PDKi-NPs Pigs’ primary chondrocytes — In vitro: 10 μM
In vivo:/

Caspase3, p-Akt, NO, PGE2, NF-κB,
MMP14, P53↓
ACAN, COL2, SOX9↑

Chen et al., (2020)

macrophage membrane-coated
KAFAK-shRNA-LEPR-PEI-NPs

RAW264.7 Rats In vitro: 1 μg/mL
In vivo:/

TNF-α; IL-2β, CD86↓
IL-10, COL2, CD2↑

Atwal et al., (2023)

P47phox siRNA-PLGA-NPs — Rats In vitro:/
In vivo: 0.2 μM

ROS↓
Degenerated cartilage area↓

Carton and
Malatesta, (2024)

P16INK4a siRNA-PLGA-NPs Primary cultured human articular
chondrocytes and fibroblast-like
synoviocytes

Mice In vitro: 50, 100,
200,600, 1,000 μg/mL
In vivo: 200 μg

TNF-α, IL-1β, IL-6, MMP13↓ Li et al., (2024d)

BPNSs Rats’ primary chondrocytes Rats In vitro: 10 μg/mL,
20 μg/mL
In vivo: 10 μg/mL

ADAMTS5, ADAMTS1↓
COL2, Aggrecan, RUNX2, BMP2↑

Jiang et al., (2024)

SFNs: silk fibroin nanoparticles; CXB: celecoxib; ACP: acid-activatable curcumin polymer; PEG: poly (ethylene glycol); FMN: formononetin; AG: andrographolide; MSNs: mesoporous silica

nanoparticles; PAA: pH-responsive polyacrylic acid; DIA: diacerein; PLGA: poly (d,l-lactide-co-glycolide); NPs: nanoparticles; MRC-PPL: cartilage-targeting and OA-specific theranostic

nanoplatforms; PSO: psoralen; Au: Gold; DIA: diacerein; Ta-NH2-NPs: tantalum nanoparticles; E@Au-Ag NPs: EGCG (Epigallocatechin gallate) decorated Au-Ag nano-jars; PDA:

polydopamine; WL: WYRGRL; H-MnO2: Hollow- MnO2; HA: hyaluronic acid; PLEL: poly (d, L-lactide)-poly (ethylene glycol)-poly (d, L-lactide); PL: platelet lysate; PDKi: protein kinase D

inhibitor. BPNSs: Black phosphorus nanosheets; CS: chondroitin sulfate.
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bioactive molecules directly to sites of cartilage damage (Qiao et al.,
2022). Nanomedicines can be engineered to deliver a variety of
therapeutic agents—including growth factors, cytokines, and gene
therapies—in a sustained manner, maximizing their efficacy (Liu
et al., 2023b). Nanofibrous scaffolds, designed to mimic the
extracellular matrix (ECM) of cartilage, provide structural
support for cell attachment and proliferation. These scaffolds can
be functionalized with growth factors or cells to further promote
cartilage regeneration (Huang et al., 2024).

Key growth factors, such as transforming growth factor-beta
(TGF-β) and bone morphogenetic proteins (BMPs), play pivotal
roles in cartilage repair (Zhang X. et al., 2022; Wu et al., 2024).
However, delivering these proteins effectively is challenging due
to their short half-life and rapid degradation in the joint
environment (Thielen et al., 2019). Nanoparticle carriers, such
as PLGA nanoparticles combined with nanofibrous scaffolds,
have demonstrated success in encapsulating these growth
factors, providing sustained release while protecting them
from degradation. These integrated nanotechnologies have
been shown to stimulate chondrocyte activity more effectively,
thereby enhancing cartilage regeneration (Chen et al., 2020; Qin
et al., 2023).

Additionally, injectable hydrogels containing nanoparticles and
cartilage-promoting factors can fill cartilage defects, offering both
mechanical support and bioactivity. These hydrogels are often
modified with materials like hyaluronic acid or collagen to better
mimic the native cartilage environment. As they promote the growth
of new cartilage tissue, they also integrate with existing tissues, with
their biodegradability ensuring gradual replacement by natural
tissue (Atwal et al., 2023; Carton and Malatesta, 2024).

4.2 Exosome-mimicking nanoparticles

Exosome-mimicking nanoparticles represent an innovative
therapeutic strategy for OA by replicating the biological functions
of natural exosomes, which are small cell-derived vesicles involved
in intercellular communication and tissue repair (Chavda et al.,
2023). These engineered nanoparticles hold promise in drug
delivery, gene therapy, and tissue regeneration, offering targeted
solutions for modulating the inflammatory and degenerative
processes associated with OA (Li L. et al., 2024).

Natural exosomes, typically 30–150 nm in diameter, are secreted
by various cell types such as mesenchymal stem cells (MSCs) and
chondrocytes. They facilitate the transfer of bioactive molecules,
including proteins, lipids, and RNA, which play critical roles in
inflammation modulation and cartilage repair (Jiang et al., 2024).
MSC-derived exosomes can promote chondrocyte migration and
proliferation via the Mir-106b-5P/TIMP2 signaling pathway or
activating YAP through the Wnt pathway (Tao et al., 2017; Tan
et al., 2020). They can also reduce MMP13 and ADAMTS5 levels in
chondrocytes, reverse mitochondrial membrane potential changes,
and alleviate OA (Cosenza et al., 2017), potentially by inhibiting
phosphorylation of p38 and ERK and promoting protein kinase B
phosphorylation (Zhai et al., 2022). However, their clinical
application faces challenges, such as low yield, heterogeneity, and
instability during storage. Exosome-mimicking nanoparticles
address these limitations by offering greater stability, scalability,

and the ability to customize properties for specific therapeutic needs
(Wang X. et al., 2022; Tan et al., 2024).

These nanoparticles are engineered to emulate the structural and
functional characteristics of natural exosomes. Constructed from
biodegradable materials like liposomes, polymeric nanoparticles, or
silica nanoparticles, they are functionalized with surface proteins,
ligands, or targeting molecules like hyaluronic acid or MSC-derived
membrane proteins. These surface modifications enable the delivery
of bioactive molecules, such as miRNAs or proteins, to stimulate
cartilage regeneration without the complexity of direct stem cell
therapies (Li Y.-J. et al., 2021). Several studies have shown the
potential of exosome-mimicking nanoparticles in OA treatment. For
instance, nanoparticles mimicking exosomes derived from bone
marrow mesenchymal stem cells (BM-MSCs), loaded with
growth factors and RNA molecules, have been shown to reduce
cartilage degradation, improve joint function, and lower pro-
inflammatory cytokine levels in OA models (Cosenza et al.,
2017). Additionally, HA-coated exosome-mimicking
nanoparticles have demonstrated effective delivery of siRNA
targeting MMP13—an enzyme involved in cartilage
breakdown—leading to enhanced cartilage preservation in animal
studies (Kumari et al., 2023; Qiu et al., 2013) (Table 2).

4.3 Mesenchymal stem cells in
nanoparticle therapy

Nanoparticle-encapsulated mesenchymal stem cell (MSC)
therapy is a promising new approach for OA treatment,
combining the regenerative capabilities of MSCs with the
advantages of nanoparticles, such as targeted delivery and
enhanced stability (Ding et al., 2022; Bunnell, 2021; Mizuno
et al., 2022; Hoang et al., 2022). This method addresses key
limitations of traditional MSC-based therapies, such as low cell
survival, poor retention in joint tissues, and insufficient targeting
(Zou et al., 2023). By using nanoparticles, the therapeutic potential
of MSCs in cartilage repair, inflammation modulation, and slowing
OA progression is significantly enhanced (Cai et al., 2023).

MSCs are multipotent cells that can differentiate into
chondrocytes, the cells responsible for maintaining cartilage
integrity. This chondrogenic potential is linked to the
upregulation of SOX9, a key marker for chondrocyte progenitors
(Zhao et al., 2017). MSCs also secrete bioactive molecules like TGF-β
and BMP, which promote bone formation and increase extracellular
matrix (ECM) production by inducing SOX9 expression (Cai et al.,
2023; Du et al., 2023). Studies have shown that MSC injections can
restore chondrocyte proliferation, inhibit apoptosis, regulate
inflammation, and help ki67 expression in damaged cartilage
(Zhang et al., 2021) (Figure 3). However, despite these benefits,
MSCs often exhibit poor retention and rapid degradation after intra-
articular injection, limiting their therapeutic efficacy.

To overcome these challenges, various types of nanoparticles are
being investigated to encapsulate MSCs or their secreted products.
These include polymeric nanoparticles, liposomes, and hydrogels.
For example, PLGA nanoparticles have been used to encapsulate
MSCs or MSC-derived exosomes, promoting chondrocyte
proliferation and enhancing cartilage matrix production. In
preclinical models, this approach has shown potential in reducing
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TABLE 2 Nanomedicine that promotes cartilage regeneration and repair.

Composition Cell Animal Dose Outcome References

KGN-PLGA-PEG-PLGA-
BMSCs

— Rabbits In vitro:/
In vivo: 50 mg/kg

Degenerated cartilage area↓ Zhou et al. (2015)

CD90@ NPs — Rabbits In vitro:/
In vivo:12 mg/rat

CD68, iNOS↓
IL-10, IGF1, CYCLIN B↑
Degenerated cartilage area, degenerated
surface cartilage width, total osteophyte
volume ↓

Cosenza et al. (2017)

hASC-EVs Human chondrocytes-
osteoarthritis

Rats In vitro: 1×108, 2×108

particles/mL
In vivo: 1×108 particles/rat

MMP1, MMP3, MMP13, ADAMTS5, IL-
1β, CD86↓

Zhai et al. (2022)

PPD-MSC-sEVs Human chondrocytes-
osteoarthritis

Mice In vitro:/
In vivo: 1×107 particles/
mice

ADAMTS5, MMP13, IL-1β, TNF-α↓
Aggrecan, COL1↑

Li et al. (2021a)

MMP13 siRNA NPs ATDC5 Mice In vitro:/
In vivo: 1,875 nmol

MMP13↓
Degenerated cartilage area, degenerated
surface cartilage width, total osteophyte
volume ↓

Kalashnikova et al.
(2020)

KGN: kartogenin; BMSCs: bone marrow MSCs; mPEG-Hz-b-PCL: methoxy poly (ethylene oxide)-hydrazone-poly (ε-caprolactone) copolymers; CD90@ NPs: CD90+ MCS-derived micro-

vesicle-coated nanoparticle; hASC-EVs: human adipose-derived stem cells extracellular vesicles; PPD: ε-polylysine-polyethylene-distearyl phosphatidylethanolamine; MMP: matrix

metalloproteinase.

FIGURE 3
Mechanism of MSC in promoting cartilage repair. This figure outlines the pivotal role of mesenchymal stem cells (MSCs) in cartilage repair and the
molecular mechanisms involved. It demonstrates howMSCs contribute to the restoration andmaintenance of cartilage through their differentiation into
chondrocytes, influenced by signaling molecules such as TGF-β. The figure highlights the activation of the transcription factor SOX-9, which is essential
for chondrogenic differentiation and is upregulated by TGF-β. SOX-9 then promotes the expression of key extracellular matrix (ECM) components,
including type II collagen (Col2a1) and aggrecan, which are crucial for cartilage structure and function. Additionally, the figure indicates the involvement
of the MAPK pathway, which can lead to increased expression of MMP13 and ADAMTS5, enzymes associated with cartilage degradation. The interaction
between the Wnt pathway and YAP-TAZ signaling is also depicted, illustrating their role in cell proliferation and tissue regeneration. The figure
encapsulates the complex network of interactions that underlie MSC-induced chondrogenesis, highlighting the therapeutic potential of MSCs in treating
osteoarthritis by enhancing cartilage repair and reducing inflammation.
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cartilage degradation (Fan et al., 2006). Nanoparticles can also
deliver anti-inflammatory cytokines, such as IL-10 and TGF-β, in
a controlled manner, leading to reduced synovitis and cartilage
destruction.While most research in nanoparticle-encapsulatedMSC
therapy remains at the preclinical stage, early results in animal
models are promising (Gonzalez-Fernandez et al., 2022). These
studies demonstrate improved cartilage regeneration, reduced
inflammation, and better joint function. However, further
investigation is required to optimize nanoparticle formulations,
ensure long-term safety, and assess the clinical efficacy of these
therapies in human OA patients (Seo et al., 2022).

5 Conclusion: Recent advances in
nanotechnologies for OA treatment

Recent advancements in nanotechnologies offer promising
avenues for overcoming the limitations of traditional OA
therapies. Nanoparticles have been utilized as vectors to improve
the delivery, bioavailability, and stability of existing OA treatments,
such as NSAIDs, by enabling targeted, sustained release directly into
the inflamed joints. Metal-based nanoparticles, particularly those
leveraging silver and copper, have shown potential in reducing
oxidative stress, though concerns about toxicity and cost remain.

The combination of nanoparticles with molecular agents,
including peptides, siRNA, and shRNA, further enhances the
therapeutic potential by allowing for precise targeting of
inflammation, oxidative stress, and cartilage degradation at the
molecular level. Additionally, nanomedicines designed to
promote cartilage regeneration, such as black phosphorus
nanosheets, represent a breakthrough in the tissue repair process.
Another emerging area is the encapsulation of mesenchymal stem
cells (MSCs) in nanoparticles, which improves the efficacy of stem
cell therapies in repairing joint tissues and reducing inflammation.

While these nanotechnologies demonstrate significant promise,
their clinical applications are still in early stages, with most studies
focusing on animal models. Continued research is essential to
address challenges related to nanoparticle safety, long-term
effects, and scaling up for clinical use. Future directions will
likely involve refining nanoparticle formulations for better

bioavailability, stability, and minimizing off-target effects,
ensuring that nanomedicine becomes a transformative tool in OA
management.
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