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Background: While Sodium-glucose cotransporter 2 (SGLT2) inhibitors are
effective in managing diabetes and reducing cardiovascular risk, concerns
about their association with lower limb complications, including,
osteomyelitis, ulcers, and peripheral artery disease (PAD), persist. This study
employs Mendelian Randomization (MR) to assess the causal relationship
between SGLT2 inhibitors and these lower limb safety outcomes.

Methods: A two-sample drug-target MR approach was used, complemented
by a one-sample MR and genetic association analysis. Six SNPs were selected
as instrumental variables to proxy the effect of SGLT2 inhibition. Primary
outcomes were major limb safety outcomes, including osteomyelitis, lower
limb ulcers, PAD, and cellulitis. The primary analytical method was the
generalized inverse variance-weighted (IVW) approach, along with several
sensitivity analyses.

Results: The MR analysis indicated no significant causal association between
genetically proxied SGLT2 inhibition and most of the studied lower limb safety
outcomes. However, a significant association with PAD was observed,
necessitating careful interpretation due to discrepancies between IVW and
MR-Egger results. Sensitivity analyses supported these findings, showing little
evidence of heterogeneity or directional pleiotropy.

Conclusion: This study suggests that SGLT2 inhibitors may not be significantly
associated with an increased risk of most lower limb safety outcomes,
including osteomyelitis, lower limb ulcers, and cellulitis, in patients with
type 2 diabetes. However, the complex relationship with PAD highlights the
need for further research. These findings contribute to the understanding of
the safety profile of SGLT2 inhibitors, supporting their continued use in
diabetes management while underlining the importance of continuous
safety monitoring.
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Introduction

Sodium–glucose cotransporter 2 (SGLT2) inhibitors, including
medications like canagliflozin, dapagliflozin, and empagliflozin, have
gained widespread approval as antihyperglycemic drugs. They are
known for their effectiveness in reducing blood sugar levels and
decreasing the risk of cardiovascular issues in diabetic patients
(Scheen, 2020; Xu B. et al., 2022). While these medications offer
significant advantages, in 2017, the FDA announcement highlighted
an increased risk of lower limb amputations, particularly with
canagliflozin usage (UFaD; Chang et al., 2018; Neal et al., 2017; Lee,
2017). Despite the removal of this warning in 2020 after further
evaluation of its benefits, the continued mention of amputation risks
associated with SGLT2 inhibitors in the warnings and precautions
section of their prescribing information emphasizes persistent concerns.

Furthermore, lesser-explored complications, involving lower
limb ulcers, osteomyelitis, and other related infections pose a
rapidly increasing threat, especially for patients with type
2 diabetes, potentially heightening the risk of amputation (Chang
et al., 2018; Neal et al., 2017; Nani et al., 2023; Custodio et al., 2020;
Dicembrini et al., 2019). Current research shows mixed results,
complicating our understanding of these negative outcomes. One
retrospective cohort study highlighted an increased risk of
osteomyelitis, peripheral artery disease (PAD), and ulcers (Chang
et al., 2018). On the other hand, a meta-analysis of randomized
controlled trials (RCTs) involving type 2 diabetes patients treated
with SGLT2 inhibitors found a generally neutral impact on
osteomyelitis and PAD, but a link to local ulcers was noted
(Nani et al., 2023). The repercussions of these adverse effects go
beyond the immediate health issues, influencing patient quality of
life, clinical decision-making, and public health strategies.

Considering the complexities and potential biases in observational
studies, our research employs Mendelian Randomization (MR) as a
reliable method to explore the cause-and-effect relationship between
SGLT2 inhibitors and lower limb safety outcomes (Dai et al., 2023).
MR uses specific genetic variants linked to SGLT2 inhibitors as
instrumental variables, enabling a simulation of random
assignment of individuals to varying exposure levels, akin to a
RCT (Sekula et al., 2016). This methodology increases the accuracy
of our results by reducing confounding factors and pleiotropy, thus
providing a more nuanced understanding of the safety profile of
SGLT2 inhibitors, particularly regarding lower limb complications in
type 2 diabetes patients (Burgess et al., 2023).

With the rising incidence of diabetes and the escalating use of
SGLT2 inhibitors in its management, thoroughly investigating
potential risks to lower limbs is essential for responsible and
informed medical care (Khouri et al., 2018). Our study, based on
MR, seeks to clarify the intricate link between SGLT2 inhibitors and
lower limb safety outcomes, focusing on the genetic factors that
contribute to these worrying complications.

Materials and methods

Study design

Figure 1 illustrates the comprehensive design of our study. Our
goal was to evaluate the potential causal effects of SGLT2 inhibition

on osteomyelitis and other critical limb safety issues using a dual-
method approach: a two-sample drug-target MR combined with a
one-sample MR. First, the SNPs, selected based on their association
strength and relevance, act as proxies for SGLT2 inhibition for the
next step. We then focused on outcomes such as osteomyelitis, as
well as other significant limb safety outcomes like lower limb ulcers,
PAD, and cellulitis. The primary method of analysis was the inverse
variance-weighted (IVW) method, which was reinforced by various
sensitivity analyses, including MR-Egger, weighted median, simple
mode, and weighted mode approaches, to verify the strength of our
results. Following this, we performed a one-sample MR analysis
within the UK Biobank for these outcomes. This step was intended
to support and authenticate the initial findings from the two-sample
MR approach.

Genetic associations with SGLT2 inhibition

To develop genetic instruments that act as surrogates for the
long-term glucose-lowering effects of SGLT2 inhibition, we
implemented a four-stage instrument selection process, as
previously described (Dai et al., 2023; Xu M. et al., 2022).
Initially, we identified genetic variants associated with the mRNA
expression of the SLC5A2 gene, leveraging data from the Genotype-
Tissue Expression (GTEx) project (Consortium, 2020) and the
eQTLGen Consortium (Vosa et al., 2021). This step focused on
identifying potential functional genes of SGLT2 inhibitors (refer to
Supplementary Table S1). Next, the connection between each
SLC5A2 variant and HbA1c levels was assessed, which was
indicative of the glucose-reducing impact of SGLT2 inhibition.
Variants with a region-wide link to HbA1c were selected based
on data from a subset of UK Biobank participants of European
descent without diabetes (association p-value = 1 × 10−4) (see
Supplementary Table S1) (Elsworth et al., 2020). The third phase
involved validating whether SLC5A2 and HbA1c shared a common
causal variant through genetic colocalization analysis. This method,
a bivariate Bayesian model, estimated the likelihood that
SLC5A2 expression and HbA1c levels in circulation were
influenced by the same causal variant within the SLC5A2 region
(Walker et al., 2020). Lastly, a standard clumping process was
executed (applying a correlation threshold <0.8 to exclude highly
correlated variants). The efficacy of the genetic variants as predictors
was then evaluated using F statistics, focusing on their statistical
power for each exposure tested. Following these rigorous steps, six
genetic variants strongly linked to SGLT2 inhibition through HbA1c
were selected as genetic instruments for the MR analysis (refer to
Supplementary Table S2).

Study outcomes

The main focus of our study was on significant limb safety
outcomes. For the subsequent MR analysis, we employed summary
statistics from relevant genome-wide association studies (GWAS)
pertaining to these outcomes. We sourced the GWAS data for limb
safety outcomes like osteomyelitis, lower limb ulcers, PAD, and
cellulitis from the FinnGen study, which was used in the two-sample
drug-target MR analyses (Kurki et al., 2023). Additionally, GWAS
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data from the UK Biobank was employed for a one-sample MR
analysis (Backman et al., 2021) (refer to Supplementary Table S2).

Statistical analysis

MR analyses of SGLT2 inhibition and limb
safety outcomes

We gathered and analyzed summary data of six instrumental SNPs’
genetic associations from GWAS relevant to our study. To align the
effects of an SNP on both the exposure and the outcome, harmonization
procedures were put into place before carrying out causal estimations.
We employed the IVW method (Burgess et al., 2017) to bolster the
analysis power. This method accounted for the correlation among the
six genetic predictors of SGLT2 inhibition, allowing for a more lenient
clumping threshold. An linkage disequilibrium (LD) matrix for each
pair of variants was obtained from the 1000 Genomes dataset, and the
IVW method was applied to assess the MR effect while incorporating
the LD matrix of the genetic variants.

Validation of MR assumptions and
sensitivity analyses

The study findings were presented following the STROBE-
MR (Strengthening the Reporting of Mendelian Randomization
Studies) guidelines (Skrivankova et al., 2021). Three essential
MR assumptions were validated through various sensitivity
analyses. The relevance assumption was verified by evaluating
the strength of the genetic predictors using R2 and F-statistics,
with an F-statistic above 10 indicating a robust defense against
weak instrument bias. The exclusion restriction assumption
underwent scrutiny through diverse sensitivity analyses,
including MR-Egger regression, weighted median analysis,
and both simple and weighted mode analyses. Cochran’s Q
test was utilized to determine instrument heterogeneity. For
the one-sample MR analyses using UK Biobank data, where both
the exposures and outcomes are measured in the same
individuals, we employed the two-stage least squares (2SLS)
regression method.

FIGURE 1
Study design. The research involved two-sample Mendelian randomization (MR) analyses to explore the impact of SGLT2 inhibition on lower limb
safety outcomes. The figure at the top was employed to illustrate the theoretical associations among genetic variants (SNPs), SGLT2 inhibitors (exposure),
and lower limb safety outcomes. This graphical depiction accounts for the potential influence of unobserved confounding variables. In this diagram, solid
arrows denote permissible relationships between these variables, reflecting known or hypothesized causal connections. Conversely, dashed lines
are utilized to indicate relationships that are proscribed. These prohibited connections are crucial for selected SNPs tomeet the criteria for their validity as
an instrumental variable. The figure at the bottom shows six single-nucleotide polymorphisms (SNPs), serving as instrumental variables, which were
carefully chosen as proxies for the effect of SGLT2 inhibition. Lower limb safety outcomes, encompassing osteomyelitis, lower limb ulcers, peripheral
artery disease and cellulitis were identified as the targeted outcomes. Summary data for both exposure and outcomeswere sourced from pertinentmeta-
analyses of genomewide association analyses. The primary method for estimating the causal effect on selected outcomes was the generalized inverse
variance-weighted approach. The study incorporated several sensitivity analyses. Additionally, one-sample MR and genetic association analyses were
conducted, utilizing individual-level data from the UK Biobank to validate the findings from the two-sample MR. Abbreviations: IVW = inverse variance
weighted; LD = linkage disequilibrium; SGLT2 = sodium-glucose cotransporter 2; SNP = single-nucleotide polymorphism.
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Statistical analyses were performed using the ‘TwoSampleMR’
packages. We applied Bonferroni corrections for multiple tests,
setting adjusted significance thresholds at 0.013 (0.05/4). In terms
of ethical considerations, the FinnGen and UK Biobank study
received informed consent from participants and was approved
by its institutional review board.

Result

Genetic predictors of
SGLT2 inhibition strength

Supplementary Table S1 detailed the features of the genetic
instruments (rs4488457, rs8057326, rs11865835, rs9930811,
rs34497199, and rs35445454) utilized as proxies for
SGLT2 inhibition (see Supplementary Table S2). These
instruments demonstrated substantial robustness (F-statistics =
24.1), suggesting a minimal chance of weak instrument bias.

Effect of genetically proxied
SGLT2 inhibition on limb safety outcome

Genetically proxied SGLT2 inhibition, utilizing six SNPs as
instruments for IVW analysis, did not show significant
associations with osteomyelitis (OR 1.16, 95% CI 0.04–31.47, p =
0.930), PAD (OR 0.18, 95% CI 0.05–0.64, p = 0.007), lower limb
ulcers (OR 0.07, 95% CI 0.006–0.85, p = 0.036), or cellulitis (OR 1.46,
95% CI 0.25–8.43, p = 0.672) (Figure 2).

Sensitivity analyses

Additional sensitivity analyses, including MR-Egger, weighted
median, simple mode and weighted mode analyses (Supplementary
Table S3), consistently provided little evidence supporting an
association between genetically proxied SGLT2 inhibition and the
mentioned outcomes. Notably, for PAD, MR-Egger analysis showed
a different direction of association compared to the IVW approach.

The observed discrepancies between the IVW and MR-Egger
methods may imply uncertainty regarding the role of
SGLT2 inhibition as a protective or risk factor. While the IVW
approach suggested a potential protective effect against the outcome,
the conflicting direction indicated by the MR-Egger method
indicated a cautious interpretation of SGLT2’s influence,
necessitating further investigation to clarify its impact on limb
safety outcomes. Heterogeneity testing using the Cochran Q test
for IVW and pleiotropy testing using the MR-Egger intercept term
suggested minimal evidence of heterogeneity or directional
pleiotropy (Supplementary Table S3).

One-sample MR analysis in UK biobank

In the one-sample MR analysis conducted in the UK Biobank
(Supplementary Table S4), the SGLT2 inhibition constructed from
six SNPs did not show a significant association with any limb
safety outcome.

Discussion

Our study used MR to investigate the causal relationship
between SGLT2 inhibitors and lower limb safety outcomes,
specifically addressing the concerns raised by previous
observational studies and the FDA’s safety communication
regarding the use of SGLT2 inhibitors. The key findings suggest
that while there is no significant association with most lower limb
complications such as osteomyelitis, ulcers, and cellulitis, the
connection with PAD observed requires cautious interpretation.
The discrepancy between the IVW and MR-Egger results suggests
that this association may be influenced by pleiotropic effects, which
could operate through mechanisms other than direct
SGLT2 inhibition.

The global recognition of gliflozins’ benefits in patients with type
2 diabetes mellitus and their cardio- and nephroprotective
advantages in broader patient populations is well-established
(Margonato et al., 2021; Granata et al., 2022). These drugs have
been shown to decrease glycated hemoglobin, enhance major

FIGURE 2
The causal effect of genetically proxied SGLT2 inhibition on lower limb safety outcome. Data are presented as the lower limb safety outcome via
SGLT2 inhibition estimated by the generalized inverse variance weightedmethod. p < 0.013 is considered significant difference. CI = confidence interval;
IV = instrumental variable; SGLT2 = sodium-glucose cotransporter 2; SNP = single-nucleotide polymorphism.
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metabolic parameters, and significantly reduce all-cause and
cardiovascular mortality (Teo et al., 2021). However, alongside
these benefits, it is crucial to continuously evaluate their safety
profile, especially considering concerns about adverse lower
limb events.

Our MR findings contribute to the ongoing discussion about the
safety of SGLT2 inhibitors, particularly in the context of lower limb
complications such as amputations. Previous literature, including RCTs
and observational studies, has produced mixed results regarding the
association between SGLT2 inhibitors and lower limb adverse events
(Lindbom et al., 1988). A cohort study involving commercially insured
patients, reflective of real-world scenarios, demonstrated that users of
SGLT-2 inhibitors exhibited higher rates of PAD, osteomyelitis, and
lower limb ulcers when compared to individuals using metformin,
sulfonylureas, or thiazolidinediones. However, notably, such
associations were not observed when compared to new users of
dipeptidyl peptidase-4 (DPP-4) inhibitors (Chang et al., 2018). In
contrast, a comprehensive meta-analysis of 42 RCTs with
29,491 patients on SGLT2 inhibitors and 23,052 in control groups
revealed no significant association with osteomyelitis and PAD, but a
heightened risk of ulcers (Nani et al., 2023). This highlights the need for
personalized medical approaches that consider individual risk factors
and comorbid conditions when prescribing these medications.

In understanding the pathophysiological mechanisms behind
the risks associated with SGLT2 inhibitors, it’s crucial to consider the
broader context of type 2 diabetes mellitus. Patients with this
condition inherently face an elevated risk of ulcers and
infections, which can lead to more severe complications such as
amputations (Armstrong et al., 2017; Jeffcoate and Harding, 2003).
For outcomes like PAD and ulcer of lower limb, our MR study
suggests a more complex relationship than what has been reported
in some RCTs and observational studies (Brownrigg et al., 2013).
Genetic variants mimicking SGLT2 inhibition represent lifelong
effects, yet they may not reflect the short-term clinical impacts or the
gradual development of conditions like PAD and lower limb ulcers.
The inconsistent result between MR-Egger and IVW for PAD may
arise due to the limited number of included SNPs, potentially
leading to less accurate estimates in the MR, which performs best
with a larger number of genetic variants (Bowden et al., 2015).
Another explanation for this is possible unaddressed pleiotropy or
biases in our instrumental variables. Despite no significant
heterogeneity or pleiotropy affecting our instrumental variables
as indicated by the tests, these findings call for a cautious
approach to clinical application. Future research endeavors
should consider refining genetic instruments, exploring broader
datasets, and extending follow-up durations to provide a more
nuanced understanding of the relationship between
SGLT2 inhibition and PAD.

Regarding osteomyelitis, the evidence from the FDAAdverse Event
Reporting System (FAERS) database introduces an intriguing
perspective (Zhao et al., 2023). It suggests that exposure to
SGLT2 inhibitors, particularly canagliflozin, may be a primary cause
of osteomyelitis in diabetic patients. However, the lack of association
with other widely used SGLT2 inhibitors, such as dapagliflozin and
empagliflozin, emphasizes the need for a granular examination of
individual drugs within the SGLT2 inhibitor class (Mascolo et al.,
2022). This study, when compared with observational studies,
illuminates the methodological strengths of MR analysis. Genetic

variants that mimic SGLT2 inhibition reflect the lifelong effects of
these inhibitors on the expression levels of SLC5A2. However, the
magnitude of these effects may not accurately represent the short-term
impacts of SGLT2 inhibitors (Klen and Dolzan, 2021). Therefore, MR
analysis is more valuable for determining the direction of potential
causal effects rather than for quantifying their magnitude. Meanwhile,
we used the largest data on osteomyelitis currently available and
employed various sensitivity analyses to assess the robustness of our
findings. While observational studies may be susceptible to potential
confounders and draw relative risks, the MR study, leveraging genetic
variants as instrumental variables, is less likely to be affected by
confounders. This allows for a more direct evaluation of the causal
effect of SGLT2 inhibition on adverse outcomes in the lower
extremities, enhancing the reliability of our findings.

Several limitations should be acknowledged in interpreting our
study findings. Firstly, our MR analysis estimated the effect of
SGLT2 inhibition based on on-target reductions in HbA1c levels
rather than the direct effects of SGLT2 inhibitors. This assumption
hinges on the idea that the effect of SGLT2 inhibition on HbA1c
levels proportionally represents its overall impact, which may not
entirely align with the actual mechanism of SGLT2 inhibition.
Additionally, the definitions used for outcomes, particularly ulcer
of lower limb, may exhibit variations across different datasets and
studies. The absence of standardized definitions introduces
variability, potentially affecting result comparability. Moreover,
our research did not extend to evaluating the risk of lower limb
complications associated with SGLT2 inhibitors in non-diabetic
populations, such as individuals with heart failure or chronic
kidney disease who do not exhibit diabetic symptoms. This
exclusion is notable given emerging evidence suggesting
differential effects of SGLT2 inhibitors in non-diabetic cohorts,
including potential cardiovascular and renal benefits that might
influence the overall risk profile of lower limb complications.
Therefore, caution is warranted in generalizing our findings to
diverse patient groups. Further replication studies in diverse
ethnic groups are needed to validate these findings and ensure
broader applicability. Considering these limitations is crucial for
a nuanced interpretation of our study results. Future research
endeavors could benefit from addressing these limitations and
incorporating complementary approaches to enhance the depth
and reliability of our understanding regarding the potential risks
associated with SGLT2 inhibitor use in individuals with diabetes.

In conclusion, our study suggests that the use of
SGLT2 inhibitors may not be significantly associated with an
increased risk of most lower limb safety outcomes. These
findings contribute to the ongoing discourse on the safety and
efficacy of SGLT2 inhibitors and support their continued use in
diabetes management. Future research should continue to explore
this area, potentially expanding the scope to include other
populations and long-term outcomes, to fully understand the
implications of SGLT2 inhibitor use in diabetes care.
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