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Synthetic lethality (SL) is widely used to discover the anti-cancer drug targets.
However, the identification of SL interactions through wet experiments is costly
and inefficient. Hence, the development of efficient and high-accuracy
computational methods for SL interactions prediction is of great significance.
In this study, we propose MPASL, a multi-perspective learning knowledge graph
attention network to enhance synthetic lethality prediction. MPASL utilizes
knowledge graph hierarchy propagation to explore multi-source neighbor
nodes related to genes. The knowledge graph ripple propagation expands
gene representations through existing gene SL preference sets. MPASL can
learn the gene representations from both gene-entity perspective and entity-
entity perspective. Specifically, based on the aggregation method, we learn to
obtain gene-oriented entity embeddings. Then, the gene representations are
refined by comparing the various layer-wise neighborhood features of entities
using the discrepancy contrastive technique. Finally, the learned gene
representation is applied in SL prediction. Experimental results demonstrated
that MPASL outperforms several state-of-the-art methods. Additionally, case
studies have validated the effectiveness of MPASL in identifying SL interactions
between genes.
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1 Introduction

Cancer is a genetic disease caused by the accumulation of multiple mutations resulting
from the interaction of internal and external factors (Barabási et al., 2011). Traditional
cancer treatments such as chemotherapy often have serious side effects and harm healthy
cells (Hanahan and Weinberg, 2011). Synthetic lethality (SL) is a genetic interaction that
kills cancer cells selectively without damaging healthy cells (Boone et al., 2007; Hartwell
et al., 1997; Iglehart and Silver, 2009). SL offers a tremendous depth of research
opportunities for anti-cancer drug development and targeted cancer therapy, with
researchers making great efforts to identify SL pairs. Discovering SL gene pairs relies
heavily on high-throughput wet-lab screening techniques including RNAi screening (Bartz
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et al., 2006; Luo et al., 2009; Gregory et al., 2010; Blank et al., 2013;
Chang et al., 2016) and CRISPR screening (Han et al., 2017; Shen
et al., 2017). However, lab experiment-based screening methods are
time-consuming and expensive and increase the risk of off-target
effects (Liu et al., 2019). Thus, there is an urgent need for efficient
and economical methods to overcome the deficiencies of high-
throughput screening techniques (Huang et al., 2019).

To overcome these limitations, a several computational methods
have been developed for SL prediction. These methods fall into two
categories: (i) knowledge-based methods and (ii) supervised
machine-learning methods (Zhu et al., 2023). Knowledge-based
methods rely on prior knowledge or assumptions (i.e., gene
mutations (Lu et al., 2020) or CNVs (Lu et al., 2018)) to detect
SL pairs. For example, Zhang et al. (Zhang et al., 2015) proposed a
combination of data-driven models with signaling pathway
knowledge to discover SL interaction pairs by simulating the
effects of gene knockout on cell death. Srihari et al. (Srihari et al.,
2015) used copy-number and gene expression data to identify SL
interactions. However, knowledge-based methods do not
comprehensively utilize underlying patterns of known SL
interactions. Machine learning methods such as decision trees
(Wong et al., 2004), support vector machines (Paladugu et al.,
2008; Qi et al., 2008), random forests (Das et al., 2019), and
ensemble classifiers (Pandey et al., 2010; Wu et al., 2014)
expedite the identification of SL pairs are challenging to apply to
large-scale data due to the complex matrix operations.

Tremendous developments in deep learning-based methods
have shown them to be effective in many biomedical tasks,
including drug-target prediction (Mohamed et al., 2020), drug-
disease prediction (Yu et al., 2021) and drug synergy prediction
(Zhang et al., 2023) along with successful applications in SL
prediction (Huang et al., 2019; Liu et al., 2019; Cai et al., 2020;
Liany et al., 2020; Hao et al., 2021; Long et al., 2021). For example,
Long et al. (Long et al., 2021) proposed a graph contextualized
attention network to predict SL interactions. This model deploys a
dual-attention mechanism to capture the importance of neighbors
and feature graphs for node representation learning. Cai et al. (Cai
et al., 2020) modeled SL interactions as a graph and adopted a dual-
drop GNN to address the sparsity of SL networks. However, most of
these methods are limited in the expressive capacity of
homogeneous graphs.

Knowledge graphs (KGs) are multi-relational heterogeneous
graphs where the nodes and edges correspond to different types
of entities and relations, respectively (Wang et al., 2017; 2019b).
They overcome the limitations of homogeneous graphs by using rich
semantic information between graph entities to discover potential
relations. These have begun to equip bioinformaticians with
powerful weapons for combining heterogeneous data plainly for
SL pairs prediction. Wang et al. (Wang et al., 2021) presented a
KGNN-based model, KG4SL, to predict SL interactions. It uses
independent knowledge embeddings to capture the underlying
biological mechanisms of interconnected SL pairs. Zhu et al.
(Zhu et al., 2023) utilized relations in knowledge graphs to
represent SL-related factors and learned latent representations of
genes through message aggregation. It is evident that employing KG
entities such as gene, pathway and their neighbors yields a more
accurate embedding representation, but previously KG-based

methods ignore the preferences of existing SL interactions and
layer-wise differences of entities.

To solve these problems, we develop a novel end-to-end SL
prediction model, MPASL, based on multi-perspective learning
knowledge graph attention network. Our model consists of four
main modules. First, we find gene neighbors via KG hierarchy
propagation. Second, KG ripple propagation exploits existing SL
interactions preferences to obtain gene representations with finer
granularity. Third, MPASL enhances gene representations through a
mixed perspective of gene-entity and entity-entity interactions.
Specifically, in gene-entity interaction, the knowledge graph
relation attention mechanism is designed to score and aggregate
gene-oriented entity embeddings to characterize the importance of
relationships and informativeness for each entity. Then, the entity
enhancement layer obtains the gene-oriented entity embeddings by
aggregating the embedding representations of entities and genes.
Subsequently, in entity-entity interaction, the discrepancy
contrastive layer refine entity embeddings by comparing the
various layer-wise neighborhood features of entities, and the
attention aggregator obtains the final gene embedding
representations by assigning different weight coefficients to the
entities. Finally, the objective function using the embedded
representation of genes is defined to obtain the predictive scores
for unobserved SL pairs.

The contributions of this work are described as follows.

• We propose a novel end-to-end KG-based framework named
MPASL, which synthetically and effectively uses ripple
propagation and a mixed perspective of gene-entity and
entity-entity interactions to learn gene embeddings in the KG.

• To capture the preferences of existing SL interactions and
discover potential hierarchical interests of genes, we introduce
ripple propagation, which helps to rationally extend the
potential interactions of genes and enrich the
representation of genes.

• Considering the layer-wise differences between entities, a
mixed perspective module obtains a more informative
representation of genes from entity-entity perspective by
comparing the layer-wise entity embeddings gained from
gene-entity perspective learning.

• Comprehensive in silico experiments on SynLethDB dataset
demonstrate that our MPASL model consistently outperforms
other state-of-the-art methods.

The remainder of this paper is organized as follows. The
proposed method and the dataset we used are presented in
Section 2. Section 3 presented the results and discussion, and
Section 4 concluded the paper and discussed the further work.

2 Materials and methods

In this section, we introduce the MPASLmodel. First, we discuss
the SL prediction problem. Second, we introduce the dataset used by
our model. Then, we provide a detailed explanation of the MPASL
model framework and its components. Finally, we discuss the
predictions of SL made by the MPASL model.
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2.1 Problem formulation

We model the SL interactions using an SL graph represented by
GSL � (V, E), where V represents a set of genes, |V| is the number of
genes involved in SL pairs, and E denotes a set of interactions
between SL pairs. We use a matrix A ∈ {0,1}|V|×|V| to represent the
adjacency matrix of the SL graph. In this adjacency matrix, if there is
an SL interaction between Gene m and Gene n, then Amn = 1 and
0 otherwise.

In addition to the synthetic lethality between a pair of genes,
we consider the auxiliary information of the genes and other
related entities in the form of a knowledge graph. The knowledge
graph, SynLethKG, is modeled as a heterogeneous graph, with
nodes representing diverse entities and edges capturing the
relationships between these entities. SynLethKG is
represented by GKG � (N, E), where N corresponds to a set
of nodes of an entity, E ∈ N × R × N represents the set of
interactions from the set of relations R in the KG between two
entities in N. Each edge is modeled as a triple T =
{(h, r, t)|h, t ∈ N , r ∈ E} of entities and relations. For an
entity-relation-entity triplet, h, r, and t denote the head
entity, relationship, and tail entity of the triple, respectively,
with head entities h ∈ N , tail entities t ∈ N , and relation entities
r ∈ E. For example, (Lung adenocarcinoma, Associates, SMAD7)
indicates that SMAD7 is associated with lung adenocarcinoma
(Yeung et al., 2016; Dai et al., 2020). In the graph, nodes
represent entities and edges represent relationships from the
head entity node to the tail entity node.

Given the SL graph GSL and the KG of synthetic lethality GKG,
the task is to predict whether there exists a synthetic lethal
relationship between genes m and n. This is done by learning
a mapping function ŷmn � F(m, n;Θ;G), which automatically
generates gene embeddings from SynLethKG GKG and
estimates the probability of SL interaction between gene m
and n in the SL graph GSL to identify potential SL pairs,
where Θ represents the weight parameter of the model
function F .

2.2 Dataset description

SynLethDB (Wang et al., 2022) is a comprehensive and up-to-
date database that containing information on SL interactions. It
collects SL gene pairs from various sources, including
biochemical analysis, public databases (Schmidt et al., 2013;
Oughtred et al., 2019),computational predictions (Ryan et al.,
2014), and text mining. It covers SL gene pairs in humans and
four model organisms (mice, fruit flies, worms and yeast) and a
gene-related knowledge graph called SynLethKG, which
comprises 11 types of entities and 24 types of relationships.
SynLethKG collects a variety of relationships for genes
involved in synthetic lethal gene pairs, including gene-
compound associations, gene-cancer associations, and other
features about genes, drugs, and cancers, such as (Anatomy,
expresses, gene), (Disease, presents, symptom) and (Gene,
regulates, gene). In addition, 7 out of the 11 types of entities
are directly related to genes, namely, anatomy, biological process,
cellular component, compound, disease, molecular function, and

pathway. According to (Wang et al., 2021), we used the same
synthetic lethality data and knowledge graph as it. The SL gene
pairs in SynLethDB have been widely used for training and
testing machine learning models for SL prediction. Since the
number of negative samples provided by SynLethDB for SL
interactions is much less than the number of positive samples,
we generated negative samples using the method used in KG4SL
(Wang et al., 2021), where an equal number of unknown gene
pairs were randomly selected as non-SL gene pairs to balance out
the difference in distribution between positive and negative
samples. In our study, we specifically focused on human SL
interactions. The final SL dataset we used included
72,804 gene pairs involving 10,004 genes. Additionally, the KG
used in our study had 54,012 nodes and 2,231,921 edges. Tables 1
and 2 summarize the statistics for SL and SynLethKG. Tables 3
and 4 show detailed information about the entities and
relationships of SynLethKG.

2.3 Framework design

The overall pipeline of MPASL is shown in Figure 1. The model
consists of four modules including knowledge graph hierarchy
propagation, knowledge graph ripple propagation, a mixed
perspective of gene-entity and entity-entity interactions module
and prediction module. In order to present the article more
clearly, a mixed perspective of gene-entity and entity-entity
interactions module is divided into two parts: gene-entity
interaction and entity-entity interaction.

(1) Knowledge graph hierarchy propagation. This layer maps
entities and relationships in the KG to vectors. We
then recursively explore the set of multi-source
neighbor nodes that are directly or indirectly related to
genes in the KG.

(2) Knowledge graph ripple propagation. In this module, we
introduce finer-grained entity embedding propagation
using the set of existing SL interaction preferences for
genes. This recursively extends the representation of
genes with supplementary edge information, allowing
for the automatic discovery of potential paths from
genes with SL interactions to candidate genes. This
approach connects the existing SL interaction set of
genes with the prediction records, bringing
interpretability to SL prediction.

(3) Gene-entity interaction. We split gene-entity interaction into
KG relation attention mechanism and an entity enhancement
layer. These layers score, aggregate, and update the
embeddings of specific genes and entities with their
neighborhood information, explicitly capturing the higher-
order structural information and similarities in the knowledge
graph and contributing to a stable learning process.

(4) Entity-entity interaction. We use a discrepancy contrastive
layer to hierarchically compare the connected information of
entities across different layers. We also employ an attention
aggregator to obtain different weight coefficients for
neighborhoods in the mixed perspective of entity.
Iteratively propagating and updating entity representations
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with multiple layers of information increases the diversity of
predicted embeddings.

(5) Prediction module. This module illustrates the learning and
prediction of SL, using a series of aggregated and updated
gene representations to compute prediction scores.

2.3.1 Knowledge graph hierarchy propagation
MPASL’s knowledge graph hierarchy propagation obtains a

set of multi-hop neighboring nodes for a set of genes. This layer
encodes the crucial hierarchical information into the gene
representations, enriching those representations constructed
from entities in the KG and including the existing set of SL
interactions.

The rich semantic connections between entities in the KG help
identify potential complex relationships between entities. These
complex relationships provide an additional perspective for
exploring SL genes, aiding in the discovery of potential
connections between genes and improving the accuracy of SL
prediction. Obtaining relevant gene information from the KG
requires information of associated entities having highly
correlated relationships. Essentially, the entities having SL
relationship with a gene provide at least some information about
gene attributes. By transforming and comparing genes with entities,
turning the related entity set obtained from existing SL interactions
into an initial seed set for propagation in the KG, we capture

information on gene-gene interactions. With the initial seed set,
we can propagate KG associations from near to far along the KG,
obtaining an extended entity set and a triple set of p-hops, effectively
enriching the potential vector representation of genes. In summary,
modeling gene representations by using relevant entities in the KG
enhances gene information.

TABLE 1 Statistical information on SL datasets.

No.of genes No.of interactions Positive pairs Negative pairs

SL data 10,004 72,804 36,402 36,402

TABLE 2 SynlethKG’s statistics.

Datasets Entity types Relationship types No.of nodes No.of edges

SynlethKG 11 24 54,012 2,231,921

TABLE 3 Details of entities in SynLethKG.

Type No.of entities

Anatomy 400

Biological process 12,703

Cellular component 1,670

Compound 2,065

Disease 136

Gene 25,260

Molecular function 3,203

Pathway 2,069

Pharmacologic class 377

Side effect 5,702

Symptom 427

TABLE 4 Details of relationships in SynLethKG.

Type No.of relationships

(Anatomy, downregulates, gene) 31

(Anatomy, express, gene) 6,17,175

(Anatomy, upregulates, gene) 26

(Compound, binds, gene) 16,323

(Compound, causes, side effect) 1,39,428

(Compound, downregulates, gene) 21,526

(Compound, palliates, disease) 384

(Compound, resembles, compound) 6,266

(Compound, treats, disease) 752

(Compound, upregulates, gene) 19,200

(Disease, associates, gene) 24,328

(Disease, downregulates, gene) 7,616

(Disease, localizes, anatomy) 3,373

(Disease, presents, symptom) 3,401

(Disease, resembles, disease) 404

(Disease, upregulates, gene) 7,730

(Gene, covaries, gene) 62,966

(Gene, interacts, gene) 1,47,638

(Gene, participates, biological process) 6,19,712

(Gene, participates, cellular component) 97,652

(Gene, participates, molecular function) 1,10,042

(Gene, participates, pathway) 57,441

(Gene, regulates, gene) 2,67,302

(Pharmacologic class, includes, compound) 1,205
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To do all of this, we first define the extended entity set of genes.
For the input gene o, the set of entities with SL interactions with that
input gene is treated as seeds in the KG. Then it extends along the
KG to form a set of p-hopped extended entity sets εpo of the gene o,
effectively expressing the interaction information of the potential
semantics of the entities. The adjacent entity sets of gene o can be
recursively represented as:

εpo � t| h, r, t( ) ∈ G and h ∈ εp−1o{ }, p � 1, 2, . . . , lp (1)

where p represents the distance from the initial set of entities.
ε0o � {o|ymn � 1} is the initial set of genes having SL relationships
with gene o and serves as the seed set of gene o in the KG. This design
emphasizes the original information of genes and reduces biases
caused by multiple propagation layers, making it more effective in
expanding potential vector representations of entities.

For a central gene in a KG subgraph, the set of entities ε0o �
{o|ymn � 1} that already have synthetic lethality relationships with
this gene is regarded as the starting point in the KG. The set of p-
hopping triplet propagation constructed with this starting point is
explored along the KG relationship:

Spo � h, r, t( )| h, r, t( ) ∈ G and h ∈ εp−1o{ }, p � 1, 2, . . . , lp (2)

It is meaningful to construct the model using knowledge graphs as
edge information, as adjacent entities can be seen as intuitive
extensions of gene features. The knowledge graph extends the
neighboring nodes in each layer, propagating layer by layer, from
near to far, effectively capturing high-order interactive information
based on the KG through hierarchy propagation. Symbolically, ε
consists solely of tail entities, S is a set of knowledge triplets, p
represents (one or more) hops, and lp is the number of hops. To
reduce the computational burden of MPASL, we use a fixed-size set
of neighbors (Wang et al., 2019b) for each entity instead of the
complete neighbor set.

2.3.2 Knowledge graph ripple propagation
We extend gene representations by supplementing auxiliary

information with a KG ripple propagation to model interactions
between genes in a finer grained manner. This technique relies on
traversing all relevant entities and associations along ripple
propagation in the KG. This process recursively captures the
topological neighborhood structure of the central entity in multi-
hop ripple sets. This helps to expand potential preference genes,
increase the diversity of predicted embeddings, and discover
potential SL relationships. When a given tail entity in the KG has
different head entities and relationships, it carries different
meanings and potential vector representations. The gene
representation of the KG ripple propagation is constructed from
the gene SL response Om generated by the triplet propagation set Sm
to explore the potential gene relationships.

To perform this operation, we first define the gene potential SL
response o0m for the 0-hop based on entity hi ∈ S1m, where hi
represents the head entity that has existing SL relationship with
gene m and S1m is the one-hop triplet propagation set of gene m
obtained from KG hierarchy propagation. Each gene n is assigned a
different weight towards the SL preference response of gene m:

o0m � ∑
hi∈s1m

aihi (3)

ai � sof t maxi Wa hi, n[ ]( ) (4)
whereWa is a trainable parameter. The vector o0m represents the 0th-
order response of known SL interactions of gene m with respect to
entity embedding n. In part C of Figure 1, we use the orange
rectangle to represent the 0th hop SL response, and the p-hop
(p ≥ 1) SL response is represented by the blue rectangle.

Second, apart from the 0th jump, gene embeddings m are
achieved by adding SL non-zero hop responses. The ripple set Spm
is a set of triples that are p hops away from the seed set ε0o. These

FIGURE 1
Architecture of MPASL. (A) KG. The KG assists SL prediction and consists of 11 kinds of entities and 24 kinds of relationships. (B) Knowledge graph
hierarchy propagation identifies sets of neighboring nodes for gene entities. Symbol e represents the initial entities associated with gene entities, which
are sets of tail entities directly related to genes. Multi-hop sets correspond to triples associated with genes. The knowledge-based higher-order
interaction information for genes is stored in thesemulti-hop sets. (C) Knowledge graph ripple propagation uses the KG tomodel gene embeddings
at a finer level. (D) Gene-entity interaction. D(1) A KG relation attention mechanism applies attention scoring to surrounding relations in a gene-specific
manner. D(2) The entity enhancement layer aggregates entity embeddings specific to genes to allocate different amounts of information to refine their
embeddings. (E) Entity-entity interaction. E(1) Discrepancy contrastive layer integrates different high-order connectivity information for genes in terms of
depth and width. E(2) The attention aggregator module employs an attention aggregator to assign different weight coefficients for different genes and
generate updated gene embeddings. (F) The prediction module outputs the predicted probabilities of synthetic lethality between genes.
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ripple sets are used to interact with the SL 0th-order response to
obtain the p hop response of gene m to SL. Given the gene
embedding n and the one-hop triplet propagation set S1m of gene
m, for each triplet (hi, ri, ti) in S1m, the associated probability is
assigned by comparing gene n with the head entity hi and relation ri
in the triplet propagation set S1m. Finally, after obtaining the
correlation probability ki, and the SL response opm of gene m is
calculated as a sum of the weighted tails corresponding to the
correlation probability ki. Finally, the vector opm is returned:

opm � ∑
hi,ri ,ti( )∈Spm

kiti, p � 1, 2, . . . , lp (5)

ki � sof t max nTrihi( ) � exp nTrihi( )∑
h,r,t( )∈S1m

exp nTrihi( ) (6)

where p > 0, hi ∈ RS, ri ∈ RS×S are the head entity hi and relation ri,
ti ∈ RS is the tail entity, and n ∈ RS is the embedding of gene n. In
the embedding relationship ri space, genes and entities may have
different similarities under different relationships, and the associated
probability ki can be regarded as measuring the degree of similarity
between genes n and entities hi in the space of relation ri.

We repeat the process of KG ripple propagation to obtain the
first-order response o1m of genesm and the second-order response o2m
of genes m, and this process can be iteratively performed on the
triplet propagation set Sim of genem in i = 1, . . . , p. After integrating
all gene preference responses opm, we generate the final embedding of
gene m by integrating all p-order responses:

om � concat o0m, o
1
m, . . . , o

p
m[ ]( ) (7)

m � woom + bo (8)

2.3.3 Gene-entity interaction
To capture the high-order similarities between gene-related entities

in the KG, we propose a gene-entity interaction module. It consists of
two parts: a KG relation attention mechanism and an entity
enhancement layer. Each entity in the KG has different neighboring
entities and relationships, leading to different meanings and potential
vector representations. Furthermore, there exist complex associations
among neighboring entities. We construct a weighted subgraph specific
to each SL-related gene from the KG, allowing us to focus on the
relevant entities. To capture entity embeddings, we apply a KG relation
attention mechanism that takes into account the relationships between
an entity and its individual neighbors, allowing us to describe the
importance of each relationship to a specific entity and provide a more
detailed understanding of its context. Additionally, we equip the gene-
specific entity embeddings with enhancement operations to stabilize the
latent representation of the entity in the embedding space.

2.3.3.1 KG relation attention mechanism
WhenMPASL collects information from the vicinity of gene n in

the KG, it scores each relation surrounding gene n in a manner
specific to genem. Thus, the genem-oriented manner can be viewed
as an early layer that increases the interaction of gene m with its
weighted subgraph center entity n, and then the gene-oriented KG
relation attention mechanism aggregates neighbor information in a
gene m-specific manner. For any central entity n in the weighted
subgraph oriented to gene m, different relationships have different

indication weights for an entity, and the key step is to identify
relevant nodes and determine the weight of edges to avoid assigning
the same weight to different neighbors in the process of information
aggregation. The weight of each edge is defined by a relation scoring
function specific to gene m, and the proposed KG relation attention
exploiting the information of gene m, gene n, and the relation to
determine which neighboring entity connected to gene n is more
informative. Therefore, each neighboring entity is weighted by
attention π, where m represents different known genes and rn,e
represents the relationship r from the entity n to the neighboring
entity e. We aggregate and weight each neighboring node of the
entity to generate the final representation n(N(n)) of any central
entity in the gene m-specific weighted subgraph:

n N n( )( ) � ∑
e∈N n( )

~πm
rn,e
e (9)

Assuming n is the central node, N(n) is a set of entities directly
connected to n, and the size of N(n) can vary greatly among all
entities. To maintain efficiency and consistency in each batch
calculation mode, we uniformly extract a fixed number of k
neighbors for each entity to represent its local structure (Wang
et al., 2019b), and repeat this process p times.

In a subgraph specific to gene m, for the SL pair (m, n), the
weight of the edge rm,n is calculated as πm

rn,e
, where e is one of the

entities specific to the genem subgraph, and e ∈N(n). In addition,m
and rn,e are feature embeddings of the gene m and relation rn,e, and
the attention score πmrn,e denotes the attention weight of the relation
rn,e with respect to the gene m. The higher the attention weight, the
more important the neighboring entity is, and the more informative
the neighboring entity connected to gene m becomes. The
incorporation of an attention mechanism, enables learning
different weights for different neighbors (Veličković et al., 2017).
To compute the attention scores of the neighbors in the weighted
subgraph π, we implement the function πm

rn,e
by means of a neural

network similar to the attention mechanism. To generate the final
function πmrn,e specific to any central entity of the weighted subgraph
of the gene m we use the following formulas:

z0 � ReLU W1 n‖rn,e( ) + b1( ) (10)
πm
rn,e

� σ W3ReLU W2z0 + b2( ) + b3( ) (11)

where ReLU is the nonlinear activation function, ‖ represents the
concatenation operation, and W and b are the trainable weights and
biases. Specifically,W1 and b1 in Eq. 10 represent the weight and bias
for the first layer of the neural network, while W2, b2, W3 and b3
denote the weights and biases for the second and output layers in Eq.
11, respectively. The nonlinear activation function σ is set as Sigmoid.

To make the attention coefficients among different entities
comparable (with the sum of the attention coefficient of all
adjacent nodes being 1), we use the softmax function to
normalize the coefficients of all entities e related to the gene n
(Veličković et al., 2017). The final attention score highlights the
neighboring nodes that should receive more attention to capture the
entity embedding. The softmax function can be expressed as:

~πm
rn,e

� π n, e( ) � sof tmax π n, e( )( ) � exp πm
rn,e

( )
∑

e′∈N n( )
exp πm

rn,e′
( ) (12)
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2.3.3.2 Entity enhancement layer
To further enhance the interaction between genes and entities, we

propose a gene-specific entity enhancement layer. Previous
approaches have neglected the effect of multiple entity embeddings
on gene richness and overlooked the comprehensive expression of
entities and genes. For different genes, KG entities have different
amounts of information to describe their properties. For example,
BNIP3 is a well-known tumor suppressor, while FTO, as an N6-
methyladenosine RNA demethylase, is upregulated in human breast
cancer. It has been observed that FTO suppresses cell apoptosis by
downregulating BNIP3 (Niu et al., 2019). Under hypoxic conditions,
the mRNA levels of BNIP3 increase in CHO cell lines, and this effect is
mediated byHif-1α (Bruick, 2000). Therefore, the entity enhancement
layer aggregates each entity with genes through an aggregation
operation to enhance and enrich the entity embeddings. The
enhancement function can be either linear or nonlinear:

~e � We agg e,m( )( ) + be (13)
~e � σ We agg e,m( )( ) + be( ) (14)

whereWe and be are the trainable weight matrix and bias, and agg is
a nonlinear activation function.

In this study, we implemented four types of aggregation
methods agg: RS × RS → RS are follows:

• Sum Aggregator (Wang et al., 2019b) refers to a process of
summing the representation vectors of two entities, and
applying a nonlinear transformation to the resulting vector:

~e � σ W e +m( ) + b( ) (15)

• Concat Aggregator (Wang et al., 2019b) combines the
representation vectors of two entities before applying a
nonlinear transformation:

~e � σ W · concat e,m( ) + b( ) (16)

• Pooling Aggregator (Glorot et al., 2011) calculates the
maximum value from multiple vectors within the same
dimension and subsequently applies a nonlinear
transformation:

agg e( )
pool � σ W · poolmax T 0( ) + b( ) (17)

• Top-k Aggregator (Kumar et al., 2009) efficiently aggregates
information from multiple sorted lists of vectors to compute
the top k objects:

~e � Top_K σ W e,m( ) + b( ), k( ) (18)
The function Top_K (data, k) extracts the top k data values in

order. As shown in Eq. 18, the top k values are taken after sorting the
vector σ(W (e, m) + b) in descending order.

2.3.4 Entity-entity interaction
The entity-entity interaction consists of a discrepancy contrastive

layer and an attention aggregator. The former focuses on capturing
higher-order connectivity between entities, hierarchically comparing
layered information to further improve entity embeddings. The latter
performs weighted aggregation of embedding to avoid noise caused by

excessive node embedding information, which could otherwise affect
prediction results.

2.3.4.1 Discrepancy contrastive layer
Our focus is on incorporating the latent information of

neighbors at different distances into the information comparison
at each layer, capturing higher-order message passing between
entities, and enhancing the representation of entity embeddings
through the overall differentiation of hierarchical entities. We
introduce the hierarchical modeling capabilities of the model in
terms of depth and width.

For depth, we integrate the gene ~ednw and neighborhood
information ~n(N(n))dw collected from different depths. By
comparing neighbors of different orders in high-order message
passing, each node receives potential vector representations from
neighboring nodes or further d-order neighbors. Then we aggregate
them into agg(·): RS × RS → RS to generate the mixed next-order
depth embedding ~ed+1nw

. Here, we use the Top-k Aggregator to
aggregate gene representations and their neighborhood information
into a single vector.

For width, the feature differences between entities located at
different width distances means this wide-layer feature difference
plays a critical role. In terms of the training space of the model, entity
features at different width levels should be compared (Abu-El-Haija
et al., 2019) so that the model can choose potential information by
comparing neighbors at various distances. Therefore, we perform a
contrastive mixed operation of neighborhood latent features within
different width distances. As the relevance of each layer in the
network varies, it is possible for entities to be connected to
neighboring nodes with different attributes or labels. We use the
width-layer matrix Mw to integrate the deep neighborhood
information (~e1nw , ~e2nw , . . . , ~ednw ) with different properties in a
layer-wise and progressively deeper manner, updating the high-
order embedding representation of wide layer entities ~e1nw+1 :

~e1nw+1 � Mw concat ~e1nw , ~e
2
nw
, . . . , ~ednw[ ]( )( ) (19)

~ed+1nw
� agg ~ednw , ~n N n( )( )dnw( ) (20)

2.3.4.2 Attention aggregator module
After l rounds of discrepancy contrastive layers, we obtain

multiple embedding representations of gene n. This module uses
the gene n representation set T n � ~e(1)nlw

, ~e(2)nlw
, . . . , ~e(i)nlw{ }, i �

0, 1, . . . , l to update the embedding of gene n uniformly. We use
an attention aggregator module that assigns different importance
levels to each embedding, avoiding giving each embedding the same
weight when aggregating information. For the potential features of
the gene n, the attention aggregator first learns the attention scores
for each embedding. Then, the scores are normalized to derive
weight coefficients for the embeddings. Finally, the attention
aggregator performs a weighted aggregation on all embedding
representations to update the embedding of the gene n:

α i( )
n � wT

6 tanh W6agg
en( )
pool( ) (21)

~α i( )
n � exp α i( )

n( )
∑T0

i′
exp α

i′( )
n( ) (22)
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n � σ W7 ∑
~e
i( )
nlw

∈T o

~α i( )
n ~enlw + b4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (23)

agg en( )
pool � σ W · poolmax T n( ) + b( ) (24)

where tanh is the nonlinear activation function assigned to the
prediction model. The parameters w6 ∈ RS and W6, W7 ∈ RS×S are
weight vector and weight matrices, respectively; b4 ∈ RS is the bias
term; and σ is the Sigmoid activation function.

2.3.5 Synthetic lethality prediction
After obtaining the final potential embeddings of genem and gene

n, MPASL combines the two latent features through the prediction
function fSL to obtain the final predicted probability that gene m and
gene n are SL relationships, where fSL is the inner product function. σ
is the Sigmoid function, which compresses the output to the range
between 0 and 1, indicating the probability of the SLs:

ŷmn � σ(fSL(m, n )) (25)

2.4 Objective function

We now consider the real-valued label function lm: E → R on
the KG, which is constrained to take a specific value lm(n) = ymn at
node n ∈ N ⊆ E. If gene m is found to be relevant to n, then lm(n) =
1, otherwise lm(n) = 0. We use label smoothness to act on the
supervised signals of regularized edge weights (Wang et al., 2019a):

R A( ) � ∑
m

R Am( ) � ∑
m

∑
n

J ymn, l̂m n( )( ) (26)

where Am aggregates the representation vectors of neighboring
entities. The ideal edge weight matrix A should reproduce the
true relevance labels of each entity while satisfying the
smoothness of relevancy labels. We combine the knowledge-
aware graph neural network with least squares regularization and
use negative sampling during the training process to optimize
MPASL. The complete loss function is obtained as:

L � ∑
m∈G

∑
n: ymn�1

J ymn, ŷmn( ) −∑Nm

i�1
EN i~P ni( ) J ymni, ŷmni

( )⎛⎝ ⎞⎠
+ γ‖F ‖22 + λR A( )

(27)
where the first term J is the cross-entropy loss, Nm is the

number of negative samples for genem; withNm = |{n: ymn = 1}|, and
P is a negative sampling distribution and follows a uniform
distribution. The second term is L2 regularization. The third part
R (·) corresponds to the label smoothness component, which can be
viewed as adding the constraint of edge weight A. Therefore, R (·)
serves as a regularization on A to assist in learning the edge weights.
λ and γ are balance hyperparameters.

3 Experiments and results

We compare the performance of theMPASL with several baseline
models to comprehensively evaluate its performance. Additionally, we

conducted parameter sensitivity analysis and ablation studies to
further investigate the model’s performance. The MPASL model
was implemented using Python 3.6 and TensorFlow 1.15.0. In the
SynLethDB dataset, we split the gene pairs into training, validation,
and test sets in a ratio of 7:1:2. We use the area under the ROC curve
(AUC) and the area under the precision-recall curve (AUPR) as
evaluation metrics to assess the predictive performance. Finally, we
present a case study to demonstrate the mechanisms of potential SL
interactions between two genes.

3.1 Parameter settings

We evaluated our model parameters using 5-fold cross-
validation and used a grid search to choose the optimal
hyperparameter settings. We tested the following MPASL
parameters: batch sizes ∈ 32, 64, 128, 256, 512, 1024, 2048{ },
learning rates ∈ 6 × 10−5, 10−4, 10−3, 10−2{ }, the entity embedding
dimensions ∈ 8, 16, 32, 64, 128, 256, 512{ }, the numbers of layers for
KG ripple propagation, and the depth and width of discrepancy
contrastive layers ∈ 1, 2, 3, 4, 5{ }, and the ripple preference set sizes
∈ 4, 8, 16, 32, 64{ }. After these tests, we set the number of KG
neighbor samples to 8, initialized the number of embedding
dimensions to 128, set the early stopping level to 5 and set the
regularization weight 1 × 10−8. Table 5 provides hyperparameter
settings in detail.

3.2 Comparison with previous studies

To validate the performance ofMPASL, we compared our model
with several recently proposed baseline methods for SL prediction.
These benchmark methods include SL2MF, GRSMF, DDGCN,
GCATSL, KG4SL, and SLGNN. It is worth noting that the first
four methods do not utilize KGs to generate gene embeddings.
We used the default settings specified in their original
implementations in our tests. Below are brief descriptions of
these comparison methods.

TABLE 5 The hyperparameter setting.

Parameter Setting

Batch size 512

Learning rate 6 × 10−5

dim 128

p_hop 2

depth 2

width 3

L2_weight 1 × 10−8

LS_weight 1 × 10−8

optimizer Adam

n_samples 8

ripple_set_size 8
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(1) SL2MF (Liu et al., 2019) uses logical matrix factorization and
further integrates gene similarity based on gene ontology
(GO) annotations to predict human SL interactions.

(2) GRSMF (Huang et al., 2019) is a graph regularized self-
representation matrix decomposition model predicting SL
interactions from regularized graphs of data from
different sources.

(3) DDGCN (Cai et al., 2020) predicts sparse SL interactions
using dual-dropout graph convolutional networks (GCNs).

(4) GCATSL (Long et al., 2021) performs SL prediction using a
graph contextual attention network.

(5) KG4SL (Wang et al., 2021) represents the first novel SL
interaction prediction model based on knowledge graphs
and graph neural networks, effectively leveraging rich
semantic information encoded in KGs.

(6) SLGNN (Zhu et al., 2023) is a factor-aware knowledge graph
neural network for learning gene embeddings and predicting
SL interactions.

It is also important to address the potential bias that may arise
when there are more positive than negative training pairs. In such
cases, many prediction algorithms achieve high performance on
the test set by simply manipulating the features of each pair. We
observed this situation in SL prediction methods as well. Reliable
estimation of prediction error is challenging, especially when the
model is uncertain and requires independent test subjects. These
test subjects must not participate in model construction or model
selection. A more effective approach is to utilize stratified nested
cross-validation (Preuer et al., 2018), where the test set is selected
to exclude synthetic lethality gene pairs, denoted as the “Leave out
synthetic lethality” setting. We used a 5-fold nested cross-
validation setup in which hyperparameters were selected in the
inner loop based on validation error, and then the best
performance model for the inner loop was evaluated on the
outer test fold to obtain performance estimates that were not
affected by hyperparameter selection.

Our model was experimented under two evaluation settings:
random cross-validation and stratified cross-validation. The
prediction results, denoted as “Random CV” and “Leave out
synthetic lethality”, are shown in Table 6. From the AUC
and AUPR scores, our MPASL outperformed the other

methods. Specifically, on the SynlethDB dataset, the MPASL
model achieved an AUC value of 0.9656 and an AUPR
value of 0.9798. In the Leave out synthetic lethality setting, the
MPASL model achieved an AUC of 0.8766 and an AUPR of
0.8941. These values surpassed those of other methods. For the
Leave out synthetic lethality, compared to the state-of-the-art
model SLGNN, MPASL improved performance by 2.73% in
AUC and 9.31% in AUPR. These results indicate that our
proposed MPASL model had a stronger generalization ability
and effectively enhanced the predictive performance of
synthetic lethality.

The superior predictive performance of MPASL is attributable
to several key factors. First, MPASL enriches gene representations
by leveraging existing SL interaction data and incorporating all
relevant entities present in the KG. It effectively integrates KG
hierarchy propagation and KG ripple propagation into gene
embeddings enhancing the gene embeddings. MPASL also
incorporates embeddings of relevant entities, weights the
neighboring entities and emphasizes the most important
entities, thus enriching the representation. In the process of
gathering KG information, MPASL considers and blends
hierarchical information and performs hierarchical contrast and
aggregation, enabling the modeling of nonlinear features and
higher-order interactions. This facilitates the integration of
various higher-order correlation information associated with
genes and neighboring entities, thereby capturing and
representing the intricate interactions among gene embeddings
more effectively.

3.3 Parameter sensitivity analysis

To gain a deeper understanding of MPASL, we researched the
effect of different components on the model’s performance. First,
we examined the effect of depth and width in the discrepancy
contrastive layer. Then, we explored the influence of different
entity embedding dimensions. Next, we studied the effect of
preference set sampling size for KG ripple propagation and the
effect of attention aggregator mechanism. All of the following
studies were conducted based on the “Leave out synthetic
lethality” setting.

TABLE 6 Performance comparison of MPASL and baselines.

Model Random CV Leave out synthetic lethality

AUC-ROC AUC-PR AUC-ROC AUC-PR

SL2MF 0.7812 ± 0.0034 0.8614 ± 0.0021 0.4604 ± 0.0045 0.5002 ± 0.0061

GRSMF 0.9184 ± 0.0039 0.9361 ± 0.0024 0.6951 ± 0.0037 0.7011 ± 0.0052

DDGCN 0.8491 ± 0.0106 0.8998 ± 0.0056 0.6402 ± 0.0335 0.6352 ± 0.0334

GCATSL 0.9122 ± 0.0108 0.9175 ± 0.0078 0.7056 ± 0.0292 0.7085 ± 0.0288

KG4SL 0.9446 ± 0.0009 0.9544 ± 0.0012 0.7272 ± 0.0005 0.7623 ± 0.0003

SLGNN 0.9620 ± 0.0023 0.9703 ± 0.0019 0.8493 ± 0.0046 0.8010 ± 0.0057

MPASL 0.9656 ± 0.0049 0.9798 ± 0.0032 0.8766 ± 0.0107 0.8941 ± 0.0042

Frontiers in Pharmacology frontiersin.org09

Zhang et al. 10.3389/fphar.2024.1398231

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1398231


3.3.1 Effect of the depth and width of discrepancy
contrastive layer

We evaluated the impact of the discrepancy contrastive
layer in MPASL by varying its depth and width. As shown in
Figures 2A, B, we conducted experiments within the range of {1,
2, 3, 4, 5}.

The results indicate that the performance is optimal when the
depth and width are 2 and 3, respectively. Specifically, sometimes
relying solely on first-order neighboring entities is insufficient to
fully explore the correlations and dependencies between entities.
When the depth or width is increased to 4 or 5 layers, more noise is
introduced into the model. Therefore, it is necessary to balance the
dependence of positive signals on distance and the noise of negative
signals to find an appropriate balance in terms of depth and width
allows for the exploration of potential embeddings of nodes as
comprehensively as possible.

3.3.2 Effect of the number of embedding
dimensions

We explored the effects of the number of embedding
dimensions on the performance of MPASL. As shown in
Figure 3, we observed that the AUC and AUPR were
maximized with 128 embedding dimensions. At larger numbers,
the AUC and AUPR values gradually declined. In this result, it is
indicates that within a particular range, increasing the embedding
dimension effectively encodes more information from the KG,
leading to improved performance in terms of AUC and AUPR.

However, exceeding the optimal embedding dimension results in
overfitting, leading to a decrease in predictive performance.
Therefore, we observed an initial upward trend followed by a
decline in the AUC and AUPR scores as the embedding dimension
continued to increase.

Based on these findings, the key is to strike a balance when
selecting the embedding dimensions for MPASL. Setting the
embedding dimensions to 128 appears to be the optimal choice
for capturing essential information from the KG while preserving
generalization ability. This finding emphasizes the importance of
appropriately adjusting the embedding dimension to achieve
optimal performance.

3.3.3 Effect of the KG ripple preference set size
We investigated the impact of different sample sizes for the

preference set used in the KG ripple propagation of MPASL. We

FIGURE 2
(A) Impact of depths of discrepancy contrastive layer (B) Impact
of widths of discrepancy contrastive layer.

FIGURE 3
Embedding dimension of AUC and AUPR.

FIGURE 4
Effect of different ripple preference set size.
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varied the sample sizes within the range of {4, 8, 16, 32, 64} and
analyzed their effects on the model performance. The results of the
analysis are shown in Figure 4.

The results indicate that MPASL performance is optimal when
the sample size of the preference set is set to 8. This means that a
smaller sample size of the preference set still allows MPASL to
capture sufficient information and effectively enhance gene
embeddings with a limited number of known SL interactions for
genes. As the preference set is further expanded, entities with lower
relevance to the genes start to be included, leading to inaccurate gene
embeddings and a decrease in performance. Therefore, selecting an
appropriate sample size for the preference set, striking a balance
between capturing sufficient relevant information as well as avoiding
the inclusion of irrelevant entities, maximizes performance.

3.3.4 Effect of aggregators
We evaluated the effect of different attention aggregators in

MPASL: Concat, Sum, Pool, and Top-k. These are labeled as
MPASL-con, MPASL-sum, MPASL-pool, and MPASL-top,
respectively, in our results. As shown in Table 7, the model
achieved best predictive performancewhen using the Top-k aggregator.

3.4 Ablation study

We verified the influence of the important components on the
performance of MPASL through an ablation study and designed the
following four of its variants. The following study was conducted
based on five-fold random cross-validation and stratified nested
cross-validation settings, expressed as “Random CV” and “Leave out
synthetic lethality” respectively.

(1) MPASLw/o RP: MPASL without the knowledge graph ripple
propagation.

(2) MPASLw/o EL(e): MPASL without the entity enhancement
layer to update entity embedding representation.

(3) MPASLw/o EL(att): MPASL without the attention aggregator to
allocate weight information for entity embedding
representation of different layers.

(4) MPASLw/o R(E): MPASL after deleting the entity and its
associated types of relationships.

We comparedMPASL with several of its variants, and the results
are given in Table 8. The performance achieved by the model in
different cases can be summarized as follows:

• A key component of MPASL is the knowledge graph ripple
propagation. We introduce the ripple propagation in order to

capture the preferences of existing SL interactions to enrich
the representation of genes. MPASLw/o RP, with the
proposed KG ripple propagation removed, achieved
significantly lower scores. This is because it only
considered entity embedding, ignoring the set of known
SL interactions of genes and the preferences of genes when
aggregating entities and relationships in KG. This
highlights the importance of the KG ripple propagation
in our SL prediction.

• To enhance gene-specific entity information, we used the
entity enhancement layer to enrich entity representations.
MPASL without the entity enhancement layer, MPASLw/o
EL(e) was significantly outperformed by MPASL. Table 8
confirms that the entity enhancement layer improves gene-
specific entity information and contributes to enhanced
performance.

• Removing the attention aggregator, MPASLw/o EL(att), also
worsened performance compared to MPASL. compared to
MPASL. Table 8 shows the importance of the attention
aggregator in capturing relatively important entities and
relationships from the KG, aiding in determining the
weights of neighboring messages.

• The performance of MPASLw/o R(E) with the removal of a
particular entity and associated relationship also decreases
compared to MPASL. The experimental results indicated that
entities and relations in SynLethKG are helpful for SL
prediction.

3.5 Case study

To further examine the performance ofMPASL, a case study was
conducted using the SynlethDB dataset. The training samples
included all observed known SL interactions, we used the
training model to predict the SL status of unknown gene pairs.
Unknown gene pairs were classified based on their prediction scores,
and literature evidence was sought in the biomedical literature to
support the predictions. We specifically focused on SL pairs
involving the cancer gene KRAS. KRAS is one of the most widely
screened genes for SL interactions and it ranks among the most
frequently mutated genes in humans, particularly in cases of cancer
(Downward, 2015). It is also a highly prioritized therapeutic target
due to its involvement in inducing cell stasis, apoptosis, and DNA
repair. In particular, we studied the top 20 SL pairs associated with
KRAS as shown in Table 9. Among these SL gene pairs, we selected
the KRAS-RAD50 gene pair from the test data for further analysis.
The protein encoded by the RAD50 gene plays a crucial role in
repairing DNA double-strand breaks. It interacts with MRE11 and
NBS1 to form a complex. This complex binds to DNA and displays
multiple enzymatic activities that are essential for functions such as
non-homologous end joining, DNA double-strand break repair,
activation of cell cycle checkpoints, maintenance of telomeres,
and facilitation of meiotic recombination. This highlights the
crucial role of these genes in cell growth and vitality, making it
reasonable to predict their SL relationship for cancer therapeutics. In
the case study, the predicted result for the KRAS-RAD50 gene pair
aligned with the known labels, demonstrating the accurate
predictive ability of MPASL for SL pairs and emphasizing the

TABLE 7 Effect of different attention aggregators.

Aggregators AUC-ROC AUC-PR

MPASL-con 0.8610 0.8767

MPASL-sum 0.8627 0.8832

MPASL-pool 0.8688 0.8857

MPASL-top 0.8766 0.8941
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potential therapeutic significance of the predicted KRAS-RAD50 SL
pair in cancer treatment.

Table 9 consists of five columns. The first two columns represent
the predicted genes that have an SL relationship, and the third
column provides the PubMed ID of publications supporting the
prediction. The fourth column presents the specific evidence or
rationale behind each predicted SL interaction. Finally, the last
column indicates the specific cell lines where the SL interaction
has been observed.

Figure 5 illustrates the enrichment analysis results of the KRAS
SL gene pathway. It highlights several important biological
functions, including rRNA processing, protein phosphorylation,

cellular response to DNA damage stimulus and histone
modification. These enriched biological functions are closely
associated with the expression of the KRAS gene and its impact
on cellular proliferation or death. rRNA serves as the main
component of ribosomes that synthesize proteins in cells. The
proteins and enzymes encoded by genes are involved in the
synthesis and processing of rRNA, regulating and promoting
the maturation of rRNA. Gene expression levels and regulation
can also affect the rate and efficiency of rRNA synthesis and
processing. Protein phosphorylation is a vital regulatory
mechanism involved in modulating diverse cellular signaling
pathways. Consequently, protein kinases and phosphatases have

TABLE 8 Performance comparison between different variants.

Methods Random CV Leave out synthetic lethality

AUC-ROC AUC-PR AUC-ROC AUC-PR

MPASLw/o RP 0.9395 0.9423 0.5614 0.5797

MPASLw/o EL(e) 0.9476 0.9556 0.8172 0.8274

MPASLw/o EL(att) 0.9543 0.9674 0.8271 0.8346

MPASLw/o R(E) 0.9616 0.9743 0.8601 0.8739

MPASL 0.9656 0.9798 0.8766 0.8941

TABLE 9 Top Synthetic lethality gene pairs containing KRAS predicted by MPASL.

Gene 1 Gene 2 PubMed ID Source Cell line

KRAS SCARF1 19490893 GenomeRNAi DLD-1

KRAS VDAC1 17568748 Synlethality Human lung cancer

KRAS IPMK 27655641 RNAi Screen NA

KRAS ZNF200 24104479 Text Mining COAD

KRAS GRK3 24104479 Text Mining COAD

KRAS NUDT9 28700943 High Throughput NA

KRAS SNRPD3 24104479 Text Mining COAD

KRAS RAD50 24104479 Text Mining COAD

KRAS PARP1 20976469 Text Mining cancer_D009369

KRAS PCK1 27655641 RNAi Screen NA

KRAS SNRPD3 24104479 Text Mining COAD

KRAS RPL10 28700943 High Throughput NA

KRAS VGLL2 19490893 GenomeRNAi DLD-1

KRAS TOB1 24104479 Text Mining COAD

KRAS PCYT2 24104479 Text Mining COAD

KRAS RPL7A 24104479 Text Mining COAD

KRAS DGKA 27655641 RNAi Screen NA

KRAS TRIB3 27655641 RNAi Screen NA

KRAS STARD10 19490893 GenomeRNAi DLD-1

KRAS MSL2 19490893 GenomeRNAi DLD-1
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emerged as significant targets for the development of therapeutic
drugs. The cellular response to DNA damage stimulus necessitates
the coordinated action of multiple DNA repair pathways.
Exploiting the specific dependency of tumor cells on certain
DNA repair pathways forms the basis for developing synthetic
lethality-based anti-cancer research approaches. Histones
contribute to maintaining DNA structure, safeguarding genetic
information, and regulating gene expression, and the imbalance of
histone modifications is highly correlated with tumor initiation
and progression. KRAS plays a critical role in these processes
(Manček-Keber et al., 2012; Brubaker et al., 2019). This
enrichment analysis of the KRAS synthetic lethality gene
pathway validates the predictive capability of MPASL and offers
greater insight into the underlying mechanisms behind
synthetic lethality.

4 Conclusion

In recent years, synthetic lethality has been successfully used in
targeted therapy of tumors and plays an important role in targeted
cancer therapy. In this study, we propose a novel SL interaction
prediction model called MPASL. Based on known gene information,
MPASL uses features from existing SL interaction preferences to
update the gene embeddings. It also incorporates gene-entity
interaction and entity-entity interaction to enrich entity
embedding representation from the KG. It considers inter-layer
entity comparisons and gene-related labels to better explore gene
representations, stabilize the learning process on the KG, and
enhance the predictive ability of the model. The experimental
results show MPASL outperforms existing methods.

Pre-training strategies may help improve model performance
and interpretability. Therefore, our future work will explore
pre-training techniques that automatically learn features to help

solve problems such as prior knowledge to extract high-quality gene
embedding representations.
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