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Ulcerative colitis (UC) is a chronic inflammatory disease of the intestines that can
significantly impact quality of life and lead to various complications. Currently, 5-
aminosalicylic acid derivatives, corticosteroids, immunosuppressants, and
biologics are the major treatment strategies for UC, but their limitations have
raised concerns. Atractylenolides (ATs), sesquiterpene metabolites found in
Atractylodes macrocephala Koidz., have shown promising effects in treating
UC by exerting immune barrier modulation, alleviating oxidative stress, gut
microbiota regulation, improving mitochondrial dysfunction and repairing the
intestinal barrier. Furthermore, ATs have been shown to possess remarkable anti-
fibrosis, anti-thrombus, anti-angiogenesis and anti-cancer. These findings
suggest that ATs hold important potential in treating UC and its complications.
Therefore, this review systematically summarizes the efficacy and potential
mechanisms of ATs in treating UC and its complications, providing the latest
insights for further research and clinical applications.
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1 Introduction

Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by
continuous and diffuse inflammation in the colonic and rectal mucosa. As its long
course, high recurrence, and high risk of malignant transformation, UC has been
classified by the WHO as one of the clinically intractable diseases (Li et al., 2022). In
Europe and North America, the highest incidence is 24.3/100,000 and 19.2/100,000,
respectively. With changing in lifestyle and dietary habits in Asian countries, the
incidence has been increasing annually to 7.6/100,000 to 14.3/1000,000, and the
morbidity is 2.3/1,000 to 63.6/1,000. The direct and indirect costs associated with UC
reach to €1.25 to €2.91 billion annually in Europe and $0.81 to $1.49 billion in the
United States. The expensive treatment costs and the gradually increasing incidence have
brought about dual challenges of economic burden and public health. Moreover, UC is
caused by environmental factors acting on genetically susceptible populations that lead to
gut microbiota imbalance or intestinal barrier damage resulting from mucosal immune
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dysfunction. Symptoms include persistent or recurrent diarrhea,
accompanied by abdominal pain urgency, weight loss, mucus bloody
stools and other varying degrees of systemic symptoms, lasting more
than 4–6 weeks, leading to repeated intermittent acute episodes that
may last for years, causing discomfort to patients affected by this
disease (Xue et al., 2023). In response to the clinical symptoms and
pathological characteristics of UC, clinical treatment is constantly
developing and updating, aiming for better treatment of UC and its
complications.

Recently, the first-line drugs for the treatment of UC include
5-aminosalicylic acid, corticosteroids, and immunosuppressants
(Feuerstein and Cheifetz, 2017). Various formulas and
combination therapies of traditional drugs play an important role
in treating mild to moderate UC(Le Berre et al., 2023). In recent
years, with in-depth research on the pathogenesis of UC, the
development of molecularly targeted biologics has become a
revolutionary breakthrough in the treatment of UC. The
emergence of biologics has greatly alleviated refractory UC that
cannot be relieved by traditional drugs and improved the therapeutic
effect of UC(Nakase et al., 2022). With the widespread use of these
medications, several adverse reactions have gradually been found.
Surveys have shown that 30%–55% of patients have no response to
molecularly targeted drugs during induction or develop drug
resistance in the later stages of treatment. A study has reported
that more than 10% of patients have ineffective drug therapy and
require surgical treatment (Xu et al., 2023). In addition, due to the
recurrent episodes and numerous complications of UC, patients
often suffer from great physical, psychological and economic
pressure (Burisch et al., 2023). Therefore, the development of
effective treatment strategies is essential for the prevention and
treatment of UC and its complications.

Natural products are potential therapeutic strategies for UC in
clinical practice (Lu et al., 2023). Atractylodes macrocephala Koidz.,
one of the commonly used traditional Chinese medicines in clinic
(Yang et al., 2021), is widely applied to treat digestive system diseases
due to its effects of invigorating the spleen and replenishing qi,
drying dampness and promoting diuresis, stopping sweating and
calming the fetus (Zhou et al., 2021). Studies have shown that A.
macrocephala Koidz. plays an important role in the treatment of

UC(Feng et al., 2018; Deng et al., 2019a; Deng et al., 2019b; ChenW.
et al., 2021; Yu et al., 2022; Zou and Zhu, 2022). Atractylenolides
(ATs) are sesquiterpene compounds extracted from the Atractylodes
genus of the Asteraceae family, which is one of the main active
ingredients in A. macrocephala Koidz. (Wang Y. M. et al., 2021).

ATs have a variety of pharmacological effects and significant
therapeutic effects on inflammatory diseases. In addition, ATs can
be rapidly absorbed and metabolized slowly, making them valuable
for drug development (Deng et al., 2021). ATs have various
configurations, among which AT-I, AT-II and AT-III are
extensively studied configurations with strong pharmacological
effects. In recent years, many scholars have paid high attention
to the pharmacological activities of these three types of ATs (Yang
et al., 2021).

Studies have shown that ATs can effectively treat UC through
their immune barrier modulation and alleviating oxidative stress, as
well as intestinal barrier repair, improvement of mitochondrial
dysfunction, and regulation of the intestinal microbiota (Han
et al., 2022; Qu et al., 2022). Additionally, it also has the effects
of anti-thrombus, reducing multiorgan fibrosis, and decreasing
pathological angiogenesis (Yang et al., 2021). These reports
suggest that ATs have great advantages in the treatment of UC
and its complications. However, the targets of ATs for the treatment
of UC and their underlying biological processes remain to be
comprehensively reviewed. The aim of this paper is to
comprehensively summarize the efficacy and potential
mechanisms of ATs for the treatment of UC and its
complications and to provide a scientific basis for the in-depth
study and clinical application of ATs. Tables 1, 2 summarize the
applications of ATs in cellular and animal experiments, respectively.

2 Biological characteristics of ATs

2.1 Sources of ATs

ATs have a wide range of sources. The dried rhizome of A.
macrocephala Koidz., a plant belonging to the Asteraceae family
(Wang Y. M. et al., 2021), is the major source of ATs. Plants of the
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Atractylodes genus are mainly distributed in eastern Asia with seven
subspecies, namely, A. macrocephala Koidz., Atractylodes japonica
Koidz. ex Kitam., Atractylodes lancea (Thunb.) DC., Atractylodes
chinensis (DC.) Koidz., Atractylodes carlinoides (Hand. Mazz.)
Kitam., Atractylodes coreana (Nakai) Kitam. and A. lancea
(Thunb.) DC. Subsp. Luotianensis (Liu et al., 2016).

The commonly used clinical Atractylodes are the rhizomes of
the A. lancea (Thunb.) DC. and A. chinensis (DC.) Koidz. (Wang
Y. M. et al., 2021), which are also important sources of ATs.
Furthermore, Codonopsis pilosula from the Campanulaceae
family is also an important source of ATs. The existence of ATs
can be used as an important identification and quality evaluation
index of C. pilosula (Wang et al., 2023). Various plants in the
Orchidaceae family, such as Cremastra appendiculata also contains
ATs (Deng et al., 2021) (Table 3).

2.2 Classification of ATs

ATs belong to the sesquiterpene class of metabolites, which are
considered one of the major active metabolites in Atractylodes genus
plants. The common sesquiterpenes found in A. macrocephala Koidz.
include atractylenolide, atractylon, AT-I, AT-II, AT-III, AT-IV,
diacetyl-atractylodinolide, AT-V, AT-VI, AT-VII, 3β-
acetoxyatractylenolide, dehydroatractylonolide, isoatractyloside A,

atractylodinamide and 8β-methoxy-atractylenolide II (Yao et al.,
2019). Furthermore, in recent years, a number of new
sesquiterpenoids have been isolated from the rhizomes of A.
macrocephala Koidz., such as atractylenolactam A, atractylenolactam
B, 8-methoxy-atractylenolide V and 15-acetoxyl atractylenolide III
(Hoang et al., 2016; Wang et al., 2022; Hai et al., 2023). Common
sesquiterpenoids in A. lancea (Thunb.) DC. include β-eudesmol,
acoriol, atractylon, AT-I, AT-II and AT-III (Cho et al., 2016; Zhao
et al., 2022). AT-I, AT-II and AT-III are important active metabolites
shared by A. macrocephalaKoidz.,A. lancea (Thunb.) DC.,A. chinensis
(DC.) Koidz. and A. japonica Koidz. ex Kitam. ATs are being
extensively studied due to their wide range of pharmacological
activities. Therefore, this paper primarily summarizes the therapeutic
effects and potential mechanisms of AT-I, AT-II and AT-III in UC.

2.3 Structures of ATs

As a shared precursor of sesquiterpenoid metabolites, cis-
farnesol undergoes an acetyl-CoA reaction to yield farnesyl
pyrophosphate, which is further converted into farnesyl
caryophyllene. Under the catalytic influence of sesquiterpene
cyclase, farnesyl caryophyllene is transformed into sesquiterpenes.
These sesquiterpenes experience double bond cleavage and
condensation to form intermediates, which subsequently undergo

TABLE 1 Use of ATs in the prevention and treatment of UC at the cellular level.

ATs Cells Modeling
methods

Dose and
duration

Effects Mechanisms Ref.

AT-Ⅰ RAW264.7 macrophages LPS 25, 50, 100 μM MD-2, CD14, SR-A, MyD88, TNF-
α, IL-6, ERK1/2, p38↓

TLR4, NF-kB↓ Ji et al. (2014)

peritoneal macrophages LPS 1–100 µM for 24h TNF-α, NO, iNOS↓ TLR4↓ Li et al.
(2007b)

IEC-6(CRL 1592) wounding 5 μM, 10 μM for 8 h Cell migration and proliferation↑;
polyamines content↑; TRPC1,

PLC-γ1↑

Ca2+↑ Song et al.
(2017)

AT-Ⅱ IEC-6 wounding 0–160 μM for 24h and 48h Cell proliferation and migration↑;
IL-2, IL-10, ODC↑; STIM1, STIM2,

TRPC1, RhoA↑

Ca2+↑ Ren et al.
(2021b)

AT-Ⅲ RAW264.7 macrophages LPS 1–100 µM NO, PGE2, TNF-α, IL-6↓ TLR4/NF-kB/MAPK↓ Wang et al.
(2019a)

peritoneal macrophages LPS 1–100 µM for 24h TNF-α, NO, iNOS↓ TLR4↓ Li et al.
(2007b)

Human mast cells PMACI 1 uM; 10 uM; 100 uM IL-6, IL-1β, p38, JNK↓ caspase-1/RIP-2/
NF-κB↓

Kang et al.
(2011)

Human mast cells TSLP 1 uM; 10 uM; 100 uM IL-6, IL-1β, TNF-α, IL-13, IL-8↓;
Bcl2, procaspase-3↓; caspase-3,

cleaved PARP↑; mast cell
proliferation↓

pSTAT6, pSTAT5,
pSTAT3↓

Yoou et al.
(2017)

IEC-6 LPS 80 μM for 24 h; 40 or
80 μM for 12 h

occludin, ZO-1↑; mtDNA, MMP,
complex I, complex IV↑

pAMPK/SIRT1/
PGC-1α↑

Han et al.
(2022)

IEC-6 wounding 0–160 μM for 24h and 48h Cell proliferation and migration↑;
IL-2, IL-10, ODC↑; STIM1, STIM2,

TRPC1, PLC-γ1, RhoA↑

Ca2+↑ Ren et al.
(2021b)

IEC-6 TGF-β1 1, 10, 20 μmol/L for 24h EMT, vimentin, N-cadherin↓;
E-cadherin, ZO-1↑

AMPK↑ Huang et al.
(2022)
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oxidation and dehydration to generate costunolide. Costunolide,
being inherently unstable, self-oxidizes to form a diene diol
structure. This structure, following varying degrees of oxidation
and double bond isomerization, cyclizes to form AT-I, AT-III or
couples to create bisabolene lactone. Furthermore, AT-III can be
dehydrated to produce AT-II (Yao et al., 2019). The study on
cytochrome P450 (CYP450) simulated the oxidation model of
mutual transformation for three types of ATs. AT-II can be
oxidized to generate AT-III, and it can also be converted to AT-I
by dehydration (Kim et al., 2018) (Figure 1).

3 Pharmacokinetics

3.1 AT-Ⅰ

Studies on the absorption of AT-I in the intestines of rats
revealed that it is a highly permeable metabolites that can be
rapidly absorbed throughout the intestine. The absorption
characteristics of AT-I in different intestinal segments of rats
were analyzed by an in vivo intestinal circulation model and
high-performance liquid chromatography. There was no

significant difference in the absorption rate constant of AT-I in
duodenum, jejunum, ileum and colon. The passive diffusion
mediated by the P-glycoprotein (Pgp) efflux transport system
facilitated its absorption and distribution (Wang et al., 2009a).
After oral administration of AT-I in rats at a dose of 50 mg/kg,
the peak time (Tmax), maximum concentration (Cmax), area under
the curve (AUC), and absorption rate constant (Ka) were 0.37 ±
0.19 h, 0.26 ± 0.05 μg/mL, 1.95 ± 0.30 μg h/mL and 10.08 ± 5.60 h-1,
respectively (Wang et al., 2009a; Li et al., 2012).

In addition, rats liver mitochondria were co-cultured with AT-I,
and the bio-transformation products were characterized after
pretreatment with phenobarbital sodium. The results show that
the main metabolites of AT-I were hydroxylated and methylated
products, and the C-1, C-2, and C-3 positions of ring A could be
specifically oxidized. Therefore, the reaction between AT-I and
reactive oxygen species (ROS) may be one of the main
mechanisms by which AT-I exerts its anti-inflammatory and
anti-cancer effects to prevent or alleviate oxidative damage
caused by ROS to bio-molecules (Li and Yang, 2013).

3.2 AT-Ⅱ

The pharmacokinetic study conducted on rats after
intragastric administration of AT-II showed that the
elimination half-life (T1/2) and Tmax of the drug were 0.14 h
and 0.41 h, respectively, indicating that AT-II was rapidly
absorbed in rats. The study also showed that after oral
administration of A. macrocephala Koidz. extract equivalent to
a dose of 82.82 μg/kg of AT-II in rats, the Cmax, AUC0→12,
clearance rate (CLz/F) and T1/2 values of AT-II were 7.99 ±
0.90 ng/mL, 28.46 ± 7.71 ng h/mL, 0.043 ± 0.015 L/(kg•h) and

TABLE 2 Animal experiments on use of ATs to treat UC.

ATs Animals Modeling
methods

Dose and
duration

Effects Mechanisms Admini-
stration

Positive
control

Ref.

AT-Ⅰ Male BALB/c
mice

DSS 25 mg/kg;
50 mg/kg; for

7 days

TNF-α, IL-6, IL-1β↓; MUC2,
zo-1, occludin↑; diversity and
abundance of intestinal flora↑

SPHK1/PI3K/AKT↓;
SPHK1, B4GALT2↓

Oral gavage SASP
250 mg/kg/

day

Qu et al.
(2022)

Mice
(intestinal
dysbiosis)

ampicillin,
vancomycin,
neomycin, and
metronidazole

NA abundance of Lactobacillus
and Bacteroides↑; abundance

of Escherichia and
Candidatus↓; Bcl-2 and

Bcl-xL↓

TLR4/MyD88/
NF-kB↓

Oral gavage NA Ren
et al.

(2021b)

Shen Zhu
capsule

System
pharmacology

NA IL-6, TNF-α, INF-γ, IL-1β,
COX-2↓

TLR4/MyD88/
NF-kB↓

NA NA Feng
et al.
(2018)

AT-Ⅲ Male C57BL/
6J mice

DSS 5 mg/kg;
10 mg/kg; for

7days

TNF-α, IL-6, COX-2, iNOS,
MPO, MDA↓; GSH, SOD,

occludin, ZO-1↑

pAMPK/SIRT1/
PGC-1α↑

inject through
tail vein

SASP
200 mg/kg/

day

Han
et al.
(2022)

mice TNBS 5 mg/kg;
10 mg/kg;

20 mg/kg; for
7days

IL-1β, TNF-α↓;
myeloperoxidase activity↓;

ROS, MDA↓; SOD, CAT, GPx,
GR↑; Regulating intestinal

microbiota

FPR1/Nrf2↓ Oral gavage NA Ren
et al.

(2021a)

mice DSS 5 mg/kg;
10 mg/kg

mitochondrial dysfunction↓ pAMPK/SIRT1/
PGC-1α↑

inject through
the tail vein

SASP
200 mg/kg/

day

Han
et al.
(2022)

Note: “NA” represents Not Available.

TABLE 3 Sources of ATs in the plants of Atractylodes genus.

Sources Metabolites

A. macrocephala Koidz AT-Ⅰ, AT-Ⅱ, AT-Ⅲ, AT-Ⅳ, AT-Ⅴ, AT-Ⅵ, AT-Ⅶ

A. lancea (Thunb.) DC. AT-Ⅰ, AT-Ⅱ, AT-Ⅲ

A. chinensis (DC.) Koidz AT-Ⅰ, AT-Ⅱ, AT-Ⅲ

A. japonica Koidz. ex Kitam AT-Ⅰ, AT-Ⅱ, AT-Ⅲ
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2.63 ± 1.08 h, respectively (Shi et al., 2012). When co-incubated
with rat liver microsomes, AT-II mainly underwent
hydroxylation and epoxidation reactions at the double bonds
between C-4 and C-15, as well as at positions C-1, C-3, C-8, and
C-13, which are easily hydroxylated (Li et al., 2013).

3.3 AT-Ⅲ

AT-Ⅲ has been reported as a compound with rapid absorption
characteristics. After oral administration of AT-III to SD rats at a
dose of 100 mg/kg, the results showed that AT-III was rapidly
absorbed and distributed evenly in the body (Li et al., 2006).
After administering an extract of A. macrocephala Koidz.
equivalent to a dose of 185.16 μg/kg of AT-III by gavage in rats,
the Cmax, AUC 0→12, CLz/F, and T1/2 values of AT-III were 9.79 ±
1.79 ng/mL, 37.43 ± 7.86 ng h/mL, 0.029 ± 0.0068 L/(kg•h) and 4 ±
1.94 h, respectively (Shi et al., 2012). High-performance liquid
chromatography showed that it was mainly excreted through the
spleen, followed by liver and kidney. The metabolism pathways of
AT-III encompass various processes such as methylation, oxidation,
hydroxylation, dihydroxylation, reduction, glycosylation, sulfation,
glucuronic acid conjugation, cysteine and N-acetylcysteine binding,
among others. After oral administration of AT-III, more than
50 metabolites were identified in rat feces urine and plasma
(Jiang et al., 2019).

Current studies have shown that AT-I, AT-II, and AT-III can be
quickly absorbed into the blood and detected within 0.0833 h, and
the retention time in the plasma is about 12 h. The inverted
intestinal sac model indicated that ATs had similar
pharmacokinetic characteristics and could be passively
transported by all intestinal segments. However, AT-III had the
highest absorption rate in all intestinal segments, and the duodenum
was the main site for the absorption of AT-II, while AT-I was
absorbed rapidly within entire enteric. ATs are considered to be
rapidly absorbed without obvious interaction with each other,
suggesting good bioavailability based on their pharmacokinetic
data (Gao et al., 2018).

Although changes in experimental factors can alter the
pharmacokinetic parameters of ATs, they are rapidly absorbed
into the blood and slowly eliminated in rats. Furthermore, there
have been no reports of toxic side effects from ATs in the clinic.
Therefore, ATs show potential for further drug development.
Meanwhile, as key metabolites of traditional Chinese medicines
A. macrocephala Koidz. and A. lancea (Thunb.) DC., the new
drug development of ATs holds significant social value in
promoting the utilization and development of these
botanical drugs.

4 The pharmacological activities of ATs

4.1 Immune barrier modulation

Although the etiology of UC remains incompletely elucidated,
recent advancements underscore the pivotal role of cytokines and
immune cells in the pathogenesis of UC (Neurath, 2014). Within
adaptive immunity, the dysregulation of Th1/Th2 and Th17/Treg
cells is considered an important reason for the immunological
imbalance observed in UC (Geremia et al., 2014; Iboshi et al.,
2017). Cohort studies have also highlighted substantial
dysregulation in B cell responses in UC, underscoring the
potential involvement of humoral immunity in the pathogenesis
of this condition (Uzzan et al., 2022). Furthermore, the innate
immune system of the mucosa has been extensively investigated.
Neutrophils, monocytes, and macrophages collectively form the
innate barrier of phagocytic cells, playing a critical role in the
pathogenesis of UC (Zhou and Liu, 2017; Uhlig and Powrie,
2018). Consequently, the modulation of the balance of immune
cells and cytokines to restore intestinal mucosal homeostasis
represents a primary therapeutic target in the clinical
management of UC (Tong et al., 2021).

AT-I and AT-III exhibited pronounced immune barrier
modulation effects in vivo and vitro. In a murine model of DSS
(Dextran Sulfate Sodium Salt)-induced UC, AT-I and AT-III
markedly suppressed the production of pro-inflammatory

FIGURE 1
Chemical structural formulae of ATs.
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cytokines such as TNF-α, IL-6, cyclooxygenase-2 (COX-2) and
iNOS, ameliorating colonic inflammation response (Han et al.,
2022; Qu et al., 2022). In a study involving LPS
(Lipopolysaccharide)-induced murine macrophages RAW264.7,
AT-I, and AT-III shown no inhibitory effect on cell proliferation
within the concentration range of 1 μM–100 μM. They effectively
inhibited the production of NO, PGE2, TNF-α and IL-6. Their
immune barrier modulation effects may be associated with the
suppression of the expression of NF-kB, ERK1/2, and p38 (Ji
et al., 2014; Ji et al., 2016). Furthermore, research indicates that
AT-I exhibits a more pronounced inhibitory effect on the activation
of macrophages, leading to the production of TNF-α and NO in
response to LPS, compared to AT-III (Li et al., 2007b). Toll-like
receptor 4 (TLR4) binding to its ligand, LPS, triggers MyD88 protein
adapter-mediated inflammatory responses, playing a pivotal role in
the development of UC. Activation of signaling molecules
downstream of TLR4, including NF-kB and those mediated by
MAPK kinases such as JNK, ERK and p38, results in the
transcription of numerous pro-inflammatory genes, including
TNF-α, IL-6, IL-1β, and COX-2, subsequently eliciting a UC
inflammatory response (Wang G. et al., 2019). Therefore, AT-I
and AT-III act as antagonists of the TLR4 receptor and effectively
suppress the release of pro-inflammatory cytokines by inhibiting the
TLR4/NF-kB/MAPK signaling pathway, leading to a significant
improvement in UC.

The systematic pharmacological investigation of the ginsenoside
capsule also yielded consistent results. One of the ginsenoside
capsule’s bioactive ingredients, AT-I, has been shown to
dramatically decrease tissue levels of pro-inflammatory cytokines
such IL-6, TNF-α, and INF-γ. Its mechanism is associated with the
inhibition of NF-kB activation mediated by the MyD88 protein
adapter triggered by the TLR4 receptor, resulting in the
transcriptional downregulation of numerous pro-inflammatory
genes, including TNF-α, IL-6, IL-1β, and COX-2, thereby
mitigating the inflammatory response (Feng et al., 2018).
Additionally, a study revealed that AT-I effectively inhibits
increased vascular permeability in acetic acid-induced mice and
opposes granulation tissue proliferation, indicating therapeutic
effects of AT-I on both acute and chronic inflammation (Li
et al., 2007a).

Mast cells originate from precursor cells in the bone marrow,
serving as the first line of defense in the immune system against
various challenges. In a murine model of UC, histamine derived
from mast cells mediates neutrophil infiltration into the colonic
mucosa through H4R, participating in the inflammatory
response. This suggests that mast cells serve as alternative
therapeutic targets beyond adaptive immunity (Wechsler et al.,
2018). Additionally, compared to non-inflammatory UC regions,
research on human colonic tissue show a considerable
upregulation of certain mast cell mediators in inflammatory
UC regions. Variants that reduce mast cell activity effectively
prevent the development of UC (Chen E. et al., 2021). AT-III
possesses the capability to reduce mast cell proliferation induced
by thymic stromal lymphopoietin (TSLP) and the production of
pro-inflammatory cytokines, including IL-6, IL-1β, TNF-α and
IL-8 (Yoou et al., 2017). Additionally, AT-III may suppress
immune responses by inhibiting the secretion of IL-6 within
mast cells (Kang et al., 2011). Therefore, serving as a

multifunctional immunoregulator, AT-III plays a crucial role
in regulating both innate and adaptive immunity.

4.2 Alleviating oxidative stress

In the pathological processes of UC, inflammation and oxidative
stress are believed to play pivotal roles, exacerbating the immune
response and intestinal damage of UC (Maloy and Powrie, 2011;
Zhu and Li, 2012). Chronic inflammation serves as a significant
stimulant for the overproduction of ROS (Santhanam et al., 2012),
and high concentrations of ROS can damage cellular structures,
leading to secondary mucosal injury (Ho et al., 2018). This may
contribute to the perpetuation and consolidation of intestinal
inflammation in UC. Furthermore, such damage increases the
risk of pathogen invasion, which may trigger new immune
responses, thereby exacerbating the progression and chronic
damage associated with UC. Therefore, anti-inflammatory and
anti-oxidant approaches are vital in the clinical treatment of UC.

Treatment with AT-III for UC mice by TNBS-induced for
14 days yielded promising results. AT-III administered at high
and medium doses resulted in a considerable improvement in
both histopathological damage and symptoms. Also, pro-
inflammatory cytokines like TNF-α and IL-1β were
downregulated. Additionally, the activity levels of
myeloperoxidase were attenuated. AT-III also reduced the
expression of pro-oxidative markers, ROS, and malondialdehyde
(MDA) in UC mice while enhancing the expression levels of
endogenous anti-oxidants, including catalase (CAT), superoxide
dismutase (SOD), and glutathione peroxidase (GPx), among
others. Further investigations suggested that AT-III may exert its
anti-oxidative effects through the modulation of formy1 peptide
receptor 1 (FPR1) and nuclear factor erythroid 2-related factor 2
(Nrf2) pathways (Ren et al., 2021a).

Nrf2 is a pivotal transcription factor associated with cellular
anti-oxidant responses and serves as the central regulator for
maintaining cellular redox homeostasis (Wang R. et al., 2019).
Under physiological conditions, Nrf2 resides in the cytoplasm
and forms a complex with Kelch-like ECH-associated protein 1
(Keap1), subject to proteasomal degradation, maintaining an
inhibitory state. Upon exposure to oxidative stress,
Nrf2 dissociates from the Keap1/Nrf2 complex, translocates into
the nucleus, forms a heterodimer with small Maf proteins, and binds
to anti-oxidant response elements (ARE), thereby activating
downstream anti-oxidant proteins such as heme oxygenase-1
(HO-1) to exert anti-oxidative and anti-inflammatory effects (Lin
et al., 2020). The extract of A. macrocephala Koidz. was regarded as
ideal HO-1 expression promoter, which has better efficacy than
sulfasalazine drugs for preventing UC recurrence (Han et al., 2017).
There are reports that both AT-II and AT-III have similar anti-
oxidant effects that activate the Nrf2 pathway as anti-oxidants (Yang
et al., 2017).

4.3 Intestinal microbiota regulation

While the pathogenesis of UC is still under investigation, the
prevailing consensus among researchers suggests that
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environmental factors, in conjunction with the intestinal
microbiota, act on genetically susceptible individuals, triggering
immune-inflammatory responses that disrupt the intestinal
barrier and lead to the development of UC (Mirkov et al., 2017).
The human intestinal tract harbors a diverse microbiome comprising
various bacteria, viruses, and phages. Dysbiosis in the intestinal
microbiota can promote the development of UC by increasing the
pathogenic bacterial load, reducing the levels of beneficial bacteria, and
disrupting normal immune tolerance. It is currently established that UC
patients exhibit abnormalities in the composition of their intestinal
microbiota, potentially involving the reduction in overall diversity and
the expansion of pathogenic strains (Ni et al., 2017). Therefore, the
management of intestinal dysbiosis is of paramount importance in the
comprehensive treatment of UC.

Results from 16S sequencing of fecal samples from UC
experimental mice indicate that AT-Ⅰ increases the diversity and
abundance of the intestinal microbiota in UC mice. Further
investigations reveal that AT-Ⅰ suppresses inflammation through the
SPHK1/PI3K/AKT axis and modulates fructose and lactose-related
metabolism by targeting two genes (SPHK1 and B4GALT2). This
regulation influences the composition of the intestinal microbiota
and ameliorates colonic inflammation (Qu et al., 2022). Moreover, a
study comparing changes in the gut microbiota of mice following AT-I
treatment, utilizing a mouse model of intestinal dysbiosis, demonstrates
that AT-I adjusts the gut microbiota by increasing the abundance of
beneficial bacteria such as lactobacilli and bifidobacteria, while dose-
dependently reducing the abundance of harmful bacteria like
Escherichia coli and Candida (Liu et al., 2021). This work provides
more evidence that the gut microbiota mediates the inhibitory effect of
AT-Ⅰ on tumor growth, with possible mechanisms involving the
downregulation of the TLR4/MyD88/NF-kB signaling pathway.

Researchers have also conducted fecal 16S DNA analysis in TNBS-
inducedmice following AT-III treatment. The data suggests that AT-III
effectively ameliorates the reduction of beneficial microbial
communities at the genus level in UC mice induced by TNBS,
which alters the structure and composition of the gut microbiota.
Among these changes, there is a significant increase in lactobacilli,
which can modulate the expression level of FPR1 and subsequently
regulate the oxidative stress levels in the colorectal tissue (Ren et al.,
2021a). Thus, AT-III regulates oxidative stress via the FPR1 and
Nrf2 pathways, impacting the gut microbiota’s growth and reducing
the TNBS-induced colonic inflammatory response. (Table 4).

4.4 Repairing the intestinal barrier

The histopathological features of UC encompass epithelial
ulceration, infiltration of lamina propria immune cells, crypt
abscesses, splenomegaly and hepatomegaly, and compromised
intestinal barrier function (Xu et al., 2023). The integrity of the
intestinal epithelium is a critical determinant affecting the function
of the gut barrier. The migration and proliferation of intestinal
epithelial cells (IEC) represent fundamental mechanisms for
mucosal ulcer healing and wound repair. AT-I promotes the
migration and proliferation of IEC-6 cells, which is possibly
mediated through the augmentation of cytoplasmic calcium
levels, driven by polyamines (Song et al., 2017). Previous research
has also shown that both AT-I and AT-III can reverse the reduced

expression levels of mucin MUC2 and tight junction proteins (zo-1,
occludin) in the colonic tissues of UC mice (Han et al., 2022; Qu
et al., 2022). Therefore, AT-I and AT-III can enhance the expression
of tight junction proteins, effectively promoting the repair of
intestinal epithelium and ameliorating the mucosal barrier
function in UC.

The research on the role of A. macrocephala Koidz. extract in
intestinal epithelial repair indicates that AT-II and AT-III exert
varying degrees of promotion on IEC-6 cell proliferation and
migration. AT-III stands out as the primary active ingredient in A.
macrocephala Koidz. Extract, showing its ability to stimulate cell
proliferation. The combination of ATs exhibits superior effectiveness
in promoting intestinal epithelial repair (Ren et al., 2021b). In vivo
studies showed that giving Wistar rats 10 mg/kg of AT-III
dramatically reduced the amount of ethanol-induced stomach
ulcers. AT-III achieves this by upregulating tissue
metalloproteinase inhibitors, consequently inhibiting the expression
of matrix metalloproteinases, specifically MMP-2 andMMP-9, within
the ulcerated gastric tissue (Wang et al., 2010). Hence, a combined
utilization of components such as AT-I, AT-II, and AT-III can be
considered when promoting intestinal epithelial repair.

4.5 Improving mitochondrial dysfunction

Research indicates that patients with UC may possess an
inherent susceptibility to mitochondrial dysfunction, which can
be masked by the intestinal environment (Ho and Theiss, 2022).
Mitochondrial dysfunction leads to the production of high levels of
superoxide and hydrogen peroxide within cells. These substances
can combine with iron to generate free radicals, causing oxidative
damage to macromolecules within the mitochondria, with
mitochondrial DNA being particularly vulnerable (Shimada et al.,
2012). Mitochondrial damage results in energy deficits that increase
the susceptibility to cell death while simultaneously exacerbating the
inflammatory response within the UC.

Receptor-γ coactivator 1-α (PGC-1α) is prominently expressed in
the uppermost intestinal epithelial cells, furthest from the crypt base. It
drives mitochondrial biogenesis and the metabolic shift towards
mitochondrial respiration (D’Errico et al., 2011). Research suggests
that reduced PGC-1α in intestinal epithelium is associated with
mitochondrial dysfunction, epithelial barrier damage, and
inflammatory responses in UC. Studies have indicated that
enhanced PGC-1α deacetylation can repair damaged mitochondria
and preserve intestinal barrier function (Cunningham et al., 2016).
AT-III was reported to alleviate mitochondrial dysfunction in DSS-
induced colitis mice, consistent with results from LPS-treated IEC-6
cells. Further mechanistic studies reveal that AT-III activates AMP-
activated protein kinase (AMPK) and sirtuin 1 (SIRT1), subsequently
increasing PGC-1α expression and promoting its deacetylation (Han
et al., 2022). Therefore, AMPK/SIRT1/PGC-1α may represent a
potential pathway through which AT-III ameliorates mitochondrial
dysfunction in the UC intestinal epithelium. Studies suggest that
mitochondria play a crucial role in various cellular functions, rapidly
responding to extracellular stimuli and cellular demands while
dynamically communicating with other organelles (Ni et al., 2015).
Maintaining normal mitochondrial function may improve
inflammatory responses, oxidative stress, and intestinal epithelial
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barrier damage in UC (Yeganeh et al., 2018; Wang S. Q. et al., 2019)
(Figures 2, 3).

4.6 Anti-fibrosis

Intestinal fibrosis is considered a common pathological feature
of UC and represents a long-term complication characterized by
excessive proliferation of myofibroblasts and collagen deposition
(Rieder et al., 2017; Laudadio et al., 2022). Under normal
circumstances, damaged colonic tissue undergoes a healing
process through the intestine. However, if the intestine continues
to sustain damage, it can result in chronic intestinal inflammation,
marked by persistent injury and repair, ultimately leading to
intestinal fibrosis (Wang R. et al., 2021). Intestinal fibrosis can
result in frequent luminal narrowing, severely compromising the
physiological function of the intestine and significantly impacting
the quality of life (Schwab et al., 2019). Current evidence suggests
that persistent inflammation is an important factor leading to
fibrosis, but anti-inflammatory treatment has not fully reduced
the overall incidence of intestinal fibrosis (Abraham et al., 2017;

Henderson et al., 2020). Therefore, anti-fibrosis drugs are necessary
to be developed.

Research suggests that up-regulating the expression of Nrf2 to
inhibit the TGF-β1/Smad pathway can ameliorate inflammation-
related intestinal fibrosis, underscoring the potential therapeutic
targeting of Nrf2 in alleviating intestinal fibrosis (Wang R. et al.,
2021). Previous studies have indicated that AT-III serves as an
effective activator of the Nrf2 transcription factor (Zhu and Li,
2012). Therefore, AT-III is anticipated to play a role in anti-
intestinal fibrosis through the Nrf2/TGF-β1/Smad pathway.
Another study also suggests that AT-III can inhibit epithelial
mesenchymal transition (EMT) in IEC-6 cells by activating the
AMPK signaling pathway, thereby suppressing cell migration
induced by TGF-β. Furthermore, AT-III exerts no inhibitory
effect on IEC-6 cell proliferation at dosages ranging from 1 to
20 μmol/L (Huang et al., 2022).

Moreover, several studies have indicated that ATs can exert
effective therapeutic effects in various fibrotic diseases. Experiments
conducted using an in vitro unilateral ureteral obstruction (UUO)
murine model have shown that AT-Ⅰ inhibits myofibroblast
phenotype and fibrotic development in the murine kidney by

TABLE 4 Changes in intestinal microbiota after treatment of ATs.

ATs Model Increased intestinal microbiota Decreased intestinal microbiota

AT-I
Treatment

Intestinal dysbiosis
mouse model

Lactobacillus; Bacteroides Escherichia; Candidatus

AT-I
Treatment

DSS Firmicutes phylum; Lactobacillus genus.; Erysipelatoclostridium
genus; Lachnospiraceae genus

Proteobacteria phylum; Helicobacter genus; Shigella genus;
Rodentibacter genus; Enterobacter genus

AT-III
Treatment

TNBS Bacteroidetes; Lactobacillus; Staphylococcus Actinobacteria; Oscillospira

FIGURE 2
Pharmacologic effects of ATs in ameliorating UC.
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targeting fibroblast-to-myofibroblast differentiation (FMD) as well
as EMT (Guo et al., 2021). Research on a bleomycin-induced
pulmonary fibrosis model in Sprague-Dawley rats has
demonstrated that AT-III mitigates oxidative stress and lung
fibrotic damage in the rat pulmonary fibrosis model by activating
the Nrf2/NQO1/HO-1 pathway (Huai and Ding, 2020). Current
experiments suggest that the upregulation of the Nrf2/NQO1/HO-
1 pathway can effectively ameliorate UC, rendering it a potential
therapeutic strategy for UC treatment (Amirshahrokhi and Imani,
2023; Ekhtiar et al., 2023). Hence, pending additional validation
through research, one mechanism by which AT-III exerts its anti-
intestinal fibrosis properties may be the stimulation of the Nrf2/
NQO1/HO-1 pathway. These findings collectively indicate that AT-
I and AT-III hold promise as potential drugs for the future treatment
of UC associated intestinal fibrosis.

4.7 Anti-thrombus

In the colonic tissues of both UC patients and experimental UC
animal models, platelet activation has been observed, leading to
increased thrombus formation by binding to the vascular
endothelium. Extraintestinal thrombosis is more common in the
DSS-induced UC animal, which also exhibits an increase in serum
coagulation markers. Thrombus formation results in ischemic
inflammation in the intestinal microvascular system, further
exacerbating tissue damage. Furthermore, research has indicated
a local increase in procoagulant and prothrombotic events within
the microvascular system of UC intestinal tissues, which is
associated with subclinical systemic thrombosis in patients.
Thrombus formation is a significant complication in

inflammatory bowel disease (IBD) patients, accounting for an
estimated 25% of IBD-related mortality causes. The risk of
thrombotic events is particularly elevated during disease flares
and periods of chronic inflammation. Therefore, thrombus
formation plays a crucial role in the progression of UC and
underscores the importance of early consideration of anti-
thrombotic therapy for UC patients (Nelson et al., 2023).

Research has shown that both AT-II and AT-III exhibit
significant anti-thrombotic effects. AT-II at a concentration of
10 μmol/L effectively inhibits in vitro aggregation of mouse and
human platelets stimulated by collagen. This effect is possibly
achieved by suppressing the PI3K-Akt pathway, thereby
inhibiting platelet activation (Chen et al., 2016a). Furthermore,
thromboxane analog (U46619)-induced human platelet
aggregation in vitro as well as adenosine triphosphate (ATP)
production from platelet-dense granules are markedly inhibited
by AT-III. The inhibitory effect is concentration-dependent, with
the most pronounced inhibition observed at an AT-III
concentration of 5 μmol/L. Further investigations suggest that
AT-III may inhibit platelet activation by influencing the MAPK
and PI3K-Akt pathways, thus mitigating thrombus formation (Chen
et al., 2016b).

AT-II and AT-III also significantly reduce the spreading of
human platelets on immobilized fibrinogen, delay clot retraction
in plasma, increase the time to initial occlusion in the FeCl3-induced
carotid artery thrombosis model in mice, and prolong bleeding time.
Research has additionally revealed that the inhibitory effects of AT-
II and AT-III on platelet activation are akin to the aspirin (Chen
et al., 2017). Consequently, AT-II and AT-III may be very promising
as therapeutic agents for the management of UC that is complicated
with thrombus formation, although more thorough investigation is

FIGURE 3
Mechanisms of ATs in the treatment of UC.
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needed to confirm this. Moreover, AT-II and AT-III’s anti-platelet
aggregation activities have significant therapeutic implications for
vascular thrombotic disorders and offer a possible path for the
creation of new anti-platelet medications.

4.8 Anti-angiogenesis

Angiogenesis is a hallmark of chronic inflammatory diseases
(Britzen-Laurent et al., 2023). Pathological analysis of human and
murine colitis tissues reveals significant alterations in the colonic
microvascular system, including vascular dilation, congestion,
edema, angiogenesis, microvascular occlusion, and the presence
of tortuous vessels of varying diameters (Haep et al., 2015).
These abnormal vascular changes precede the development of
mucosal ulcers and significantly amplify intestinal inflammatory
responses (Britzen-Laurent et al., 2023). In the colitis tissues of both
mice and humans, vessels formed under the backdrop of chronic
inflammation often exhibit an immature phenotype and are
frequently associated with excessive thrombosis or vascular
constriction (Langer et al., 2019). Therefore, the pathological
generation of blood vessels both enhances inflammation and
impairs mucosal healing, making it a critical factor in the chronic
progression of UC (Sandor et al., 2006).

The application of anti-angiogenic agents is advantageous in the
treatment of inflammatory diseases to some extent (Herrera-Gómez
et al., 2022). Studies indicate that most quiescent and moderately
active IBD patients exhibit good tolerance to anti-VEGF therapy. In
vivo and vitro experiments based on inflammation models show that
AT-I effectively inhibits angiogenesis in chronic inflammation by
reducing the expression of NO, TNF-α, IL-1β, IL-6, VEGF and PIGF
(Wang et al., 2009b). Research also suggests that AT-III exerts its
anti-angiogenic effects through the direct inhibition of endothelial
cells in vitro and vivo. Thus, inhibition of angiogenesis may be one of
the mechanisms by which AT-I and AT-III exert their anti-UC
effects. However, further validation is required to elucidate their
efficacy and mechanisms.

4.9 Colitis-associated colorectal cancer

Colitis-associated colorectal cancer (CAC) is a malignant
condition of the colon that arises due to recurrent episodes of
chronic intestinal inflammation. It represents one of the most
severe complications of UC (Beaugerie and Itzkowitz, 2015).
Chronic inflammation is recognized as one of the primary factors
contributing to the development of cancer in humans, and long-
term, irreversible damage to the gastrointestinal structure and
function in UC patients elevates the risk of developing colorectal
cancer (Wang S. Q. et al., 2019). Previous research has indicated a
positive correlation between the incidence of colorectal cancer in
Asian UC patients and the duration of their UC. As the duration of
the disease increases, the incidence of colorectal cancer gradually
rises. CAC differs from sporadic colorectal cancer in terms of its
more severe pathological characteristics, worse prognosis, and a
greater number of lesions (Terzić et al., 2010). Consequently, the
reduction of UC duration, inhibition of inflammation-driven

carcinogenesis, and prevention of CAC development play pivotal
roles in the prevention and management of CAC.

Besides, AT-I has a pronounced inhibition of colon tumor
formation in the AOM/DSS mouse model. In vivo and vitro
experiments, AT-I treatment effectively suppresses colon tumor
volume growth in AOM/DSS-induced mice, significantly reduces
the cell viability of human HCT116 and SW480 cells, and induces
apoptosis. The mechanism underlying these effects is associated with
AT-I inhibiting the expression of NLRP3, Caspase-1, and ASC, as well
as the subsequent release of IL-1β (Qin et al., 2021). Previous research
has identified SIRT6 as a target effector of AT-I through molecular
docking techniques. Further investigation reveals that AT-I enhances
the deacetylase activity of SIRT6 in hepatocytes, promoting PPARα
transcription and translation, thereby increasing the expression of its
target genes to expedite fatty acid oxidation. Simultaneously, AT-I
weakens NF-kB-mediated NLRP3 inflammasome formation,
macrophage infiltration, and the expression levels of inflammatory
cytokines such as TNF-α, IL-6 and IL-1β, thus suppressing hepatic
inflammation and steatosis. Additionally, knocking out SIRT6 genes
from mouse livers reduced the inhibitory effect of AT-I on
NLRP3 inflammasomes and inflammatory responses induced by
high-fat diets (Kong et al., 2022). Inflammasomes are believed to
mediate host defense against microbial pathogens while maintaining
intestinal homeostasis, excessive activation can lead to inflammatory
diseases such as CRC (Beaugerie and Itzkowitz, 2015). Therefore,
targeting the SIRT6/PPARα/NF-kB/NLRP3 pathway may be a
potential way for AT-I to exert its anti-inflammatory and anti-
cancer effects, which requires further validation. Studies also suggest
that the inhibitory effect of AT-I on CAC is related to blocking Drp1-
mediated mitochondrial fission (Qin et al., 2021). Thus, AT-I could
serve as a potential effective anti-cancer drug, playing an important role
in the treatment of UC and CAC.

Furthermore, research has reported that AT-Ⅰ exerts its anti-
colorectal cancer effects through multiple mechanisms, including
the inhibition of tumor cell proliferation, induction of cell death,
regulation of cancer stemness, and enhancement of cancer cell
immunogenicity (Li et al., 2020; Wang et al., 2020; Xu et al.,
2021). It holds promise as a potential drug for combating
colorectal cancer. AT-Ⅰ has inhibitory effects on various cancer
cell types, and studies indicate that it inhibits tumor cells in
breast cancer, lung cancer, ovarian cancer, and other
malignancies through multiple pathways (Yao et al., 2019).
Preliminary clinical trials using AT-Ⅰ purified extract in gastric
cancer patients with cachexia suggest that AT-I contributes to
alleviating cachexia symptoms (Liu et al., 2008). However,
current clinical evidence is insufficient, and further research at
the clinical level is required to confirm AT-I efficacy and safety.

AT-II can enhance the sensitivity of cancer cells to drugs. When
the concentration of AT-II reaches 150 mg/L, it significantly inhibits
the proliferation of colorectal cancer Lovo cells in a dose-dependent
manner. In regard to AT-III, studies indicate that AT-III can
promote the expression of pro-apoptotic genes such as Bax,
caspase-2, and caspase-9 while inhibiting the expression of anti-
apoptotic gene Bcl-2. It regulates the Bax/Bcl-2 apoptotic signaling
pathway, thus promoting cell apoptosis and significantly inhibiting
the growth of HCT-116 tumor xenografts in nudemice (Zhang et al.,
2022). Therefore, AT-II and AT-III also hold potential as drugs for
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combating colorectal cancer, and their role in CAC warrants further
research and evidence-based support. (Figures 4, 5).

5 Summary and perspectives

The latest findings show that ATs have both similarities and
distinctions in their pharmacological effects for treating UC. AT-I
and AT-III act as antagonists of the TLR4 receptor on white blood

cells, effectively reducing the release of pro-inflammatory factors
by blocking the TLR-4/NF-kB/MAPK pathway. This indicates
strong anti-inflammatory effects in experiments conducted
in vitro and in vivo (Ji et al., 2014; Ji et al., 2016). Nrf2, a
transcription factor, leading to notable antioxidant effects, can
be activated by AT-III. Both AT-II and AT-III can trigger the
Nrf2/HO-1 pathway to combat oxidative stress and improve
colonic inflammation (Ren et al., 2021a). While both AT-I and
AT-III can enhance beneficial bacteria abundance and diversity

FIGURE 4
Potential therapeutic mechanisms of ATs for UC and its complications. Note: These effects require validation in vivo.

FIGURE 5
Pharmacologic effects of AT-I and AT-Ⅲ in the treatment of UC and its complications.
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to modulate intestinal microbiota structure, their mechanisms
differ slightly (Zhu and Li, 2012; Qu et al., 2022). AT-I, AT-II,
and AT-III all promote epithelial cell repair to enhance intestinal
barrier function (Song et al., 2017), although any differences in
their repair-promoting effects remain unexplored at present.
Overall, ATs exhibit promising potential as therapeutic agents
for UC by significantly inhibiting its development through
various pathways.

Ulcerative colitis (UC) is a chronic, recurrent disease with
various complications that increase its clinical severity. Preventing
and treating these complications are crucial in managing UC. AT-II
and AT-III have significant anti-thrombotic effects (Chen et al.,
2016a; Chen et al., 2016b), possibly through inhibiting the
activation of the PI3K-Akt pathway. Studies show that patients
with IBD have about three times higher risk of venous
thromboembolism (VTE) compared to normal individuals, which
increases during disease flares. Hospitalized IBD patients without
active bleeding during flare-ups are recommended anticoagulant
prophylaxis (Nguyen et al., 2014). AT-II and AT-III not only
alleviate inflammation in UC but also inhibit platelet activation
similarly to aspirin. They hold promise as potential drugs for
treating UC and its thrombotic complications. In terms of anti-
fibrosis effects, both AT-I and AT-III can inhibit EMT in IEC-6
cells and renal fibrosis through various pathways. Activation of
Nrf2 may be one of the targets that AT-III exerts its anti-intestinal
fibrosis effects (Huai and Ding, 2020; Guo et al., 2021; Huang et al.,
2022). Research on AT-II’s anti-fibrotic properties is lacking
currently. Both AT-I and AT-III possess anti-angiogenic effects
(Wang et al., 2009b), although their efficacy in treating UC and its
complications through this mechanism requires further validation.
Notably, studies have shown that ATs inhibit cancer progression by
targeting angiogenesis (Yang et al., 2021). Furthermore, CAC is one of
the most severe complications in the development of UC, making
effective prevention and treatment crucial (Keller et al., 2019).
Research shows that post-treatment with AT-I effectively inhibits
colon tumor growth in AOM/DSS-induced mice (Beaugerie and
Itzkowitz, 2015). Clinical trials using purified AT-I solution suggest
it helps alleviate cachexia symptoms in gastric cancer patients (Liu
et al., 2008).While the therapeutic effects of AT-II andAT-III on CAC
are not yet reported, their significant efficacy against colorectal
cancer has been observed in vitro and vivo experiment (Zhang
et al., 2022). Therefore, ATs not only have significant therapeutic
effects on UC but also show promising potential in treating its
complications, which could reduce the recurrence and improve the
cure rate of UC.

Although ATs have advantages in the treatment of UC, their
clinical application still has a long way to go. ATs are currently
understudied and more studies are still needed to validate the
efficacy and mechanisms of ATs in UC and its complications.
Additionally, in vitro experiments have shown that ATs can be
cytotoxic at certain doses (Ji et al., 2014; Huang et al., 2022).
Cytotoxicity does not necessarily indicate adverse clinical
reactions to the botanical drugs. However, experimental dosages
of ATs (ranging from 5 to 50 mg/kg) vary among studies, making it
difficult to determine the appropriate dosage range for treating UC.
Therefore, further investigation on dosages and duration through
controlled variables is necessary to provide guidance for safe clinical
application. Lastly, current animal experiment results may not fully

represent clinical effectiveness, and high-quality clinical trials are
needed in the future to validate the safety and efficacy of ATs.

Furthermore, based on the current research findings of ATs,
potential future research directions could be explored. Firstly, there
are variations in the therapeutic effects among different ATs, thus,
further validation is needed to determine if combining ATs could
enhance treatment effects. Secondly, studies have shown that using
ATs alone or in combination with cytotoxic drugs can help treat
cancer or reduce side effects of radiotherapy and chemotherapy
(Bailly, 2021). As the therapeutic advantages of ATs in UC and its
complications, they may potentially serve as ideal adjunct
medications for other UC treatments in the future, synergistically
enhancing efficacy or reducing toxicity. In conclusion, ATs deserve
further research in the future.
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Glossary

UC Ulcerative colitis

ATs Atractylenolides

CYP450 cytochrome P450

Pgp P-glycoprotein

Tmax peak time

Cmax maximum concentration

AUC area under the curve

Ka absorption rate

ROS reactive oxygen species

T1/2 half-life

CLz/F clearance rate

COX-2 cyclooxygenase-2

iNOS induced NO synthase

LPS Lipopolysaccharide

NO Nitric oxide

PGE2 Prostaglandin E2

TNF-α Tumor necrosis factor alpha

IL-6 Interleukin-6

NF-kB Nuclear transcription factor-kappa B

ERK1/2 extracellular regulated protein kinases1/2

p38 p38 mitogen-activated protein kinase

TLR4 Toll-like receptor 4

MyD88 myeloiddifferentiationfactor88

MAPK mitogen-activated protein kinase

JNK c-Jun N-terminal kinase

IL-1β Interleukin-1β

INF-γ Interferon-gamma

H4R H4 receptor

TSLP thymic stromal lymphopoietin

IL-8 Interleukin-8

TNBS Trinitro-benzene-sulfonic acid

MDA malondialdehyde

CAT catalase

SOD superoxide dismutase

GPx glutathione peroxidase

FPR1 formy1 peptide receptor 1

Nrf2 nuclear factor erythroid 2-related factor 2

Keap1 Kelch-like ECH-associated protein 1

ARE anti-oxidant response elements

HO-1 heme oxygenase-1

IEC intestinal epithelial cells

MUC2 Mucin 2

zo-1 zonula occludens-1

MMP-2 Matrix metalloproteinases-2

MMP-9 Matrix metalloproteinases-9

PGC-1α Receptor-γ coactivator 1-α

DSS Dextran Sulfate Sodium Salt

SIRT1 sirtuin 1

AMPK AMP-activated protein kinase

TGF-β1 transforming growth factor-β1

EMT epithelial mesenchymal transition

UUO unilateral ureteral obstruction

FMD fibroblast-to-myofibroblast differentiation

NQO1 NAD(P)H quinone oxidoreductase-1

IBD Inflammatory Bowel Diseases

PI3K/
Akt

Phosphatidylinositol 3-kinase/protein kinase B

U46619 thromboxane analog

ATP adenosine triphosphate

VEGF Vascular endothelial growth factor

PIGF Placental growth factor

CAC Colitis-associated colorectal cancer

SIRT6 sirtuin 6

AOM Azoxymethane

HCT116 Human colorectal carcinoma

SW480 Human colon adenocarcinoma cells

NLRP3 NOD-like receptor thermal protein domain associated protein 3

ASC Apoptosis-associated speck-like protein

PPARα Peroxisome proliferator-activated receptor alpha

Drp1 dynamin-relatedprotein 1

Bcl-2 B-cell lymphoma-2

Bax BcL2-associated X protein

VTE venous thromboembolism

SASP Sulfasalazine

PMACI phorbol 12-myristate 13 acetate (PMA) and calcium ionophore A23187
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