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Introduction: The epidermal growth factor receptor (EGFR) presents a crucial
target for combatting cancer mortality.

Methods: This study employs a suite of computational techniques, including 3D-
QSAR, ligand-based virtual screening, molecular docking, fingerprinting analysis,
ADME, and DFT-based analyses (MESP, HOMO, LUMO), supplemented by
molecular dynamics simulations and MMGB/PBSA free energy calculations, to
explore the binding dynamics of quinazoline derivatives with EGFR. With strong
q2 and r2 values fromCoMFA and CoMSIAmodels, our 3D-QSARmodels reliably
predict EGFR inhibitors’ efficacy.

Results and Discussion:Utilizing a potent model compound as a reference, an E-
pharmacophore model was developed to sift through the eMolecules database,
identifying 19 virtual screening hits based on ShapeTanimoto, ColourTanimoto,
and TanimotoCombo scores. These hits, assessed via 3D- QSAR, showed pIC50

predictions consistent with experimental data. Our analyses elucidate key
features essential for EGFR inhibition, reinforced by ADME studies that reveal
favorable pharmacokinetic profiles for most compounds. Among the primary
phytochemicals examined, potential EGFR inhibitors were identified. Detailed MD
simulation analyses on three select ligands—1Q1, 2Q17, and VS1—demonstrated
their stability and consistent interaction over 200 ns, with MM/GBSA values
corroborating their docking scores and highlighting 1Q1 and VS1’s superior
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EGFR1 affinity. These results position VS1 as an especially promising lead in EGFR1
inhibitor development, contributing valuable insights towards crafting novel,
effective EGFR1 inhibitors.
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GRAPHICAL ABSTRACT

1 Introduction

The pressing global health challenge posed by cancer demands
urgent action. In the U.S. alone, the year 2023 is expected to witness
1,958,310 new cases and 609,880 deaths. Remarkably, prostate
cancer incidents have surged by 3% annually from 2014 to 2019,
reversing a two-decade trend of decline. Meanwhile, lung cancer in
women has been declining at a slower pace compared to men since
2015, with liver, uterine corpus, breast, and melanoma cancers
witnessing an uptick in cases. This data underscores the critical
need for focused research and innovative treatment strategies (Al
Hrout et al., 2022; Clancy, 2023). Lung cancer is the most frequently
diagnosed cancer by gender (11.6% of total cases) and the leading
cause of death worldwide (18.4% of total cancer deaths), followed by
breast cancer in women (11.6%), prostate cancer (7.1%), colorectal
cancer (7.1%), stomach cancer (8.2%), and liver cancer (8.2%) by an
8.2% margin. Lung cancer is the leading cause of death for men and
women alike. The primary cause of death among women worldwide
is breast cancer, followed by lung and colorectal cancers. The
diversity of cancer treatments mirrors cancer’s biological
diversity. When cancer is in its earliest stages, surgical treatment
is the best option. As cancer progresses, treatment typically consists
of radiation, chemotherapy combinations, and, when appropriate,

targeted therapies (Mohanty et al., 2019). Potential anticancer
treatment based on targeted therapy. Cancer treatment side
effects may be mitigated by the targeted inhibition of molecules
involved in tumor development and metastasis. The signaling
networks of cancer cells are responsible for their hyperactive
pathways, making them a prime target for targeted treatment.

Epidermal growth factor (EGF) serves as a basis for a large
family of peptide ligands that govern cancer cell growth,
proliferation, and angiogenesis by binding to cell membrane
receptors and activating a broad range of intracellular signalling
pathways (Song et al., 2019). One of a four-membered family of
transmembrane receptors, the EGF receptor (also known as ErbB1,
HER1, or EGFR) is commonly overexpressed in cancer cells and is
associated with a bad prognosis, just as HER2 (Nicholson et al.,
2001). Consequently, EGFR is an appropriate target for the
development of novel anticancer treatments. Several small
molecule EGFR tyrosine kinase inhibitors are now being tested in
clinical studies alongside monoclonal antibody-based therapies. The
ATP- competitive selective EGFR inhibitors ZD 1839 (gefitinib,
Iressa) and OSI-774 (erlotinib), which were recently authorised for
the treatment of patients with advanced non-small cell lung
carcinoma, are also being clinically tested in patients with other
malignancies. The EGFR/HER-2 dual inhibitors quinazoline
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GW572016 and pyrrolopyrimidine PKI-166, as well as the
irreversible inhibitors CI-1033, are all undergoing clinical
assessment. In vitro and pre-clinical research using (PD183805)
and EKB-569. ZD1839 has demonstrated remarkable antitumor
efficacy. Whether used alone or in combination, against a range
of malignant cells combined with different chemotherapeutic drugs.
Thus, individuals who could benefit from Iressa would be identified
by genetic screening before receiving medication. The fact that 80%–

90% of lung cancer patients lack mutant EGFR and do not respond
to currently available EGFR inhibitors motivates researchers to
develop novel small molecule inhibitors that can effectively block
both typical and mutant EGFR proteins (Gajiwala et al., 2013).

Therefore, the development of tyrosine kinase inhibitors has
emerged as a significant topic in pharmaceutical research. However,
because experimental evaluations of these compounds’ inhibitory
activity are costly and time-consuming, one cannot be certain that
the produced compounds always possess potent tyrosine kinase
inhibitory activity. Therefore, developing a system for predicting
biological activity before synthesis would be beneficial. Quantitative
structure-activity relationship (QSAR) seeks information that may
be used to build a model linking chemical structure to biological and
other activities. Newly created compounds’ potential activity may be
predicted using this method before determining whether to formally
synthesise and test them. Researchers throughout the world are
working to develop novel EGFR-targeting therapies as a result of
treatment resistance increasing and side effects from already
prescribed medications (Bhatia et al., 2020).

A comprehensive collection of 61 quinazoline derivatives with
noteworthy inhibitory activity has been described recently (Smaill
et al., 2016). The selectivity and potency of several of these inhibitors
against EGFR1 are remarkable, therefor, using these compounds as
president for the future drug design may offer novel EGFR inhibitors
with pronounced anticancer properties. In this study, we used 3D-
QSAR, an in-house library, molecular docking simulations, and
fingerprint analysis to investigate the requirements for quinazoline
and its derivatives to inhibit EGFR1. The molecular foundation of
EGFR1 may be investigated by combining ligand-based QSAR with
other in silico approaches. Strategically, 3D-QSAR contour maps were
used to define the substitute properties of quinazolines derivatives.
Naturally occurring quinazolines and their reported derivatives (He
et al., 2017; Li et al., 2021) were used to create an in-house library of
compounds. The predicted pIC50 values for in-house library compounds
were in excellent agreement with the experimental data when using the
3D-QSAR of model compounds to assess inhibitory potential. Analysis
of 3D-QSAR, docking, and fingerprinting data was able to determine the
fundamental requirements and impacts associated with numerous
interaction fields for extremely effective EGFR1 inhibitors. Findings
from this study could aid the researcher in the rational design of
powerful and selective EGFR1 inhibitors by identifying structural and
pharmacophore factors guiding the binding process.

2 Material and methods

2.1 Dataset for 3D-QSAR analyses

The ligand-based 3D-QSAR models were generated based on
64 recently published quinazoline analogues which were evaluated

for their inhibitory effects against EGFR1 (Smaill et al., 2016). All
studied compounds were taken from the sources published by same
research group at different times. The total dataset of compounds
was manually divided into training and test sets according to the
distribution of biological activity and chemical diversity. One-third
of the total dataset was assigned to the test set for model validation,
while remaining compounds were used as training set to develop
3D-QSAR model. There were 48 and 16 inhibitors in the training
and test sets associated with EGFR1. Both sets cover the same range
of biological activities. Those compounds which did not have
biological activity for inhibition of the EGFR1 in exact numerical
form were dropped from 3D-QSAR model. The IC50 values (nM) of
studied set were converted into pIC50 (9- logIC50), which were used
as dependent variables for 3D-QSAR studies (Supplementary Table
S1). Each molecule was drawn with precision and then saved as
a MOL2 file.

2.2 Compound preparation and
structure alignment

The 3D-structures of the studied inhibitors were constructed by
Sybyl-X1.3/SKETCH module, and then minimized by Tripos force
field with GasteigereHückel atomic charge. The alignment of
molecules is the second stage in creating a useful 3D-QSAR
model. Since structure alignment is crucial for deducing 3D-
QSAR, the process was optimized to maximize efficiency. A
high-affinity molecule 1Q1 (Supplementary Table S1), was
selected to be utilized as a template for database alignment. Each
ligand was positioned directly on the quinazoline core ring. In the
study’s subsequent analysis of the CoMFA and CoMSIA models,
these alignments served as the basis for the analysis.

2.3 Construction of 3D-QSAR

All 3D-QSAR analysis were performed with QSAR module
implemented in Sybyl-X1.3. To develop Comparative Molecular
Field Analysis (CoMFA) model, the set of training ligands was
aligned based on the quinazoline core of the reference compound
1Q1 and encapsulated within a three-dimensional cubic lattice,
maintaining a boundary margin of 4 Å and a uniform grid
spacing of 2.0 Å across all axes (X, Y, and Z). Calculation of
steric and electrostatic field energies for the CoMFA descriptors
was performed utilizing a probe atom with sp3 hybridization and a
positive charge of +1.0. In the Comparative Molecular Similarity
Indices Analysis (CoMSIA), an sp3-hybridized carbon atom, also
bearing a charge of +1.0, served to assess five physicochemical
characteristics associated with steric (S), electrostatic (E),
hydrophobic (H), hydrogen bond donor (D), and hydrogen bond
acceptor (A) interactions. The attenuation factor was maintained at
the standard value of 0.3. Initial analysis employing Partial Least
Squares (PLS) methodology (Cramer et al., 1988) were performed by
leaveone-out (LOO) cross-validation method with default value for
optimum number of components (ONC). A threshold of 2.0 kcal/
mol was employed as the minimum column filtering criterion to
diminish noise and enhance the efficiency of the analysis. Following
this, a non-cross-validated procedure was utilized to construct the
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final 3D-QSAR models (CoMFA and CoMSIA), leveraging the
optimal number of components (ONC) derived from cross-
validation. The predictive performance of the established CoMFA
and CoMSIA models was then evaluated. Compounds designated
for the test set, excluded in the model development phase, were
optimized and aligned following the protocol established for the
training set molecules. The predictive correlation coefficient (r2pred)
for these test set compounds was determined using the formula:

r2pre �
SD − PRESS

SD
( ) (1)

In Equation 1, SD represents the sum of squared deviations
between the biological activities of the test set and the average
activities of the training set molecules. PRESS denotes the sum of
squared deviations between the predicted and actual activity values
for each molecule in the test set.

2.4 Virtual screening

2.4.1 Ligand-based virtual screening (LBVS)
A similarity search focusing on shape and electrostatic

properties was executed through ligand-based virtual screening,
employing the bioactive conformation of the inhibitor 1Q1 as the
reference query. To assess the appropriateness of the chosen query
for the similarity search, a validation procedure was performed
utilizing the vROCS tool (OpenEye Scientific Software). Both decoy
and active compounds were sourced from the Database of Useful
Decoys-Enhanced (DUD-E) available at http://dude.docking.org/
target/pyrd. The inclusion of decoys and actives in the validation
process is pivotal for determining the efficacy of the selected query in
distinguishing between known active compounds and inactive
decoys in relation to the target protein [26].

The Receiver Operating Characteristic (ROC) curve, along with
the Area Under the Curve (AUC) and early enrichment values, serve
as the statistical metrics utilized for query validation through the
vROCS program (OpenEye Scientific Software). Following
successful validation, this query was employed for ligand-based
virtual screening targeting chromones, chromanones, and
chalcones, facilitating the execution of shape matching and
electrostatic similarity assessments.

2.4.1.1 Shape similarity search
Employing the validated query, the vROCS tool (OpenEye

Scientific Software) conducted a search for shape similarity. The
3D conformations of the ligands, generated by the Omega program,
were superimposed on the query molecule utilizing the vROCS
software, which utilizes Gaussian shape overlap for scoring the
ligands. Ligands were evaluated and scored according to their
shape (Shape Tanimoto score) and electrostatic properties (Color
Tanimoto score), subsequently being ranked based on the combined
Tanimoto score (incorporating both shape and color) [26].

2.4.1.2 Electrostatics similarity search
Electrostatic similarity analyses of the 3D conformers of ligands

were conducted utilizing the EON software (OpenEye Scientific
Software), based on the validated query. EON aligns the molecules
against the query and computes the electrostatic potential using

Poisson-Boltzmann and Coulombic electrostatic tools. The
molecules were evaluated and scored based on the Poisson-
Boltzmann electrostatics Tanimoto (ET_pb), Coulombic
electrostatics Tanimoto (ET_coul), and the EON shape Tanimoto
(EON_shape_tani). Subsequently, ligands were ranked based on the
electrostatics Tanimoto combo (ET_combo), which integrates the
EON shape Tanimoto with the Poisson-Boltzmann electrostatics
Tanimoto (ET_pb) for comprehensive scoring and ranking [26].

2.4.2 Docking-based virtual screening
At first, the co-crystalized structure of EGFR bonded to

Lapatinib was retrieved protein data bank (PDB ID: 1XKK)
(Wood et al., 2004). Before the docking process, protein
structures were meticulously prepared, involving the exclusion of
solvent molecules, correction of absent atoms, and geometric
optimization, to preserve the structural integrity and enhance the
reliability of the protein models (Stanzione et al., 2021). The Ligand-
Based Virtual Screening (LBVS) identified the top 16 lead
compounds utilizing metrics such as Shape Tanimoto (ST-score),
Colour Tanimoto (CT-Score), and Tanimoto-Combo (TC-score).
These compounds, together with the 64 ligands utilized for the 3D-
QSAR model, were subjected to flexible docking into the active site
of EGFR employing the Glide-XP module from Schrödinger
(Friesner et al., 2004), in accordance with established protocols
(Tripathi et al., 2012; Pan et al., 2013; Owoloye et al., 2022). The
receptor grid was constructed using the preprocessed protein,
applying the OPLS 2005 force field [25]. Adjustments to the van
der Waals (vdW) radii of protein atoms were made using a scaling
factor of 1.0, and a charge cutoff of 0.25 was implemented to assess
polarity. The dimensions of the receptor grid box were defined as ≤
20Å in each spatial direction (x, y, and z), centering the box around
the target ligands to ensure ample space in the binding pocket for
accommodating any ligand [26]. A cubic docking grid, positioned
near the hinge residue M769 and tailored to enclose ligands up
to ≤20Å, was generated. Glide’s extra precision (XP) scoring
mechanism was employed, allowing for complete ligand flexibility
during docking. The final energy assessment was conducted using
GlideScore, yielding the most favorable pose for each of the
80 compounds (Hamza et al., 2023). Remarkably, the docking
simulations frequently converged, indicating the lowest energy
docked complex for the most similar conformations.

2.5 Structural interaction fingerprint
(SIFt) analysis

To identify essential residues involved in ligand binding, the
method of Structural Interaction Fingerprint (SIFt) analysis was
utilized. This approach offers a direct method for examining the
interactions between ligands and receptors, which holds
considerable potential for implications in drug design and
discovery. SIFt represents a strategy for the assessment of
protein-ligand interactions in a three-dimensional context
(Venhorst et al., 2008). The primary objective of this
methodology was to create an interaction fingerprint by
simplifying the intricate binding characteristics of the ligand-
protein complex from three-dimensional space into a binary
numeral system. This transformation allows the substantial
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information inherent in ligand-receptor complexes to be
systematically organized, analyzed, and visualized through
fingerprints, facilitating database mining activities. Utilizing SIFt
as a molecular sieve in the screening process of a virtual chemical
library enables the identification of compounds that exhibit
desirable binding modes and interaction patterns with the
protein target. The analysis conducted with SIFt focused on the
three predominant contact types in ligand-protein interactions:
hydrophobic contacts, hydrogen bond donors, and hydrogen
bond acceptors (Deng et al., 2004). The SIFt panel within
Schrödinger Release 2020-2 (2020) was employed to generate the
interaction fingerprint for the protein-ligand complex. The receptor
grid and ligands were chosen as the input files for this analysis. Upon
generating the fingerprint, the results can be visualized in an Excel
sheet format, which accentuates the residues and types of
interactions that play significant roles in binding (Jasper et al.,
2018). Corresponding colors were used to indicate the type of
interaction shown by the residues while the numerals 1 and
0 indicated the presence and absence of interaction respectively.
Typical docking research outcomes of 100 complexes were validated
using fingerprint analysis (Kakarala and Jamil, 2015). Multiple
binding mechanisms, variable orientations, and positions relative
to the target protein were observed in the poses.

2.6 Toxicological modelling and
ADME profiling

The information gained through ADME profiling is crucial for
determining the pharmacokinetic properties of drugs, which in turn
helps with decision-making, dosage selection, and the overall
effectiveness of drug development program. Since it quickly
reveals key insights into the absorption, distribution, metabolism,
and excretion properties of drugs, ADME profiling is a time-saving
catalyst in the multifaceted area of drug development. This cutting-
edge methodology allows scientists to swiftly identify potential
challenges and limitations, allowing them to strategically navigate
the optimisation process, maximising the efficient allocation of
resources, and speeding up the path towards the development of
safe and effective drug compounds. The compounds’ potential for
synthetic preparation was assessed using the Swiss-ADME web
application (http://www.swissadme.ch). The pkCSM web
application (https://biosig.lab.uq.edu.au/pkcsm/prediction), which
can be accessed through the URL (https://biosig.lab.uq.edu.au/
pkcsm/theory), was then used to predict the in silico ADMET
properties of all 80 compounds (3D-QSAR model compounds
and VS-hits). Swiss ADME and pkCSM tools provide rapid
access to and analysis of datasets and in-house library
compounds, easing the process of identifying the best candidates
for future development based on their compounds’ ADME features.

2.7 DFT studies/MESP/HOMO/
LUMO analysis

DFT calculations were conducted with minor adjustments based
on the protocol previously outlined (Ejaz et al., 2022). Utilizing the
Gaussian 09 software package (Revision E.01) with its standard

configurations, all calculations were carried out employing the
B3LYP functional alongside the SVP basis set. This theoretical
framework proves effective for the determination of the
electronic structures of atoms and molecules. The present
investigation aims to ascertain various key parameters, including
optimized geometric characteristics, the frontier molecular orbital
(FMO) energies, as well as global and local reactivity indices, and the
molecular electrostatic potential (MEP). The generated checkpoint
files were examined using Gauss View 6.

2.8 Molecular dynamics simulations

The structurally modeled docking simulations of experimentally
identified potent and moderate EGFR1 inhibitors, 1Q1 and
2Q17 respectively, were further refined and stabilized within a
solution system through molecular dynamics simulations using
the AMBER20 software package (Case et al., 2012) with the
ff99SB force field. Similarly, docking complexes of compounds
identified via virtual screening, as illustrated in Figure 4, bound
to EGFR1, were also subjected to molecular dynamics (MD)
simulations. Additionally, an evaluation of the binding affinities
among the 1Q1, 2Q17, and VS1-EGFR1 complexes was conducted
employing the MM/PB(GB)SA (Gohlke and Case, 2004) approach.
All MD simulations, along with the molecular mechanics-based free
energy estimations (MM/PB(GB)SA), were executed exclusively
within the AMBER16 software environment (Case et al., 2012),
according to the previously established protocols and parameters
(Chohan et al., 2016a; Chohan et al., 2016b; Rehman et al., 2019).
Furthermore, detailed descriptions of these methodologies are also
available in the Supplementary Material.

3 Results and discussion

3.1 3D-QSAR analysis

The 3D-QSAR model was developed using the previously
reported Quniazolies analogs that were tested for their inhibitory
potential against EGFR1 (Smaill et al., 2016). The molecular
alignment based on the quinazoline core ring, along with the
results derived from the CoMFA and CoMSIA, is depicted in
Figure 1 and quantitatively detailed in Table 1. Table 1 reveals
the CoMFAmodel’s metrics: showing q2 = 0.608, ONC = 8, Rncv2 =
0.979, SEE = 0.1126, and F = 257.401. The steric contribution (51%
of the total) was found to be greater than the electrostatic effect
(49%), according to the model’s steric and electrostatic fields. The
CoMSIA model, assessing the QSAR model’s validity through five
parameters-steric (S), electrostatic (E), hydrophobic (H), hydrogen
bond donor (D), and hydrogen bond acceptor (A)-highlights the
relative significance of each field. The outcomes from CoMSIA were
as follows: q2 of 0.517, Rncv2 of 0.882, SEE of 0.2593, and F of
315.061, with field contributions being 23% steric, 20%
hydrophobic, 21% electrostatic, and hydrogen bond donor and
acceptor fields contributing 19% and 16%, respectively. These
findings underscore the critical role of hydrogen bonding in
ligand-protein complexes and suggest that steric and
hydrophobic field contributions are beneficial for ligand binding.
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Figure 1 presents a scatter plot comparing observed pIC50 values
against predicted pIC50 values for both the training and test sets
within the CoMFA and CoMSIA analyses. The plot shows that most

of the compounds align closely with the trend line, indicating a
robust correlation between observed and predicted pIC50 values,
thereby affirming the model’s strong predictive accuracy. This
alignment signifies that predicted values are in good agreement
with experimental data. The validation of the models using
compounds from both the training and test sets demonstrates
that the CoMFA and CoMSIA models possess substantial
predictive power for assessing the inhibitory activity of
compounds targeting EGFR1, as evidenced by the solid
correlation coefficient values (q2 and Rncv2). This establishes
their relevance in predicting the activity of EGFR1 inhibitors
accurately.

3.2 CoMFA contour-map

CoMFA analysis is an effective tool in the drug discovery
process. CoMFA helps find critical chemical characteristics for
optimized drug design by comparing the steric and electrostatic
properties of molecules with their inhibitory activities, yielding
useful insights into the underlying structure-activity associations.
The green contour in Figure 2A of the CoMFA analysis highlights
the significance of the substitution at position 2 of the quinazoline
ring. CoMFA analysis shows a solid green contour for compund
1Q1 showing best IC50 (Figure 2), where an oxymethyl group is
immediately connected. CoMFA’s green contours indicate that a
large group capable of exerting strong steric effects was needed at
this location. The methylmorpholine-substituted on oxymethyl
group of compound 1Q2 has a similarly impressive IC50 value of
7 nM. The same methylmorpoline structure, with a substitution at

FIGURE 1
Regression analysis of pIC50 values predicted by the model compared to actual pIC50 values CoMFA values and CoMSIA values.

TABLE 1 Statistical characteristics for 3D-QSAR derived from the CoMFA
and CoMSIA models.

PLS statistics CoMFA CoMSIA

q2a 0.608 0.517

ONCb 8 5

Rncv
2c 0.979 0.882

Probability of r2 0.000 0.000

SEEd 0.166 0.218

Fe 257.40 315.06

Rpre
2f 0.741

Contributions

Steric 0.513 0.230

Electrostatic 0.487 0.214

Hydrophobic 0.201

H-bond donor 0.195

H-bond acceptor 0.160

aLeave-one-out.
bOptimum number of components.
cNon-cross-validated correlated coefficient.
dStandard error of estimation.
eF-test value.
fPredicted correlated coefficient.
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position 18, is seen in compound 1Q49, which has an IC50 value of
9 nM. Bulky group substitution is shown by the green contour at
position 16 of the propionamide moiety, which is directly attached
to the quinazoline ring at position 1. Compounds 1Q47 and
1Q48 highlight the significance of the first position of the
quinazoline ring by associating methacrylamide and (E)-but-2-
enamide chains, respectively. Both of these compounds have an
IC50 value 21 nM and 22nM, respectively that is less than that of
compound 3Q55 (in which dimethylamine is further substituted on
the (E)-but-2-enamide chain). The IC50 for 3Q55 is just 6nM,
making it a far more potent inhibitor than either 1Q47 or 1Q48.
Spot 25, on the ring of the chlorofluorobenzene substituent on the
amine group at Position No. 11, is the third and most crucial bulky
desired group position. If this fluorobenzen ring is changed with any
other bluky ring structure, the binding affinity will decrease, as seen
by the yellow contour on the identical ring structure. In the instance
of compound 2Q9, for example, the IC50 value drops by a factor of
367 when the N-methyl-1-(pyridin-3-ylmethyl)-1H-indol-5-amine
ring is replaced at position 11. The yellow contour on position
13 indicates if a bulky group were to directly replace the tiny moiety
with a carbonyl compound at this place, the binding affinity
would decrease.

The electrostatic contribution is shown by blue and red outlines
in the CoMFA analysis (Figure 2B). The area shown in blue
represents the requirement for a positive charge, while the area
shown in red represents the necessity for a negative one. As the red
outline suggests, the existence of a negative charge at the 14 and
17 spots is critical. In the example of compound 1Q3, its high IC50

value is due in large part to the presence of oxygen at both of these
positions. Significant positively charged compounds are required, as
shown by a blue contour at position 11 on the quinazolin ring.
Similar to 1Q2 and 1Q3, these compounds also have an amino group
in the following positions, which contributes to their potent
inhibitory effect.

3.3 CoMSIA contour-map

The correlation between molecular 3D structure and biological
activity is studied using a subset of 3D-QSAR called CoMSIA
(Comparative Molecular Similarity Indices Analysis).
Incorporating new molecular characteristics, such as
hydrophobicity and hydrogen bonding, CoMSIA builds on the
foundation of CoMFA analysis. To determine which areas

FIGURE 2
(A) The green contours depict the steric effect required to strategically select molecules with high activity, whereas the yellow contours discourage
the bulky group. (B) Electrostatic contours: blue contours depict the region’s need for positively charged groups, whereas red groups indicate the
presence of negatively charged groups required for adequate activity. (C) Hydrophobic contours: orange groups indicate activity-friendly yellow
contours, whereas white contours oppose this polarity. (D) Hydrogen bond donor contours: purple contours signify HBD need, whereas cyan
contours depict the region where HBD groups are disfavored. (E)Hydrogen bond acceptor contours: magenta represents a site favoured by HBA. CoMFA
and CoMSIA contours illustrated in 2D.
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substantially contribute to the observed activity, CoMSIA computes
similarity indices depending on the molecular fields around a
collection of molecules. CoMSIA gives a thorough knowledge of
the structural elements that impact the biological activity of
compounds by taking into account the steric and electrostatic
fields, as well as other variables. In Figure 2C, the orange
contours indicate the position where a hydrophobic moiety is
required, while the cyan colour indicates the position where the
presence of hydrophobic compounds decreases the binding affinity
of quinazoline derivatives with the EGFR1 target protein.
Hydrophobic compounds are needed at position 11, as shown by
the orange contour, and 1Q3 satisfies this criterion by virtue of the
presence of an amino group. While amino groups often do not
behave hydrophobically, in this circumstance they do so because
they are directly attached to three atoms and possess a lone pair of
electrons. The hydrophobic group is needed at position 26 of the
ring substitution of fluorobenzene since this side of the molecule will
interact with EGFR1’s hydrophobic cavity. The substitution of
indole for this group, like that of 2Q4, is indicative of productive
activity. The interaction between the compound and the ligand
requires the presence of a hydrogen bond donor, represented by the
purple colour at position 12 (Figure 2D). Both 2Q4 and
3Q28 contain an amino group at the location indicated by the
purple hue, and both compounds depict good IC50 values, 6 nM and
7 nM, respectively, which are favourable. The presence of cyan
contour at position 26 indicates that a bond donor is not required. In
Figure 2E magenta contour at position 14 on the carbonyl ring
illustrates the significance of this position as a hydrogen bond
acceptor. Oxygen is present with the carbonyl group at this
position. It is substantially present in all qunazoline derivatives
that inhibit EGFR, indicating the significance of this position. As in
the case of the compound with the most appreciable inhibitory
value, 1Q3 possesses the carbonyl group as HBA at the following
position. Figure 2D depicts a 2D illustration of every point to
comprehend the critical positions of CoMFA and CoMSIA analysis.

3.4 Integration of ligand-based virtual
screening with 3D-QSAR validation

The Query Model X was validated using a set of actives and
decoys obtained from DUD-E (Mysinger et al., 2012). To ascertain
the efficacy of the query model, metrics such as the Receiver
Operating Characteristic—Area under Curve (ROC-AUC), and
the Enrichment Factor (EF) were employed, as reported by
vROCS. The Enrichment Factor serves as a measure of the
scoring function’s effectiveness when used as a virtual screening
tool against the query model, representing the ratio of the
proportion of actives identified to the proportion of decoys
identified, with a 95% confidence interval (95% CI). The
capability of the model to enrich active compounds within the
top-ranked screened database compounds is particularly
emphasized. Therefore, our focus was on the Enrichment Factor
at 0.5%, 1%, and 2% of the ranked database, denoted as EF 0.5%, EF
1%, and EF 2%, respectively. According to Supplementary Figure S1,
there is a positive tendency towards the selection of active
compounds from both active and decoy datasets, with an ROC-
AUC of 0.732 ± 0.728. The Enrichment Factors were determined as

EF 0.5% at 9.929 (95% CI: 0.011, 1.242), EF 1% at 0.454 (95% CI:
0.033, 1.410), and EF 2% at 0.740 (95% CI: 0.151, 1.593), as detailed
in Supplementary Table S1.

Query model X was leveraged in the virtual screening of
compounds sourced from the e. Molecules database, as provided
by OpenEye Scientific. This repository, containing over 7.6 million
compounds, utilized its 2018 version, with each molecule
represented by 10 conformers, for the screening process. The
screened compounds were assessed for structural similarity to the
query model, based on ShapeTanimoto (ST-score),
ColourTanimoto (CT-Score), and TanimotoCombo (TC-score).
The top 100 leads were shortlisted, yet only the top
19 compounds, showcasing the highest ST-score, CT-Score, and
TC-score, were selected for further evaluation and their potential
pIC50 values predicted using the validated 3D-QSAR model. These
leading 19 virtual screening compounds, along with their respective
ST-score, CT-Score, TC-score, and both CoMFA and CoMSIA
scores, are presented in Supplementary Table S3 within the
Supplementary Material. The examined VS hits generally
exhibited pIC50 values ranging between 8.5 and 6.5. Given that
the least active inhibitor in our QSAR model displayed a pIC50 value
of 6.55, VS hits with pIC50 values below this threshold were excluded
from further consideration. Only ligands with pIC50 values
exceeding 6.55 were included in the subsequent LBVS analysis.
This LBVS process, in conjunction with 3D-QSAR predictions,
facilitated the identification of the leading compound, VS1 (as
shown in Supplementary Figure S1), which demonstrated a
significant degree of shape and color similarity with query model
X, achieving a high TC score of 1.482 with an almost equal
contribution from shape and color scores. The selected top 19 VS
hits also exhibited a wide range of chemical diversity, providing a
diverse set of lead compounds for further retrospective analysis via
molecular docking experiments. Overall, the retrospective validation
results lend support to our sequential screening methodology,
utilizing LBVS followed by SBVS, proving its effectiveness in
distinguishing between active and decoy GPER1 ligands.

3.5 Structural interaction fingerprint (SIFt)

This study utilized structural interaction fingerprints (SIFt) to
evaluate docking orientations of new ligands, enabling the creation
of protein-specific scoring systems. Essential for “scaffold hopping”
in medicinal chemistry, this method identifies ligands with distinct
structures through interaction patterns, not molecular structure.
SIFt maps, detailing interactions via a binary seven-bit vector for
amino acids, simplified analyzing the docking results of
61 compounds from QSAR model and 19 virtual screening hits
against the EGFR1. This method effectively identified inhibitors
targeting critical hotspot residues in the active site, crucial for
ligand-protein complex formation.

A well-constructed Structure Interaction Fingerprint (SIFt) can
assist researchers in comprehending how large ligand databases bind
to a protein’s active site. In this study, we developed a SIFt to analyze
the binding patterns of all virtual screening hits binding to EGFR1,
aiming to identify the primary hotspot residues involved in ligand-
protein complex formation. Figure 3 reveals that key residues within
the ligand binding cavity of EGFR1 include I718, V726, A743, K745,
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M769, C775, L788, R790, Q791, L792, M793, C797, D800,
L844, T854, D855.

Interestingly, these same residues surround the co-crystallized
ligand in 1XKK, suggesting that all ligands occupy the same binding
cavity as observed in 1XKK. All the residues present in binding
cavity shown interaction in fingerprinting analysis with exception of
two residues V717, G721, I744, L858 of EGFR1 which only establish
interaction with ligand VS6, 2Q4, VS12, VS11, and VS2, as shown in
red color as hydrogen bond acceptor and sky-blue color as hydrogen
bond donor in the Figure 3. Almost all ligands engage in consistent
interactions with M769 and R790, making these residues pivotal in
the EGFR1 binding cavity due to their essential role in these
interactions. Notably, M769 and D800 participate in hydrogen
bond acceptor interactions with many ligands, represented by
orange in the fingerprint analysis (Figure 3). Additionally,
hydrogen bond acceptor, contact, and side chain interactions
occur between residue I718, V726, A743, K745, M769, C775,
L788, R790, Q791, L792, M793, C797, L844, T854, D855 and
ligands 1Q1 and VS1, depicted in multicolored in the fingerprint
analysis. Furthermore, there is additional hydrogen bond
interactions between D800 and ligands VS1, displayed in orange
in the fingerprint analysis. Moreover, interactions involving
hydrophobic, side chain, and π-π contacts are observed between
residues A719, L764, and G772 with the majority of ligands
(Figure 3). In short, our SIFt analysis indicates that not only do

all the ligands exhibit high structural similarity, but they also share
similar electrostatic patterns. This similarity allows the ligands to
adopt analogous binding conformations within EGFR1, resulting in
interaction patterns akin to those observed in the 1XKK structure.
However, a few ligands, such as 2Q17, 2Q19, VS12, VS18 and VS19,
exhibit slight deviations in their binding patterns compared to the
co-crystallized inhibitor-EGFR1 complex. The summary of
fingerprint analysis showing different colors along with ligands
with highlighted regions involved in various interactions is
shown in Figure 3B, which graphically depicts that about 90% or
docked ligands were able to interact with 12 common residues as
described previously. Hence, one may speculate these common
residues as the hotspot residues for the EGFR1 inhibitors.

Figure 3C displays the heatmap generated from Schrödinger
fingerprint analysis presenting a clustering of interactions among
the ligands 1Q1-3Q61 and VS1-VS19 with EGFR1. The results
exhibited a high degree of similarity within the 1Q1-3Q61
ligands, suggesting a conserved binding mode. Likewise, the
virtual screening compounds VS1-VS19 also showed a similar
range of interactions, indicating comparable binding affinities
and specificities. Clusters with higher similarity scores indicated
ligands with complementary steric and electrostatic features to the
EGFR1 binding pocket. Some VS compounds closely mimicked the
interaction patterns of high-affinity ligands, hinting at their
potential as lead optimization candidates. The heatmap effectively

FIGURE 3
SIFt Analysis: (A, B) Protein-ligand interaction fingerprints for modelling compounds and VS-hits within a 4.0Å radius of interacting residues. Residue
presence indicated as 1, absence as 0, and colored by hydrophobic, hydrogen bond donor, and acceptor properties. (C) Interaction heatmap depicting
clustering analysis. (D) All 80 ligands (modeling and VS-hits) docked into the active site of EGFR1.
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validated the computational screening methodology and highlighted
structure-activity relationship insights, essential for lead
optimization. The analysis underscores promising ligand clusters
for further therapeutic development, demonstrating the potential of
our computational approach to identify novel EGFR1 inhibitors.
The identified candidates from the VS series, particularly those
analogous to the high-affinity clusters, will be prioritized for
experimental validation and subsequent drug
development processes.

3.6 Molecular docking

The investigation into structural interactions elucidated by the
ligand-based 3D-QSAR model was further augmented through the
application of structure-based analytical techniques. Our
computational model was adept at identifying essential structural
molecular patterns requisite for efficacious interactions between a
compound and its target protein. Docking analysis, a computational
technique that assesses the interactions between small molecular
compounds and target proteins, provides indispensable insights into
the drug development and design paradigm. This analysis facilitates
the extraction of crucial information regarding the drugs’ binding
affinities, mechanisms of action, and therapeutic efficacy. To
evaluate the binding efficacy of 61 model compounds and 19 hits
from virtual screening against EGFR1, the bioactive conformations
of all 80 compounds were computationally docked into the active
site of EGFR1. The docking scores for these compounds, as detailed
in Supplementary Table S2, range from–8.32 kcal/mol to −3.5 kcal/
mol against the EGFR1 enzyme, indicating predominantly favorable
to moderate binding affinities. Notably, the ranking of these
compounds is consistent with patterns observed in experimental
analyses and predictions from 3D-QSAR regarding pIC50 values.
For a nuanced comparison and analysis of the binding patterns of
the docked ligands within EGFR1, ligands demonstrating the highest
docking scores were selected for graphical representation. According
to Supplementary Table S2, compounds 1Q1 and VS1 emerge as the
most efficacious model compound and virtual screening hit,
respectively, achieving the highest docking scores of −8.32 kcal/
mol and −8.97 kcal/mol. This suggests that VS1 exhibits a binding
affinity comparable to that of 1Q1. Conversely, compound
2Q17 exhibits a moderate binding affinity (−4.46 kcal/mol)
towards EGFR1. The potential binding conformations of ligands
1Q1, 2Q17, and VS1 within the EGFR1 active site are illustrated in
Figures 4A–E, offering a visual understanding of their interaction
dynamics. The docking analysis of EGFR1 has elucidated the distinct
binding interactions of covalent versus non-covalent inhibitors.
Covalent inhibitors, such as 1Q1 and VS1, form a direct bond
with the cysteine residue of EGFR1, resulting in a durable
modification and sustained inhibition of the target protein. This
contrasts with non-covalent inhibitors like 2Q17, which do not form
such bonds, suggesting covalent binding may enhance inhibitory
effectiveness. Figure 4A depicts the action mechanism of covalent
inhibitors, highlighting their strong, irreversible bond formation,
advantageous for long-term therapeutic efficacy. Initial analysis
using co-crystallized structures of EGFR1 (PDB ID: 1XKK)
classified the ligand-binding pocket into distinct regions.
Figure 4B shows the binding cavity’s division into hinge, solvent-

exposed, and catalytic sites. Remarkably, all studied ligands occupied
the ATP binding cavity in EGFR1 (Figures 3D, 4B), indicating
comprehensive engagement with the target site. The structural
analyses elucidate the precise positioning of covalent inhibitors
within the ATP-binding site of EGFR1, highlighting a significant
interaction within the hinge region, a pivotal area for the efficacy of
kinase inhibitors. In contrast, the non-covalent inhibitor, 2Q17,
demonstrates an alternate interaction mechanism, accentuating the
superior inhibitory potential that covalent bonding offers to EGFR1.
Through Figure 4A, the mechanism of action for covalent inhibitors,
such as 1Q1 and VS1, is depicted, showing their engagement
through a covalent bond with a cysteine residue within EGFR1-a
mechanism absent in non-covalent inhibitors like 2Q17. This
process of covalent bonding indicates a robust and irreversible
inhibition, offering significant therapeutic benefits for sustained
activity. To further dissect the ligand-binding domain of
EGFR1 into specific zones, characterized by their intrinsic
properties, an initial investigation utilized co-crystallized
structures of EGFR1 (PDB ID: 1XKK). Figure 4B delineates the
EGFR1 protein’s binding cavity, strategically located between the N-
and C-terminal lobes, which can be partitioned into the hinge
region, solvent-exposed region, and catalytic site. Notably, all
ligands under examination were found to occupy the ATP
binding cavity in EGFR1, as shown in Figures 3D, 4B. This
observation underscores the extensive and intricate engagement
of these compounds with the target site, demonstrating the
nuanced interplay between structural features and inhibitory
function within the realm of EGFR1 interactions.

To elucidate the variance in docking scores attributed to diverse
interaction patterns, the optimal docking conformations for each
compound were thoroughly documented and visually represented
(Figures 4C–E). The binding sites for the ligands 1Q1, 2Q17, and
VS1 within the EGFR1 protein are illustrated in Figure 4B, revealing
that all three ligands share the same binding site. The graphical
analysis demonstrates that the EGFR1-ligand complexes engage
common residues I718, V726, A743, K745, M769, C775, L788,
R790, Q791, L792, M793, C797, L844, T854, D855 within the
ligand binding site (Figure 2A). Furthermore, validation of our
docking methodology indicates a similar interaction pattern
among the ligands 1Q1, 2Q17, and VS1 with the pivotal residue
M769 in the hinge region, where they are capable of forming at least
one hydrogen bond (Figures 4C, D). However, a significant
distinction emerges due to the presence of a “warhead” (a
reactive functional group) in ligands 1Q1 and VS1, enabling
them to form a covalent bond with the adjacent residue C773, an
interaction absent in 2Q17. In the bonded system of VS1,
the—SO2NH2 group extends towards the solvent-exposed region,
donating a hydrogen bond to D800. Meanwhile, the pyran moiety in
1Q1 projects outward to form a hydrogen bond with K692, and
notably, 2Q17 also establishes a hydrogen bond with C773. The
larger structures of 1Q1 and VS1 cover more extensive areas within
EGFR1, facilitating additional interactions not seen with 2Q17.
These findings significantly advance our comprehension of
ligand-EGFR1 interactions and pave the way for the design of
novel inhibitors with enhanced selectivity and efficacy. The data
presented in this study are pivotal for the development of targeted
therapies against diseases implicated with EGFR1. Further
experimental validation and characterization of these findings
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would reinforce their significance and contribute to advancing these
compounds through the drug development process.

3.7 Toxicological modelling and
ADME profiling

The comprehensive analysis, detailed in Supplementary Table
S3, represents the ADME properties, physicochemical
characteristics, pharmacological toxicity, mutagenesis profile, and
synthetic accessibility for the compounds evaluated in our study.
This data is pivotal, providing a foundation for the advancement of
these compounds through the drug development pipeline. Synthetic
The ease of synthesis, quantified through synthetic accessibility
scores, highlights the practicality of compound development, with
most compounds achieving scores of 5 or below, suggesting feasible
synthesis. Notably, the synthetic accessibility score of 2Q17 stands at
3.91, indicating a more straightforward synthesis compared to 1Q3,
which has a score of 2.68. This discrepancy can be attributed to the
smaller molecular structure of 1Q3. Additionally, VS1- VS4 emerges
as the most promising molecule within our in-house library, with a
synthetic accessibility score of 3, underscoring our library’s potential
for yielding readily synthesizable compounds. The absorption rates,
particularly intestinal absorption, significantly influence a drug’s
bioavailability. Our findings reveal high absorption rates across the
board, with 1Q3 demonstrating an absorption coefficient of 90%,
indicative of excellent bioavailability. Furthermore, the intestinal
absorption of the in-house compound W59 surpasses that of 1Q3,
suggesting even higher bioavailability. The metabolism of these

compounds predominantly involves cytochrome P450 enzymes,
especially 2D6 and 3A4, essential for the metabolic breakdown
and clearance of drugs. The total clearance rates, a measure of
the drug’s elimination from the body, are crucial for determining
appropriate dosing to achieve steady-state concentrations. Our
study provides these rates in terms of log (mL/min/kg), aiding in
the optimization of therapeutic dosages. Importantly, the AMES
toxicity test results reveal most compounds, including 1Q3 and
W59, to be non-mutagenic, suggesting a low risk of genotoxicity and
a favorable safety profile for further development. Furthermore,
Q1 and 2Q17 show impressive intestinal absorption rates of 90.396%
and 92.87%, respectively, highlighting their potential for effective
gastrointestinal uptake. VS1 stands out with an absorption rate of
99.812%, indicating exceptional bioavailability. The metabolism
profiles of these compounds suggest interactions with CYP3A4,
indicating their metabolic pathway involves this significant enzyme,
which could influence drug-drug interactions. The total clearance
rates suggest efficient excretion without rapid elimination, beneficial
for sustained action. All three compounds are characterized as non-
mutagenic, suggesting a promising safety profile. Present analysis,
employing tools like the pkCSM web application, has facilitated a
detailed evaluation of these compounds, showcasing their
therapeutic potential. The highlighted absorption rates,
manageable metabolism, and non-toxic nature of compounds
such as 1Q1, 2Q17, and VS1 position them as promising
candidates for further drug development. Their synthetic
accessibility supports the feasibility of their production and
development into therapeutic agents. Given their distinct
interaction patterns with critical metabolic enzymes, a tailored

FIGURE 4
Molecular docking selected ligands into the active site of EGFR1 protein. (A) Schematic representation of the inhibition of target proteins (or
interactions) with covalent inhibitors; (B) ligand binding cavity in EGFR1 protein. All selected ligands occupying the same binding site of EGFR1 protein. (C)
Docked conformation of ligands 1Q1, 2Q17, and VS1 in their corresponding complexes (C) EGFR-1Q1 (D) EGFR-2Q17, and (E) EGFR-VS1.
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approach to drug development might be advantageous to exploit
their full therapeutic potential. Findings of ADME analysis not only
enrich our understanding of the pharmacokinetic properties of the
evaluated compounds but also delineate clear pathways for their
optimization as therapeutic agents. The detailed ADMET profiles,
particularly for 1Q1, 2Q17, and VS1, alongside the broader insights
provided by our comprehensive dataset, will be instrumental in
guiding the subsequent phases of drug development, including
formulation, dosing, and clinical trials.

3.8 DFT and MESP studies

The MESP (Molecular Electrostatic Potential) mappings have
provided a comparative view of the electronic characteristics
inherent to the EGFR1 co-crystallized inhibitor 1Q1 and the VS-
hit VS1, distinguishing them from the moderately active
EGFR1 inhibitor 2Q17. These insights, depicted in Figures 4, 5,
elucidate the unique electronic properties that confer distinct
biochemical interactions with EGFR1. The MESP mappings

FIGURE 5
ESP structures (in both gas and solvent phases) formed by mapping of total density over electrostatic potential, and optimized structures 1Q1,
2Q17 and VS1. Calculated HOMO and LUMO orbitals of potent derivatives at B3LYP/SVP level of DFT calculations for all selected ligands.
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highlight the most electronegative potential regions—signified by a
deep red color—on the pyran and -SO2NH2 groups in 1Q1 and VS1,
respectively. These regions are pivotal, indicating areas favorable for
electrophilic attack, which is critical for binding efficacy. Further
detailed examination through Mulliken population analysis reveals
that the nitrile oxygen atoms within the pyran ring of 1Q1 possess an
average Mulliken charge of −0.85, marking the most negatively
charged area surrounding the molecule. Another area of interest in
1Q1 is a relatively less pronounced negatively charged region found
over the common nitrogen atom of its quinazoline core, which
carries a Mulliken charge of −0.612. These negatively charged areas
of 1Q1 are implicated in forming hydrogen bonds within both the
hinge and the solvent-exposed regions of EGFR1, as corroborated by
our docking results (Figure 3). Similarly, the quinazoline nitrogen
atoms in both VS1 and 2Q17 exhibit negative charges and
participate in forming common hydrogen bond interactions
within the hinge region of EGFR1. Notably, like 1Q1, VS1 also
harbors a negatively charged -SO2NH2 moiety, extending towards
the solvent-exposed region to form a hydrogen bond with D800. In
contrast, 2Q17 lacks a negatively charged moiety capable of forming
hydrogen bonds in the solvent-exposed region, which may explain
its reduced activity compared to 1Q1 and VS1. These findings
underscore the importance of specific electronic properties and
their contributions to the binding interactions between the
inhibitors and EGFR1. The presence of negatively charged
regions in 1Q1 and VS1, facilitating crucial hydrogen bond
formation, highlights their superior inhibitory potential.
Conversely, the absence of such features in 2Q17 limits its
interaction capabilities, underscoring the significance of detailed
electronic analysis in understanding and predicting the behavior of
potential inhibitors. This analysis not only enhances our
understanding of the molecular interactions at play but also
opens avenues for designing novel inhibitors with optimized
binding characteristics.

Frontier molecular orbital analysis can be utilized to determine
the reactivity of a compound. The kinetic stability of the molecule is
quantified through the HOMO-LUMO energy gap, denoting the
energy disparity between the HOMO and LUMO states.
Notwithstanding the compound’s high chemical reactivity,
enhanced energy transmission within the molecule is enabled by
the HOMO LUMO gap (Roney et al., 2023). The initial molecular
orbitals to participate in a chemical reaction are the lowest
unoccupied molecular orbital (LUMO) and the highest occupied
molecular orbital (HOMO); these orbitals are crucial for
determining the chemical reactivity of molecules. Figure 5
illustrates the molecular surface plotting of HOMO and LUMO
frontier orbitals for compounds CPZ, CP1, and CP2. In
receptor–ligand complex formation, the electron acceptor ability
of an inhibitor molecule is dictated by the frontier orbital LUMO
value, while the electron-donating ability is directly linked to the
HOMO value. Table 2 provides a comprehensive summary of the
computed quantum chemical descriptors, encompassing HOMO
and LUMO values for CPZ, CP1, and CP2 in both gas and solvation
(water) phases. The DFT calculations have elucidated critical
molecular properties of the EGFR1 inhibitors 1Q1, 2Q17, and
VS1, revealing their electronic structures and reactivities in both
gas and aqueous phases. Notably, the dipole moment, HOMO-
LUMO energies, energy gaps, and other reactivity descriptors such T
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as ionization potential, electron affinity, electronegativity, hardness,
softness, and electrophilicity were thoroughly analysed. The analysis
indicates that 1Q1 exhibits a significant increase in dipole moment
when transitioning from gas to aqueous phase, from 6.3580 to
8.0173 Debye, suggesting an enhanced interaction capability with
the EGFR1 active site in a physiological environment. This increase
in dipole moment, coupled with a decrease in the energy gap from
0.43843 to 0.35843, signifies a higher reactivity in aqueous
conditions, which is favourable for effective inhibition.
Furthermore, ionization potential of 1Q1 decreases from 9.56 eV
in the gas phase to 8.19 eV in the aqueous phase, while its electron
affinity improves, indicating a greater tendency to donate electrons
and form stable interactions with EGFR1. The corresponding
changes in electronegativity, electrochemical potential, and
hardness suggest a balanced reactivity profile, making 1Q1 an
effective EGFR1 inhibitor. In comparison, assuming similar
analyses were conducted for 2Q17 and VS1, we could expect that
differences in their dipole moments, HOMO- LUMO gaps, and
other molecular properties directly correlate with their inhibitory
activities against EGFR1. For instance, VS1’s notably high dipole
moment in both phases may correlate with its exceptional
EGFR1 inhibitory properties, as it indicates a strong electrostatic
interaction potential. Conversely, if 2Q17 exhibited higher energy
gaps and lower dipole moments compared to 1Q1 and VS1, this
could explain its weaker binding affinity and inhibitory activity, as it
would suggest lower reactivity and interaction capability with the
receptor. These insights not only provide a deeper understanding of
the molecular basis for the inhibitory activity of these ligands but
also highlight the importance of optimizing electronic and structural
properties for the development of potent EGFR1 inhibitors. The
detailed electronic structure analysis serves as a foundation for
further structure-activity relationship studies, guiding the design
of new inhibitors with enhanced therapeutic profiles.

3.9 Dynamic simulations, comprehensive
analysis of structural flexibility and stability

In our current work, molecular dynamics (MD) simulations
alongside free energy calculations were conducted to explore the
interaction modes and binding mechanisms of inhibitors with
varying affinities towards EGFR1. Notably, compound
1Q1 demonstrates approximately a 420- fold enhanced inhibitory
potential against EGFR1 compared to 2Q17, as depicted in Figure 4.
A detailed analysis comparing 1Q1 with the moderately active
compound 2Q17, highlighted in Figure 4A, reveals three
structural modifications that significantly boost the
EGFR1 binding efficiency of 1Q1 over 2Q17. These changes
include the substitution of the methoxy group on the quinazoline
ring with a 4-butylmorpholine chain, the introduction of a but-3-en-
2-one warhead in place of butan-2-one, and the replacement of a
meta-substituted 1-chloro-2-(3-fluorophenoxy) benzene group with
a 1-chloro-2-fluorobenzene group at the para position. Moreover,
compound VS1, which shares a similar structure and
EGFR1 inhibitory potency with 1Q1, as shown in Figure 4A,
further emphasizes the structural basis for enhanced activity.
Docking studies reveal that all three inhibitors achieve a
remarkably similar “V”-shaped conformation within the ATP

binding pocket of EGFR1, as illustrated in Figures 4C–E.
Consequently, 1Q1, 2Q17, and VS1 were selected for MD
simulation and binding free energy analysis to pinpoint the
critical structural elements required for EGFR1 selectivity, laying
the groundwork for the development of potent EGFR1 inhibitors.

To assess the dynamic stability of our systems and verify the
sampling technique’s validity, we monitored the root-mean-square
deviation (RMSD) relative to the starting structures over 200 ns of
molecular dynamics (MD) trajectories. The RMSD analysis
confirmed that all the studied systems, including APO-EGFR1
and its complexes with the inhibitors, reached equilibrium within
the first 5 ns. Notably, RMSD values for the protein’s Cα atoms, the
binding pocket’s backbone atoms, and the ligands’ heavy atoms after
reaching equilibrium averaged approximately 2.5 Å, 1.6 Å, and
1.2 Å, respectively. These findings, as illustrated in Figures 6A–D,
demonstrate the systems’ stability, providing a solid basis for
subsequent hydrogen bonding free energy and energy
decomposition analysis using conformations sampled from 5 to
100 ns. The stability of these conformations was further validated by
overlaying the coordinates of representative MD-simulated
snapshots over their initial conformations, as shown in Figures
6E–H. This structural analysis revealed that all complexes and APO-
EGFR1 maintained stability throughout the simulation, with all
ligands preserving their initial conformation and essential hydrogen
bonds with the hinge residue M769. These results underscore the
reliability of our MD simulation outcomes for further binding free
energy analysis, offering promising insights into the detailed
interaction mechanisms of these inhibitors with EGFR1.

Additionally, a root-mean-square fluctuation (RMSF) analysis
was conducted for all ligand-protein systems, as showcased in
Figure 7A. This analysis revealed that the dynamic characteristics
and RMSF distributions across the protein structures of all systems
followed similar patterns. Notably, six regions within the
EGFR1 structure-the P-loop, G-loop, Exon-19, α-helix (adjacent
to the hinge region), the hinge region itself, and the
A-loop—exhibited the most pronounced fluctuations, as detailed
in Figure 7B. Specifically, the G-loop region (residues 710–722)
displayed comparable fluctuations in both nonbonded and bonded
systems with EGFR1, while the Exon-19 region exhibited slightly
enhanced fluctuations in systems bonded with EGFR1-VS1. This
suggests that ligand binding enhances the mobility of the Exon-19
and A-loop within EGFR1. Although the G-loop and P-loop showed
similar fluctuation patterns across the board, EGFR1- VS1 and
1Q1 complexes experienced heightened fluctuations in these
loops. Conversely, the α-helix and hinge region demonstrated
stability in all three EGFR1 systems, indicating their crucial role
in maintaining the helix’s stability upon ligand binding. The A-loop
residues, when part of the receptor-ligand bonded systems, showed a
greater fluctuation amplitude compared to those in the unbound
EGFR1, emphasizing the dynamic impact of ligand association on
this region’s mobility.

To assess the influence of ligand association on the structural
compactness of the protein, the radius of gyration (Rg) for
EGFR1 was monitored over the duration of the simulation, as
illustrated in Figure 7C. The computed average Rg values for
EGFR1 when complexed with 1Q1, 2Q17, and VS1 were
approximately 20.1 Å and 19.8 Å and 19.9, respectively,
showcasing a remarkable uniformity. Such consistency
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underscores a negligible impact on the protein’s overall
conformation in response to ligand interaction, indicating that
ligands understudy engage with the enzyme without prompting
significant structural alterations like unfolding or expansion.

Moreover, the stability of Rg values within the tight range of
19 Å to 20Å throughout the simulation period underscores the
substantial structural integrity maintained. These results collectively
imply that the interaction of either 1Q1, 2Q17 and VS1 with the

FIGURE 6
RMSD plots for studied complexes (A) EGFR1-APO, (B) EGFR1-1Q1, (C) EGFR1- 2Q17, and (D) EGFR1-VS1 after 200 ns. Post-simulated snapshots
fromMD trajectories of selected complexes are superposed over co-crystalized structures corresponding complexes (E) EGFR1-APO, (F) EGFR1-1Q1, (G)
EGFR1-2Q17, and (H) EGFR1-VS1.

FIGURE 7
(A) Root mean fluctuation (RMSF) curve for selected complexes and their comparison to APO-EGFR1 structure. (C, D) Plots for radius of gyration
(ROG) and solvent accessible surface area (SASA) for all complexes.
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protein does not perturb its native conformation, which may play a
pivotal role in their mechanism of inhibition by preserving the
architecture of the active site essential for effective ligand
recognition.

Furthermore, an analysis of the solvent-accessible surface area
(SASA) was conducted to further elucidate the dynamics between
EGFR1 and the investigated inhibitors (Figure 7D). The SASA value
observed for the complex bound with 1Q1 was approximately 540 Å,
indicating a stable interaction within this complex. Intriguingly,
2Q17 demonstrated a stability on par with acarbose, as reflected by
their comparable average SASA values, approximately around
500 Å. Moreover, the VS1 also displayed similar range of SASA
value 450 Å. Whereas the highest SASA value was observed in case
of APO-EGFR1 proteins (Figure 7D). This parallel in stability
reflects the potential efficacy of studied ligands as potential
inhibitor of EGFR1.

3.9.1 Principal component analysis (PCA) and free
energy landscape (FEL) of the EGFR1- 1Q1 complex

In the EGFR1 protein complexed with the 1Q1 ligand using
Principal Component Analysis (PCA) the structure of the protein
undergoes considerable conformational change throughout the time
period of the simulation. As observed from the scatter plot of the
first two principal components (PC1,PC2) (see Figure 8A), majority
of the conformations are clustered in the low energy basins which
are represented by yellow and red regions. These regions are
representative dynamic behavior, presumably the most
physiologically relevant conformations of EGFR1 with explores a
wide kinetic space, although the dominant stationary points are
responsible for the binding. The distribution observed parallel with
both principal axes indicates that the system of what are essentially
quite stable conformations that are required for proper protein-
ligand the 1Q1 ligand.

FIGURE 8
Figure: Principal Component Analysis (PCA), Free Energy Landscape (FEL), and Porcupine plots of the EGFR1 system bound to the most potent
inhibitor, 1Q1. (A) The top-ranked principal components (PC1, PC2) from the last 50 ns of MD trajectories are plotted against each other. (B) 3D FEL plot of
the 1Q1-EGFR1 complex, illustrating the free energy distribution between PC1 (x-axis) and PC2 (y-axis). The color gradient indicates Gibbs free energy,
ranging from the lowest energy conformations (blue) to the highest (red). (C) Superimposition of the FEL minima, highlighting conformational
changes between the lowest energy states. Minima I and II are shown in blue and red, respectively. (D, E) Porcupine plots representing extreme PC1 and
PC2 projections for all simulated systems. The direction and length of the yellow (PC1) and green (PC2) arrows at each Cɑ atom illustrate the direction and
magnitude of motion. The protein is displayed in tube form, with regions of significant fluctuation labeled.
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To similarly assess the stability of the identified
conformations, the previously generated FEL was overlaid
along the PCA projections (refer to Figure 8B). The FEL
defines two distinct target locations that are consistent with
the two lowest forces with respect to the complex between
EGFR1 and the 1Q1 ligand. Potential energy is plotted against
conformation for two different proteins with an energy minimum
shown in blue that suggests an affinity of the system for certain
conformations requiring minimal amount of energy. These
steady states are expected to improve the extent to which
1Q1 inhibits EGFR1 by stabilizing regions of the protein that
are crucial so as zones of the protein. These changes suggest that
even though the overall structure of the EGFR1 I (blue) and II
(red) demonstrate minor but essential conformational changes
mainly in the flexible rationale has been provided concerning the
structural changes of these stable states. Here, Minima occurring
between superimposition of the two lowest energy minima
conformations (Figure 8C), a to prevent ungainly
rearrangements that lead to receptor activation. In identifying
the changes is well preserved, the presence of the inhibitor
influences small motions that could affect the dynamics of the
receptor. This flexibility is important for the biologic activity of
EGFR1 because it allows the extant polypeptide to interconvert to
other conformations required for ligand recognition or
activation.

To express characteristics of dynamics of EGFR1-1Q1
system, porcupine plots are shown in observation compares
well with the previously proposed model that
1Q1 immobilizes critical flexibility in certain areas of the
protein for maintenance of the functional motions. This
changes mostly occur in the areas distal to the ligand-binding
site, underlining the roles of time series larger arrows stand for
larger change in the position of the atoms. Importantly, these
plots, arrows also show direction of the changes in the position
of Cα atoms and the signifying of Figures 8D, E, which
demonstrate the motions in the principally first two
components. In these regions of EGFR1 to provide stability
necessary for structural rearrangements while allowing the
protein enough wiggle room to enable ligand binding or
allosteric regulation. The PCA and FEL together, the present
results enable a systematic appreciation of the conformational
disposition of conformation alteration which could in part be the
ligand activation or inhibition process. Taken for extended
periods the architecture is fairly constant with local flexibility
important in allowing need for stability and the need for
flexibility within the structure of a large and successful
complex. Transduction which makes it function inhibitory.
These porcupine plots also firmly establish the conformations,
1Q1 may not allow EGFR1 to adopt active conformational states
needed for signal particular conformations to act as an inhibitor.
By engaging the protein into energetically favorable stability and
function. The 1Q1 ligand’s lock-and-key property is owing to the
stabilisation of these analyses support that the EGFR1-1Q1
complex is in low energy conformational states required for
EGFR1-1Q1 and the dynamic profile of the system that will be
use for designing enhanced inhibitors. Possible future studies on
the structures targeted by the flexible regions seen with PCA and
FEL may help in the discovery of new inhibitors that capture the

dynamics of EGFR1 to improve the treatment outcome of
diseases like cancer.

3.10 Binding free energy analysis

Given the system stability ascertained through RMSD
fluctuations depicted in Figures 6, 7, we extracted
10,000 snapshots randomly from 1 to 200 ns of the MD
simulation for binding free energy calculations. The binding
affinities of the chosen compounds towards EGFR1 were
determined using both MM/PBSA and MM/GBSA methods.
Although the binding free energies calculated with MM/PBSA
and MM/GBSA were slightly higher than the absolute
experimental values (ΔGexp), the ranking of the predicted
binding affinities (ΔGpred (GB)) of inhibitors 1Q1, 2Q17, and
VS1 (−50.54, −43.1132, and −52.8760 kcal/mol, respectively)
aligned closely with their experimental IC50 values for EGFR1
(1Q1 IC50 = 2 nM; 2Q17 IC50 = 881 nM). This alignment, as
detailed in Supplementary Table S4, highlights that 1Q1 and
VS1 possess higher ΔGpred (GB/PB) values in the EGFR1-
bonded systems, indicating a stronger binding affinity to the
EGFR1 binding pocket. In contrast, 2Q17 displayed lower
ΔGpred (GB/PB) values, suggesting a reduced binding affinity
towards EGFR1. These findings corroborate that the ΔGpred

(GB/PB) values derived from MM/GB/PB/SA methods are
consistent with experimental observations, underscoring the
effectiveness of our computational approach in predicting the
binding efficiency of potential EGFR1 inhibitors. The MMGB/
PBSA method’s ability to dissect the total binding free energy
into its constituent components provides a nuanced
understanding of the ligand-receptor binding dynamics. As
detailed in Figure 9, the polar solvation energies (ΔEele, sol)
exhibit positive values, indicating a counteractive effect against
the favorable electrostatic energies (ΔEele) observed in the gas
phase across all three complexes. This results in the combined
electrostatic contributions (ΔGele+ΔGele, sol) being
unfavorable for the formation of ligand-receptor complexes.
Conversely, the van der Waals interactions and nonpolar
solvation energy (ΔEvdW + ΔGnonpol,sol) contribute
negative values, enhancing the binding affinity of the ligands
to the receptor. Notably, the ΔEvdW values surpass the ΔEele
term for all examined systems, underscoring the critical role of
optimizing van der Waals and nonpolar interactions in
augmenting the inhibitory effectiveness of EGFR1 inhibitors.
The presence of several hydrophobic residues, such as L694,
V702, A719, K721, Y777, L820, L830, and F832, aligns with the
observation that hydrophobic interactions significantly
influence binding efficiency. Despite the electrostatic
contribution being less dominant compared to the van der
Waals and nonpolar solvation contributions, it remains a
pivotal factor in mediating interactions between EGFR1 and
inhibitors like 1Q1. The electrostatic interactions particularly
enhance the binding effects with ligands 1Q1 and VS1 more than
with 2Q17. Analysis of the EGFR1 complexes further exemplifies
the predominance of van der Waals interactions in modulating
inhibitory potency, with the ΔEvdW term showcasing significant
negative values for EGFR1-1Q1 (−56.256 kcal/mol), EGFR1-
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FIGURE 9
Comparison between binding free energy terms of EGFR1: (A) 1Q1 and 2Q17, and (B) 1Q1 and VS1. The plots show the differences in binding free
energy components, providing insights into the molecular interactions and stability within each system.

FIGURE 10
Comparison of per-residue energy decomposition (ΔGligand-residue) of EGFR1 bound to 1Q1, 2Q17, and VS1. The plot highlights the contribution of
individual residues to the overall binding free energy, offering detailed insights into the key residues involved in stabilizing ligand interactions across the
three complexes.
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2Q17 (−52.09 kcal/mol), and VS1 (−59.39 kcal/mol) complexes.
These findings emphasize that while electrostatic interactions
contribute to the binding process, the van der Waals and
hydrophobic interactions play a more substantial role in
determining the inhibitory potential of EGFR1 inhibitors.
This analysis not only sheds light on the binding mechanisms
but also offers strategic directions for designing more potent
EGFR1 inhibitors by focusing on enhancing van der Waals and
hydrophobic interactions.

3.11 Binding modes of 1Q1, 2Q17 and VS1 in
EGFR1-bounded systems

To pinpoint the critical residues involved in the ligand-
receptor binding dynamics, we dissected the overall binding free
energy, as calculated via the MM/GBSA method, into the
contributions from individual residues. As illustrated in
Figure 10, the binding of ligands 1Q1, 2Q17, and VS1 to
EGFR1 is significantly enhanced by interactions with specific
residues, notably L694, A719, I720, K721, L764, L768, M769,
F771, G772, M780, L820, and T830. Interestingly, K692 across
all three complexes did not contribute favorably to electrostatic
interactions. In assessing the binding affinities of these ligands to
EGFR1, our analysis focused on residues that showed substantial
differences in their contributions to the binding free energies.
Figure 10 highlights that residues L694, I720, G772, and E780 are
pivotal for the superior binding affinity of 1Q1 compared to 2Q17.
Additionally, in the VS1-EGFR1 complex, I720, L768, M769, and
E780 emerge as key contributors to its notable inhibitory efficacy
against EGFR1. While 2Q17 interacts with many of the same
residues as 1Q1 and VS1, it fails to form exceptionally strong
contacts with any specific residue, underscoring its lower binding
efficiency. This detailed residue-by-residue analysis of binding free
energy contributions provides valuable insights for the targeted
design of quinazoline-based small-molecule inhibitors,
highlighting the importance of specific amino acids in
enhancing binding affinity to EGFR1. These findings offer a
strategic framework for developing more potent inhibitors by
focusing on key residue interactions within the
EGFR1 binding site.

4 Conclusion

Quinazoline derivatives are recognized as potent inhibitors of
EGFR1, a key target in cancer therapy. This study leverages an
integrated computational approach, combining ligand-based 3D-
QSAR, structure-based docking, molecular dynamics (MD)
simulations, and binding free energy analyses, to elucidate the
ligand-protein interactions crucial for identifying and optimizing
novel EGFR1 inhibitors. By contrasting the interaction
characteristics of 1Q1, the most effective EGFR1 inhibitor,
with those of 2Q17, the least effective, we provide insights
that could steer the development of potent FGFR1 inhibitors.
Additionally, the top inhibitor from virtual screening underwent

further evaluation. Employing a comprehensive computational
toolkit, including 3D-QSAR modeling, flexible docking, DFT,
and MD simulations complemented by per-residue energy
decomposition, this research examines the differential
interaction patterns of efficacious versus less effective
EGFR1 inhibitors at the molecular level. High q2 and
R2 values from our models suggest a reliable prediction of
ligand activities against EGFR1. Our findings reveal that
1Q1 and VS1 form more advantageous contacts within the
EGFR1 complex compared to 2Q17, highlighting their
superior inhibitory action. MD simulations and energy
analyses further demonstrate how the sulfonamide group in
VS1, and a similar functional group in 1Q1, enable stable
binding within EGFR1’s active site through hydrogen bonding,
hydrophobic interactions, and van der Waals contacts with
critical residues. The outcomes of this investigation provide a
valuable framework for the rational design of new
EGFR1 inhibitors, focusing on quinazoline analogs that
exhibit optimal ADMET properties. This integrated
computational strategy offers a robust foundation for future
lead compound discovery and the enhancement of
EGFR1 inhibitors.
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