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Emergence of acquired resistance limits the efficacy of the anti-EGFR therapies
cetuximab and panitumumab in metastatic colorectal cancer. In the last decade,
preclinical and clinical cohort studies have uncovered genomic alterations that
confer a selective advantage to tumor cells under EGFR blockade, mainly
downstream re-activation of RAS-MEK signaling and mutations in the
extracellular domain of EGFR (EGFR-ECD). Liquid biopsies (genotyping of
ctDNA) have been established as an excellent tool to easily monitor the
dynamics of genomic alterations resistance in the blood of patients and to
select patients for rechallenge with anti-EGFR therapies. Accordingly, several
clinical trials have shown clinical benefit of rechallenge with anti-EGFR therapy in
genomically-selected patients using ctDNA. However, alternative mechanisms
underpinning resistance beyond genomics -mainly related to the tumor
microenvironment-have been unveiled, specifically relevant in patients
receiving chemotherapy-based multi-drug treatment in first line. This review
explores the complexity of the multifacetedmechanisms that mediate secondary
resistance to anti-EGFR therapies and potential therapeutic strategies to
circumvent acquired resistance.
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1 Introduction

Colorectal cancer (CRC) represents the third most commonly diagnosed cancer
worldwide, and the second leading cause of cancer related deaths (Sung et al., 2021;
Siegel et al., 2023). Although lifestyle modifications (e.g., smoking cessation, lowering
alcohol intake, increasing dietary fiber, physical activity) can prevent a substantial amount
of cases, its estimated incidence is predicted to increase, particularly in countries with a
High Development Index (Morgan et al., 2022). Survival rate in metastatic CRC (mCRC)
remains poor, with a median overall survival (mOS) of 36 months, and a 5-year OS not
exceeding 20% (Cervantes et al., 2022). In the metastatic or unresectable setting, systemic
therapy is the treatment of choice, using chemotherapy, targeted therapies, or
immunotherapy (Biller and Schrag, 2021; Cervantes et al., 2022). To adequately guide
treatment selection in mCRC, biomarker identification is crucial. This involves testing for
genomic alterations including KRAS/NRAS/BRAF mutations, and microsatellite instability
(MSI)/mismatch repair genes (MMR). In this sense, patients with wild-type (WT) KRAS/
NRAS/BRAFV600E benefit from chemotherapy doublets (FOLFOX [5-Fluouracil, folinic
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acid and oxaliplatin], CAPOX [capecitabine and oxaliplatin] or
FOLFIRI [5-Fluouracil, folinic acid and irinotecan]), combined
with EGFR-inhibitors such as cetuximab or panitumumab
(Benson et al., 2022; Cervantes et al., 2022).

Cetuximab is an anti-EGFR targeted monoclonal antibody
(moAb) that consists of a chimeric immunoglobulin G1 (IgG1),
which, upon binding to the EGFR receptor, induces the
internalization and degradation of the receptor, thus disrupting
the downstream pathway. Since cetuximab is an IgG1 moAb, it
can elicit immune functions such as antibody-dependent cell-
mediated cytotoxicity (ADCC) as an anti-tumoral effect
(Mendelsohn et al., 2015). However, panitumumab, a humanized
IgG2 moAb with similar anti-proliferative effects to cetuximab, is
not able to initiate an ADCC effect (Yarom and Jonker, 2011). Two
decades ago, initial trials of anti-EGFR therapy in mCRC showed the
efficacy of cetuximab and panitumumab monotherapy as second
and subsequent lines of treatment in patients with WT KRAS
tumors. These trials reported an objective response rate (ORR) of
12.8% and 17%, a median progression-free survival (mPFS) of
3.7 months and 12.3 weeks, and a median overall survival (mOS)
of 9.5 months and 8.1 months, for cetuximab and panitumumab,
respectively. Subsequently, the frontline pivotal randomized trials
that tested anti-EGFR therapies in combination with chemotherapy
doublets (Jonker et al., 2007; Amado et al., 2008; Karapetis et al.,
2008), showed a benefit in ORR (46.9%–58%), mPFS
(9.9–12 months), and mOS (19.8–24.9 months) (Bokemeyer et al.,
2009; 2015; Van Cutsem et al., 2009). In the following years,
retrospective analysis of RAS (KRAS, NRAS) and BRAF
mutations in tumor tissue samples from patients included in
these pivotal trials showed a greater benefit in patients with
tumors not harboring RAS/BRAF mutations.

2 Acquired resistance to anti-EGFR
moAb in mCRC: heterogeneity and
clonal selection

The benefit driven by the addition of anti-EGFR therapy to
chemotherapy is undoubtful, however, resistance eventually
develops which leads to disease progression. Colorectal tumors
are heterogeneous, composed of multiple cellular clones carrying
different genetic or epigenetic abnormalities within the same tumor.
Understanding this heterogeneity and why tumors are heterogenous
is crucial to understand how cancer initiates and evolves, how cancer
can be attacked and at the same time how cancer can become
resistant to therapy. This heterogeneity may be explained by a
branching evolutionary process driven by genetic variation
(mainly fostered by genomic instability) and natural selection of
the fittest variant driven by microenvironment conditions or
external pressures such as therapy (Amirouchene-Angelozzi et al.,
2017; Niida et al., 2021). The Darwinian principles of evolution and
survival are the basis of tumor heterogeneity and clonal evolution,
since the acquisition of different genetic and/or epigenetic
alterations endows the tumor with greater survival capabilities,
and the capacity to escape drug inhibition (Kreso et al., 2013;
Amirouchene-Angelozzi et al., 2017).

Tumor heterogeneity can be studied by sequencing of different
regions within a tumor and reconstructing the evolutionary

dynamics or the history of a specific cancer, represented in what
is called a phylogenetic tree (Siravegna et al., 2018). However, upon
metastatic spread and after several lines of drug pressure,
heterogeneity becomes greater, and heterogeneity is
underrepresented by a single tumor re-biopsy (Gerlinger et al.,
2012; Amirouchene-Angelozzi et al., 2017; Dang et al., 2020). A
different approach to study tumoral molecular heterogeneity is the
use of (serial) liquid biopsies, which are able to detect the genomic
landscape shed into the bloodstream by the different subclones
(spatial heterogeneity), in a minimally-invasive blood extraction
which can be repeated as many times as necessary to track the
evolving sub-clonal genetic abnormalities (temporal heterogeneity)
(Van Emburgh et al., 2016; Amirouchene-Angelozzi et al., 2017;
Dasari et al., 2020; Vidal et al., 2022).

3 Translational models to study
acquired resistance to EGFR inhibitors

With the goal of finding the best treatment strategies to
circumvent or prevent the emergence of acquired resistance to
anti-EGFR therapy in the clinical setting, several preclinical
studies have been conducted in the last decades to characterize
the molecular drivers of acquired resistance to anti-EGFR therapy in
CRC. In vitro and in vivo studies generally include the generation of
resistant cells to anti-EGFR therapy by a long-time exposure of
cetuximab or panitumumab sensitive cells, followed by molecular
characterization of the resistant cells compared to paired initially
sensitive cells, and ideally functional studies to confirm causality of
the preclinical findings, as well as confirmation of the preclinical
findings in tumor samples from patients treated with anti-EGFR
therapy. While all studies share these general principles for the
generation of drug-resistant cells, each study had its own specificities
such as different cancer cell lines (GEO, SW48, DiFi, Lim-1215,
CaCo2, NCIH508, OXCO and HCA-46, etc.), or the use of different
treatment strategies to generate resistant cells (mainly continuous or
increasing exposure of the cells to cetuximab or panitumumab),
which may have led to identification of different mechanisms of
acquired resistance. These translational models have unveiled a
myriad of molecular mechanisms of acquired resistance to anti-
EGFR therapy, including c-MET activation, mutations in the
extracellular domain of EGFR, mutations in the RAS genes
(KRAS or NRAS), KRAS amplification, PIK3CA mutation, ERBB2
amplification and overexpression of EGFR ligands (Ciardiello et al.,
2004; Yonesaka et al., 2011; Misale et al., 2012; 2014b; Montagut
et al., 2012; Troiani et al., 2013; Hobor et al., 2014; Arena et al.,
2015). Table 1 presents different preclinical models of CRC used to
study induced resistance to EGFR antibodies.

4 Genetic mechanisms of acquired
resistance to anti-EGFR therapies

Overall, colorectal cancer cells evade EGFR blockade through
two main strategies: (a) reactivation of the MAPK-ERK signaling
pathway either by mutations in the pathway genes, alterations in
alternative tyrosine-kinase receptors, or ligands overexpression (b)
lack of binding of cetuximab/panitumumab to the receptor by
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TABLE 1 Preclinical models to induce resistance to anti EGFR antibodies, and the resistance mechanism identified.

Model
used

Model
characteristics

Intervention Outcome Resistance
mechanism

Reference

In vitro CaCo2 and Lim 1215 cell
lines

Administration of cetuximab at
IC50 values

Development of cetuximab
resistant cell lines

Not identified De Pauw et al.
(2019)

In vitro and
in vivo

Cell line A431 inoculated to
immunodeficient mice

Administration of cetuximab Identification of specimens with
no tumor regression, were
deemed as resistant

Not identified Viloria-Petit et al.
(2001)

In vivo GEO colon cancer cells
inoculated to
immunodeficient mice

Administration of cetuximab Creation of an in vivo cetuximab
resistant GEO tumor xenograft

MET activation, associated to an
overexpression of TGF-α

Ciardiello et al.
(2004), Troiani
et al. (2013)

In vitro SW48 colon cancer cell line Continuous exposure to
increasing concentrations of
cetuximab

Establishing a cetuximab-
resistant SW48 cancer cell line

In vitro DiFi Administration of cetuximab at
a constant dose, or by an
increasing exposure, from
3 months to 1 year

Cetuximab-resistant variants Decrease in EGFR gene copy
number, and amplification of
KRAS

Misale et al. (2012)

In vitro LIM 1215 Mutations in KRAS, G13D and
G12R

Misale et al. (2012)

In vitro Di-Fi cells Continuous administration of
cetuximab for 5 months

DiFi-derived cetuximab-resistant
clones

Missense mutation in EGFR
S492R

Montagut et al.
(2012)

In vitro CaCo2 cells Exposure to increasing
concentrations of cetuximab

Caco2 cetuximab resistant cells Overexpression of long
noncoding RNA CRART16

Zhang et al. (2020)

In vitro Di-Fi cells Continuous exposure to
cetuximab for 1 year

Di-Fi cetuximab resistant cells KRAS amplification Misale et al.
(2014a)

LIM 1215 –1 cells Continuous exposure to
cetuximab for at least 3 months

LIM 1215 cetuximab resistant
cells

KRAS mutations G12R, K117N
and NRAS mutation G12C

LIM 1215 –2 cells KRAS mutation G13D

LIM 1215 –3 cells KRAS mutation A146T

LIM 1215 –4 cells KRAS mutations G12D and
G13D

NCIH508 cells Continuous exposure to
cetuximab for 3–9 months

NCIH508 cetuximab resistant
cells

KRAS amplification

OXCO–2–1 cells OXCO-2 cetuximab resistant cells KRAS mutation G12D and BRAF
mutation V600E

OXCO–2–2 cells NRAS mutations G12C, G12D
and G13D

HCA-46 –1 cells HCA-46 cetuximab resistant cells KRAS amplification

HCA-46 –2 cells KRAS mutation G13D

Di-Fi cells Continuous exposure to
panitumumab for 3–9 months

Di-Fi panitumumab resistant cells KRAS mutation G12D

HCA-46 cells HCA-46 panitumumab resistant
cells

KRAS mutation G12C

LIM 1215 cells LIM 1215 panitumumab resistant
cells

KRASmutation G13D, and NRAS
G12C

OXCO-2 cells OXCO-2 panitumumab resistant
cells

KRASmutation G12D, and NRAS
mutation Q61R

NCIH508 cells NA NCIH508 panitumumab resistant
cells

KRAS amplification and NRAS
mutation G12C

In vitro DiFi cells Continuous exposure to
cetuximab for 1 year

DiFi cetuximab resistant cells Not reported Arena et al. (2015)

OXCO-2 cells Continuous exposure to
cetuximab for 3–9 months

OXCO-2 cetuximab resistant cells EGFR mutation S463L

(Continued on following page)
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TABLE 1 (Continued) Preclinical models to induce resistance to anti EGFR antibodies, and the resistance mechanism identified.

Model
used

Model
characteristics

Intervention Outcome Resistance
mechanism

Reference

NCIH508 cells NCIH508 cetuximab resistant
cells

PIK3CA exon9a

LIM1215 cells LIM1215 cetuximab resistant cells KRAS exon 2, and 3, NRAS exon
2, EGFR mutation I491M and
G465R

HCA-46 cells HCA-46 cetuximab resistant cells KRAS exon 2

CCK81 cells Exposure to increasing
cetuximab concentrations

CCK81 cetuximab resistant cells KRAS exon 2, EGFR mutation
S464L

In vitro HCC827 and GEO CRC
cells

Exposure to increasing
cetuximab concentrations

HCC827 and GEO CRC resistant
cells

ERBB2 amplification Yonesaka et al.
(2011)

In vitro Di-Fi, OXCO-2, and
LIM1215 cells

Exposure to increasing
cetuximab concentrations

Di-Fi, OXCO-2, and
LIM1215 resistant cells

Mutations in KRAS G12R, G12D
pK117N; NRAS G12C; BRAF
V600E; KRAS and EGFR
amplification. Secretion of TGF-α
and amphiregulin

Hobor et al. (2014)

aNot clearly defined as a resistance mechanism.

FIGURE 1
Molecular mechanisms of acquired resistance to anti-EGFR therapies.
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mutations in the binding epitope located in the extracellular domain
of EGFR (Misale et al., 2015; Siravegna et al., 2015). Notably, these
mechanisms of resistance can coexist within one same
tumor (Figure 1).

4.1 RAS alterations

KRAS and NRAS belong to the RAS membrane-bound family
proteins, they possess an inherent GTPase activity, and can activate
different effector targets, such as the RAF-MAPK, and PI3K-ATK-
mTOR pathways (Uprety and Adjei, 2020). Both KRAS mutations
and amplifications, as well as NRAS mutations have been identified
as mechanisms of resistance to cetuximab and panitumumab both in
liquid biopsy and tumor biopsy specimens (Table 2). The
development of these mutations following anti-EGFR targeted
treatment, can be a consequence of alterations rising from pre-
existent KRAS altered clones, or due to new mutations derived from
stress conditions induced by targeted therapy to the tumor and
tumor microenvironment. Furthermore, it has been reported that
several alterations can coexist (Diaz Jr et al., 2012; Misale et al., 2012;
Misale et al., 2014a).

4.2 BRAF mutations

BRAF belongs to the serine/threonine kinases RAF family, its
downstream signaling consists of MEK one and two and ERK,
leading to further phosphorylation of multiple molecules (Subbiah
et al., 2020). Different mutations in the BRAF gene have been
identified as acquired mechanisms of resistance to anti-EGFR
inhibitors, such as V600E and D594N, which lead to a persistent
activation on the downstream pathway of RAF-ERK (Pietrantonio
et al., 2017; Bray et al., 2019; Woolston et al., 2019).

4.3 ERBB2 amplifications

HER2 belongs to the EGFR tyrosine kinase family, it presents the
most potent catalytic kinase activity, and its phosphorylation leads
to a downstream activation of the PI3K-AKT-mTOR, and MAPK
pathways (Yan et al., 2015; Ríos-Hoyo et al., 2022). ERBB2
amplifications have been described as resistance mechanisms in
plasma samples from patients with acquired resistance to cetuximab,
detection in serum of the HER2/HER2 ECD was correlated to
resistance to cetuximab at progression. Abnormal activation of

TABLE 2 Selected mechanisms of acquired resistance to anti-EGFR therapies.

Mechanism of
resistance

Alteration Treatments leading to
resistance

Samples where it
was identified

References

KRAS Mutations in: G12A, G12C, G12D,
G12R, G12V, G13D, G13R, G34A,
G34C, G34T, G35A, G35C, G35T,
Q61H, Q61K, Q61L, K117N and
A1467T

Pmab ± ChT, Cmab ± ChT Plasma, and tissue re-biopsy Diaz Jr et al. (2012), Misale et al.,
2012 (2014a), Bardelli et al.
(2013), Mohan et al. (2014),
Arena et al. (2015), Siravegna
et al. (2015a), Pietrantonio et al.
(2017), Kim et al. (2018), Siena
et al. (2018), Bray et al. (2019),
Woolston et al. (2019)

KRAS Amplification Cmab Plasma, and tissue re-biopsy Arena et al. (2015), Siravegna
et al. (2015a), Woolston et al.
(2019)

NRAS G13R, Q61L Pmab Plasma, and tissue re-biopsy Misale et al. (2014a)

MET Amplification Pmab, Cmab + ChT Plasma Bardelli et al. (2013), Mohan et al.
(2014), Siravegna et al. (2015a)

EGFR-ECD V441, S464L, G465E, G465R, K467T,
S492R

Pmab ± ChT, Cmab ± ChT Plasma, and tissue re-biopsy Montagut et al. (2012); Montagut
et al. (2018), Arena et al. (2015),
Siravegna et al. (2015a),
Pietrantonio et al. (2017),
Strickler et al. (2018), Parseghian
et al. (2019), Woolston et al.
(2019), Price et al. (2020)

ERBB2 Amplification Cmab Plasma Yonesaka et al. (2011), Mohan
et al. (2014), Pietrantonio et al.
(2017)

BRAF V600E, D594N Cmab Plasma, and tissue re-biopsy Pietrantonio et al. (2017), Bray
et al. (2019), Woolston et al.
(2019)

EGF ligands Low expression of amphiregulin and
epiregulin

Cmab and Pmab Primary tumor biopsy Jacobs et al. (2009), Seligmann
et al. (2016)

Others Mutations in AKT1a, IDH1a,
PIK3CAa, MAP2K1, and
FGFR1 amplificationa

Cmab Tissue re-biopsy Pietrantonio et al. (2017), Siena
et al. (2018), Bray et al. (2019),
Parseghian et al. (2023)

aHave not been clearly identified as mechanisms of acquired resistance. Abbreviations used: Cmab: cetuximab, Pmab: panitumumab, ChT: chemotherapy.
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HER2 signaling led to persistent ERK 1/2 signaling, induced by
treatment with cetuximab (Yonesaka et al., 2011; Mohan
et al., 2014).

4.4 Mutations in the EGFR-extracellular
domain (ECD)

Our group identified mutations in the EGFR-ECD as a mechanism
of resistance to anti-EGFR therapies, these mutations are located in
domain III of EGFR, in the binding sites of cetuximab, thus impairing
the drug-receptor interaction. The most frequent described EGFR-ECD
mutations emerging during anti-EGFR therapy are V441, S464, G465,
and S492 mutations (Montagut et al., 2018; Strickler et al., 2018). It is
worth noting that because the binding epitopes of cetuximab and
panitumumab do not fully overlap, somemutations confer resistance to
cetuximab but not to panitumumab. This is the case of S492 mutation
which does not affect the binding activity of panitumumab, whereas
S464L, G465R and 1491M mutations do not allow the binding of
neither cetuximab nor panitumumab to the receptor (Montagut et al.,
2012; Arena et al., 2015; Price et al., 2020). In this sense, one patient with
an S492 mutation after cetuximab treatment responded to treatment
with panitumumab monotherapy (Montagut et al., 2012). Importantly,
EGFR-ECDmutations have not been detected in untreated samples and
therefore are thought to drive acquired resistance but not primary
resistance. Interestingly, patients who develop mutations in the EGFR-
ECD experience greater and more lasting tumor responses con anti-
EGFR treatment, compare to patients who develop other mechanisms
of resistance, such as RAS mutations (Van Emburgh et al., 2016). This
data highlights that the absence of EGFR-ECD mutant clones in
treatment naïve tumors confers an advantage in terms of the
response to anti-EGFR treatment.

4.5 MET amplifications

The mesenchymal-epithelial transition factor (MET) serves as a
transmembrane receptor tyrosine kinase, and it is usually activated
by the binding of the hepatocyte growth factor ligands. MET
activation further activates other signaling pathways including the
RAS-ERK-MAPK, PI3K-AKT-mTOR, Wnt/β-catenin, and STAT
pathways (Singh Raghav et al., 2012; Drilon et al., 2017). MET
amplifications have been detected in plasma samples from patients
with acquired resistance to anti-EGFR therapies, methods such as
BEAMing and FISH have been used to confirm this finding. It has
been suggested that anti-EGFR treatment elicits a selective pressure,
and therefore an expansion of preexisting subclones with MET
amplification. MET initiated signaling has been proposed as a
mechanism to bypass the EGFR blockade (Bardelli et al., 2013).

5 Liquid biopsy to monitor clonal
dynamics and track mechanisms of
acquired resistance

The term liquid biopsy applied to oncology encompasses the
isolation and analysis of tumor derived material in corporal fluids,
such as circulating tumor cells, circulating tumor DNA (ctDNA),

extracellular vesicles, miRNA, among others. ctDNA is released
from tumors into bodily fluids, including blood, cerebrospinal fluid,
saliva, pleural fluid, ascites and urine (Wan et al., 2017; Corcoran
and Chabner, 2018; Heitzer et al., 2019). Liquid biopsy has been
proposed as an exquisite tool to assess intratumor molecular
heterogeneity, track clonal dynamics and detect emergent
resistant subclones (Wan et al., 2017; Corcoran and Chabner,
2018; Heitzer et al., 2019) (Figure 2). ctDNA is able to
comprehensively capture heterogeneity with a high sensitivity for
subclones arising under drug pressure. Moreover, the ease-of-use
and minimally-invasive procedure allow serial assessment of the
genomic landscape to closely track emerging subclones of resistance.
In mCRC, several cohort studies and retrospective analysis from
clinical trials have shown the utility of liquid biopsy to monitor the
genomic landscape and track the emergence of resistant clones in
patients treated with anti-EGFR therapies (Diaz Jr et al., 2012;
Misale et al., 2012; Siravegna et al., 2015a; Montagut et al., 2018;
Vitiello et al., 2019; Dasari et al., 2020; Vidal et al., 2022).

In 2012, the first two studies to show the utility of liquid biopsy
in detecting the emergence of RASmutations during treatment with
anti-EGFR therapy were concomitantly published (Diaz et al., 2012;
Misale et al., 2012). That same year, our group identified the
emergence of mutations of acquired resistance in the EGFR
extracellular domain during anti-EGFR therapy, which later were
also detected in ctDNA. In the following years, other mutations of
resistance were detected in ctDNA, including mutations in BRAF
and MAP2K1 (Misale et al., 2014b; Siravegna et al., 2015a).
Interestingly, using liquid biopsy, our group in collaboration with
Bardelli’s group was able to show that not all mutations are the same
in regard to treatment response and duration of response. In
27 patients with mCRC, RAS, EGFR-ECD and co-occurrence of
bothmutations were detected in 20, 14 and 7 cases respectively at the
time of progression to anti-EGFR therapy. Interestingly, RAS
mutations were mostly detected in patients who presented stable
disease as best response with a shorter duration of response (mPFS
of 25.6 weeks), compared to EGFR-ECD mutations which were
more frequently detected in patients achieving a higher decrease in
tumor size (partial response) and a longer duration of response
(mPFS of 44.6 weeks). Moreover, in vitro studies supported the same
concept that RAS mutations emerge earlier during anti-EGFR
therapy than EGFR-ECD mutations (Van Emburgh et al., 2016).
It is important to highlight, that multiple mutations of acquired
resistance usually co-exist within one same patient after treatment
with anti-EGFR therapy, as a consequence of the selection of several
clones of resistance (Pietrantonio et al., 2017; Montagut et al., 2018;
Strickler et al., 2018) Interestingly, mutation upsurge/emergence of
multiple subclones anticipates a remarkable clinical deterioration,
especially when EGFR-ECD mutations emerge (Toledo et al., 2017;
Montagut et al., 2018). Therefore, it may be extremely challenging to
pharmacologically target the complex molecular heterogeneity
associated with emergence of resistance to cetuximab/
panitumumab in mCRC patients.

The use of serial liquid biopsies to track mutations of resistance
has showed a decrease in RAS and EGFR-ECD mutations upon
withdrawal of anti-EGFR therapy. Siravegna et al. reported the first
study to prove this concept in mCRC patients, in whom KRAS
mutant alleles, EGFR-ECD mutations, and MET amplifications
detected in ctDNA upon progression to anti-EGFR drugs,
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diminished and were undetectable several months after finishing
anti-EGFR therapy. The intermittent detection of KRAS mutant
clones in blood of patients treated with anti-EGFR therapies,
supports the concept that CRC cells possess an outstanding
plasticity (Siravegna et al., 2015a). A similar study showed that
the exponential decay of RAS and EGFR-ECD mutant allele
frequency presented a median of 3.4 and 6.9 months,
respectively. (Parseghian et al., 2019). Altogether, decay and
absence of detection of subclones of resistance few months upon
withdrawal of EGFR blockade sets a strong biological rationale for
testing clinical strategies of rechallenge with anti-EGFR therapy in
mCRC patients.

6 Mechanisms of acquired resistance
beyond genomics

So far, most studies have focused on genomic alterations as the
drivers of acquired resistance to anti-EGFR therapy. However,
genomic alterations in EGFR and the MAPKs pathway occur in
less than 50% of tumors progressing to anti-EGFR therapy, and
recent data show that this percentage is even lower in mCRC
patients treated with anti-EGFR therapy plus chemotherapy in
the first-line setting. This has led to explore alternative
mechanisms of acquired resistance. In an effort to identify novel
biomarkers of resistance, transcriptomic profiles from three clinical
and two preclinical cohorts treated with cetuximab were used to
assign consensus molecular subtypes (CMS) and found excellent
responses to cetuximab in CMS2 tumors, independently of primary
tumor laterality (Parseghian et al., 2023). Conversely, resistance to
anti-EGFR therapy was associated with a transition from
CMS2 tumors to CMS4 tumors, characterized by mesenchymal
infiltration (Woolston et al., 2019). In this sense, preclinical
modeling demonstrated that acquired resistance to either
cetuximab or chemotherapy was a result of cross-resistant
transcriptomic profiles consistent with epithelial-to-mesenchymal

transition. In addition, recent preclinical studies have suggested that
anti-EGFR resistance may be driven by cancer associated fibroblasts
populating the tumor microenvironment, and their secreted factors
(Woolston et al., 2019; Garvey et al., 2020). More recently, data on
patients treated in first line and in combination with chemotherapy
has revealed novel data and a vastly different profile of mechanisms
of resistance to anti-EGFR therapy. Biomarker analysis of the
CALBG/SWOG-80405 trial evaluated the development of
acquired mechanisms of resistance to anti-EGFR inhibitors using
liquid biopsy in patients with metastatic CRC who received a first
line treatment with chemotherapy (FOLFOX or FOLFIRI) and
cetuximab (n = 61), or chemotherapy (FOLFOX or FOLFIRI)
and bevacizumab (n = 69). The authors reported emergence of
6.6% and 10.1% genomic alterations of anti-EGFR resistance in
ctDNA at the time of progression to cetuximab and bevacizumab,
respectively. Among the reported genomic alterations, mutations in
KRAS, NRAS, BRAF, EGFR-ECD and amplifications in ERBB2 and
MET were reported (Raghav et al., 2023). Parseghian et al.
retrospectively analyzed paired ctDNA samples before and after
anti-EGFR therapy from three different trials and also demonstrated
unique molecular patterns of resistance between first-line and later-
line anti-EGFR therapies (Parseghian et al., 2023). Similarly, our
group analyzed serial ctDNA samples of patients treated with
cetuximab plus chemotherapy in first-line within the
PLATFORM-B study, and found that in five out of nine patients
with RAS/BRAF subclones emerging early (cycle 2) during anti-
EGFR plus chemotherapy did not expanded (Vidal et al., 2023).
Altogether, these studies suggest that chemotherapy-based multi-
drug treatment may favor a specific resistance profile that may
include additional mechanisms of resistance (transcriptomic,
epigenetic, tumor-microenvironment-derived factors) rather than
genomic-driven resistance to the anti-EGFR component of the
regimen. Therefore, the use of liquid biopsy to also detect non-
genomic alterations of the tumor could provide a comprehensive
understanding of tumor evolution during the course of treatment. In
addition, understanding the complexity of mechanisms of resistance

FIGURE 2
Tumor heterogeneity and clonal dynamics in metastatic CRC. (A)Multiple metastatic lesions showing the presence of various subclones within the
tumor, each with different genomic alterations. (B) Clonal dynamics representing an original dominant clone, responding to treatment, and the rise of
other treatment resistant clones.
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beyond point mutations of driver genes in cancer cells is crucial to
design future successful combination regimens.

7 Clinical strategies to overcome
resistance

Different clinical strategies have been proposed to prevent or
circumvent acquired resistance to anti-EGFR therapies. Targeting
mutations of resistance is potentially limited by the complex
heterogeneity of coexisting subclones of resistance. Another
treatment strategy is to take advantage of clonal dynamics and
rechallenge with anti-EGFR drugs after a wash-off period and decay
of mutations of resistance in ctDNA. Rechallenge refers to the
concept of re-treating with anti-EGFR therapy in patients who
previously derived a benefit from this drug (Mauri et al., 2019;
Martinelli et al., 2020; Mauri et al., 2022) (Figure 3).

Several small phase II clinical trials assessing the efficacy of
rechallenge with anti-EGFR therapies have been conducted. In
common, all trials include patients that previously responded to
anti-EGFR therapy, followed by a subsequent treatment with no
anti-EGFR treatment. The first study assessing re-challenge was
conducted more than a decade ago and included 39 patients with
KRAS WT (codons 12 and 13) metastatic CRC re-treated with
cetuximab plus irinotecan in third-line. The ORRwas 53.8%, and the
mPFS 6.6 months (Santini et al., 2012). Following this study, the
CRICKET trial was a single-arm phase II study that included
28 patients with metastatic tissue RAS/BRAF WT mCRC who
previously benefited for at least 6 months of irinotecan-based
chemotherapy and cetuximab. The trial aimed to evaluate the
activity of these compounds in the third-line setting, and
achieved an ORR of 21%, mPFS 3.4 months, and mOS

9.8 months. Importantly, for the first time, the use of ctDNA to
select for anti-EGFR rechallenge was retrospectively analyzed.
Patients with baseline (before rechallenge) ctDNA RAS WT
achieved a partial response in 57% of the cases, and had a longer
mPFS compared to patients with mutations in RAS detected in
ctDNA (4 vs. 1.9 months, respectively) (Cremolini et al., 2019). The
JACCRO CC-08 trial also evaluated the efficacy of irinotecan plus
cetuximab rechallenge in the third-line setting in 34 patients with
KRAS WT mCRC. One patient achieved a partial response, the
disease control rate (DCR) was 55.9%, the mPFS was 2.4 months,
and themOSwas 8.2 months. In an attempt to find clinical surrogate
markers of clinical benefit, the authors identified that patients with a
longer cetuximab free interval (CFI), derived a greater benefit from
the rechallenge strategy, as opposed to patients with a short CFI
(DCR of 82% vs. 44%, mPFS of 4.6 vs. 2.1 months, and mOS of
14.1 and 6.3 months, respectively for the long and short CFI)
(Masuishi et al., 2020). The VELO clinical trial was a randomized
trial that evaluated rechallenge with panitumumab plus trifluridine-
tipiracil (also known as TAS102) vs. trifluridine-tipiracil alone as
control arm. The study included 62 patients with chemo-refractory
tissue RAS WT mCRC and was positive in favor of the rechallenge
strategy (mPFS4 and 2.5 months in panitumumab + trifluridine-
tipiracil vs. trifluridine-tipiracil, respectively). Retrospective analysis
of baseline ctDNA RAS/BRAF WT identified patients obtaining
prolonged clinical benefit with panitumumab plus trifluridine-
tipiracil compared with trifluridine-tipiracil (PFS rates at
6months 38.5% vs. 13.0% and at 12 months 15.4% vs. 0%).
Interestingly, extended ctDNA hyperselection (WT for KRAS,
NRAS, BRAFV600E, EGFR ECD, ERBB2, MAP2K1, andPIK3CA)
selected patients with a mPFS of 6.4 months, partial response of
13.3% and stable disease of 73.3% (Napolitano et al., 2023). A
chemotherapy-free treatment strategy was evaluated in the CAVE

FIGURE 3
Anti-EGFR treatment of RAS/BRAF wtmCRC according to clonal dynamics assessed in ctDNA (A) Treatment naïve CRCwith a predominant clone of
anti-EGFR sensitive cancer cells (B) Tumor response to first-line treatment with anti-EGFR therapy. (C) Tumor progression and emergence of sub-clones
of resistance to anti-EGFR therapy. (D) Decay of the anti-EGFR resistant clones with second-line treatment without anti-EGFR therapy. (E) Tumor
progression. (F) Tumor response to third-line anti-EGFR rechallenge.
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trial, a single arm phase II trial that included 77 patients with tissue
RASWTmCRC patients rechallenged with cetuximab plus the anti-
PD-L1 drug avelumab. The ORR was 7.8%, DCR was 65%, mPFS
was 3.6 months, and mOS was 11.6 months. Post-hoc analysis of
baseline ctDNA revealed, that patients with RAS/BRAFWT ctDNA
had a better survival than patients with mutated RAS/BRAF (mPFS
of 4.1 vs. 3 months, and amOS of 17.3 vs. 10.4 months, respectively).
At progression to rechallenge, ctDNA detected KRAS/BRAF and
EGFR-ECD S292R mutations as mechanisms of resistance
(Martinelli et al., 2021)

The CHRONOS clinical trial was the first trial to include
genomic selection by ctDNA as an inclusion criterion. Moreover,
the trial used a clean design in which panitumumab rechallenge was
administered alone to evaluate the effect of anti-EGFR treatment
without the effect of concomitant chemotherapy. Panitumumab was
administered in 27 patients with RAS/BRAF and EGFR ECDWT in
ctDNA (mutation zero). The study achieved it primary endpoint,
with an ORR of 30%, a DCR of 63%, with a median duration of
response of 17 weeks, a mPFS of 16 weeks, and a mOS of 55 weeks.
Following panitumumab rechallenge, ctDNA identified different
resistance mechanisms including mutations or amplifications in
KRAS, NRAS, EGFR, PTEN, and MET, 48% of the patients had
at least two co-occurring mechanisms of resistance (Sartore-Bianchi
et al., 2021; Sartore-Bianchi et al., 2022). The ongoing CITRIC trial
(EudraCT 2020-000443-31) is the first randomized clinical trial
aimed to evaluate the efficacy of cetuximab plus irinotecan
rechallenge in the third-line setting in comparison to standard
treatment at investigator’s choice in patients genomically selected

with no detection of mutations of acquired resistance (RAS, BRAF
and EGFR-ECD wild-type) in the blood of patients before
rechallenge. Recruitment was recently completed. Table 3
presents different completed and ongoing rechallenge strategies.

In a different approach, the Sym004-005 clinical trial evaluated
the use of Sym004, a mixture of two synergistic antibodies,
futuximab and modotuximab, directed against nonoverlapping
epitopes in EGFR, leading to internalization and degradation of
the receptor (Sánchez-Martín et al., 2016). A phase II clinical trial
evaluated the use of two regimens of Sym004 (higher dose: arm A,
lower dose: arm B), compared to chemotherapy (arm C). The study
included 254 patients with KRAS exon 2 WT mCRC who were
refractory to standard chemotherapy and had acquired resistance to
anti-EGFR therapies. The mOS was 7.9, 10.3 and 9.6 months for
arms A, B and C, respectively. A preplanned retrospective analysis of
patients with no detection of mutations in RAS, BRAF and EGFR
ECD in ctDNA, showed a dramatic statistically significant
improvement in mOS for treatment with low-dose Sym004
(12.8 vs. 7.3 for the control arm). Again, this study shows the
necessity of ctDNA genomic analysis to select patients that benefit
from anti-EGFR therapy (Montagut et al., 2018).

8 Conclusion

Therapeutic anti-EGFR moAbs (cetuximab and panitumumab)
remain the mainstay of targeted therapy in RAS/BRAF wild-type
metastatic colorectal cancer. However, resistance eventually

TABLE 3 Clinical trials using rechallenge strategies with anti-EGFR therapies in patients with colorectal cancer and ctDNA evaluation.

Study Study
design

No. of
patients
included

Treatment, line
and regimen

ctDNA
evaluation

Results Results according to
ctDNA

Santini et al. Santini
et al. (2012)

Phase II,
single arm

39 ≥Third-line cetuximab
plus irinotecan

No ORR: 53.8%, mPFS: 6.6 m NA

CRICKET trial
Cremolini et al.
(2019)

Phase II
single arm

28 Third-line cetuximab
and irinotecan

Retrospective analysis of
baseline ctDNA

ORR: 21%, mPFS: 3.4 m mPFS ctDNA RAS wt 4 m vs.
RAS mut 1.9 m

JACCRO CC-08
Sunakawa et al.
(2020)

phase II
Single arm

34 Third-line Cmab and
irinotecan

Retrospective analysis of
baseline ctDNA

ORR 2.9% mPFS 2.4 m Post progression survival after
rechallenge was shorter in pts
with RAS mut

VELO Napolitano
et al. (2023)

Phase II
randomized

62 TAS102 vs.
TAS102 plus Pmab

Retrospective analysis of
baseline and end of
treatment ctDNA

ORR: 9.7% Pmab +
TAS102% vs. 0% TAS102,
mPFS:4 m Pmab +
TAS102 vs. 2.5 m
TAS102

Pmab and TAS102 6 m PFS:
ctDNA RAS/BRAF wt. 38% vs.
RAS/BRAF mut 13%; 12 m PFS
15.4%vs. 0% respectively

CAVE Martinelli
et al. (2021)

phase II
Single arm

77 Third line Cmabplus
avelumab

Retrospective analysis of
baseline ctDNA

ORR:7.8%, mPFS: 3.6 m mPFS ctDNA RAS/BRAF/
EGFR-ECD wt 4.1 m vs. RAS/
BRAF/EGFR-ECD mut 3 m

CHRONOS
Sartore-Bianchi
et al. (2022)

phase II
Single arm

27 ≥ Third-line Pmab RAS, BRAF V600E, and
EGFR-ECD wt in
ctDNA as inclusion
criteria

ORR: 30%, mPFS: 16 wks ctDNA RAS/BRAF/EGFR-ECD
wt ORR: 30%, mPFS: 16 wks

CITRIC Santos
Vivas et al. (2022)

Phase II
randomized

58 Third-line Cmab and
irinotecan vs.
physician’s choice

RAS, BRAF V600E, and
EGFR-ECD wt in
ctDNA as inclusion
criteria

Recruitment finished --

Abbreviations: pts: patients, m: months, mCRC: metastatic colorectal cancer, Cmab: cetuximab, Pmab: panitumumab, ChT: chemotherapy, mDoR: median duration of response, wks: weeks, m:

months, mut: mutated, wt: wild-type NA: not available.
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develops leading to cancer progression. In the last decade, preclinical
and translational models have identified two main strategies for
colorectal cancer cells to evade EGFR inhibition: reactivation of the
MAPK pathway and mutations in the extracellular domain of EGFR
(EGFR ECD). These genomic alterations arise as a consequence of
heterogeneity and clonal selection under drug pressure.
Interestingly, liquid biopsy (i.e., genotyping of ctDNA) is a
minimally invasive method to track genomic alterations of
resistance in the blood of patients treated with cetuximab/
panitumumab. Treatment of resistance to anti-EGFR therapies
remains a challenge, since genomic alterations of resistance are
multiple and coexist within one same tumor. Because mutations of
acquired resistance decline over time following anti-EGFR
withdrawal, an alternative strategy that is showing promising
results in several phase II clinical trials is to rechallenge with
anti-EGFR therapy in patients selected by no detection of
mutations of acquired resistance in liquid biopsy. More recently,
alternative mechanisms of resistance beyond genomics, mainly
related to the tumor microenvironment, have been identified,
specifically in patients treated with chemotherapy-based multi-
drug treatment in first line of treatment (vs. anti-EGFR single
treatment in heavily pretreated patients). In the era of
personalized medicine, it is of the utmost importance to better
understand the complexity of the mechanisms of acquired resistance
to anti-EGFR therapy to be able to design appropriate clinical trials
and ultimately improve treatment and care of mCRC patients.
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