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Due to the similarity and diversity among kinases, small molecule kinase inhibitors
(SMKIs) often display multi-target effects or selectivity, which have a strong
correlation with the efficacy and safety of these inhibitors. However, due to
the limited number of well-known popular databases and their restricted data
mining capabilities, along with the significant scarcity of databases focusing on
the pharmacological similarity and diversity of SMIKIs, researchers find it
challenging to quickly access relevant information. The KLIFS database is
representative of specialized application databases in the field, focusing on
kinase structure and co-crystallised kinase-ligand interactions, whereas the
KLSD database in this paper emphasizes the analysis of SMKIs among all
reported kinase targets. To solve the current problem of the lack of
professional application databases in kinase research and to provide
centralized, standardized, reliable and efficient data resources for kinase
researchers, this paper proposes a research program based on the ChEMBL
database. It focuses on kinase ligands activities comparisons. This scheme
extracts kinase data and standardizes and normalizes them, then performs
kinase target difference analysis to achieve kinase activity threshold
judgement. It then constructs a specialized and personalized kinase database
platform, adopts the front-end and back-end separation technology of
SpringBoot architecture, constructs an extensible WEB application, handles
the storage, retrieval and analysis of the data, ultimately realizing data
visualization and interaction. This study aims to develop a kinase database
platform to collect, organize, and provide standardized data related to kinases.
By offering essential resources and tools, it supports kinase research and drug
development, thereby advancing scientific research and innovation in kinase-
related fields. It is freely accessible at: http://ai.njucm.edu.cn:8080.

KEYWORDS

kinase, database, SMKIs, pharmacological similarity, ligand activity

OPEN ACCESS

EDITED BY

Vinícius Gonçalves Maltarollo,
Federal University of Minas Gerais, Brazil

REVIEWED BY

Júlia Galvez Bulhões Pedreira,
University of Tübingen, Germany
José L. Medina-Franco,
National Autonomous University of Mexico,
Mexico
Ricardo A. M. Serafim,
University of Tübingen, Germany
Cleber C. Melo-Filho,
University of North Carolina at Chapel Hill,
United States

*CORRESPONDENCE

Zuojian Zhou,
zhouzj@njucm.edu.cn

Ye Yang,
yangye876@sina.com

Shanliang Sun,
ssun@njucm.edu.cn

RECEIVED 14 March 2024
ACCEPTED 28 May 2024
PUBLISHED 18 June 2024

CITATION

Yuan Y, Tang X, Li H, Lang X, Li C, Song Y, Sun S,
Yang Y and Zhou Z (2024), KLSD: a kinase
database focused on ligand similarity
and diversity.
Front. Pharmacol. 15:1400136.
doi: 10.3389/fphar.2024.1400136

COPYRIGHT

© 2024 Yuan, Tang, Li, Lang, Li, Song, Sun, Yang
and Zhou. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 18 June 2024
DOI 10.3389/fphar.2024.1400136

https://www.frontiersin.org/articles/10.3389/fphar.2024.1400136/full
https://www.frontiersin.org/articles/10.3389/fphar.2024.1400136/full
http://ai.njucm.edu.cn:8080
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2024.1400136&domain=pdf&date_stamp=2024-06-18
mailto:zhouzj@njucm.edu.cn
mailto:zhouzj@njucm.edu.cn
mailto:yangye876@sina.com
mailto:yangye876@sina.com
mailto:ssun@njucm.edu.cn
mailto:ssun@njucm.edu.cn
https://doi.org/10.3389/fphar.2024.1400136
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2024.1400136


GRAPHICAL ABSTRACT

1 Introduction

Protein kinase is an important signal messenger that plays a
crucial role in cellular activities. It functions as an enzyme that
specifically transfers the γ-phosphate group from ATP to amino
acid residues on substrate proteins. This phosphorylation enables
the transmission of various signals that are necessary for numerous
physiological processes (Fischer, 2016). Pharmacological and
pathological studies have shown that kinases are an ideal and
important drug targets for drug development in the treatment of
diseases such as tumors, inflammatory diseases, central nervous
system diseases, cardiovascular diseases and diabetes (Wu et al.,
2015). Kinases typically contain an active center that plays a key
role in catalyzing phosphorylation reactions. These enzymes are
often regulated through the binding of other proteins,
phosphorylation events, and the influence of other molecules.
Given the significant biological functions of kinases in
organisms and their potential as drug targets (Mukhtar et al.,
2017), many researchers have been focused on studying SMKIs.
These SMKIs can be used to modulated aberrant signaling
pathways and treat a variety of diseases as mentioned. As
science and technology advance, the proliferation of biomedical
databases continues (Attwood et al., 2021; Cohen et al., 2021).
However, language barriers, heavy workloads, and other obstacles
often limit us to a few well-known databases. Heavy workloads
often involve tasks such as conducting kinase target difference
analysis, which may require importing kinase data into EXCEL,
CSV, etc., for manual calculation, screening standard type and
relationship manually, and calculating standard values. These
tasks can significantly increase the workload of the study.
Additionally, other obstacles, such as a cluttered website layout
that makes it difficult to quickly locate research-related content,
can also present challenges. This widespread reliance on popular
databases restricts novel discovery opportunities and hinders
innovation. In particular, research involving small molecule
kinase inhibitors (SMKIs) critically requires a comprehensive
pharmacological database. A kinase database that maintains
strict integrity, provides high-quality data, and offers extensive
customization is invaluable. It is imperative to venture beyond
familiar grounds and delve into specialized, lesser-known research
databases to discover and utilize new data resources, driving
pioneering breakthroughs.

With the continuous development of artificial intelligence (AI)
technology, significant progress has been made in kinase informatics
research. In drug research, AI technology can leverage various
molecular representation properties, such as molecular graph-
based feature representation (Duvenaud et al., 2015; Kevin et al.,
2019; Mengying et al., 2020), molecular string-based representation
(Nathan et al., 2018; Popova et al., 2018; Karpov et al., 2020) image-
based representation (Charles et al., 2018; Cortés-Ciriano and
Bender, 2019), and knowledge-based molecular representation
(Jan et al., 2019; Xiang et al., 2021). This allows for satisfactory
performance in the research and analysis of various drug properties,
including activity, pharmacokinetic properties, and toxicological
properties. This development is conducive to facilitating early
drug discovery. The advantages of AI technology in kinase
informatics research are mainly reflected in the following aspects.

i) Rich data resources: Kinase data consolidates a vast amount of
information about genes, protein structures, phosphorylation
sites, regulatory pathways. This provides researchers with
abundant data resources to explore the functions and roles
of kinases.

ii) Diverse functional annotations: Kinase data not only offers
basic information about kinases, but also encompasses
functional annotations relating to cell signaling, disease
development, and drug discovery. This comprehensive data
can aid in a more thorough understanding of the biological
roles of kinases.

iii) Bioinformatics tools: Numerous biological databases supply
bioinformatics tools for data analysis, structure prediction,
and protein interactions. These tools enable researchers to
interpret and utilize data more effectively.

iv) Data integration and cross-linking: Large-scale biological
databases integra data from various sources, providing
cross-linkages to help researchers conduct more in-depth
studies using integrated data.

Although kinase informatics research has achieved significant
breakthroughs, there are still deficiencies in data quality consistency,
data standardization, data visualization, personalized functional
analysis, and prediction. Currently, there is a lack of specialized
databases for kinases in the field of kinase informatics research. The
KLIFS (Kanev et al., 2021) (Kinase-Ligand Interaction Fingerprints
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and Structures) database is one such specialized database. Obviously,
there are differences in focus and application areas between the
KLIFS database and the KLSD database discussed in this paper.
KLIFS primarily focuses on kinase structures and co-crystalized
kinase-ligand interactions, facilitating kinase drug discovery and
design. On the other hand, KLSD emphasizes all reported SMKIs
analysis between kinase targets. Therefore, based on the current
foundations of kinase data, further research is being conducted to
construct a professional and personalized kinase database. This
database not only provides comprehensive data on the structure,
function, regulation and biological roles of kinase-related proteins,
but also helps to understand interactions between kinases and other
proteins, molecules, or biological systems through the analysis of
target difference analysis. This comprehensive understanding of
kinase systems better support both scientific research and design,
as well as signaling applications.

2 Materials and methods

2.1 Data collection and processing

The KLSD database platform is mainly based on the data in the
ChEMBL (Chemical Database of Bioactive Molecules) database
(Mendez et al., 2019). The data in the ChEMBL database is
primarily derived from scientific literature, patent information,
public databases, high-throughput screening data, clinical trials
and drug registration information. These multiple data sources
and channels ensure the accuracy and comprehensiveness of the
data. Therefore, for our experiments, we used data from the
CHEMBL32 version of the ChEMBL database. ChEMBL
currently provides multiple publicly available web services for

accessing compound and bioactivity data in their database.
Through their web service, we obtained a total of 78 data tables
with 57,424,581 records. These tables cover various of aspects such
as genomics, protein expression, small molecule, system, ontologies
and scientific literature. with 15,398 kinds of targets of all kinds and
more than 2,390,000 different compounds. Since the focus of this
study is mainly related to kinases, we selectively extract kinase-
related data to build a kinase dataset. By conducting a keyword
search, we initially obtained 1,131,037 kinase-related records. The
data extraction process and platform construction is shown
in Figure 1.

In biology, hierarchical classification aids in better
understanding the similarities and differences among kinases, as
well as their roles in cell signaling and biological processes. Thus, we
employed the classification framework provided by Manning et al.
(Manning et al., 2002), which is based on sequence homology and
functional characteristics to categorize kinases into groups, families,
and subfamilies. Kinases are first grouped based on their overall
structural domains and sequence similarities of their kinase
domains. Within each group, kinases are further classified into
families using more specific sequence similarities and shared
functional characteristics. Subsequently, within each family,
subfamilies are established, which may consist of different forms
of a single gene product or closely related genes with similar
functions. This classification method is commonly used in
biological research and drug development, aiding in the
identification of relationships among different kinases and
improving our understanding of their intricate roles in various
signaling pathways and diseases. This process resulted in a total
of 14 clusters, 166 families, and 314 subfamilies.

Data processing refers to the process of performing a series of
operations and transformations on raw data to obtain valuable

FIGURE 1
Comprehensive Architecture of the KLSD Database Platform. The KLSD database emphasizes the analysis of SMKIs among all reported
kinase targets.

Frontiers in Pharmacology frontiersin.org03

Yuan et al. 10.3389/fphar.2024.1400136

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1400136


information. These operations can include extracting specific
features, cleaning the data, eliminating noise, and converting the
formats, among others (Han et al., 2022). The purpose of data
processing is to make the data more useable, comprehensible, and
applicable for further analyses, applications, and decision-making.
To effectively improve the data quality of kinase data, reduce errors
and bias in the analysis, and facilitate later data analysis, mining and
modelling for more accurate and meaningful conclusions, we have
implemented standardization measures for the data. This ensures
data consistency, comparability and accuracy. The initial step
involves processing data outlier, where we eliminate any potential
outliers, such as invalid entries and missing values, to maintain data
integrity. We consider an outlier when the data value is null or
empty, or when the data value has an abnormal symbol such as at, #,
etc. If the length of the data value falls outside the normal range of
values for that property, we consider that data is invalid. Following
this, we standardize the data by aligning it across different sources,
including the Standard Type of compounds and Standard Relation.
This standardization enables consistent querying and analysis
within the database. The final step is data normalization, where
we establish rules to standardize common abbreviations or variants
by replacing them with their canonical nomenclature. For instance,
the abbreviation ‘pip’ is replaced with ‘phosphatidylinositol’ to
maintain uniformity throughout the data. The detailed process of
kinase data processing is illustrated in Figure 2.

When working with kinase data, it is important to note that our
focus should be on kinase target information. Targets typically refer
to molecules, proteins, or other biomolecules that are either the
object of a drug’s action or a key component of a signaling pathway.
These targets are crucial in drug discovery as they serve as possible
sites of drug action and are the protein molecules that interact with a
drug to produce a specific biological effect. Target data consists of
information such as substrate name, identifier, phosphorylation
site information, phosphorylation specificity information,

phosphorylation effect, substrate regulatory mechanism and
biological function. The target site information of kinases plays a
crucial role in understanding kinase function, cell signaling, and
disease mechanisms. In this paper, we have meticulously
documented and performed differential data analyses on kinase
target information as part of our efforts to construct a kinase
database platform. This paper aims to support scientific research
and drug development related to kinase.

2.2 Database design and construction

KLSD platform serve as an open database for chemical biology
and drug discovery, containing extensive compound and bioactivity
data. It encompasses various data tables for the storage of different
types of data. Table 1 illustrates some of the common data tables in
the database and their key functions, such as assays, activities,
compounds, targets, etc. Apart from these prevalent tables, KLSD
also includes additional tables to accommodate a wider range of data
types. Additional tables, such as the article table exists to contain
kinase-related articles for researchers to keep up with progress on
kinases, have been added accordingly in the text. The primary
objective of KLSD is to provide researchers with open access
information resources in the field of chemical biology and drug
discovery, aiding their comprehension of the biological activities of
kinase compounds. Special emphasis is placed on highlighting target
information and target difference data of kinases as depicted
in Figure 3.

In this paper, we explore data representation and storage for
kinase compounds’molecular structures within the KLSD database.
Compounds are primarily represented using SMILES (Simplified
Molecular Input Line Entry System) strings and depicted through
chemical molecular structure diagrams (Weininger, 1988). In kinase
research, converting SMILES to chemical molecular structure

FIGURE 2
Workflow for KLSD Data Processing and Standardization. It describles the key aspects of data processing—including cleaning, standardization, and
normalization.
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diagrams is vital for understanding the topology, stereo
configuration, and functional group positions of kinase
molecules. This transformation aids in structure-activity

relationship (SAR) analyses, which are critical for identifying
structural features that influence kinase inhibitory activity. Thus,
effectively translating SMILES into diagrams enhances drug design,

TABLE 1 List and functions of data tables in the KLSD database.

Number Name Description

1 assays Stores information about a bioassay experiment, including the type of experiment, objectives, literature citations, assay results, etc.
The records in this table correspond to a bioassay experiment

2 activities Contains bioactivity data such as bioactivity values for compounds, units, assay conditions, etc. This table is associated with the
assays table, which correlates the results of bioassay experiments to compounds and targets

3 compounds Stores information about the compound, including structure, chemical properties, identifiers, etc. Records in this table correspond
to compound entities

4 targets Contains information about biological targets, such as protein identifiers, names, classes, etc. This table is used to describe targets in
drug development

5 docs Store document information related to bioassay experiments and literature citations, such as literature titles, authors, abstracts, etc.

6 compound_structures Contains structural information about the compound, such as a description of the two- or three-dimensional structure

7 bioactivities This is a combined table containing activity data that brings together compounds, bioassay experiments and biological activity data

8 cell_lines Store information about the cell line, including the source, type, and characteristics of the cell line. This is important for drug
screening and bioassay experiments

9 tissue Contains information about the tissue sample, such as tissue source, tissue type, etc. This is also important for describing the tissue
expression of the target.

10 drug_indication Used to store information about the indication for a drug (the disease or condition that the drug treats)

11 drug_mechanism Contains mechanistic information about the drug, describing how the drug affects the biological target.

FIGURE 3
Detailed Data Mapping of the KLSD Database Platform. It describes the detailed mapping and the complex interconnections among various data
types within the KLSD database platform.
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virtual screening, SAR analysis, and the study of kinase-related
diseases, playing a key role in kinase research and drug discovery
(Li and Fourches, 2021).

In this paper, RDKit (Landrum, 2013) is mainly utilized for
converting compound’s SMILES into molecular structure maps.
RDKit is an open source cheminformatics tool that enables the
manipulation of compounds’ 2D and 3D molecular structures. It
uses machine learning algorithms to generate compound descriptors
and fingerprints, calculate compound structural similarities, and
facilitate the visualization of 2D and 3D molecules, among
other functions.

During the construction of the kinase molecular structure
datasheet, the following steps are executed. Firstly, the SMILES
for kinase data is obtained by connecting to the MySQL database
(DuBois, 2014). Then, an SQL query is executed to extract the
SMILES of the kinase data from the database. The query result is
stored in a Python3.7 (Lutz, 2013) data structure. The RDKit library
is then employed to transform the SMILES string into the chemical
molecule structure diagram. By looping through the SMILES data,
the Chem. MolFromSmiles () function is utilized to convert each
SMILES into its corresponding molecular structure. Lastly, the
resulting molecular structure diagrams are stored in binary
format in the database. Due to MACCS keys (Taylor, 2024)
simplicity and computational efficiency. The 166-bit structure of
MACCS keys provides a sufficient level of detail for initial analyses,
making them well-suited for broad feature-based screening and
rapid processing of large datasets. While Extended Connectivity
Fingerprints (ECFP) (Rogers and Hahn, 2010) or the Multilevel
Atom Pair fingerprint (MAP4) (Capecchi et al., 2020) offer a higher
resolution by capturing more detailed molecular structures and
could potentially yield more nuanced insights, their complexity
and computational demand are higher. Therefore, we have
decided to stick with the simpler MACCS keys. MACCS keys
fingerprints and the molecular descriptors are calculated and
used to build models for predicting the logP (Partition
Coefficient) oil-water partitioning (Wildman and Crippen, 1999).
The molecular structure data for a particular kinase chemical is
shown in Table 2.

2.3 Platform construction and functional
implementation

To efficiently store, analyze and access kinase data, this paper
proposes a database service framework based on spring Boot
architecture. The front-end utilizes the modern Vue3 JavaScript
framework to create a dynamic and high-performance user
interface. The back-end utilized the spring Boot rapid
development framework to build an efficient, reliable, and easily
scalable back-end service. The MySQL relational database is chosen
for data storage and management, with Redis caching utilized to
improve system performance. The overall architecture follows a
layered approach, comprising of an access layer, service layer and
storage layer. The access layer primarily handles service invocation
and user interaction, focus on tasks such as kinase data querying and
kinase target calculation. The service layer is responsible for
platform data management, intelligent analysis, and open queries
to ensure the stable and effective operation of the service. TheT
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storage layer is responsible for data storage, ensuring high reliability
and efficiency. Additionally, an external layer is provided to facilitate
access to the data access service. The detailed platform architecture
information of KLSD is shown in Figure 4.

The Target difference analysis of kinase activity is the core function
of KLSD. To compare the biological activity of different compounds or
molecules in kinase target analysis, pAct values provide a convenient way
to do so. pAct values standardize the representation of activity intensity,
making comparisons between different activity values easier. This
simplifies the interpretation of the data and enables researchers to
have a clearer understanding of the relative activity of different
molecules or compounds. The pAct value compares activity strengths
quantitatively. Generally, higher pAct values indicate stronger biological
activity, while lower pAct values may indicate weaker activity. This can
be used in assessing the relative potency of kinase inhibitors. Overall, the
pAct value is an important metric in kinase target analysis. It simplifies
the interpretation and comparison of data and provides strong support
for drug design and optimization. pAct values are given in the following
general formulae:

pAct � 9 − lg Act( )
In the KLSD target difference analysis function, the user only

needs to input two different targets and pAct value intervals. The
platform will automatically retrieve all the relevant data for the two
targets from the background and conduct the difference analysis. It
will then provide the difference value between the two targets and all
the relevant information for the corresponding compounds.

To accomplish this function, the platform will first check the quality
of the target-related information by eliminating abnormal values,
missing data, or incorrect information. Only compounds with
bioactivity_type corresponding to (p)Ki, (p) IC50, (p)Kb, (p)Kd or (p)
EC50 (represented here as Act) were kept while those with activity_

comments like “not active”, “inactive” were classified into an inactive
group, and give anAct value of zero. In this study, ourmain focus was on
analyzing SMKIs among all reported kinase targets. Therefore, we took
the initiative to filter the Standard Type of compound activities. In our
work, only (p)Ki, (p) IC50, (p)Kb, (p)Kd or (p)EC50 were included.
Hence, we treat other types as abnormal value. It will then standardize
the activity data, specifically those with measurement units of (p)Ki, (p)
IC50, (p)Kb, (p)Kd or (p)EC50. These data will be converted into uniform
concentration units, such as nanomolar (nM), to calculate the difference
value between the targets. The platformwill also determine the threshold
for kinase activity. For example, compounds with an (p) IC50 below
10 nM (López-López et al., 2022) are generally considered to have high
activity. The activity data will be categorized into two groups: active and
inactive, based on this threshold. The platform will then analyze the
correlation between the structural or characteristic differences of the
compounds and their activity. Figure 5 displays the homepage of the
database platform, the list of kinase data, and the target
difference analysis.

KLSD is specifically designed to provide a comprehensive analysis of
SMKIs across all reported kinase targets, setting it apart from broader
databases. KLSD used data from the ChEMBL database, it has been
observed that ChEMBL regularly updates its database, with a frequency
of 1-2 updates per year. To ensure synchronization and real-time
information, regular monitoring is conducted. Through the
development of scripts that can automatically check for updates and
download new data fromChEMBL, documentation is updated promptly
to reflect changes in the data source. Our web platform has been
designed with user accessibility in mind, featuring a user-friendly
interface and advanced data visualization tools. These features make
it easier for researchers, even those without extensive backgrounds in
bioinformatics, to navigate the platform and extract valuable insights
effectively.

FIGURE 4
Detailed Architecture of the KLSD Database Platform. It describes a comprehensive architectural diagram of the KLSD database, highlighting key
technologies and components.
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3 Results and discussion

3.1 Statistics and analysis of data

Based on the actual research and the drug development process of
kinases, we obtained a total of 138 families of SMKIs, Active and Inactive

by analysing the most researched kinase families. Table 3 shows the top
15 kinase families in terms of the number of compounds.

After analyzing the data on the compounds of kinase families, we
employed Vue 3 and D3. js (Bostock et al., 2011) to create a radial tree
diagram for visualizing kinase families data. Vue 3, a modern JavaScript
framework, offers a reactive and composable architecture,making it ideal

FIGURE 5
Comparative Differential Analysis of Kinase Targets. It describes the analytical methods used to compare kinase targets, highlighting aspects of
variation and the conditions under which the analyses are performed.

TABLE 3 Detailed statistics of kinase family compounds.

Number Family Compound Active Inactive Active (%) Inactive (%)

1 NKF2 89762 4779 84983 5 95

2 MAPK 38070 21149 16921 56 44

3 Trbl 31060 7220 23840 23 77

4 PLK 27267 3214 24053 12 88

5 PKC 22872 14743 8129 64 36

6 CAMKL 19042 7103 11939 37 63

7 TBCK 18900 14757 4143 78 22

8 CDK 18620 15080 3540 81 19

9 PSK 16480 13061 3419 79 21

10 VEGFR 15303 13012 2291 85 15

11 EGFR 14112 10783 3329 76 24

12 Abl 14010 8666 5344 62 38

13 RSKR 12334 11458 876 93 7

14 PDGFR 10283 8648 1635 84 16

15 Jak2 9846 8637 1209 88 12
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for developing interactive web applications. D3.js complements this by
providing robust data-driven techniques for creating and manipulating
graphical elements, which we used to calculate and render the complex
structures of our radial tree diagram. It was observed that the TK Group
had the highest number of compounds at 169,825. When looking at
specific Families, the NKF2 Family, belonging to the OTHER Group,
stood out with a number of compounds at 89,762, followed by the
MAPK Family in the OTHER Group, which had a number of
compounds at 38,070. The Radial Tree diagram illustrating the
relationships between kinase families is displayed in Figure 6.

Upon a thorough analysis of the activity profiles of compounds
across different kinase families, we observed that the MAPK family

within the CMGC group demonstrated the most significant number
of active compounds. Specifically, while the MAPK family
encompasses a total of 38,070 compounds, the number of active
compounds identified was 21,149. This was followed by the CDK
Family in the CMGCGroup with an activity of 15,080. Furthermore,
it is worth noting that the NKF2 Family had the highest inactivity of
84,983, and this was followed by the PLK Family in the OTHER
Group with an inactivity value of 24,053. The heat map illustrating
the activity of kinase families, known as Compound_Activity, is
displayed in Figure 7. Figure 7 serves as an overall heat map that
showcases the top six kinase families based on the number of
compounds linked to each family.

FIGURE 6
Kinase Family Radial Tree diagram. It employs specific technologies (Vue 3 and D3.js) that embody the interactive and data-driven nature of
visualisation to represent the structure and number of compounds within the kinase family.
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The term “Standard Type” pertains to the specific metric employed
to quantify the activity of compounds within the scope of
pharmacological data. Common measurements under this category
include (p)IC50, (p)EC50, (p)Kd, and (p)Ki, among others. These
parameters are pivotal as they denote the potency of a compound in
its interaction with a biological target, be it through inhibition or
activation. Understanding these measurements is fundamental to
grasping the pharmacodynamics of the compounds under discussion.

Furthermore, the ‘BAO label’, which stands for BioAssay Ontology label,
provides a descriptor for the biological or pharmacological context
within which an assay is conducted. This label encompasses
classifications that can specify the nature of the target, such as a
single protein, a protein complex, or a subcellular structure. The
BAO label is indispensable for categorizing assays according to their
biological specificity, thereby facilitating a clear interpretation of the
experimental design and the resultant data.

FIGURE 7
Heatmap of Kinase Families Activity. It uses heat maps to visually analyse the activity of the first 6 kinase families, reflecting the number of active and
inactive. The varying color gradients in the heatmap signify different ranges in the number of compounds, with darker shades indicating higher numbers
and lighter shades indicating lower numbers. Each color on the heatmap corresponds to specific range of compoundnumbers, as indicated on the right side.
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In the field of kinase research, the study of JAK1 (Janus Kinase 1) is
crucial as JAK1 plays a significant role in signaling pathways that impact
cellular processes, including immune response and inflammation
(Harris and Cummings, 2021). FILGOTINIB, a selective inhibitor of
JAK1, is proven to be highly effective in the treatment of rheumatoid
arthritis (Feagan et al., 2021). Therefore, we have used
CHEMBL3301607, which corresponds to Filgotinib, as an example in
Figure 8. Specifically, we can search for “Filgotinib” in the “Drugs”
section of the KLSD database, the platform automatically retrieves the
corresponding compound name, Standard Type, and BAOLabel among
other information. These pieces of information are crucial for
understanding the mechanisms of action of drugs, evaluating drug
efficacy, and optimizing drug design. As shown in Figure 8, we
analysed CHEMBL3301607 from three perspectives: the standard
type, the standard type of the drug and the BAO label of the BAO.
This approach not only enhances our understanding of Filgotinib’s role
as a JAK1 inhibitor but also demonstrates the KLSD database’s utility in
facilitating detailed drug analysis and research involving SMKIs.

3.2 Conclusion

Currently, the kinase database platform has accumulated a
substantial amount of kinase-related data, including information
on kinase structure, function, regulation, and biological roles.
KLSD can provide personalized data query, analysis, and display
tailored to researchers’ specific needs. By analyzing the kinase data,
KLSD seeks to identify patterns and features, offering valuable insights
for research and improving researchers’ efficiency. Furthermore,
KLSD ensures data quality and accuracy, making it highly
beneficial in fields such as biomedical research and drug discovery.
However, there is still ample room for growth in kinase deep learning
and artificial intelligence. We must leverage artificial intelligence
technology to further analyze large-scale kinase data, uncover
potential associations and patterns, predict kinase functions and
biological effects, and broaden the functionality and application
areas of the kinase database platform. These advancements will
enable users to conduct more comprehensive studies and analyses

beyond the current capabilities of the platform, meeting the evolving
needs of users and providing greater support and resources for
kinase research.
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