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Introduction: Dilated cardiomyopathy (DCM) is a fatal myocardial condition with
ventricular structural changes and functional deficits, leading to systolic
dysfunction and heart failure (HF). DCM is a frequent complication in
oncologic patients receiving Doxorubicin (Dox). Dox is a highly cardiotoxic
drug, whereas its damaging spectrum affects most of the organs by multiple
pathogenic cascades. Experimentally reproduced DCM/HF through Dox
administrations has shed light on the pathogenic drivers of cardiotoxicity.
Growth hormone (GH) releasing peptide 6 (GHRP-6) is a GH secretagogue
with expanding and promising cardioprotective pharmacological properties.
Here we examined whether GHRP-6 administration concomitant to Dox
prevented the onset of DCM/HF and multiple organs damages in otherwise
healthy rats.

Methods: Myocardial changes were sequentially evaluated by transthoracic
echocardiography. Autopsy was conducted at the end of the administration
period when ventricular dilation was established. Semiquantitative
histopathologic study included heart and other internal organs samples.
Myocardial tissue fragments were also addressed for electron microscopy
study, and characterization of the transcriptional expression ratio between
Bcl-2 and Bax. Serum samples were destined for REDOX system balance
assessment.

Results and discussion: GHRP-6 administration in parallel to Dox prevented
myocardial fibers consumption and ventricular dilation, accounting for an
effective preservation of the LV systolic function. GHRP-6 also attenuated
extracardiac toxicity preserving epithelial organs integrity, inhibiting
interstitial fibrosis, and ultimately reducing morbidity and mortality.
Mechanistically, GHRP-6 proved to sustain cellular antioxidant defense,
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upregulate prosurvival gene Bcl-2, and preserve cardiomyocyte mitochondrial
integrity. These evidences contribute to pave potential avenues for the clinical
use of GHRP-6 in Dox-treated subjects.
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Introduction

Dilated cardiomyopathy (DCM) is a group of heterogeneous
myocardial diseases, with structural and functional disorders
defined by left ventricular (LV) or biventricular dilation, along
with systolic dysfunction with abnormal left ventricle ejection
fraction (LVEF) (Schultheiss et al., 2019). DCM
pathophysiological changes include a decrease in stroke volume
and cardiac output, impaired ventricular filling and an increase in
end-diastolic pressure. Diastolic function is also impaired
accounting for a reduction in myocardial relaxation, and
consequently a poor ventricular filling (Riehle and Bauersachs,
2019; Schultheiss et al., 2019). This is a common and highly
prevalent condition leading to heart failure (HF) (Hershberger
et al., 2013). Despite the remarkable progress in HF control
therapies over recent decades, DCM mortality rates are high,
remaining as one of the leading causes of heart transplantation
(Benjamin et al., 2018; Ferreira et al., 2023).

Genetic mutations are reported to account for 35% of DCM
cases, whereas other lifetime acquired causes include viral
myocarditis, toxins, endocrine-metabolic disturbances, and
exposure to chemotherapy drugs in cancer-affected patients
(Imanaka-Yoshida, 2020). Doxorubicin (Dox) is a
chemotherapeutic anthracycline with proved efficacy against
different cancer types but with remarkable cardiotoxicity. DCM
and progressive HF are frequently-registered adversities in Dox-
treated patients (Robert Li et al., 2023). Hence, different
cardiovascular-damage drivers have been attributed to Dox,
including myocardial cells DNA damage, interstitial
inflammation, oxidative stress cytotoxicity, cardiomyocytes
apoptosis, mitochondrial damages, and dysregulation of
autophagy (Wang T-H. et al., 2023). Dox toxicity is not solely
restricted to myocardial tissue; its cytotoxic effects impact a broad
constellation of epithelial, mesenchymal, and nervous cells, affecting
most organ systems (Alhowail et al., 2019; Prathumsap et al., 2020).
Dox at different doses and treatment regimens has been for years a
valuable tool for the experimental reproduction of DCM/HF, which
has contributed to elucidate molecular pathogenic determinants of
its underlying cardiotoxicity (Hullin et al., 2018; Lother et al., 2018;
Zhu et al., 2019).

Growth hormone (GH) releasing peptide 6 (GHRP-6) (His-
DTrp-Ala-Trp-DPhe-Lys-NH2) is a small molecular weight peptide
integrated into the GHRP family, which has progressively
broadened its pharmacological spectrum from a GH-secretagogue
to a promising cardioprotective agent (Berlanga-Acosta et al., 2017).
This agent is a ghrelin analog that binds and activates the GH
secretagogue receptor 1a (GHSR1a) (Xiao et al., 2020), whereas it
also binds to the ectodomain of CD36 receptor (Demers et al., 2004).

GHRP-6 has proved to prevent and attenuate cardiac cell death
and LV failure in a variety of experimental scenarios (Lucchesi, 2004;

Xu et al., 2005; Berlanga-Acosta et al., 2016; Berlanga-Acosta et al.,
2017). Furthermore, we have also identified GHRP-6 anti-fibrotic
properties which may contribute to mitigate the systemic
complications of Dox administration (Berlanga-Acosta et al.,
2012; Mendoza et al., 2016; Fernandez-Mayola et al., 2018).
Beyond its ability to enhance the survival of a diversity of cells
before an otherwise lethal stress, GHRP-6 and other mimetic ligands
to the GHSR1a and CD36 receptors, play an agonistic effect on the
GH/IGF-1 axis promoting a systemic anabolic response, and
counterbalancing catabolism and sarcopenia (Giorgioni et al., 2022).

Here we describe that: (Schultheiss et al., 2019): GHRP-6
administration concomitant to Dox challenge prevented the onset
of DCM/HF, (Riehle and Bauersachs, 2019), GHRP-6 significantly
reduced animals’ morbidity and mortality, attenuated epithelial
damages in a multi-organs spectrum, and inhibited Dox-related
parenchymal fibrotic induration, (Hershberger et al., 2013), GHRP-
6 triggered multiple defense mechanisms, involving oxidative stress
reduction and activation of detoxifying enzymes, enhancement of
prosurvival gene expression, and cardiomyocytes mitochondrial
structural preservation. To the best of our knowledge, this is the
first demonstration on the GHRP-6 cardio and systemic protective
and anti-fibrotic effects, in the scenario of Dox-related toxicity.

Materials and methods

Animals and ethics

Male Wistar rats with 200–250 g body weight and 9–10 weeks of
age were used for the study. Rats were purchased from the National
Center for Laboratory Animals Breeding (CENPALAB) and housed
in a certified room of the animal facility at the Center for Genetic
Engineering and Biotechnology (CIGB). Three animals per cage
were allocated under controlled environmental conditions. Rats
were allowed free access to food and water. Animals’
manipulation, care, and investigational procedures were declared
in the experimental protocols and approved by the Institutional
Animal Care and Welfare Committee of CIGB. Orbital blood
samples were obtained under ether anesthesia. Animals were
terminated by anesthesia overdose (250 mg/kg sodium
pentobarbital).

Reagents, treatments, and DCM induction

Medical grade, commercially injectable solution doxorubicin
hydrochloride (Dox) was acquired from Lemery SA
pharmaceutical company (Mexico) at a concentration of 2 mg/
mL. DCM/HF pathological model was induced through the
intraperitoneal administration of Dox at 2 mg/kg twice a week
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(Monday and Friday), for 52 days as described (Hayward and
Hydock, 2007) (Figure 1). The hexapeptide GHRP-6 (His-d-Trp-
Ala-Trp-d-Phe-Lys-NH2) was purchased from BCN Peptides
(Barcelona, Spain). Fresh preparations were obtained by diluting
the peptide in sterile normal saline solution to a final concentration
of 400 μg/mL. Solutions were freshly prepared, conserved at 4°C and
protected from light. GHRP-6 was intraperitoneally administered at
a dose of 400 μg/kg.

Experimental protocols and study groups

The hypothesis for this study was that GHRP-6 concomitant
administration to Dox treatment may attenuate myocardial
structural and functional damages, and consequently, prevent the
onset of DCM/HF. A total of 36 animals were used, distributed in
three experimental groups with 12 rats each: (I)—A group of healthy
not treated, sentinel animals was used to obtain echocardiographic
and biochemical reference values at the end of the intoxication
period. This is relevant considering that rats’ somatic maturation
was still in progress during the study period (Cossio-Bolanos et al.,
2013). (II)- Animals receiving GHRP-6 twice a day at a dose of
400 μg/kg concomitant to Dox. (III)- Animals receiving normal
saline solution concomitant to Dox. Following to experimental
groups formation and prior to Dox-administration regimen, all
the rats were echocardiographically studied in order to obtain

baseline physiologic parameters. Subsequent serial
echocardiographic evaluations were done during the Dox
administration process on the following points: 14, 24, 37, and
52 days (Figure 1). For the later point, the rats had a Dox cumulative
dose of 30 mg/kg and echocardiographic recordings indicated a clear
LV deformity and functional failure, as described in previous studies
(To et al., 2003). As mentioned, treatments with Dox and GHRP-6
were intraperitoneally administered until day 52 (see Figure 1 for
experimental sequence).

Echocardiographic parameters

Prior to each echocardiography recording, animals were lightly
sedated as recommended (Stein et al., 2007) with an intraperitoneal
administration of ketamine (50 mg/kg) + xylazine (5 mg/kg), and
placed in supine position in a stable horizontal plane. Once the
animals were sedated and stabilized, transthoracic
echocardiography recordings were carried out with a Sonos
5,500 equipment, coupled to a linear transducer of 11–15 MHz
(Philips, United States). The M-mode structural parameters studied
were: LV diastolic diameter (LVDd), LV systolic diameter (LVSd),
inter-ventricular septum thickness in systole (IVSs), and LV
posterior wall thickness in systole (LVWs). LVEF was considered
the main functional parameter as previously indicated (Iwase
et al., 2004).

FIGURE 1
Schematic representation of the experimental induction of DCM/HF in rats by intraperitoneal administration of Dox, and concomitant administration
of GHRP-6.

TABLE 1 Histological examination and damage scoring parameters.

Organ
evaluated

Parameter evaluated Evaluation procedure

Myocardial LV wall % of damaged myofibrils. Damage criteria were: presence of granular
basophilic material, loss of fibers, fiber thinning, tumefaction,
fragmentation and reduction of eosin staining affinity

Ten random microscopic fields of longitudinal fibers (×20) were studied/
animal. The % of damaged fibers was determined, considering the total
number of fibers evaluated in each field

Lungs % of bronchi with mucosal necrosis Ten random microscopic fields (×10) were studied per animal. The % of
damaged bronchi was determined considering the total in each field

Kidneys % of tubules with irreversible epithelial cells damages Ten microscopic fields (×20) were studied per animal. The % of tubules
irreversibly damaged was determined, out of the total in each field

Liver Passive hepatic congestion 0- No congestion, 1- Mild congestion, 2- Evident congestion, 3- Severe
congestion with a marked sinusoidal distortion
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Histopathologic evaluations

Animals were euthanized by anesthesia overdose at the end of
the administration period. Alternatively, the rats that along the study
evolved to a terminal irreversible clinical condition were sacrificed to
ensure a proper autopsy and samples collection. Accordingly, these
cases were included in the mortality record. Autopsy study was
conducted following an internal protocol based on standard
techniques (Scudamore et al., 2014). During the autopsies, gross
pathological changes were described and recorded. Heart, lungs, and
liver weights were used to calculate the relative organs weight
indexes as described: Relative organ weight = [organ weight/body
weight]×100 (Mossa et al., 2015). Representative fragments from
apparently normal organs were also harvested. Hearts were sliced in
four sagittal sections from apex to base as described (Li et al., 2019).
Organs fragments and heart slices were 10% buffered formalin fixed
and processed for paraffin embedding. Semi-thin sections (2–3 µm)
were serially generated for subsequent hematoxylin/eosin staining.
Semi-quantitative histological analyses of the heart, bronchial
mucosa, kidneys, and liver passive congestion (Table 1) were
conducted according to previous descriptions (Chen et al., 2016;
Afsar et al., 2017). Histological images were obtained using an
Olympus BX-53 light microscope (Olympus America Inc.,
United States) whereas the histological evaluations were
independently and blindly performed by specialized researchers
(JBA, DCV, JSA).

Electron microscopy study

Specimens were fixed in 3.2% glutaraldehyde and post-fixed in 1%
osmium tetroxide, at 4°C and for 60 min, washed with PBS (0.1 M;
pH7.2) and dehydrated in increasing concentrations of ethanol at 4°C.

Inclusion was carried out as described (Glauert and Lewis, 1999).
Ultrathin sections obtained with an ultramicrotome (NOVA, LKB,
Germany), 400–500 Å thick; were placed on 400-hole copper-nickel
grids, counterstained with saturated uranyl acetate and lead citrate,
and subsequently examined with a JEOL JEM 2000 EX microscope
(JEOL, Japan). A total of 20 photomicrographs at different
magnifications of each sample collected were blindly analyzed by a
qualified specialist (VFC). The presence of pathological changes in the
ultrastructure of myofibrils, mitochondria, and intercellular junctions
were qualitatively evaluated.

Serum biochemical analysis

Blood was collected from the retro-orbital plexus once the animals
were anesthetized. Blood was centrifuged at 10,000 rpm for 15 min at
4°C to obtained serum. Serum samples were aliquoted and kept
at −80°C for subsequent analysis. The concentration of total
hydroperoxides (THP), malondialdehyde (MDA), and the activity of
the enzymes superoxide dismutase (SOD) and catalase were determined
using an UV/visible spectrophotometer Ultrospec 2000 (Pharmacia
Biotech, United States). The quantification of THP and MDA contents
was made using commercial kits Bioxytech H2O2-560 and Bioxytech
LPO-586 (OXIS International Inc., United States), respectively,
following the manufacturer’s instructions. Total SOD activity was
evaluated by the classic method based on pyrogallol autoxidation as
described (Rao et al., 2021). We consider 1 U of SOD as the amount of
enzyme inhibiting 50% of pyrogallol autoxidation reaction at 25°C.
Catalase activity was determined following the decomposition of the
H202 at 240 nm in 10-s intervals for 1 min (Ajamieh et al., 2002).
Alanine amino transferase (ALAT) serum levels were measured in an
automatic analyzer (Hitachi 747, Germany), according to the
manufacturer’s instructions.

TABLE 2 Primer sequences and amplification conditions.

Gen Primers sequence GenBank number PCR Temp. (°C) PCR product length (bp)

Bax 5′- TGA TTG CTG ACG TGG ACA CGG AC 236U23 68/94 321

3′- TGA GCG AGG CGG TGA GGA CTC

β-actin 5′-GGA GAT CGT GCG GGA CAT CAA GG AY550069 68/94 482

3′-GGC CGG ACT CGT CGT ACT CCT GC

Bcl-2 5′- GCT ACC GTC GCG ACT TTG CAG AG 545U23 68/94 321

3′- CAC TTG TGG CCC AGG TAT GCA CC

TABLE 3 Body weight of the animals and relative organs weight index.

Groups Body weight (g) W.I. Heart W.I. Lungs W.I. Liver

Healthy sentinel 417.2 ± 27.2 (a) 0.28 ± 0.03 (b) 0.41 ± 0.07 (b) 3.54 ± 0.33 (c)

Saline 266.6 ± 32.5 (b) 0.51 ± 0.08 (a) 1.02 ± 0.28 (a) 6.79 ± 0.33 (a)

GHRP-6 295.5 ± 45.1 (b) 0.33 ± 0.05 (b) 0.62 ± 0.16 (b) 4.96 ± 0.51 (b)

The values are represented as the mean ± SD, per experimental group. The statistical analysis was made using an ANOVA, followed by the Newman-Keuls multiple comparison test. For each

parameter, different letters (a, b or c) indicate statistically significant differences among the experimental groups, while equal letters indicate not significant differences, p < 0.05. W.I.: relative

weight index.
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Gene expression study

In order to evaluate the expression ratio between Bcl-2 and
Bax as representative of pro-survival and apoptogenic gene,
respectively; LV tissue fragments were collected from five rats of
saline and GHRP-6 groups during the autopsy process.
Fragments were stored in liquid nitrogen until processing.
Total RNA purification was performed by treatment with
Tri-Reagent (Sigma-Aldrich, United States), following the
manufacturers’ instructions. The quality and quantity of the
purified RNA was estimated by determining the absorbance at
260 nm and 280 nm, together with the visualization by
electrophoresis of the two ribosomal RNA bands. The
contaminating genomic DNA was removed by digestion with
the enzyme DNaseI (Epicentre Technologie, United States), free
of RNase activity, following the manufacturers’ instructions. An
amount of 1 μg of the RNA previously treated with DNaseI was
used for the RT-PCR technique, using the commercial
GeneAmp RNA PCR Core Kit (Applied Biosystems,
United States), according to the manufacturers’
specifications. The amplification of the genes of interest was
carried out using the primers and temperatures specified below
(Table 2). β-actin gene expression was used to normalize the
expression of the target genes. The bands obtained were
detected by applying 1/10 or 1/5 of the volume of the
amplification reaction in a 1% agarose gel electrophoresis.
The intensity of the bands was quantified using Kodak ID
3.6 software (Kodak, United States).

Statistical analyses

The statistical analyses were made with GraphPad Prism
(California, United States), version 8.0.2. The Goodness of Fit
tests to the normal distribution (Kolmogorov-Smirnov test)
were made for all data, as well as the homogeneity of
variances (Bartlett test). Given that in all cases the
assumptions of normal distribution and homogeneity of
variances were fulfilled, we carried out comparisons between
pairs of groups using the Student’s t-test. For multiple

comparisons, we used one-way or two-way analyses of
variance (ANOVA) followed by the Newman Keuls, Sidak’s
or Dunnett’s multiple comparisons tests. The results of survival
were compared through the Logrank test. In all cases, the values
of p < 0.05 were interpreted as indicative of statistically
significant differences.

Results

Clinical evolution and mortality

Having completed 3 weeks of Dox administration, animals
began to show a cachectic process evolving to clinical
deterioration. Rats from both GHRP-6 and saline groups
showed no differences in body weight loss along the Dox
administration period (Table 3, p = 0.1943), which
significantly differed to the body weights recorded for the
healthy sentinel rats (p < 0.0001) on day 52.

Tendency to isolation, prostration, bristly hair, and dorsal
hunched posture was observed in most of the animals exposed to
Dox. Autopsies showed that GHRP-6 intervention significantly
reduced the relative weights of the heart and lungs as compared
to saline (all p < 0.05). No statistical difference was detected in the
relative weights of the heart and lungs from the GHRP-6
intervention, and those of the healthy sentinel animals (Table 3).
Most importantly, GHRP-6 intervention allowed for a significant
survival percentage (84%) as compared to saline group
(42%), (Figure 2).

GHRP-6 contributed to preserve ventricular
morphology and physiology

The rats included in the study exhibited normal
morphologic and functional baseline echocardiographic
parameters. Average baseline LVEF recording was 92.78% ±
1.84%. The earliest myocardial morphological change in the
saline group was detected on day 24th of the experiment, given
by a significant increase (p = 0.0279) in the LV systolic diameter,
(Figure 3A), and followed by a significantly larger LV diastolic
diameter after 37 days of Dox administration (p < 0.0001)
(Figure 3B). These impairments appeared concomitant to a
significant thinning of the septum and the posterior wall in
systole (p < 0.05) (Figures 3C, D) in relation to the baseline data.
The myocardial structural deterioration translated in a
significant reduction of the LVEF in the saline group when
compared to its baseline values. Significant differences were also
observed when the saline group LVEF was compared to the
healthy sentinel and GHRP-6 groups. These alterations were
progressively worse in correspondence with Dox cumulative
dose. On day 52, saline group exhibited a decrease of about 30%
in LVEF (Figure 3E). Concomitant GHRP-6 intervention
prevented LV dilation regardless of the dose of Dox.
Accordingly, no statistical differences in the diastolic and
systolic diameters were detected in reference to its baseline
data, and as compared to the healthy sentinel animals on day 52
(Figures 3A, B). Furthermore, GHRP-6 treated group also

FIGURE 2
Survival curve in doxorubicin-treated animals. GHRP-6 and
saline experimental groups started the study with n = 12 rats per
group. The statistical analysis was carried out using the Logrank test.
*p = 0.0230.

Frontiers in Pharmacology frontiersin.org05

Berlanga-Acosta et al. 10.3389/fphar.2024.1402138

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1402138


showed septal systolic thickness and posterior wall thickness
values, similar to those measured in the healthy sentinel group
(Figures 3C, D). Worth mentioning is that GHRP-6 group LVEF

figures, remained within the normal range during the entire
evaluation period as compared to the healthy sentinel group
recordings (Figure 3E, all p > 0.05).

FIGURE 3
Echocardiographic characterization of morphologic and functional parameters in healthy and doxorubicin-treated animals. (A) Systolic diameter.
(B) Diastolic diameter. (C) Septum thickness in systole. (D) Posterior wall thickness in systole. (E) LV ejection fraction. The data are represented as the
mean ± SD per experimental group. The baseline values correspond to pre-Dox administration phase. The statistical analyses were made using the
unpaired Student’s t-test. *p < 0.05; **p < 0.01; ***p < 0.001.
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GHRP-6 intervention protected ventricular
myofibrils from Dox toxicity

Figures 4A, B correspond to panoramic images of both ventricles
free walls of rats from the healthy sentinel group, in which no
histopathological damages were detected. As expected, Dox
treatment produced a group of myocardial abnormalities on the
saline-treated rats that encompassed: myofibrils thinning, wall
slimming (Figures 4C, D), fibers undulation, fractures, and focal loss

of eosin staining affinity. GHRP-6 administration however, exerted a
“sparing effect” on the ventricular myofibrils against Dox-induced
damages. Myocardial histopathological damages attributable to Dox
were minimal, whereas no microscopic differences were detected
between GHRP-6 rats and the intact sentinel animals (Figures 4E,
F). This microscopic cardioprotective effect was further supported by
the quantitativemorphometric analysis, attesting a significant reduction
(p < 0.00019) in the percentage of damaged ventricular myofibrils
(Saline: 91.0 ± 4.4 vs. GHRP-6: 42.2 ± 8.6).

FIGURE 4
Myocardial histologic aspect of healthy and doxorubicin-treated rats. Microphotographs in the left column correspond to left ventricle. The right
ventricle images are on the right column. (A,B) are representative images of left and right ventricle walls of animals from the healthy sentinel groupwhere no
evidence of pathologic changes were found. Tissue mass and fibers compactness are normal. (C,D) are images representing the major histopathologic
damage brought about by Dox treatment in the saline group. It is evident the “loss-of-substance” by cardiomyocytes demise with evident wall thinning
of both left and right ventricular walls. (E,F) are images representing the cardioprotective effect of GHRP-6. Myocardial cells demise and loss of ventricular
tissuemassbyDoxwere evidently preventedby the concomitant interventionwith thepeptide.Dashed lines are introduced to facilitate the transmural viewof
ventricular walls. Autopsy collected samples and paraffin processing for semi-thin sections stained with H/E. For all, magnification is ×4. Scale bar is 200 µm.
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FIGURE 5
Histologic characterization of doxorubicin-induced extracardiac damages. (A–C) correspond to liver and lung parenchyma of saline group. (D–F)
are representative of the effect of GHRP-6 treatment in these organs. (A) Liver section exhibiting passive congestion given by sinusoidal blood congestion
(square). Magnification ×20. (B) is representative of Dox-associated lung damage, expressed by a dramatic alveolar walls thickening and mixed
hypercellularity, including round inflammatory cells. Magnification ×20. (C) Shows the intense vessels congestion in lungs of control saline-treated
rats. The arrows point to congested veins, and the square to a congested artery with a remarkable wall thickening. Note also the alveolar walls congestion
and hypercellularity. Magnification ×10. (D) Image representative of a liver with no venular/sinusoidal congestion in animals treated with GHRP-6.
Magnification ×20. (E) The image shows thin and normo-cellular alveolar walls with no collapse or reduction of the functional intra-alveolar space.
Magnification ×20. (F) Image of a normal lung parenchymawith no vascular congestion nor infiltration of inflammatory cells in animals receiving GHRP-6.
Magnification ×10. (G) is a representative image of the fibrotic process triggered by the Dox treatment in the liver of saline control group. Black arrows

(Continued )
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GHRP-6 also protected epithelial extra-
cardiac organs

The histological examination of the lungs and liver
parenchyma of animals receiving Dox and saline solution
revealed pathognomonic changes of congestive heart failure
(CHF). Passive liver congestion; as lungs alveolar septal
thickening, edema, hypercellularity, and venous congestion
were largely prevalent in the saline group (Figures 5A–C).
All these pathological findings were partially or absolutely
prevented by the intervention with GHRP-6 (Figures 5D–F).
These histopathologic changes were substantiated by
semiquantitative measurement scales as described in Table 1.
Liver congestion in saline group was classified as evident-to-
severe versus less than mild congestion for the GHRP-6 group
(Table 4). In line with this, ALAT circulating levels were also
significantly higher in the saline group than in rats receiving
GHRP-6 (Table 4). In addition to focal necrosis, perivascular
fibrotic induration (Figure 5G) was another hepatic change
attributable to Dox cumulative toxicity and evidenced in the
saline group. Interestingly, no evidences of pathologic fibrotic
induration were ever detected in the liver of rats receiving
GHRP-6 (Figure 5H). Small intestine, specially jejunum and
ileum walls were also impacted by Dox administration.
Intestinal damages included scattered foci of transmural
necrosis in saline group which were consistently prevented
by GHRP-6 administration (not shown). Kidneys were
affected by Dox toxicity. Figure 5I illustrates tubular
epithelial cells with cytoplasmic ballooning and nuclear
pyknosis, which contrasts with the protective effect exerted
by GHRP-6 treatment, in which most of the nuclei exhibit
normal aspect (Figure 5J). The quantification of the tubular
system damages in the saline group indicated the significant
prevalence of lethal irreversible changes, as compared to the
effect of GHRP-6. Similarly, the coagulative necrosis found in
most microscopic fields of the bronchial epithelium in the saline
group was broadly reduced by the GHRP-6
intervention (Table 4).

GHRP-6 intervention ameliorated oxidative
stress cytotoxicity

The profile of the serum redox markers studied is shown in
Figure 6. Dox administration provoked a progressive increase in
the THP and MDA concentrations of the saline group (p <
0.05 in both cases) (Figures 6A, B). This increase was
significantly higher than that produced in the GHRP-6
counterpart for both parameters on day 35 (THP: p = 0.0010;
MDA: p = 0.0442) and day 52 (p < 0.0001 and p = 0.0039,
respectively). Catalase levels showed a biphasic behavior
(Figure 6C). During the first 14 days of Dox administration,
the activity of this enzyme progressively increased in both saline
(p = 0.0052) and GHRP-6 (p < 0.0001) groups with respect to
baseline values. However, with increasing Dox cumulative levels,
catalase activity became inhibited, which was far more
pronounced in the saline rats than in those treated with
GHRP-6 in both day 35 (p = 0.0022) and day 52 (p = 0.0088).
Serum SOD activity became gradually depressed in
correspondence with Dox administration time in saline group
(p < 0.05 for days 35 and 52). Nevertheless, concomitant GHRP-
6 intervention positively impacted in SOD enzyme activity
preservation, as compared to baseline values (p > 0.05) and to
saline group (Figure 6D, day 35: p = 0.0462; day 52: p = 0.0363).

GHRP-6 stimulated the expression of a
survival gene

GHRP-6 concomitant intervention produced a significant
increase in Bcl-2 myocardial expression with a
simultaneous reduction of the pro-apoptotic Bax (for both
p < 0.001), as compared to healthy sentinel rats, and
definitely in relation to saline group. In the latter, Bax
exhibited the largest expression level (p < 0.001). The
maximal value of Bcl2/Bax ratio calculated for the GHRP-6
group significantly exceeded those estimated for the sentinel
and the saline groups (p < 0.05) (Figure 7).

FIGURE 5 (Continued)

indicate the long trajectory of a thick fibrotic cord that crosses around veins. Magnification ×10. (H) The image shows the effect of GHRP-6 in
preventing liver perivascular fibrosis. The square remarks the presence of normal, no fibrotic matrix around a central vein. Magnification ×10. (I) is a high
magnification (×40)microphotograph of a kidney tubular systemof control saline animals showingmassive nuclear pyknosis and cytoplasmic ballooning,
all irreversible lethal changes. (J) The image shows that GHRP-6 intervention exerted a nephro-protective effect, preventing degenerative and lethal
nuclear and cytoplasmic damages. Magnification ×40. All are semi-thin sections, H/E staining. Scale bar is 200 µm.

TABLE 4 Quantification of Dox-induced damages in extra-cardiac organs.

Variable Saline GHRP-6 p

Passive hepatic congestion (degree) 2.75 ± 0.27 0.69 ± 0.59 < 0.0001

Serum ALAT (U/L) 81.38 ± 12.73 29.38 ± 5.8 < 0.0001

Damaged renal tubules (%) 78.41 ± 12.43 20.53 ± 7.20 < 0.0001

Damaged bronchi (%) 70.95 ± 14.82 42.98 ± 11.50 0.0028

Data are expressed as mean ± SD., Statistical analyses were performed using unpaired Student’s t-test.
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GHRP-6 treatment contributed to preserve
cardiomyocytes organelles

Dox administration caused cardiomyocytes sarcolemmal
vacuolization, myofibrils fragmentation, and mitochondrial
damages that included membranes dilation, matrix ballooning,
and cristae fragmentation and disappearance. Figure 8A shows
the ultra-structural aspect of the myocardium of sentinel healthy
animals. In contrast with this, Figure 8B is representative of the
damages observed in the saline group, consistent on cardiomyocytes
fragmentation and mitochondrial matrix damages. GHRP-6
intervention accounted for a noticeable sarcolemmal and
mitochondrial structural preservation (Figure 8C).

Discussion

Dox has been known since late 1960s, and its use in the
oncological armamentarium remains as a first-line drug for the
treatment of a wide variety of cancers of epithelial and non-epithelial

origin. Nonetheless, its short and long-term cardiotoxic effects are of
foremost clinical significance (Podyacheva and Toropova, 2022).
Myriad of molecules have been historically investigated with the
expectation to neutralize specific or multiple targets within the
pleomorphic cardiomyocyte damaging cascade (Dulf et al., 2023).
After all these efforts, dexrazoxane is the only currently approved
treatment to prevent Dox-induced cardiotoxicity. In the meantime,
cardioprotective prophylaxis strategies stand as an urgent
requirement for cancer patients to prevent antineoplastic therapy
disruption, and consequently reduce mortality (Wang et al., 2021).

The accumulated Dox dose of 30 mg/kg as an inducer of severe,
progressive, and chronic cardiotoxicity was adopted from previous
experiences (To et al., 2003). Since our pilot experiments, this dose
proved to trigger an outspoken morbid state of DCM/CHF,
characterized by echocardiographic signs of ventricular dilation,
walls thinning, and LVmechanical failure. The heart failure involved
an increase in both systolic and diastolic volumes, and the well-
known distal complications as right side passive congestion with
peritoneal, hepatic, and pulmonary expression. The fact that our
echocardiographic, biochemical, and morphological findings are in

FIGURE 6
Serum oxidative stress markers in doxorubicin-treated animals. (A) Total hydroperoxides (THP). (B) Malondialdehyde (MDA). (C) Catalase. (D) Total
superoxide dismutase (SOD). The values are represented as the mean ± SEM per experimental group. The statistical analyses were made by two-way
ANOVA. Comparisons between treatment groups and among experimental time points were performed using Sidak’s and Dunnett’s multiple
comparisons tests, respectively. *p < 0.05; **p < 0.01; ****p < 0.0001 represents statistical differences between the Saline andGHRP-6 groups at the
different time points.
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FIGURE 7
Influence of GHRP-6 in apoptosis regulatory gene in healthy and doxorubicin-treated groups. (A) Bands obtained by RT-PCR technique. Results
normalized to β-actin gene expression are shown in the graphs: (B) Bcl-2; (C) Bax; (D) The Bcl-2/Bax ratio representing the balance between pro-survival
and pro-apoptosis gene expression levels in favor to Bcl-2 expression. Bars indicate themean ± SD (n= 5) per group. Formultiple statistical comparisons,
a one-way ANOVA followed by the Newman Keuls multiple comparison test were used. Significant statistical differences among the three
experimental groups (p < 0.05) are denoted by different letters (a,b,c).

FIGURE 8
Myocardial ultrastructural characterization in samples of healthy and doxorubicin-treated rats. (A) Healthy sentinel control. The normal
ultrastructure of the cardiacmuscle is shownwithmyofibrils (MF) andmitochondria (M) within normal limits. (B) Saline. Loss of continuity of themyofibrils
(arrows) and electron-dense mitochondria with loss of their cristae. (C) GHRP-6. Cardiomyocytes (CM), myofibrils, and mitochondria with cristae within
normal limits. Bar: 500 nm.
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line with previous descriptions of the experimental system
(Shivakumar et al., 2012; Subburaman et al., 2014; Sandamali
et al., 2019; Khedre et al., 2021), support and validate the
practical usefulness of our model. Consequently, we examined on
this scenario the hypothesis that GHRP-6 in concomitant
administration to Dox, may prophylactically attenuate the
myocardial and multiorgans changes associated to DCM/HF, and
to the anthracycline intrinsic toxicity. The GHRP-6 dose used in this
study had already evidenced cardioprotective effects by reducing
infarct size over 70% in a porcine model of acute myocardial
infarction (Berlanga et al., 2007). As described, GHRP-6
administration in parallel to Dox prevented cardiomyocytes
fibrils consumption and ventricular cavities dilation, which
accounted for an effective preservation of the LV systolic activity.
This GHRP-6 mediated preservation of the systolic function, likely
contributed to prevent extracardiac expressions of HF, as hepatic
venous congestion and alveolar septal flooding. Comprehensively
speaking, GHRP-6 concomitant administration to Dox attenuated
cardiac and extracardiac toxicity, reducing animals’ morbidity and
mortality. This intervention however did not show to avert animals’
cachexia. Preceding findings indicated that GHSR1a agonistic
stimulation increases appetite and improves body weight gain
(Yuan and Wang, 2020).

A previous study had already shown that GHRP-6 (100 μg/kg/
day) administered during 4 weeks, prevented DCM in a completely
different, non-toxic substrate, based in TO hamsters with an inborn
deficiency in the myocardial δ-sarcoglycan (Iwase et al., 2004). In
consonance with it, GHRP-2 (1 mg/kg), another synthetic GH
secretagogue analog to GHRP-6, and ligand for GHS-R1a and
CD36 (Titterington et al., 2009) also attenuated progressive LV
remodeling and systolic dysfunction in the same TO hamster line
(Kato et al., 2010).

Two relevant effects were displayed by GHRP-6 intervention
in the realm of Dox-derived toxicity: (Schultheiss et al., 2019): the
broad cytoprotective responses induced by the peptide in
different internal epithelial organs, and (Riehle and
Bauersachs, 2019) the anti-fibrotic response detected in both
liver and kidney parenchyma. GHRP-6 intervention showed to
rescue from coagulative necrosis a variety of epithelial cells as
hepatocytes, kidneys tubular cells, bronchial epithelia, and the
jejunum-ileum enterocytes. In relation to GHRP-6 extracardiac
cytoprotective profile, the only precedent study we are aware of,
revealed that a single prophylactic injection with GHRP-6
aborted the onset of Curling-like ulcers, and luminal bleeding
in stressed conscious rats. Interestingly, GHRP-6 displayed a dual
protective mechanism, one by directly activating survival
signalers on the gastric epithelial cells, while simultaneously
blunting the vagal efferent function, reducing the stress-
stimulated gastric acid production (Guo et al., 2012). The
anti-fibrotic effect, a previously described observation by our
group appears to be driven by a transcriptional downregulation
of TGF-β1 and CTGF, and by counteracting the accumulation
and formation of extracellular matrix ingredients and fibroblasts
cytoskeleton organization proteins (Berlanga-Acosta et al., 2012;
Fernandez-Mayola et al., 2018).

Altogether these data support the notion that these therapeutic
bounties are driven by the agonistic stimulation of myocardial and
extra-myocardial CD36 and/or GHSR1a receptors by activating

survival pathways, downregulating fibrogenic cytokines, and
optimizing energetic homeostasis shunts that cooperate in
cellular survival (Hosoda, 2022; Shu et al., 2022; Glatz et al.,
2023). Whether these cytoprotective and anti-fibrotic effects are
solely consequent to the stimulation of GHS-R1a has been debated
(Yuan et al., 2021) and is beyond the scope of our study. However,
this is a pharmacologically-relevant issue that deserves comment. A
line of experimental evidences based on cardiac and non-cardiac
cells in which GHS-R1a activation has been aborted through
chemical antagonism and genetic silencing, incites to conclude
that this receptor is irreplaceable for the activation of salvage
kinases, as for the anti-fibrotic, anti-oxidant, anti-inflammatory,
and proangiogenic effects upon its occupation by acylated ghrelin
(Shati and El-Kott, 2019; Wang et al., 2020; Zhang and Xie, 2020;
Shati and El-Kott, 2021; Wang et al., 2023). However, the early
observation by Bladanzi and co-workers in which both ghrelin and
des-acyl ghrelin inhibited apoptosis in H9c2 cardiomyocytes which
do not express GHSR1ainaugurated the alternative line, sustaining
that prosurvival pathways may be triggered and functionally
activated through a GHSR-independent pathway (Baldanzi et al.,
2002). More recent studies have demonstrated that des-acyl ghrelin
exhibits cardioprotective activities and anti-fibrotic effects through a
GHSR independent pathway (Pei et al., 2014; Liu et al., 2020).
Accordingly, Delhanty and co-workers have indicated that
unacylated ghrelin is a physiological component of the
circulation (Delhanty et al., 2015), behaves like a separate
hormone (Delhanty et al., 2012), and that it is likely endowed
with its own receptor (Delhanty et al., 2013). Likewise, the
potential contribution of CD36 on the light of our findings
demands consideration. First, GHRP-6 binds CD36 while the
recently generated azapeptide analogues retain high and selective
binding affinity for CD36 (Proulx et al., 2020), second, CD36 plays a
key role in providing the myocardium with its major energy
substrate (Shu et al., 2022), third, agonistic binding of
CD36 protected against myocardial damage and dysfunction by
ischemia/reperfusion (Bessi et al., 2012), fourth, mice deficient for
CD36 exhibit reduced tolerance to myocardial ischemia/reperfusion
injury (Irie et al., 2003), whereas humans harboring inborn
CD36 mutations, exhibit a variety of heart diseases including
hypertrophic cardiomyopathy, dilated cardiomyopathy, or
coronary heart disease (Tanaka et al., 2001), and fifth, alike
GHSR-1a, CD36 is represented in a broad constellation of
mammals tissues and organs (Zibara et al., 2002; Jacome-Sosa
et al., 2021), including those that appeared protected by GHRP-6
in our experiment. Hence, further studies are warranted in order to
selectively discern the role of each candidate receptor.

A thorough blueprint of the Dox-associated toxic mechanism is
yet to be depicted (Pugazhendhi et al., 2018). However, it seems that
mitochondrial damage/dysfunction with the ensued uncontrolled
generation of reactive oxygen species (ROS), is as proximal trigger in
the cascade of Dox-induced cardiomyocytes harms (Montalvo et al.,
2020; Nordgren and Wallace, 2020; Kong et al., 2022). As described
by others (Dulf et al., 2023; Shi et al., 2023), we observed that Dox
administration was characterized by progressive increase of
hydroperoxides and reactive aldehydes formation, along with a
depletion of major neutralizing anti-oxidant enzymes.
Concomitant GHRP-6 administration significantly
counterbalanced these events, while keeping catalase and SOD
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enzymes significantly active. This is not an unexpected finding since
we had observed that GHRP-6 reduced myocardial injury in a
porcine model of AMI, by the preservation of antioxidant
defense systems and the ensuing decrease in ROS pool (Berlanga
et al., 2007). Others also demonstrated that ghrelin, the unique
endogenous ligand of GHSR-1a, prevented neuronal apoptosis in a
model of hypoxia/ischemia by attenuating oxidative stress and
enhancing other survival drivers as Sirt1, PGC-1α, UCP2 (Huang
et al., 2019). Mitochondria are identified as the major source of ROS
and a main determinant of Dox-induced cardiac damages.
Disruption of mitochondrial physiology contributes to alter
metabolic and redox circuits in cardiac cells, ultimately
culminating in increased apoptosis (Wallace et al., 2020). We
therefore deem that the GHRP-6 effect on cardiac mitochondria
structural preservation is noteworthy, and may have definitively
contributed to reduce oxidative reactants spillover.

Since previous studies (Kagan et al., 2009) invoked Dox
accumulation in cardiac mitochondria as primary trigger of
apoptosis, we evaluated the expression ratio of Bcl-2/Bax
genes. Interestingly, cardiac Bcl-2 expression associated to
GHRP-6 administration exceeded the physiological expression
level detected in the healthy sentinel group. Early
pharmacological characterizations of GHSR1a ligands showed
to inhibit cardiomyocyte apoptosis in a rat model of chronic
heart failure (Xu et al., 2005). This GHRP-6 mediated
antiapoptotic ability was further confirmed and extended
through other in vitro and in vivo models (Paneda et al.,
2003; Delgado-Rubin et al., 2009; Granado et al., 2011), which
appeared mediated via the PI3 K/Akt/Bcl-2 salvage pathway
(Yuan and Wang, 2020). Conclusively, Dox-associated
myocardial cells demise may have been at least partially
prevented by Bcl-2 upregulation, along with a concomitant
decrease of Bax expression.

Although this work is limited for not having acquired
cardiovascular/pulmonary hemodynamic constants,
gasometry readings, or examined the integrity of the
intestinal wall barrier function, for a more comprehensive
evaluation of GHRP-6 cytoprotective spectrum; it provides
the first evidences on the cardiac and extracardiac protective
effect of a peptidyl GH secretagogue against an anti-neoplastic
anthracycline. It also offers a foundational platform for
subsequent cardio-and-cytoprotection studies within the
cardio-oncology realm.

Although with an underlying controversial substrate; ghrelin,
GHSR1a, and CD36 appear implicated in the multistep process of
malignant transformation, and cancer cells progression and
metastasis (Soleyman-Jahi et al., 2019; Guerrero-Rodriguez et al.,
2022; Kotta et al., 2022). This may introduce regulatory constrains
for the subsequent investigational development of these candidates.
Nonetheless, oncology remains orphan of pharmacological tools
that may act as “life-saving drugs” for empty niches as cancer-
associated cachexia-anorexia syndrome, and chemotherapy-
associated cardiotoxicity. Both processes may cause precocious
mortality (Yeom and Yu, 2022; Dempke et al., 2023).
Accordingly, we deem that GHRP-6 and/or other GHS
“drugability” is justified, which will subsequently entail the
clinical use of these candidates under the medical personalized
analysis of risk-benefit balance.

Significance

Dilated cardiomyopathy (DCM) is a poor-prognosis condition
characterized by ventricular dilation with evolving deterioration of
the systolic function ultimately leading to heart failure (HF). Cancer
patients treated with the chemotherapeutic anthracycline
Doxorubicin (Dox) are frequently affected by the drug-related
myocardial toxicity. This condition leads to chemotherapy
scheme discontinuation and therefore to cancer progression.
Despite continuous research efforts, DCM mortality rates are
high, remaining as one of the leading causes of heart
transplantation. This study confirms and extends that the classic
growth hormone (GH) secretagogue GHRP-6, is endowed with
potent cardio and cyto-protective abilities. In an experimental
model of Dox-induced DCM, GHRP-6 concomitant
administration prevented ventricular myofibrils consumption,
dilation, and accordingly preserved within physiological limits
left ventricle ejection fraction. Globally speaking, GHRP-6
reduced rats’ morbidity and mortality in a significant manner as
compared to saline control. Furthermore, GHRP-6 also exerted a
broad cytoprotective effect by reducing the thresholds of
parenchymal necrosis and apoptosis in most epithelial internal
organs. The treatment proved to abort in this system the fibrotic
induration in liver, kidneys, and lungs as a consequence of Dox-
toxicity. From a mechanistic perspective, GHRP-6 attenuated the
pro-oxidant arm and enhanced the anti-oxidant reserves before
Dox-challenge, attenuated mitochondrial matrix-ultrastructural
damages, and increased the expression of Bcl-2 as antiapoptotic
gene. This is the first evidence on the cardiac and extracardiac
protective effects of a peptidyl GH secretagogue against an anti-
neoplastic anthracycline. GHRP-6 candidacy as cardioprotective
drug is further supported by its broad safety and tolerability
profile upon its parenteral administration.
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Glossary

DCM dilated cardiomyopathy

LV left ventricle

LVEF left ventricle ejection fraction

HF heart failure

Dox doxorubicin

DNA deoxyribonucleic acid

GH growth hormone

GHRP-6 GH releasing peptide 6

GHSR1a GH secretagogue receptor 1a

CD36 cluster differentiation 36

IGF-1 insulin like growth factor type 1

CENPALAB National Center for Laboratory Animals Breeding

CIGB Center for Genetic Engineering and Biotechnology

LVDd LV diastolic diameter

LVSd LV systolic diameter

IVSs inter-ventricular septum thickness in systole

LVWs LV posterior wall thickness in systole

TEM transmission electron microscopy

THP total hydroperoxides

MDA malondialdehyde

SOD superoxide dismutase

ALAT alanine amino transferase

Bcl-2 Abbreviation of B cell Lymphoma. The gene product family plays
promotes cell survival

Bax Also identified as bcl-2-like protein 4 with pro-apoptotic effect

RNA Ribonucleic acid

RT-PCR Reverse transcription-polymerase chain reaction

ANOVA analysis of variance

CHF congestive heart failure

TGF-β1 Transforming growth factor beta 1

CTGF Connective tissue growth factor

Fas Pro-apoptotic product

ROS reactive oxygen species

AMI Acute myocardial infarction

Sirt1 silent mating type information regulation 2 homolog. Regulator of
metabolism, cell death, aging, oxidative stress defense, and
inflammation

PGC-1α peroxisome proliferator-activated receptor γ coactivator-1 α. Broad
regulator of mitochondrial life cycle and function, metabolism and
cell survival

UCP2 Uncoupling protein 2, involved in oxidative stress prevention

PI3K phosphatidylinositol 3-kinases. A family of proteins involved in cell
growth, proliferation, differentiation, motility, and survival

Akt Protein kinase B. It is involved in cell cycle progression, survival,
protein synthesis, and cell growth
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