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Background: Ophiopogon D is an important natural organic compound in
Ophiopogon japonicus, which often has significant biological activity.

Purpose: The purpose of this review is to systemically summarize and discuss the
pharmacological activity and underlying mechanisms of OP-D in recent years.

Method: PubMed and Web of Science were searched with the keywords:
“Ophiopogon japonicus”, “Ophiopogon D” “pharmacology”, and
“pharmacokinetics”. There was no restriction on the publication year, and the
last search was conducted on 1 Jan 2024.

Results: Emerging evidence suggests that OP-D possess numerous
pharmacological activities, including bone protection, cardiovascular
protection, immune regulation, anti-cancer, anti-atherosclerosis, anti-
inflammatory and anti-NAFLD.

Conclusion:OP-D has a potential value in the prevention and treatment of many
diseases. We hope that this review will contribute to therapeutic development
and future studies of OP-D.
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1 Introduction

Since the 21st century, researchers have increasingly turned their attention to traditional
Chinese herbs, recognizing their advantage of reduced side effects (Zeng et al., 2019).
Ophiopogon japonicus, a well-known Chinese herb, has long been considered a health-
promoting substance (Fang et al., 2018). At the same time, Ophiopogon japonicus is also a
popular ornamental plant in East Asia (Yuan et al., 2019). Literature investigation has
shown that Ophiopogon japonicus contains many active compounds, such as Dwarf Lilyturf
Tuber-13 (DT-13), Ophiopogon-B(OP-B), Ophiopogon-D (OP-D), Liriopesides-B (LP-B),
Ruscogenin (RUS), and Ophiopogon-D′ (OP-D′) (Ren-ping et al., 2014; Dong et al., 2021;
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Liu et al., 2023). OP-D is a rare C27 steroid glycoside isolated from
the tuber ofOphiopogon japonicus. Over the past few years, extensive
research on OP-D across animal and human models has
demonstrated its multifaceted benefits, including anti-
inflammatory, anti-cancer, anti-atherosclerosis, anti-NAFLD,
immunomodulatory, osteoprotective, and cardioprotective effects
(Figure 1). However, there is still a lack of comprehensive and
critical review of OP-D pharmacological activity. We hope that this
review will contribute to therapeutic development and future
studies of OP-D.

2 Chemical properties and plant
sources of OP-D

Ophiopogon japonicus is a perennial bushy herb characterized by
its bushy growth and small, oval or spindle-shaped roots, typically
found in the middle or near the ends of the root system. The small
tuberous roots are light brownish-yellow and very short (Figure 2).
The leaf base is clumped. The seeds are spherical, and the flowers are
solitary or in pairs. The flowering period is fromMay to August, and
the fruiting period lasts from August to September (Lei et al., 2021).

FIGURE 1
Main roles of OP-D in various tissuesOP-D plays an important role in various organs, such as the bone, blood vessel, heart, breast, kidney, liver, lungs,
colon and so on.

FIGURE 2
The whole plant (A), roots (B) and structures (C) of OP-D.
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OP-D is identified as a white crystalline powder with a molecular
formula of C44H70O16, and a molecular weight of 855.07. It is soluble
in methanol, ethanol, and dimethyl sulfoxide (DMSO), and features
eight OH groups and six CH3 groups (Chen et al., 2016) (Figure 2).

3 Pharmacokinetics

Liquid chromatography (LC) and electrospray ionization mass
spectrometry (ESI-MS) are two high-performance physical
separation techniques, particularly for the detection of OP-D and
its pharmacokinetics in rats. These two methods exhibited a good
correlation coefficient over the investigated concentration range (r >
0.997, LLOD < 2.0 ng/mL, RSD < 7.5% and accuracies were 97.5%–
107.0%) (Xia C. et al., 2008). The two-compartment
pharmacokinetic model describes the evolution of drug levels in
the organism by depicting the body as two pharmacokinetic
compartments (the central and the peripheral compartments, also
commonly referred to as compartment 1 and compartment 2, in that
order). After intravenous dosing (77.0 μg/kg), the plasma
concentration-time profile for OP-D was best fitted to an open
two-compartment model (Cl = 0.024 ± 0.010 L/min/kg, T1/2 =
17.29 ± 1.70 min). As a component of ‘SHENMAI’ injection, the
pharmacokinetics of OP-D revealed a significantly smaller clearance
compared with a pure OP-D compound (Xia CH. et al., 2008). OP-D
also influences on the pharmacokinetics and transport of other
drugs. As a natural quinone compound, cryptotanshinone was
found to have anti-inflammatory activities, anti-cancer activities,
anti-metabolic disorders, cardiovascular protection and other
functions. OP-D significantly increased the Cmax and T1/2 of
cryptotanshinone, while decreasing the clearance rate of
cryptotanshinone. In vitro, OP-D improved metabolic stability by
lowering intrinsic clearance and dramatically inhibited the transport
of cryptotanshinone through a reduced efflux rate. The combination
of cryptotanshinone and OP-D could inhibit the transport of
cryptotanshinone and reduce the bioavailability of
cryptotanshinone (Wang et al., 2023).

4 Anti-inflammatory activities

In colitis mouse model, OP-D ameliorates the colitis by
inhibiting epithelial NF-κB signaling pathway (Wang et al.,
2022). In streptozotocin-induced diabetic nephropathy rats,
OP-D ameliorates renal function by inhibiting inflammatory
response (Qiao et al., 2020). Related studies have shown that
particulate matter with a diameter of less than 2.5 µm (PM2.5)
can cause lung inflammation. In mouse pulmonary epithelial
cells, OP-D significantly ameliorates PM2.5-induced
inflammation by inhibiting the AMPK/NF-κB signaling
pathway (Wang Y. et al., 2020). Atopic dermatitis (AD) is a
prevalent condition globally, marked by symptoms such as
itching and eczema. In atopic dermatitis mouse models and
inflamed HaCaT cells, OP-D can treat inflammatory skin
diseasessuch as AD (An et al., 2020). In addition, related
studies have observed the anti-inflammatory effects of OP-D
in the spleen. The level of cytokine expression in the blood of OP-
D-treated mice is significantly decreased (An et al., 2020).

5 Anti-cancer activities

Tumours pose a significant threat to human health. In a study by
Zhang Y et al., the potential of OP-D to inhibit melanoma was
explored. The research revealed that OP-D effectively suppressed
both the invasion and proliferation of MDA-MB-435 melanoma
cells. Additionally, OP-D was found to inhibit the adhesion of these
cells to fibronectin. Mechanically, OP-D suppressed the
phosphorylation of p38 and the expression of matrix
metalloproteinase-9 (MMP-9) (Zhang Y. et al., 2015). Exploring
the anti-metastasis effect of OP-D in triple-negative breast cancer
(TNBC) cells and its mechanism should be endowed with
paramount importance. OP-D inhibited the migration, invasion
and proliferation of MDA-MB-231 cells. Mechanically, OP-D
upregulated the nuclear β-catenin and reduced the
phosphorylation of FAK/Src/AKT by abolishing
ITGB1 expression (Zhu et al., 2020). In addition, the number of
viable cells and colony formation significantly decreased when the
cells were exposed to OP-D. OP-D inhibits the proliferation of
MCF-7 cells and causes cell cycle arrest at the G (2)/M phase.
Mechanically, cyclin B1 downregulation was linked to OP-D-
induced G (2)/M cell cycle arrest. Moreover, OP-D-induced
apoptosis included the activation of caspase-8 and caspase-9
(Zang et al., 2016). OP-D may be a promising natural anti-
cancer agent for the treatment of colorectal cancer and throat
cancer. In human laryngocarcinoma cells, OP-D boosted caspase-
3/9 activity, induced apoptosis, promoted cytotoxicity, and
decreased cell growth. OP-D markedly elevated p-p38 MAPK
protein expression while dramatically downregulating the
expression of cyclin B1 and matrix metalloproteinase-9 (MMP-9)
proteins (Yan et al., 2019). Ko HM et al. aimed to investigate the
anti-colorectal cancer effect of OP-D. They found that OP-D
(20–40 uM) significantly inhibits cell viability and possesses anti-
proliferative properties. By preventing IPO7 and XPO1 from being
produced, OP-D (40 uM) caused nucleolar stress and suppressed the
expression of Ki67 (a marker for cell proliferation). Furthermore,
OP-D controlled CDK4 and cyclin D1. Furthermore, in a dose-
dependent manner, OP-D consistently suppressed the
phosphorylation of AKT expression. The T1/2 of c-Myc was
shortened by OP-D in a time-dependent way (Ko et al., 2022). In
human lung cancer cells, OP-D suppresses the proliferation of cells
and reduces the expression of several carcinogenic gene products by
inhibiting the NF-κB, PI3K/AKT, and AP-1 pathways (Lee et al.,
2018b). Another study suggests that OP-D can induce apoptosis and
exert anti-tumor effects by inhibiting of signal transducer and
activator of transcription 3 (STAT3) signaling pathways in non-
small cell lung carcinoma (NSCLC) cells (Lee et al., 2018a) (The
potential anti-cancer effects and mechanisms of OP-D are shown
in Figure 3).

6 Cardiovascular protection activities

OP-D is recognized as the principal bioactive constituent of
traditional Chinese medicine formulations such as Shenmai san,
Shenmai injection (SM-I), and Radix Ophiopogon japonicus (Jiang
et al., 2014). The study demonstrated that OP-D attenuated
doxorubicin-induced cardiomyocyte injury by suppressing
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endoplasmic reticulum stress (ERS) and relieving mitochondrial
damage (Meng et al., 2014). Mechanically, OP-D mitigated
autophagy activity by diminishing the production of reactive
oxygen species (ROS) (Zhang YY. et al., 2015). Another study
pointed out that OP-D reduced diabetic myocardial injuries by
regulating the dynamics of mitochondria. In type 2 diabetes mice,
OP-D lowered blood lipid levels and alleviated mitochondrial
dysfunction. In myocardial lipotoxicity models, OP-D inhibited
the mitochondrial dysfunction and promoted the cell survival
rate (Li et al., 2021). Furthermore, OP-D also prevented H2O2-
induced injury in human umbilical vein endothelial cells
(HUVECs), where OP-D dose-dependently reduced the mRNA
levels of anti-oxidant, pro-inflammatory, and apoptotic genes.
Pretreatment with OP-D reduced H2O2-induced lipid

peroxidation and protein carbonylation. In addition, in cells
treated with OP-D, mitochondrial ROS production and cell death
were diminished. Furthermore, OP-D prevented the release of
inflammatory cytokines and restored the entire antioxidative
capacity of the cell (Qian et al., 2010). Zhang GC found that OP-
D protected isoproterenol-induced cardiomyocyte injury by
regulating multiple signaling pathways of target proteins (Zhang
et al., 2022). Ophiopogon-D′ (OP-D′) and OP-D are the two main
active components in Ophiopogon japonicus, and these factors have
the same molecular formula and similar structures. Interestingly,
OP-D′ induced cardiomyocyte mitophagy and mitochondrial
damage (Lei et al., 2022). OP-D protected against OP-D′-induced
cardiomyocyte injury through the inhibition of ERS. The rate of
apoptosis was significantly increased by OP-D′ (6 uM) and genes

FIGURE 3
The potential anti-cancer effects and mechanisms of OP-D. The red arrow means up-regulation, the green arrow means down-regulation.
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related to ERS had increased expression. The endoplasmic
reticulum’s morphology was altered, and myocardial cell damage
caused by OP-D′ could be partially mitigated at varying
concentrations of OP-D (Wang et al., 2019).

CYP2J2, CYP4F3, CYP4A11, CYP4A22, CYP4F2, and
CYP4F3 were common fatty acid metabolic enzymes in
cardiomyocytes. The research revealed that low concentrations of
OP-D did not impact the viability of cardiomyocytes. Conversely,
concentrations of OP-D exceeding 20 µM could potentially enhance
cell viability. At concentrations below 100 μM, OP-D did not
significantly alter the morphology or quantity of cardiomyocytes.
At 5 μM, OP-D mildly upregulated CYP2J2 and CYP4F3 mRNA
expression, whereas high concentrations of OP-D substantially
enhanced these expressions in a dose-dependent manner. On the
mRNA expressions of CYP4A11, CYP4A22, and CYP4F2, the same
concentration of OP-D had a minor impact. In a dose-dependent
manner, 20 uM OP-D might considerably increase the expression of
CYP4F3 in the protein (Tang et al., 2021). CYP2J2 was highly
expressed in cardiovascular tissue. Huang X et al. found that OP-D
has an endothelial protective effect via activating the CYP2J2-
PPARα pathway in HUVECs. By upregulating CYP2J2/EETs and
PPARα in HUVECs, OP-D dramatically reduced Ang II-induced
NF-κB nuclear translocation, IκBα downregulation, and activation
of pro-inflammatory cytokines (TNF-α, IL-6, and VCAM-1)
(Huang et al., 2017). Another study demonstrated OP-D’s ability
to inhibit Angiotensin II (Ang II)-induced vascular endothelial cell
death by upregulating CYP2J2 (Huang XY. et al., 2018). Meanwhile,
OP-D was closely related to CYP2J3. By inhibiting inflammation in
vivo and upregulating CYP2J3 in vitro, OP-D reduced ventricular
hypertrophy in rats. Ang II treatment was administered to
H9c2 cells. In response to Ang II-induced hypertrophy, specific
hypertrophy genes and NF-κB signaling molecules were expressed at
higher levels. Nevertheless, OP-D combined with Ang II negated
these inductive effects (Wang et al., 2018). By upregulating CYP2J3,
OP-D also reducedMyocardial Ischemia-Reperfusion (MI/R) Injury
in rats. OP-D provided a range of preventive measures against MI/R
injury. These included improving the healing of damaged
myocardial structures, reducing the synthesis of creatine kinase
and lactate dehydrogenase, attenuating the size of myocardial
infarcts, and regulating heart function. There was potential in
developing OP-D as a unique medication for the treatment of
MI/R damage (Huang X. et al., 2018). Another study
demonstrated that OP-D upregulated CYP2J3 and suppressed ER
stress in rat cardiomyocytes to preserve Ca2+ homeostasis in vitro
(You et al., 2016). Besides, Wang, J et al. found that OP-D could
increase SERCA2a interaction with phospholamban by inducing the
increase of CYP2J3 in rat cardiomyocytes. Through increasing
SERCA2a activity and phosphorylating PLB, the occurrence of
heart failure was reduced. In a heart failure model, the reduction
of CYP2J3 eliminated these positive effects of OP-D on heart failure
(Wang J. et al., 2020) (The cardiovascular protective mechanisms of
OP-D are shown in Figure 4).

7 Bone protection activities

OP-D is also a new herbal agent against osteoporosis. The
research showed that OP-D markedly increased the proliferation

of MC3T3-E1 cells. Furthermore, in RAW264.7 cells, both TRAP
activity and the mRNA expressions of osteoclastic genes were
decreased. One of the main factors contributing to the
development of osteoporosis was an excess of ROS. In
MC3T3-E1 cells and RAW264.7 cells, OP-D inhibited the
generation of ROS. Serum bone degradation indicators, such
as TRAP and CTX-1, showed decreased activity following OP-D
treatment. Subsequent investigations revealed that OP-D
exhibited anti-osteoporosis properties by lowering ROS via the
FoxO3a-β-catenin signaling pathway (Huang et al., 2015).
Clinical evidence has indicated a high failure rate of titanium
implants in diabetic patients. Under diabetic conditions,
excessive oxidative stress at the bone-implant interface plays
an important role in the impaired osteointegration. OP-D
ameliorated the osteointegration of titanium alloy implants by
preventing ROS overproduction through the Wnt/β-catenin
signaling pathway (Ma et al., 2018). PECAM1 (platelet and
endothelial cell adhesion molecule 1) holds considerable
significance for angiogenesis and osteogenesis and is involved
in bone regeneration. Endothelial-specific KLF3 knockout mice
showed increased PECAM1 and accelerated bone formation in
the bone regeneration area. As a KLF3 inhibitor, OP-D
stimulated the formation of vessels both in vivo and in vitro.
When OP-D was administered, PECAM1 abundance rose and
bone healing accelerated. These findings offered a novel
therapeutic target for the treatment of bone fractures and the
enhancement of bone regeneration (Yang et al., 2020).

8 Other activities

Atherosclerosis is a common cardiovascular disease. OP-D
plays an important role in atherosclerosis. When compared to
the model group, OP-D dramatically reduced the amount of
serum lipid and the formation of plaque. Furthermore, OP-D
decreased hepatocyte steatosis while enhancing insulin
resistance and oral glucose tolerance. Subsequent
investigation showed that OP-D might reduce atherosclerosis
by blocking mTOR phosphorylation and targeting
lipid metabolism pathways regulated by SREBP1 and SCD1,
as observed in both vivo and vitro. The gut microbiota was
confirmed to be crucial in atherosclerosis pathogenesis. In
HFD-fed mice, OP-D treatment resulted in notable structural
alterations in the gut microbiota and faecal metabolites.
Additionally, it decreased the relative abundance of
Erysipelotrichaceae genera linked to the metabolism of
cholesterol (Zhang et al., 2021).

Gut dysbiosis also plays a critical role in the pathogenesis of
obesity. In HFD-fed mice, OP-D ameliorated body weight,
hyperglycemia, hyperlipidemia, and insulin resistance.
Specifically, OP-D reversed HFD-induced gut dysbiosis (Chen
et al., 2018).

Nonalcoholic fatty liver disease (NAFLD), a clinicopathologic
syndrome characterized by excessive fat deposition in the liver cells,
not caused by alcohol or other liver-specific toxins. In HFD-fed
obese mice, OP-D reduced NAFLD by enhancing oxidative stress,
lipid metabolism, and inflammatory response. In vitro, OP-D
treatment lowered the levels of inflammation and lipogenesis.

Frontiers in Pharmacology frontiersin.org05

Chen et al. 10.3389/fphar.2024.1401627

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1401627


One possible explanation for OP-D’s beneficial effects on NAFLD
was the NF-κB signaling pathway (Huang et al., 2023).

Systemic lupus erythematosus (SLE) is an autoimmune
disease. The activation of autoreactive B cell differentiation
will promote the development of SLE. In MRL/lpr mice, the
treatment of OP-D decreased the serum levels of IgG, IgM, and
anti-dsDNA autoantibodies. Meanwhile, OP-D improved the
progression of SLE by decreasing the number of B cells (Nie
et al., 2023).

OP-D is a potential anti-pulmonary fibrosis drug. In vivo and
in vitro models, OP-D inhibited epithelial-mesenchymal
transition and excessive extracellular matrix deposition,

accelerated lung fibroblast apoptosis, and prevented lung
fibroblasts from differentiating into myofibroblasts. According
to multi-omics techniques and bioinformatics analysis, the AKT/
GSK3β pathway was inhibited by OP-D. OP-D combined with
PI3K/AKT inhibitors could effectively alleviate pulmonary
fibrosis (Bao et al., 2023).

OP-D can reduce the excitability of airway parasympathetic
ganglion neurons. The hyperpolarizing effect of OP-D on
paratracheal neurones by activating the potassium conductance
might explain the mechanisms of the antitussive effect (Ishibashi
et al., 2001). By directly affecting airway epithelial cells, OP-D can
also enhance mucin secretion and production (Park et al., 2014).

FIGURE 4
The cardiovascular protective mechanisms of OP-D. The red arrow means up-regulation, the green arrow means down-regulation.
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TABLE 1 Pharmacological activities of OP-D.

Subjects Pharmacologic action Function Ref.

Male C57BL/6 J mice
IEC-6 cells

Anti-colitis GSH↑ SOD↑ TNF-α↓ IL-1β↓ IL-6↓ Wang et al. (2022)

Male Sprague Dawley rats Anti-diabetic nephropathy GSH↑ SOD↑ CAT↑ TNF-α↓ TNF-α↓ Qiao et al. (2020)

MLE-12 cells Anti-lung inflammation TNF-α↓ IL-1β↓ IL-6↓ IL-8↓ Wang J. et al. (2020)

Female BALB/c mice
HaCaT cells

Anti-atopic dermatitis TNF-α↓ IL-1β↓ IL-6↓ An et al. (2020)

MDA-MB-435 cells Anti-breast cancer Cells proliferation↓ invasion↓ migration↓ Zhang et al. (2015a)

MDA-MB-231 cells Anti-breast cancer Cells proliferation↓ invasion↓ migration↓ Zhu et al. (2020)

MCF-7 cells Anti-breast cancer apoptosis↑ Zang et al. (2016)

AMC-HN-8 cells Anti-laryngocarcinoma Cells proliferation↓ apoptosis↑ Yan et al. (2019)

HCT116 cells Anti-colorectal cancer Cells proliferation↓ apoptosis↑ Ko et al. (2022)

H1299 cells
A549 cells

Anti-lung cancer Cells proliferation↓ apoptosis↑ Lee et al. (2018a)

H1299 cells
A549 cells
H460 cells

Anti-lung cancer Cells proliferation↓ apoptosis↑ Lee et al. (2018b)

H9C2 cells Cardiovascular protection ROS↓ ATF6α↓ GRP78↓ CHOP↓ Meng et al. (2014)

C57BL/6 J mice
H9C2 cells

Cardiovascular protection Autophagy↓ ROS↓ EF↑ LVFS↑ Zhang et al. (2015b)

Male db/db mice
Male C57BL/6 J mice

H9C2 cells

Cardiovascular protection ALT↓ MFN1↑ MFN2↑ OPA1↑ Li et al. (2021)

Human umbilical vein endothelial cells Cardiovascular protection ROS↓ HO-1↓ PGC-1α↓ Qian et al. (2010)

Human umbilical vein endothelial cells Cardiovascular protection TNF-α↓ IL-6↓ VCAM-1↓ Huang et al. (2017)

Male Sprague-Dawley rats
H9C2 cells

Cardiovascular protection ANP↓ BNP↓ β-MHC↓ Wang et al. (2018)

Male Sprague-Dawley rats Cardiovascular protection LDH↓ SOD2↓ CK↓ Huang X. et al. (2018)

H9C2 cells Cardiovascular protection SERCA2a↑ PLB↑ RyR2↑ FKBP12.6↑ You et al. (2016)

H9C2 cells Cardiovascular protection SERCA2a↑ PLB↑ Wang Y. et al. (2020)

Female BALB/c mice
MC3T3-E1 cells
RAW264.7 cells

Bone protection ROS↓ Calciumdeposition↑ ALP ↑ NFATc1↑ TRAP↑ CTX-1↑ Huang et al. (2015)

Male New Zealand rabbits
Rabbit osteoblasts

Bone protection ALP↑ Runx2↑ Osterix↑ Col 1↑ OPN↑ SOD↓ ROS↓ Ma et al. (2018)

Cdh5-Cre transgenic mice
Human microvascular endothelial cells

Bone protection CD31↑ EMCN↑ JUNB↑ VEGFA↑ VEGFB↑ PDGFA↑ PDGFB↑ Yang et al. (2020)

Male ApoE−/− mice
Male C57BL/6 mice
Human LO2 cells

Anti-atherosclerosis TG↓ TC↓ LDL-C↓ MDA↓ LDH↓ ALT↓ AST↓ Zhang et al. (2021)

Male C57BL/6 J mice Anti-obesity TG↓ TC↓ LDL-C↓ TNF-a↓ MCP-1↓ ALT↓ AST↓ Chen et al. (2018)

Male C57BL/6 J mice
Primary hepatocytes

Anti-NAFLD TG↓ TC↓ FFA↓ LDL-C↓ SOD↓ TNF-α↓ IL-1β↓ IL-6↓ Huang et al. (2023)

Female MRL/lpr mice Anti-systemic lupus erythematosus Proteinuria levels↓ Serum creatinine levels↓ Nie et al. (2023)

Male C57BL/6 J mice Anti-pulmonary fibrosis GSH-PX↑ MDA↓ HIF-1α↓ IL-6↓ TNF-α↓ α-SMA↓ Bao et al. (2023)

Wistar rats Antitussive effect Excitability of airway parasympathetic ganglion neurons ↓ Ishibashi et al. (2001)

NCI-H292 cells Antitussive effect Mucin production and secretion↑ Park et al. (2014)
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9 Discussion

As mentioned above, OP-D has a wide range of pharmacological
effects, including anti-cancer, anti-inflammatory, bone protection
and cardiovascular protection. OP-D has a potential value in the
prevention and treatment of many diseases (Table 1). In addition,
OP-D also plays an important role in other aspects. Ginsenosides
Rb1, Ginsenosides Rd, rosuvastatin, and glycyrrhizic acid
significantly reduce the uptake of OP-D in liver (Zhang et al.,
2017; Liu et al., 2018). As an ingredient of vaccines, adjuvants
can directly stimulate or promote the immune responses. It has
been discovered that OP-D works well as a vaccine adjuvant. The
problems of the low solubility and toxicity of OP-D can be effectively
overcome by using a low-energy emulsification method to prepare
nanoemulsion OP-D (Tong et al., 2018; Luo et al., 2022).
Interestingly, OP-D and OP-D′ act as isomers of each other. In
vitro studies showed that only OP-D′ induced a hemolysis reaction,
whereas in vivo, both OP-D and OP-D′ were found to cause
hemolysis. The hemolytic effects of OP-D and OP-D′ were
thought to be closely associated with disruptions in phospholipid
metabolism (Xu et al., 2021). In some difficult problems, such as the
osteointegration of titanium alloy implants, the studies have also
confirmed the application value of OP-D. Nevertheless, there are still
many questions of OP-D that need to be discussed. On the one hand,
the toxicity testing of OP-D in animals is currently insufficient. Yu J
et al. assess the long-term toxicokinetic profiles of the OP-D in SM-I.
They found that OP-D exhibited an extremely low exposure level
and a rapid elimination rate after injection (Yu et al., 2014). As the
main component of Ophiopogon japonicus, we speculate that OP-D
may have side effects such as gastrointestinal reactions and allergic
reactions like Ophiopogon japonicus. On the other hand, the anti-
cancer effects and mechanisms of OP-D require further

investigation. Future research is anticipated to ensure OP-D’s
safety and efficacy in protecting human health.
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