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Oral leukoplakia (OLK) is the most common oral precancerous lesion, and 3%–17%
of OLK patients progress to oral squamous cell carcinoma. OLK is susceptible to
recurrence and has no effective treatment. However, conventional drugs have
significant side effects and limitations. Therefore, it is important to identify drugs
that target OLK. In this study, scavenger receptor A (SR-A) was found to be
abnormally highly expressed in the oral mucosal epithelial cells of OLK patients,
whereas molecular biology studies revealed that low molecular weight fucoidan
(LMWF) promoted apoptosis of dysplastic oral keratinocytes (DOK) and inhibited
the growth and migration of DOK, and the inhibitory effect of LMWF on OLK was
achieved by regulating the SR-A/Wnt signaling axis and related genes. Based on the
above results and the special situation of the oral environment, we constructed
LMWF/poly(caprolactone-co-lactide) nanofiber membranes with different
structures for the in-situ treatment of OLK using electrospinning technology.
The results showed that the nanofiber membranes with a shell-core structure
had the best physicochemical properties, biocompatibility, and therapeutic effect,
which optimized the LMWF drug delivery and ensured the effective concentration
of the drug at the target point, thus achieving precise treatment of local lesions in
the oral cavity. This has potential application value in inhibiting the development
of OLK.
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1 Introduction

Oral leukoplakia (OLK) is the most common precancerous oral cavity lesion,
predominantly affecting middle-aged and older adults (Farah, 2021). Studies have
shown that OLK has malignant potential, with 3%–17% of patients developing oral
squamous cell carcinoma (OSCC) (Weber et al., 2020). Cures for OLK, such as
exfoliating medicines and surgery, have limitations and may result in traumatic
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surfaces. Therefore, it is necessary to design amedication that targets
OLK and suppresses its development without side effects. Research
has demonstrated that the polarization and infiltration of
macrophages are necessary for OLK development (Weber et al.,
2020). As a unique receptor on the surface of macrophages, the
scavenger receptor (SR) plays a significant role in lipid metabolism
and the pathological processes involving macrophages. However,
the effects of the SR on oral diseases require further investigation.
SR-A, a class A SR, triggers the host’s innate immune response by
identifying the chemical patterns of various pathogens (Xiang et al.,
2020). SR-A is a possible molecular marker of rheumatoid arthritis
that contributes to its development (Hu et al., 2020). Therefore, SR-
Amay serve as a molecular marker and therapeutic target for several
clinical disorders. Our previous study revealed that patients with
OLK exhibited a significant quantity of SR-A-positive expression in
all layers of epithelial cells compared to the normal human oral
epithelium. Therefore, we hypothesized that SR-A plays a role in the
malignant transformation of the oral epithelium, thereby affecting
and promoting the development of OLK. Identifying an SR-A ligand
analog to prevent SR-A expression may be a new approach for the
treatment of OLK.

Laminaria japonica has long been used in Chinese medicine, and
fucoidan, a natural extract of Laminaria japonica, has been applied
in many fields (Lee et al., 2017; Fitton et al., 2019). The biological
activity of fucoidan varies with the degree of sulfation, molecular
weight, sulfation mode, and glycosidic branching. Owing to its
distinctive structure, it is a natural ligand for several proteins,
including SR-A and selectin. It exhibits various biological
activities, including anti-inflammatory, antioxidant, and anti-
tumor activities (Yang et al., 2022). Studies have shown that low
molecular weight fucoidan (LMWF) can bind SR-A targeting to
control macrophage immunological activity and other associated
consequences, thus curing clinical disorders (Nishinaka et al., 2020;
Zhu X. et al., 2021; Cui et al., 2022; Sun et al., 2022) and altering the
expression of several signaling pathways (Boo et al., 2013; Xu et al.,
2019). One of these significant signaling pathways, the Wnt/β-
catenin signaling pathway, is crucial in oral disorders. Oral
mucosal diseases can develop into malignancies because of the
aberrant activation of the Wnt pathway (Liu and Millar, 2010).
In relevant research, Wnt3, β-catenin, and cyclin D1 have all been
found in OLK tissues, indicating that the Wnt pathway may be
implicated in OLK development (Ishida et al., 2007).

Due to the unique oral environment, variables such as saliva and
food affect the therapeutic effect of medications on oral mucosal
lesions. LMWF is significantly diluted in the oral cavity because it is
a water-soluble heteropolysaccharide, and traditional therapies such
as oral administration and topical application cannot ensure an
effective drug concentration at the lesion. Therefore, there is an
urgent need to develop a novel oral mucosal drug delivery system to
improve the drug-loading pathway of LMWF and enhance its
efficiency in the oral mucosa. Nanomaterials have been widely
used as medicinal materials in recent years owing to their
superior physical qualities and drug-carrying capabilities.
Poly(caprolactone-co-lactide) (PLCL) has excellent
biocompatibility, mechanical characteristics, and degradation
properties (Li L. et al., 2022). It was discovered that PLCL/
Gelatin/epigallocatechin gallate (EGCG)/core–shell nanofiber
membranes composed of PLCL-loaded EGCG could maintain

medication release while promoting wound healing (Li A. et al.,
2022). However, the use of PLCL composite biomaterials for the
treatment of oral disorders has been insufficiently described. This
study aimed to investigate the molecular mechanism by which
LMWF inhibits the development of OLK and to use different
electrospinning techniques and a series of physicochemical
characterizations to prepare and screen novel LMWF/PLCL
nanofibrous membranes to optimize oral mucosal drug delivery
and achieve precise topical drug delivery. As a result, functionalized
nanofiber PLCL loaded with marine polysaccharide LMWF can be
employed as a biological patch to provide new concepts and
methods for LMWF-targeted therapy of OLK lesions.

2 materials and methods

2.1 Materials

LMWF (MW = 8,177 Da) was provided by the Institute of
Oceanography, Chinese Academy of Sciences (Qingdao, China).
Laminaria japonica cultured in Rongcheng (Shandong, China) was
collected, washed, transported to the laboratory, and extracted using
hot water distillation (Wang et al., 2009). The extracted LMWF was
analyzed using high-performance liquid chromatography, capillary
electrophoresis, monosaccharide composition analysis, methylation
analysis, periodate oxidation, and Smith degradation.

The following reagents were used: RNAi-interfering lentivirus
(LV-EGFP-RNAi) and negative control virus (LveGFP) were
constructed by Gikai Gene Chemistry Technology Ltd. (Shanghai,
China); CCK-8 kit was purchased from GLPBIO Co., Ltd.
(Montclair, CA, United States); Annexin-V-FITC/PI Apoptosis
Kit and Annexin V-APC/PI Apoptosis Kit were purchased from
Wuhan Jingrui Biotechnology Co., Ltd. (Wuhan, Hubei, China);
TRIzol kit was purchased from Sigma-Aldrich Co., Ltd. (St. Louis,
Missouri, United States); SYBR PreMix Ex TaqTMII,
PrimeScriptTM RT kits were purchased from Takara Biotech
Co., Ltd. (Kusatsu, Shiga, Japan); Primers were designed and
synthesized by Shanghai Biotechnology Co; β-catenin, TCF4, and
Frizzled 6 antibodies were purchased from Abcam (Cambridge,
United Kingdom); β-actin, SR-A antibodies was purchased from
Proteintech (Chicago, United States); AXIN1 antibody was
purchased from Cell Signaling Technology (Danvers, MA,
United States); Artificial saliva and Wnt/β-catenin signaling
pathway inhibitor IWR-1 were purchased from MedChemExpress
(Monmouth County, New Jersey, United States); PLCL (50:50, Mn:
300000) was purchased from Shenzhen Maiqi Biomaterials Co;
Hexafluoroisopropanol (HFIP) was purchased from Shanghai
Darui Fine Chemical Co; DMMB Taylor’s Blue was purchased
from Shanghai Maclean Biochemical Technology Co; Poly-L-
lysine Solution was purchased from Beijing Solexpro Technology
Co; L-polylysine (PLL) was purchased from Thermo Fisher
Scientific (Massachusetts, United States).

2.2 Patients and clinical specimens

Thirty clinical samples of OLK were chosen from the Oral
Mucosa Department of Qingdao Stomatological Hospital, and
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10 samples of healthy oral mucosa were used as controls (normal
group). Samples from the OLK group were obtained from patients
with pathologically proven OLK with HE staining and clinical
presentation. None of the patients had ever undergone relevant
therapy, and healthy oral mucosal tissues were obtained from
patients who have undertaken tooth extraction, implant
placement, or orthognathic surgery (Warnakulasuriya et al.,
2007). Based on the World Health Organization (2005) criteria
(Warnakulasuriya et al., 2021), OLK histology was categorized as
mild, moderate, or severe aberrant hyperplasia. The Medical Ethics
Committee of Qingdao Stomatological Hospital approved this
research project (2021KQYX032). Patients and their families
completed the informed consent forms, and all studies were
conducted in accordance with the Declaration of Helsinki.

2.3 Immunohistochemistry

OLK lesion tissues were collected, embedded in paraffin, and
sectioned at a thickness of 4 μm for immunohistochemical staining.
Five fields of view were randomly selected for each image, and
brownish-yellow granules were counted as positive cells. Image-Pro
Plus detected positive SR-A levels, and these values were expressed
as the average optical density (AOD).

2.4 Cell culture

The Wuhan University School of Medicine provided dysplastic
oral keratinocyte (DOK) cells and human oral keratinocyte (HOK)
cells. The HOK cells were cultured in a high-glucose DMEM
medium containing 10% fetal bovine serum and 1% Penicillin-
Streptomycin double antibiotic. The DOK cells were cultured in a
RPMI 1640 medium containing 10% fetal bovine serum and 1%
Penicillin-Streptomycin double antibiotic. All cells were cultured at
37°C, 5% CO2, and 70%–80% RH. Cells in the logarithmic growth
phase were used for subsequent experiments.

2.5 Lentivirus transfection

The DOK cells were seeded overnight in 24-well plates at a
density of 1 × 104 cells/well, and 500 μL of lentivirus dilution was
added to each well according to the multiplicity of infection
(MOI = 30) and virus titer (1 × 108 TU/mL). The cells were
divided into three groups: control, negative empty vector
(LVGFP), and SR-A knockout (LV-GFP-SR-A RNAi). The
transfection efficiency was evaluated after 72 h using the
fluorescence microscope CKX53 and further screened with
puromycin for subsequent experiments.

2.6 CCK-8 analysis

The DOK cells were seeded in 96-well plates at 0.5 × 104 cells/
well. The groups were incubated overnight for 24 h, according to the
manufacturer’s instructions. The absorbance of each group (OD)
was then measured at 450 nm using an 800TS enzyme labeler.

2.7 Colony formation assay

Cells from different groups were seeded in 6-well plates at 1 ×
103 cells/well density and incubated for 14 d. Next, the cells were
washed three times with phosphate-buffered saline (PBS), fixed in
100% methanol for 30 min, and stained with 1% crystal violet for
30 s. Three areas were randomly selected and observed via
microscopy.

2.8 Cell apoptosis

Cells from different groups were collected separately,
centrifuged at 1,000 rpm for 5 min, and washed once with PBS.
500 μL 1×Annexin V Binding Buffer working solution was added
and resuspended, and then 5 μL Annexin V-FITC and 5 μL
propidium iodide (PI) were added for staining, followed by
incubation for 15–20 min at room temperature in the dark. The
apoptosis rates were measured using a CytoFLEX flow cytometer.

2.9 Wound healing assay

Cells were seeded in 6-well plates at a density of 5 × 104 cells/well
and cultured until the cells were spread evenly over the well plates.
Scratches were marked perpendicular to the bottom of the well plate
and washed with PBS. The cells were then incubated with low serum
(<2%) RPMI1640 complete culture medium for 12 h. Records were
taken at 0 and 12 h. Scratch photographs of the different groups were
observed and analyzed. The mean values of the distances between
cells were calculated using ImageJ software, and all measurements
were repeated three times.

Wound healing rate %( ) � A0 − A1( )
A0

× 100 (1)

In the formula, A0 is the width value of the initial scratches; A1 is
the width value of current scratches.

2.10 RNA extraction and high-throughput
sequencing

The total RNA was extracted from the treated cells using TRIzol,
and the RNA concentration was measured using aMicro Drop ultra-
micro spectrophotometer. Relevant transcriptome sequencing was
performed by Beijing Allwegene Technology Co.

2.11 RT-qPCR analysis

RNA was extracted as described above. cDNA was synthesized
using a reverse transcription kit. All samples used GAPDH as an
internal reference, and the results were relatively quantified using
the 2-△△Ct method. The primers used were SR-A: 5′-TAG GCA
CTT GGG ATG TCT GA-3′ (forward) and 5′-GTC CTC AAT TTG
TAT TGG TGC T-3′ (reverse); CTNNB1:5′-GAG GAG ATG TAC
ATT CAG CAG A-3′ (forward) and 5′-GTT GAC CAC CCC TGC
ATA G-3′ (reverse); AXIN1:5′-TGG ATG ACC AAG ATG GGA
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TAA G-3′ (forward) and 5′-GAC ACG ATG CCA TTG TTA TCA
A-3′ (reverse); FZD6: 5′-GCC ACT GTG CCT TTG TGT GTT TG-
3′ (forward) and 5′-AAG CCG CTG AAG ACT CCA ATT CG-3′
(reverse); TCF4: 5′-TCC AGT CTT CCT CCG ATG TCC AC-3′
(forward) and 5′-GCT GCC CCG CTT CCT CTA TTT G-3′
(reverse); CTNNBIP1: 5′-TGC TGC GGA AGA TGG GAT CAA
AC-3′ (forward) and 5′-CTG GCT GAG CTG GCT GTT GAC-
3′ (reverse).

2.12 Western blot assay (WB)

The total protein from the different groups was extracted using a
RIPA lysis buffer, and the protein concentration was detected using
a BCA kit. SDS-PAGE was performed, and the protein was electro-
transferred to a polyvinylidene fluoride (PVDF) membrane. It was
blocked with 5% skim milk and incubated for 2 h at room
temperature and with primary antibody incubation overnight at
4°C. After washing with TBST, HRP-labeled protein bands were
visualized using an ECL kit. The bands were analyzed using ImageJ
software with β-actin as an internal reference.

2.13 Preparation and characterization of
LMWF/PLCL nanofiber membranes

2.13.1 Preparation of nanofiber membranes
Blended nanofiber membranes: Configuring 10% PLCL

solution, LMWF water solution was added to the spinning
solution with a final concentration of 50 ug/mL, and the blended
nanofiber membranes were prepared via uniaxial electrospinning.

Shell-core nanofiber membranes: By setting up 10% PLCL
solution as the shell layer solution and 50 μg/mL LMWF as the
core layer solution, with the flow rates of the solutions set to 1.0 mL/
h and 0.8 mL/h, respectively, the shell-core structured nanofiber
membranes were created via coaxial electrospinning.

Coated nanofiber membrane: 10% PLCL nanofibrous
membrane was prepared by uniaxial electrospinning, plasma
treating the surface of the fibrous membrane for 2 min,
immersion in 0.1% PLL solution for 2 h, rinsing with PBS, and
then immersion in 50 μg/mL LMWF aqueous solution at 4°C
overnight. Finally, it was dried.

Blank nanofiber membrane: PLCL nanofiber membranes were
prepared via uniaxial electrospinning using a 10% PLCL solution.

The above electrospinning process was set to 12 kV, the flow rate
was set to 1.0 mL/h, and the receiving distance was 15 cm, and it was
performed at a room temperature of 25°C and ambient humidity of
40%. The prepared fiber membranes were stored at −20°C.

2.13.2 Scanning electron microscopy (SEM)
The nanofiber membranes were cut into 1 cm × 1 cm samples for

gold spraying, and their morphologies were observed using scanning
electronmicroscopy (SEM). Fifty randomly selected nanofibers were
used to measure the diameter using the ImageJ software. The
diameter data were analyzed using Origin 9.0, and the diameter
distribution was plotted.

2.13.3 Transmission electron microscope (TEM)\
The electrospun nanofibers were sprayed onto a copper mesh.

After the organic solvent evaporated, the structure of the nanofiber
membrane was examined using TEM at an operating voltage
of 100 kV.

2.13.4 Fourier transform infrared
spectroscopy (FTIR)

The Fourier transform infrared spectroscopy (FTIR) spectra of
the samples in the range 500–4,000 cm−1 were characterized using a
Nicolet iN10 FTIR spectrometer with a scan resolution of 2 cm−1 and
32 scans. The results were analyzed using Origin 9.0.

2.13.5 Water contact angle (WCA)
The water contact angle (WCA) of the nanofiber membrane

was determined using a contact angle analyzer. After 5 μL
deionized water was placed over the nanofiber membrane,
which had been cut into a square with a surface area of
approximately 1 cm2, the angle between the tangent of the
water droplet and the nanofiber membrane was measured after
10 s. This procedure was repeated for each sample at three different
locations, and the mean and standard deviation of the WCA for
each sample were calculated.

2.13.6 Mechanical strength of the
nanofiber membrane

A universal material testing machine was used to evaluate the
mechanical properties of the nanofiber membranes. The nanofiber
membranes were cut into 1 cm × 5 cm rectangular samples and
tested at a tensile speed of 50 mm/min; the tensile data were
recorded and analyzed.

2.13.7 Drug loading efficiency and
encapsulation efficiency

The DMMB approach was used to detect the release of LMWF
(Amin et al., 2021; Liu et al., 2022). First, 250mLMilli-Qwater was used
to dissolve 4 mg DMMB dye. The obtained solution was mixed with
glycine (0.75 g) and sodium chloride (400mg), and the pHwas adjusted
to 3 by adding 1 N hydrochloric acid. Finally, the resultant solution was
filtered through a sterile filter film (0.22 μm), removing contaminants.
Utilizing a UV-visible spectrophotometer, the absorbance was
measured at 525 nm, and the standard curve (0–200 μg/mL) was
generated to estimate the LMWF concentration. The concentration of
LMWF in the solution was calculated according to the standard curve
(r2> 0.999) by taking 50mg of the sample from each of the three groups
of nanofibermembranes andmeasuring the absorbance at 525 nm after
thorough stirring in 5 mL artificial saliva. The theoretical content of
LMWF in the samples was calculated according to the ratio between the
components.

Drug loading efficiency ‰( ) � W1
W3

× 1000 (2)

Encapsulation efficiency %( ) � W2 −W1
W2

× 100 (3)

In the formula, W1 is the actual LMWF content; W2 is the
theoretical LMWF content; W3 is the sample mass.
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2.13.8 In vitro drug release
Three sets of nanofiber membranes (10 mg) were placed in 5 mL

of artificial saliva (pH = 6.8) and treated at a constant rate of 120 rpm
at 37°C using a thermostatic shaker (HNY-200B, Honor, Tianjin,
China). After removing 1 mL of solution at different time points,
1 mL of artificial saliva was added. The absorbance values (n = 3)
were measured at 525 nm using a UV-Vis spectrophotometer, and
the drug concentration and percentage cumulative drug release at
each time point were calculated from the standard curve equation
and analyzed using Origin 9.0 to plot the cumulative drug
release curve.

2.13.9 Degradation of nanofibrous membranes
To study the degradation of nanofiber membranes, nanofiber

membranes were immersed in artificial saliva and treated at a
constant rate of 120 rpm at 37°C using a thermostatic shaker for
3 days. Then, the surface morphology was observed by SEM after
natural drying.

2.14 Statistical analysis

All data were expressed as mean ± standard deviation (x ± SD),
and the experiments were statistically analyzed using the GraphPad
Prism 9.0 software. Differences between two groups were compared
using Student’s t-test, and differences between three or more data
groups were analyzed using one-way ANOVA. Error bars indicate
the SD of triplicate measurements for each group. Differences were
considered statistically significant at p < 0.05.

3 Results and discussion

3.1 Impact of SR-A in the development of
OLK occurrence

OLK is the most prevalent oral potentially malignant disease
(OPMD) with a global incidence of 4.1% (Aguirre-Urizar et al.,
2021). Genes, biomarkers, and risk factors (such as smoking,
drinking, and eating betel nuts) have been implicated in the
development of OLK (Neville and Day, 2002; Farah, 2021).
However, OLK has no valid prevention or treatment and is
highly susceptible to recurrence or adverse reactions (Lodi et al.,
2016). SR-A is expressed in various human cells and can activate the
host’s innate immune response by recognizing the molecular
patterns of different pathogens (PrabhuDas et al., 2017). To
investigate the effect of SR-A on OLK, SR-A expression in
normal mucosal and OLK tissues was examined using
immunohistochemistry. The results showed that SR-A was
expressed only in a small amount in the basal layer of the
mucosal epithelium in the normal population, whereas it was
expressed in most of the basal layer and a small portion of the
granular layer of the mucosal epithelium of the mildly dysplastic
mucosal epithelium; in the moderately dysplastic mucosal
epithelium it was expressed in all of the basal layer and a portion
of the granular layer; and it was expressed in large amounts
throughout the entire epithelium of the severely dysplastic
mucosal epithelium (Figure 1A). Figure 1B shows that the AOD

values of SR-A-positive expression were significantly higher in the
mild, moderate, and severe groups (0.221 ± 0.021, 0.29 ± 0.011, and
0.358 ± 0.027, respectively) when compared to the control group
(0.052 ± 0.014). The immunohistochemical results illustrated that
SR-A in the oral mucosal epithelium was abnormally highly
expressed in patients with OLK compared to the normal
population and increased with the degree of abnormal oral
epithelial hyperplasia. SR-A may be involved in the malignant
transformation of the oral epithelium, influencing and promoting
the development of OLK.

3.2 Establishment of the SR-A RNAi model
and the effect of SR-A on DOK cells

RNA interference-knockdown of target genes (RNAi) has
been used to develop new drugs and treat illnesses (Brioschi and
Banfi, 2018). To explore whether SR-A is a target site for the
regulation of OLK development, we established an SR-A RNAi
model by transfecting lentiviral vectors. Fluorescence
microscopy revealed that the SR-A RNAi and negative groups
had a significant quantity of green fluorescence present in nearly
every cell compared to the untransfected DOK cells, which
exhibited no green fluorescence (Figure 2A). Flow cytometry
assays showed enhanced FITC signaling in the SR-A RNAi- and
SR-A-negative groups compared to that in untransfected DOK
cells (Figure 2B). The results indicated that the SR-A RNAi
lentiviral particles were successfully transfected with high
transfection efficiency. The SR-A mRNA and protein
expression levels were considerably decreased in cells after
knockdown (Figures 2C, D). All the above findings showed
that the SR-A RNAi model was successfully established and
might be utilized in further research to confirm the impact of
SR-A on DOK cells.

SR-A, also known as macrophage SR 1 (MSR1), is primarily
found on the surface of different types of macrophages and is
critical for macrophage M2 polarization (Labonte et al., 2017). It is
involved in several diseases and processes, including cancer
(Gudgeon et al., 2022). According to previous studies, the
degree of macrophage M2 polarization is linked to the
development of OLK (Weber et al., 2020; Zhu Y. et al., 2021).
However, the precise effects of SR-A on OLK remain unknown.
Therefore, we employed SR-A RNAi as the experimental group
and DOK-negative cells as the control group and conducted
correlation experiments on both cell types to clarify the effect
of SR-A on OLK. Compared to the control group, DOK cells with
SR-A knockdown showed considerably reduced vitality and
capacity for cell colony formation (Figures 2E, F). Additionally,
the cell scratch experiment demonstrated that after knocking down
the SR-A gene, the migration capacity of DOK cells was
diminished compared to that of the control group (Figure 2H).
The flow assay was used to measure the apoptosis level in both
groups, and compared to the control group, the apoptosis rate of
DOK cells was considerably higher after SR-A knockdown
(Figure 2G). These results suggest that SR-A knockdown may
inhibit DOK growth and promote DOK apoptosis, which then
slows down the development of OLK, demonstrating that SR-A
could act as a critical factor in regulating OLK.
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3.3 General property analysis of LMWF

LMWF is a complex water-soluble sulfated polysaccharide with a
large molecular weight that is extracted from Laminaria japonica
(Wang et al., 2019). It has strong biological activities such as anti-
inflammatory and anti-cancer properties (Sanjeewa et al., 2017; Cui
et al., 2022). The relevant chemical properties and structure of LMWF
were first analyzed. With a molecular weight of 8,177 Da, LMWF had
a high content of fucose (35.07%) and sulfate (36.85%) and a low
content of glyoxylate (0.039%). Fucose (Fuc) and galactose (Gal)
comprised most of the monosaccharides (Table 1). Second, the
structure of LMWF was characterized in a previous study (Wang
et al., 2010). As shown in Figure 3, it was different from known
fucoidans. LMWF, which infers to LF2 in previous studies, contained
more (1→ 3) linkages than (1→ 4) linkages. The sulfate groups were
distributed non-uniformly and attached to C-3 and C-4 of galactose
rather than to C-2 and C-4 of fucose (Wu et al., 2021).

3.4 Effect of LMWF on DOK cells

Owing to its unique structure, LMWF is a natural ligand for
various proteins such as SR-A and selectin (Zhu X. et al., 2021). We
have previously found that LMWF inhibits SR-A-mediated lipid
uptake and activates multiple signaling pathways to facilitate the
development of atherosclerosis (Xu et al., 2019; Sun et al., 2022). These
results confirm that SR-A influences and promotes the development
of OLK. Therefore, it is speculated that the targeted binding of LMWF
to SR-Amay block the action of OLK. CCK8 trials revealed the effects
of LMWF at different concentrations (0 μg/mL, 50 μg/mL, 100 μg/mL,
and 200 μg/mL) on DOK and HOK cells (Bi et al., 2018). Figure 4A
shows that LMWF had a significantly inhibitory effect on DOK cells
compared with the control group at 50–200 μg/mL, whereas there was
no toxic effect on HOK cells. According to the principle of the drug
dose–effect relationship, LMWF at a concentration of 50 μg/mL was
selected as the concentration for subsequent experiments.

FIGURE 1
Impact of SR-A in the development of OLK occurrence. (A) Control: Representative pictures of oral epithelial immunohistochemistry in healthy
people; mild, moderate, and severe: representative images of the oral epithelium of OLK patients with different degrees of abnormal hyperplasia.
Brownish-yellow particles represented SR-A positive expressions. Scale bar = 200 μm. (B) AOD values of SR-A positive substances in control, mild,
moderate, and severe groups. Data were expressed as the means ± SD. ***p < 0.001 vs. Control group; ▲p < 0.05 vs. Moderate group; #p < 0.05 vs.
Mild group.
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FIGURE 2
Establishment of the SR-A RNAi model and the effect of SR-A on DOK cells. (A) Representative images of lentiviral transfection efficiency. Green
fluorescence indicates lentiviral vector particles. Scale bar = 200 μm. (B) Lentiviral transfection efficiency by flow cytometry assay. (C) and (D) ThemRNA
and protein expression levels of SR-A. (E) Colony-forming ability of DOK negative cells and SR-A RNAi groups (F) Cell viability in DOK negative cells and
SR-A RNAi groups (G) Apoptosis rates in DOK negative cells and SR-A RNAi groups (H)Migration ability in DOK negative cells and SR-A RNAi groups.
Scale bar = 200 μm. Data were expressed as the means ± SD. ***p < 0.001 vs. DOK negative group.
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To further investigate whether the inhibitory effect of LMWF on
DOK cells could be achieved by regulating the SR-A gene, DOK-
negative and SR-A RNAi cells were treated with LMWF separately.
DOK-negative cells without LMWF served as the control
group. Compared to the control group, DOK-negative and SR-A
RNAi cells treated with LMWF were considerably less viable and
had an insufficient ability to form colonies (Figures 4B, C).
Additionally, compared with the control group, the cell scratch
assay revealed that DOK-negative and SR-A RNAi cells were less
able to migrate after LMWF treatment (Figure 4E). Flow cytometry
results revealed a statistically significant increase in apoptosis rates
in both groups when LMWF was added, compared to the control
group (Figure 4D). These results suggest that LMWF promotes the
apoptosis of DOK cells and inhibits their proliferation and
migration. This indicates that LMWF has a potential therapeutic
effect in inhibiting the development of OLK, and that the inhibitory
effect of LMWF might be achieved through the regulation of SR-A.

3.5 Effect of LMWF on related signaling
pathways and genes

LMWF regulates multiple signaling pathways (Xu et al., 2019).
To further elucidate the regulation mechanism of the LMWF target
SR-A gene to block the development of OLK, DOK cells were
cultured using a culture medium with LMWF (50 μg/mL) and an
equal volume of culture medium for 24 h. Transcriptomes were then
subjected to high-throughput sequencing (Figure 5A). Venn
diagrams and volcano mapping revealed many differentially
expressed genes between the LMWF and control groups (Figures
5B, C). Gene ontology (GO) functional enrichment analysis showed
that various genes were involved in immune response, receptor-
ligand activity, and receptor regulator activity (Figure 5D). However,
the heat map and enriched KEGG pathway map revealed that
LMWF impacted some Wnt signaling pathway-related factors,

including Frizzled, APC, and GBP, as well as certain
inflammatory factors such as TNF-α and TGF-β (Figures 5E, F).
During evolution, the Wnt signaling pathway is a highly conserved
signaling pathway that regulates cell proliferation, apoptosis,
differentiation, migration, and genetic stability. This has potential
implications for the regulation of immune responses in the tumor
microenvironment (Pai et al., 2017). This pathway also involves
different degrees of abnormal hyperplasia and malignant
transformation in oral dysplasia (Reyes et al., 2020; Xie et al.,
2020). It was shown that the Wnt pathway has an essential role
in the malignant process of oral diseases such as OLK, oral mucosal
fibrosis, oral lichen planus, and oral erythema (Ejaz and Ghafoor,
2019), and its classical pathway-related components WNT3 and β-
catenin are overexpressed in OLK epithelial cells (Ishida et al., 2007),
suggesting that this pathway may be involved in the abnormal
hyperplasia of OLK oral epithelium (Zhang et al., 2017;
Bhattacharyya et al., 2021).

3.6 Effect of LMWF on SR-A/Wnt signaling
axis and related gene expression

Based on the previous results and the malignant transformation
role of Wnt in OLK, to explore the effects and mechanism of LMWF
on the SR-A/Wnt signaling axis, IWR-1 was selected as an inhibitor
of the Wnt signaling pathway. It could abort the turnover of Axin to
form the β-catenin disruption complex and then inhibit the activity
of the Wnt classical pathway (Chen et al., 2009). The expression
levels of SR-A-related proteins and the Wnt signaling pathway were
detected using RT-qPCR and WB. The results showed that the
mRNA levels of SR-A, CTNNB1, TCF4, and FZD6 decreased and
that of AXIN1 increased after LMWF treatment (Figures 6A–E).
These results were consistent with those of high-throughput
sequencing. This indicated that LMWF affected the expression of
SR-A and Wnt pathway-related genes to different degrees. After

TABLE 1 Chemical composition analysis (%, dry weight) of LMWF.

Sample Sulfate (%) Fucose (%) Uronic acid (%) Mw (Da) Neutral monosaccharide
composition (molar ratio)

Fuc Gal Xyl Glc

LMWF 36.85 35.07 0.039 8,177 1.000 0.094 0.026 0.015

FIGURE 3
Speculation on the structure of fucoidan sulfate in Laminaria japonica (Wang et al., 2010).
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treatment, the mRNA levels of both the SR-A and Wnt signaling
pathway-related genes were significantly altered. The variation in
mRNA levels in the LMWF + IWR-1 group was similar to that in the
LMWF and IWR-1 groups. Therefore, the above results indicate that
LMWF can reduce the expression of SR-A and has different
influences on the upstream and downstream genes of the Wnt
pathway, suggesting that the Wnt-related gene pathway might be
involved in the regulation of the SR-A gene by LMWF.

The WB results showed that the protein expression levels of SR-A,
CTNNB1, TCF4, and FZD6 were downregulated in the LMWF group
compared to those in the control group, which is consistent with the RT-
qPCR results. The protein expression levels of SR-A, CTNNB1, and
FZD6 were downregulated in the IWR-1 and LMWF + IWR-1 groups,
similar to those in the LMWFgroup (Figures 6G–I). However, the level of
TCF4 protein expression in the IWR-1 and IWR-1+LMWF groups was
opposite to that of gene transcription (Figures 6F, J). This may be related

to the function of TCF4. TCF4 is the most critical transcription factor in
the TCF/LEF family that binds to β-catenin to regulate transcription of
Wnt target genes (Wang Y. et al., 2022). However, several othermembers
of the TCF family (TCF1, LEF, and TCF3) can activate theWnt signaling
pathway via TCF4 (van Es et al., 2012; Wallmen et al., 2012). Therefore,
the addition of IWR-1may affect the different “wiring” of the intracellular
signaling mechanism, resulting in other TCF/LEF families undertaking
the role of TCF4. This resulted in increased TCF4 protein levels in the
IWR-1 and IWR-1+LMWF groups (Figures 6F, J). Surprisingly, the
overall protein expression level ofAXIN1was significantly downregulated
compared to that in the control group, in complete contrast to the RT-
qPCR results (Figures 6F, K). Thismay be due to the role of AXIN1 in the
formation of degradative complex bodies induced by tankyrase-associated
inhibitors, which remains unclear. Relevant studies have shown that
AXIN1 is not required for the formation of degradative complex bodies,
and it may predominate in mediating the transition from Wnt-off to

FIGURE 4
Effect of LMWF onDOK cells. (A) Effect of different concentrations of LMWFon the viability of DOK andHOK cells (B) Proliferative capacity of cells (C)
Colony-forming ability of different groups (D) Apoptosis rates of cells (E) Migration ability of cells. Scale bar = 200 μm. Data were expressed as the
means ± SD. ***p < 0.001, **p < 0.01 and *p < 0.05 vs. 0 μg/mL group; ▲▲▲p < 0.001 vs. DOK negative group; ###p < 0.001 and ##p < 0.01 vs. LMWF group.
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Wnt-on a state by being recruited to signalosomes (Leung et al., 2002;
Thorvaldsen et al., 2017); thus, its role may not be prominent at the
protein level. In conclusion, these results suggest that LMWF regulates the
SR-A/Wnt signaling axis and related gene expression to achieve a
therapeutic effect against OLK.

3.7 Construction and surface morphology of
LMWF/PLCL nanofiber membranes

Owing to the special characteristics of the oral environment, saliva
and diet can affect the effectiveness of drug treatments for OLK lesions
(Wang X. et al., 2022). As LMWF is a water-soluble heteropolysaccharide
that is rapidly diluted in the oral cavity (Tyeb et al., 2023), resulting in
drug loss, traditional therapeutic approaches, such as topical and oral

administration, cannot ensure effective drug concentration at the lesion
site. Electrospinning, an efficient drug delivery technique, has become
increasingly popular in recent years for the topical treatment of oral
problems (Edmans et al., 2020; Sadeghi et al., 2020). To achieve optimal
drug delivery, we developed novel LMWF/PLCL nanofiber membranes
using different electrospinning techniques (Figure 7A). According to the
SEM images, the nanofibers exhibited an interwoven mesh structure
without a bead-like structure, with smooth surfaces, uniform thickness,
and random distribution (Figure 7B). The TEM images showed that the
shell-core nanofiber membrane had an obvious shell-core structure. The
drug was encapsulated in the shell-layer material with an excellent drug-
carrying effect (Figure 7C). These results indicate that the spinning
solution with added LMWF can successfully spin nanofiber
membranes with no significant impact on the morphology of the
nanofiber surface. After evaluating the nanofiber diameter size (n ≥

FIGURE 5
Effect of LMWF on related signaling pathways and genes. (A) Schematic diagram of the high-throughput sequencing process. (B) Venn diagram of
differentially expressed genes (FPKM > 1). (C)Gene differential volcano plot. Red dots (upregulated) and green dots (downregulated) indicated genes with
significant differential expression. The horizontal coordinates represented gene expression fold changes in different samples, and the vertical coordinates
represented the statistical significance of the differences in gene expression changes. Blue dots denoted genes with negligible differential
expression. (D) The enriched GO term was the vertical coordinate, and the number of differentially expressed genes in that word was the horizontal
coordinate. Different colors denote various cellular components, molecular activities, and biological processes. (E)Map of the differential gene clustering.
Each row represented one gene, and each column represented one sample. The hue changes from red to green, indicating that lg (FPKM+1) went from
large to tiny. (F) Diagram of the metabolic pathway considerably enriched in the KEGG database; red boxes indicated differential genes.
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50)with ImageJ, the addition of LMWFwas found to have a specific effect
on the diameter of the nanofibers. The fiber diameters of the blended and
coated nanofiber membranes became coarser, whereas the diameter of
the shell-core nanofiber membranes decreased (Figure 7D).

3.8 Physicochemical characterization of
LMWF/PLCL nanofiber membranes

To further verify whether the nanofibrous membranes can be
adapted to a particular drug delivery environment in the oral cavity,
we conducted physicochemical characterization to comprehensively
screen out the best nanofibrous membranes suitable for the oral
mucosa. The functional groups and intermolecular interactions in
the LMWF and nanofiber membranes were determined by analyzing
their FTIR spectra. Figure 8A shows that LMWF exhibited
characteristic peaks at 1730 cm−1 (CO stretching band of acetyl
group), 1,630 cm−1 (C-O-O antisymmetric stretching band of
glucuronide carboxylate group), 1,250 cm−1 (S=O stretching band
of sulfate group), 1,020 cm−1 (C-O-C symmetric stretching band of
glycoside group), 825 cm−1 (C-O-S stretching band of sulfate group),

and 585 cm−1 (S=O bonded stretching band of sulfate group)
(Saravana et al., 2018; Fernando et al., 2020). For PLCL, the
representative absorption peaks at 1740 cm−1, 1,183 cm−1, and
1,090 cm−1 correspond to -COOR and C-O stretching vibrations,
and the other unique peak at 2,941 cm−1 represents the stretching
vibrations of -CH2 and -CH3 (Khan et al., 2019; Wang S. et al.,
2022). The characteristic peaks associated with LMWF in the
LMWF/PLCL nanofiber membranes may be due to the low
concentration of LMWF in the nanofibers, or the characteristic
peaks of LMWF may be obscured by the characteristic peaks of
PLCL. Compared to the control group, the absorption peaks of the
nanofiber membrane at 1,090 cm−1, 1,183 cm−1, 1740 cm−1, and
2,941 cm−1 gradually increased with the addition of the drug, and the
different degrees of increase may be related to the difference in
actual drug loading. As no new peaks or significant shifts appeared,
there was no chemical interaction between LMWF and PLCL, and
the nature of the interaction between the two substances was
physical. This proves that LMWF was successfully loaded onto
the nanofiber membrane.

Biocompatibility is closely related to the hydrophobicity of the
nanofiber membranes. The hydrophilicity of the nanofiber membranes

FIGURE 6
Effect of LMWF on the SR-A/Wnt signaling axis and related gene expression. (A–E) After different treatments, the expression of mRNA for SR-A,
CTNNB1, FZD6, TCF4, and AXIN1. (F) Representative protein expression bands for SR-A, CTNNB1, FZD6, TCF4, AXIN1, and β-actin. (G–K) Relative
expression levels of SR-A, CTNNB1, FZD6, TCF4, and AXIN1 proteins compared to β-actin. Data were expressed as the means ± SD. ***p < 0.001, **p <
0.01 and *p < 0.05 vs. DOK negative group.
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creates conditions for early cell attachment,making it easier for the drug
to interact with the cells (Li et al., 2012). WCA data showed that the
contact angle of the PLCLnanofibermembranewas 124.03 ± 1.47°. This
is because of the high proportion of hydrophobic groups in polymers.
The absence of hydrophilic groups makes the surface of the substance
extremely hydrophobic, adversely affecting its affinity for cells.
However, the hydrophilicity of the nanofiber membrane increased
with the addition of LMWF (Figure 8B). The use of composite
systems with synthetic and natural polymers provides superior
hydrophilicity compared to synthetic polymers alone because of the
role of functional groups, such as hydroxyl, carboxyl, amine, and sulfate
groups, which are frequent in natural polymers (Chandrasekaran et al.,
2011). The hydrophilicity of the nanofiber membrane was significantly
improved by the presence of sulfate and hydroxyl groups in LMWF (Lee
et al., 2012; Cunha and Grenha, 2016). The plasma modification of the
surface, which increased the hydrophilicity of the nanofiber membrane
surface to increase the physical adsorption effectiveness (Laurano et al.,
2019; Al-Dhahebi et al., 2020), resulted in the coated nanofiber
membrane’s best hydrophilicity of 51.34 ± 1.81°. In summary, the

three groups of nanofiber membranes were more hydrophilic, which
was conducive for adhesion to the oral mucosa.

The integrity and tensile strength of oral patches are critical when
they come in contact with the mucosal tissues surrounding the oral
cavity (Goyal et al., 2018). Based on tensile testing, the tensile strength of
PLCL nanofiber film was 27.7 ± 2.55 MPa, and the elongation at break
was 148.1% ± 8.82%. With the addition of LMWF, the tensile strength
of the LMWF/PLCL nanofiber membrane increased significantly and
the elongation at break decreased (Lee et al., 2012). The tensile strengths
of blended, coated, and shell-core nanofiber membranes were 39.42 ±
1.1 MPa, 34.28 ± 1.27MPa, and 33.45 ± 0.99MPa, respectively, and the
elongations at break were 99.63% ± 8.82%, 78.83% ± 8.09%, and
116.03% ± 6.36%, respectively (Figures 8C, D). The addition of
natural polymers, such as collagen and chitosan, to synthetic
polymers, such as PLCL and PCL, increased their tensile strength
and decreased their elongation at break (Lee et al., 2008; Li et al., 2012).
In conclusion, the mechanical properties of nanofibrous membranes
were improved by adding LMWF, and the shell-core nanofibrous
membranes maintained a high tensile strength and elongation at

FIGURE 7
Construction and surface morphology of LMWF/PLCL nanofiber membranes. (A) Schematic diagram of nanofiber membrane spinning process. (B)
SEM images of different nanofiber membranes. Scale bar = 50 μm. (C) TEM images of different nanofiber membranes. Scale bar = 500 nm. (D) Diameter
distribution of different nanofibers.
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break, with adequate strength and flexibility to adapt to the unique oral
environment.

The therapeutic action of pharmaceuticals at the lesion site depends
on the effectiveness of drug encapsulation and the drug-loading capacity
of the nanofibrous membranes. It can be observed from Figures 8F,G
that different electrospinning preparationmethods significantly affected
the drug-loading and encapsulation rates, and the trends of the drug-
loading and encapsulation rates of the three groups of nanofiber
membranes were consistent. The drug-loading rate of the blended
nanofiber membrane was 3.02‰ ± 0.05‰, and the encapsulation rate
was 75.56% ± 1.13%, the lowest among the three groups. The drug-
loading rate of the shell-core nanofibermembrane was 3.87‰± 0.08‰,

and the encapsulation rate was 92.04% ± 1.93%, the highest among the
three groups. Shell-core nanofiber membranes have a unique shell-core
structure, and the drug can be well wrapped in the core layer, resulting
in maximum drug-loading and encapsulation rates and a
corresponding increase in drug utilization (Li J. et al., 2022). This
suggests that LMWF can be successfully encapsulated in nanofibers
using the electrospinning technique, and both the drug-loading rate and
encapsulation efficiency can be improved.

The ability of nanofiber membranes to slow drug release is
critical for maintaining effective drug concentrations at the lesion
site. As shown in the drug release profile (Figure 8E), the drug release
from the nanofiber membranes varied widely. Within 2 h, the degree

FIGURE 8
Physicochemical characterization of LMWF/PLCL nanofiber membranes. (A) FTIR spectra of LMWF and nanofiber membranes. (B)WCA images and
analytical plots of different nanofiber membranes at 10 s. (C) Schematic diagram of the mechanical properties of nanofiber membranes. (D) Tensile
strength and elongation at break of nanofiber membranes. (E) Cumulative drug release curves of nanofiber membranes. (F) Encapsulation rate of
nanofiber membranes. (G) The drug loading rate of nanofiber membranes. (H) The change of fiber morphology after LMWF/PLCL nanofiber
membranes were soaked in artificial saliva. Scale bar = 50 μm ***p < 0.001, **p < 0.01 and *p < 0.05 vs. PLCL group.
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of sudden release of the blended and coated nanofiber membrane
drug was drastic, with cumulative release reaching 74.89% ± 1.01%
and 79.74% ± 1.15%, respectively, followed by a slow-release phase.
For the shell-core nanofiber membrane, because the core drug was
wrapped by the shell layer, the degree of sudden drug release was
more moderate, and the cumulative slow-release rate of the drug in
the sudden-release stage was 50.41% ± 1.02%, which then entered
into the slow-release phase. The cumulative sustained release rate at
48 h was 71.33% ± 1.15%, which was the best-sustained release
because there was still ample space for drug release.

In addition, the degradation of LMWF/PLCL nanofiber membranes
were tested and analyzed. After soaking in artificial saliva for 3 days, the
surface morphology of the nanofiber membranes was observed by
scanning electron microscope (Figure 8H). As expected, the
nanofibers are partially dissolved because LMWF is dissolved in the
nanofiber membranes. The undissolved part is PLCL, which acts as a
mechanical support. The degradation quality did not change obviously.
Nanofibers provide great flexibility in the selection of materials for drug
delivery applications. The polymer composition of nanofiber membrane
is the key to determine the kinetics of drug release (Jiffrin et al., 2022).
Both biodegradable and non-degradablematerials can control the release
rate of drugs through diffusion and degradation.

Based on the evaluation of the physicochemical properties of the
three groups of nanofibrous membranes mentioned above, the
nanofibrous membranes with a shell-core structure could satisfy
the unique drug delivery environment of the oral cavity and ensure
the effective drug concentration at the OLK lesion site. Therefore,
they were selected for the subsequent experiments.

3.9 Evaluation of biocompatibility and
treatment efficacy of LMWF/PLCL
nanofiber membranes

Biocompatibility is one of the most important
considerations in the evaluation of biomedical materials (Liu
et al., 2023). Therefore, we co-cultured HOK cells with
nanofiber membranes for 1, 3, and 5 d to evaluate their
biocompatibility via the CCK8 assay. As shown in Figure 9A,
the LMWF/PLCL group exhibited no significant toxicity to
HOK cells compared to the control group, indicating that
the nanofiber membrane had good cytocompatibility.
Similarly, the results of the CCK8 assay showed that the
nanofiber membrane significantly inhibited DOK cell growth
(Figure 9B). Flow cytometry results showed that the apoptosis
rate of the LMWF/PLCL group increased with time, reaching
18.93%, 23.98%, and 30.04% at 1, 3, and 5 d, respectively
(Figures 9C–E). Based on the above findings, it can be
concluded that the LMWF/PLCL nanofiber membrane has
good biocompatibility, and that the LMWF released from
this drug delivery system has the same therapeutic effect as
LMWF alone, but with a longer-lasting effect. This suggests that
the nanofiber membrane can slowly release LMWF and
maintain the effective concentration of the drug in the oral
lesion for an extended period without being destroyed by saliva
or food and without the need for repeated administration, thus
enabling long-term delivery of the drug in the oral
environment.

FIGURE 9
Evaluation of biocompatibility and treatment efficacy of LMWF/PLCL nanofibermembranes. (A) Effect of nanofibermembranes onHOK cell viability.
(B) Effect of nanofiber membranes on DOK cell viability. (C–E) The apoptosis rate of DOK cells co-cultured with nanofibrous membrane for 1, 3, and
5 days. ***p < 0.001, **p < 0.01 vs. Control group.
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4 Conclusion

In summary, this study demonstrated that SR-A has a significant
promotional role in the development of OLK, and that LMWF can
inhibit DOK cells by regulating the SR-A/Wnt signaling axis. Thus,
LMWF has the potential to be developed as a drug to prevent and treat
OLK. In addition, the LMWF/PLCL nanofiber membrane of the novel
shell-core structure was successfully developed for the special oral
environment using electrospinning technology, which had better
hydrophilicity, mechanical strength, drug-loading and encapsulation
rates, drug release rate, and good biocompatibility and bioactivity. It
maintained a high concentration of the effective drug at the lesion site in
the special oral environment and promoted the apoptosis of DOK cells.
Therefore, the novel shell-core-structured LMWF/PLCL nanofiber
membrane may be used as a therapeutic oral patch for OLK.
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