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Adiponectin is a pleiotropic cytokine predominantly derived from adipose tissue.
In addition to its role in regulating energy metabolism, adiponectin may also be
related to estrogen-dependent diseases, and many studies have confirmed its
involvement in mediating diverse biological processes, including apoptosis,
autophagy, inflammation, angiogenesis, and fibrosis, all of which are related to
the pathogenesis of endometriosis. Although many researchers have reported
low levels of adiponectin in patients with endometriosis and suggested that it may
serve as a protective factor against the development of the disease. Therefore, the
purpose of this review was to provide an up-to-date summary of the roles of
adiponectin and its downstream cytokines and signaling pathways in the
aforementioned biological processes. Further systematic studies on the
molecular and cellular mechanisms of action of adiponectin may provide
novel insights into the pathophysiology of endometriosis as well as potential
therapeutic targets.
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1 Introduction

Endometriosis (EMs), which is considered to be a benign form of gynecological cancer,
is a common gynecological disease caused by the invasive growth and development of active
endometrial tissue at sites outside of the uterus (Taylor et al., 2021). EMs is often
accompanied by chronic pelvic or sexual pain, dysuria, infertility, dysmenorrhea,
constipation, anxiety, and depression, among other symptoms, all of which can
seriously affect the quality of life and the physical and mental health of patients (Bulun
et al., 2019; Zondervan et al., 2020; Lamceva et al., 2023). In recent years, the incidence of
EMs has markedly increased, affecting approximately 10%–15% of women of childbearing
age globally, with a prevalence of up to 50% of women with infertility and 50%–80% of
women with pelvic pain (Mehedintu et al., 2014; Zondervan et al., 2018; Taylor et al., 2021).
The “retrograde menstruation theory,” which was first proposed by Sampson in 1927, is the
classical doctrine describing the etiology of EMs (Sampson, 1927). While the incidence of
retrograde menstruation is estimated to be approximately 90% in women of childbearing
age, the much lower proportion of women affected by EMs suggests that other factors may
be involved in its pathogenesis (Czyzyk et al., 2017). Inflammatory factors, immune
dysregulation, angiogenesis, fluctuating hormone levels, genetic and epigenetic factors,
environmental factors and other mechanisms, may contribute to the onset of the disease. In
recent years, the study of EMs has become a hot spot of gynecological research, but its
specific pathogenetic mechanisms are not yet fully understood.
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Adiponectin is a pleiotropic cytokine that is predominantly
secreted by adipose tissue and was initially considered to be an
important insulin sensitizer and regulator of energy homeostasis
(Wang and Scherer, 2016; Straub and Scherer, 2019). In recent years,
an increasing number of studies have investigated the role of
adiponectin in many diseases processes, and there is growing
evidence of its involvement in the regulation of apoptosis,
inflammation, angiogenesis, and fibrosis (Bråkenhielm et al.,
2004; Fang and Judd, 2018), and adiponectin may be associated
with estrogen-related diseases (Rizzo et al., 2020; Tsankof and
Tziomalos, 2022), all of which contribute to the pathogenesis of
EMs. Many studies have reported the presence of low adiponectin
levels in those with EMs. The purpose of this review was to provide a
detailed and up-to-date overview of the role of adiponectin in
apoptosis, autophagy, inflammatory responses, angiogenesis,
fibrosis, energy metabolism, and estrogen-related processes, and
its potential correlation with the pathogenesis of EMs.

2 Obesity, adipose tissue, and EMs

The overall degree of obesity or the distribution of adipose tissue
has been shown to be correlated with the development of EMs (Shah
et al., 2013b; Backonja et al., 2016). For example, Goetz et al.
demonstrated that the expression levels of four genes known to
be associated with weight loss [cytochrome P450 2R1 (CYP2R1),
fatty acid binding protein 4 (FABP4), mannose receptor C-Type I
(MRC1), and Rho-associated coiled-coil containing protein kinase 2
(ROCK2)] were upregulated in the livers of mice in an animal model
of EMS, whereas the expression levels of two genes associated with
obesity [insulin-like growth factor binding protein 1 (IGFBP1) and
monocyte to macrophage differentiation associated 2 (MMD2)]
were downregulated; in addition, the presence of EMs was
associated with a reduction in both the level of body fat and the
degree of weight gain (Goetz et al., 2016). Another study reported a
decrease in the proliferative ability of abdominal subcutaneous
adipocytes in patients with EMs (Zolbin et al., 2019). The
inflammatory response has also been shown to be intensified in
the retroperitoneal adipose tissue adjacent to lesions in patients with
pelvic EMs, and these changes were accompanied by a significant
upregulation of the expression levels of angiogenic factors and
inflammatory cytokines (Kubo et al., 2021). In addition, a
reduction in the number of adipose stem cells and lipid
dysfunction have been reported in a mouse model of EMs, which
can affect the body mass index (BMI) by modulating adipocytes and
lipid metabolism (Zolbin et al., 2019). There is a large body of
evidence that suggests the risk of EMs is negatively correlated with
the BMI (Vitonis et al., 2010; Backonja et al., 2016; Farland et al.,
2017; Holdsworth-Carson and Rogers, 2018; Pantelis et al., 2021),
with this negative correlation being intensified in women with
infertility (Shah et al., 2013a).

It is important to acknowledge, however, that some studies have
reported that the BMI had no effect on endometrial gene expression in
patients with EMs (Holdsworth-Carson et al., 2020), and the negative
correlation between EMs and BMI remains unexplained, as both have
been shown to be associated with hyperestrogenemia and systemic
inflammation, and obesity does not prevent the occurrence of EMs
(Holdsworth-Carson and Rogers, 2018; Pantelis et al., 2021). Some

studies have suggested that in addition to being a risk factor for the
disease (Tang et al., 2020), obesity may also exacerbate the condition in
clinical populations (Holdsworth-Carson et al., 2018). Collectively,
these findings suggest that multiple factors affect the correlations
between EMs, obesity, and the presence of adipose tissue (Figure 1).

3 Adiponectin

3.1 Overview, structure, and oligomers

Adipose tissue is a highly active endocrine organ that produces
and expresses various factors such as leptin, adiponectin, and
resistin, all of which participate in and coordinate a wide range
of pathophysiological processes, including immune responses,
inflammation, and energy metabolism (Kershaw and Flier, 2004).
Adiponectin is an adipocytokine found in high abundance in
peripheral blood, with a plasma concentration of 4–37 μg/mL,
accounting for 0.01%–0.05% of total serum proteins, a
concentration that is approximately a thousand times higher than
that of other hormones, including insulin and leptin (Fang and Judd,
2018; Ye et al., 2020). Adiponectin has had many monikers over the
years, including AdipoQ (Hu et al., 1996), apM1 (Maeda et al.,
1996), Acrp30 (Scherer et al., 1995), and gelatin-binding protein 28
(GBP-28) (Díez and Iglesias, 2003). In humans, full-length
adiponectin contains 244 amino acid residues and consists of an
amino-terminal signaling peptide (amino acids 1–18), a variable
region (amino acids 19–41), a collagen domain (amino acids
42–107), and a carboxy-terminal globular C1q head region
(amino acids 108–244) (Achari and Jain, 2017). The isolated
spherical C1q domain produced by protein hydrolysis, dubbed
globular adiponectin, exhibits confirmed biological activity
(Fruebis et al., 2001). As a monomer, adiponectin is difficult to
detect in the blood (Waki et al., 2003), and three kinds of polymers
can be found in the general circulation, including low-molecular
weight (LMW) polymers (trimers of ~90 kDa in size), medium-
molecular weight (MMW) polymers (hexamers of ~180 kDa), and
high-molecular weight (HMW) polymers (chains of
12–18 monomers, with a size of ~360–540 kDa) (Fang and Judd,
2018) (Figure 2). The LMW form can cross the filtration barrier
within the kidneys; therefore, adiponectin can be detected in the
urine of healthy individuals with normal renal function (Kim and
Park, 2019). However, in the general circulation, HMW and MMW
adiponectin are predominant, whereas concentrations of LMW
adiponectin tend to be much lower (Parker-Duffen et al., 2013).
Among them, HMW adiponectin is considered to be the main
bioactive complex of the various isoforms (Achari and Jain, 2017).
Globular adiponectin can also be detected in the plasma at low levels
in the general circulation (Fruebis et al., 2001). Three adiponectin
monomers combine via the C-terminal globular and collagen-like
structural domains to form a highly ordered LMW trimer, which can
further polymerize to formMMWhexamers and HMW compounds
(Magkos and Sidossis, 2007). Circulating adiponectin levels are not
constant, and serum concentrations have been shown to be higher
during the daytime than at night (Gavrila et al., 2003; Scheer et al.,
2010). In addition to these diurnal fluctuations, sex differences also
influence adiponectin levels, with concentrations being higher in
women than in men (Ohman-Hanson et al., 2016; Christen et al.,
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2018; Vučić Lovrenčić et al., 2020); this is particularly true in the case
of HMW and MMW adiponectin, the levels of which are more than
twice as high as in women (Peake et al., 2005). Higher circulating
testosterone levels in males may explain the sex-specific difference in
adiponectin concentrations after puberty (Handelsman et al., 2018),
as testosterone lowers total adiponectin concentrations in serum
(Nishizawa et al., 2002; Frederiksen et al., 2012; Yarrow et al., 2012).
Although adiponectin is produced by adipocytes, significantly
downregulated expression levels has been detected in the adipose
tissue of fatty mice and overweight humans (Hu et al., 1996), with
serum levels being negatively correlated with the BMI and fat
accumulation (Brooks et al., 2007).

3.2 Adiponectin receptors and functions

Adiponectin was initially identified as an insulin-sensitive adipose
factor related to the pathogenesis of metabolic syndrome; over time,
however, many studies have confirmed its anti-inflammatory, anti-
apoptotic, anti-fibrotic, and anti-angiogenic effects (Bråkenhielm et al.,
2004; Fang and Judd, 2018). Adiponectin signal transduction mainly
depends on receptor–ligand interactions, whereby adiponectin binds to
its homologous receptor and initiates the activation of intracellular
signaling cascades through the adenosine monophosphate-activated
protein kinase (AMPK), peroxisome proliferator-activated receptor

alpha (PPAR-α), phosphoinositide 3-kinase (PI3K)/protein kinase B
(Akt), mammalian target or rapamycin (mTOR), mitogen-activated
protein kinase (MAPK), signal transducer and nuclear factor kappa B
(NF-κB) pathways and other pathways (Choi et al., 2020).

To date, three adiponectin receptors have been identified,
including adiponectin receptor 1 (AdipoR1), adiponectin receptor
2 (AdipoR2), and T-cadherin (T-cad) (Yamauchi et al., 2003; Achari
and Jain, 2017). AdipoR1 is predominantly expressed in skeletal
muscle cells and acts as a high-affinity receptor for globular
adiponectin and a low-affinity receptor for full-length
adiponectin, whereas AdipoR2 is mainly expressed in hepatocytes
and serves as a medium-affinity receptor for both full-length and
globular adiponectin (Yamauchi et al., 2014). T-cad is mainly
expressed in endothelial and smooth muscle cells, acting
predominantly as a biologically active receptor that binds to
adiponectin in diverse tissues and organs, such as in muscle,
blood vessels, and the heart (Parker-Duffen et al., 2013; Clark
et al., 2017). Adiponectin and its receptors are widely expressed
in the hypothalamus, pituitary gland, and ovaries of humans, rats
and pigs, as well as in the placenta and uterus of humans, mice and
pigs, where they have been shown to functionally modulate the
female reproductive system (Caminos et al., 2005; Kos et al., 2007;
Rodriguez-Pacheco et al., 2007; Kim et al., 2011; Angelidis et al.,
2013; Kiezun et al., 2013; Maleszka et al., 2014; Smolinska et al.,
2014). As the characteristics of metabolic syndrome are associated

FIGURE 1
The correlation between EMs, obesity, and adipose tissue. There is a negative correlation between the risk of EMs and BMI. Adiponectin is produced
by adipocytes, and its level is negatively corelated with BMl and fat accumulation. Evidence shows that adiponectin is underexpressed in endometriosis,
and the two variables may exhibit a certain degree of correlation. Created with BioRender.com.
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with a number of reproductive disorders such as polycystic ovary
syndrome (PCOS), gestational diabetes mellitus, preeclampsia, EMs,
fetal growth restriction, and ovarian and endometrial cancers, their
pathogenesis may be influenced by adiponectin (Barbe et al., 2019).
AdipoR1 and AdipoR2 have been shown to be highly expressed in
the normal human endometrium during the mid-secretory phase
(i.e., during implantation), and adiponectin can induce the
phosphorylation of AMPK, inhibit the expression of interleukin
1 beta (IL-1β), and promote the secretion of interleukin 6 (IL-6),
interleukin 8 (IL-8), and monocyte chemoattractant protein 1
(MCP-1) in cultivated endometrial cells, suggesting that it may
play both physiological and pathological roles within the
endometrium (Takemura et al., 2006). In female mice,
adiponectin may induce preimplantation embryo development
and endometrial decidualization in an autocrine-, paracrine-, or
endocrine-dependent manner (Kim et al., 2011). Furthermore,
hypoadiponectinemia has been shown to be associated with an
increased risk of hormone-dependent cancers, such as
endometrial, ovarian, cervical, and breast cancers, as well as a
poor prognosis (Zeng et al., 2015; Tsankof and Tziomalos, 2022).

4 Evidence for the association of
adiponectin with EMs

Clinical studies, in vitro cell experiments, and animal
experimental studies have provided evidence for the association

between adiponectin and EMs. Clinical analysis has shown
differences in adiponectin levels in patients with EMs. Moreover,
studies have shown a decreased expression of adiponectin in patients
with EMs; however, the findings are still controversial (Table 1). For
example, Takemura et al. discovered a reduction in adiponectin
levels in both the serum and peritoneal fluid (PF) of patients with
EMs, with a particularly pronounced decrease in serum levels in
those in the advanced stages of the disease (stage III/IV) (Takemura
et al., 2005a,b). Similarly, another study reported lower serum levels
of adiponectin in patients with EMs compared with that in healthy
controls (Meng and Hao, 2020). However other researchers have
observed no significant differences in the serum and PF levels of
adiponectin between patients with infertility with and without
concomitant pelvic EMs (Pandey et al., 2010). Others have
reported no significant differential expression of adiponectin and
AdipoRs in ectopic endometrial tissues of patients with ovarian EMs
and patients with normal endometrial tissues who had undergone
hysterectomy to treat cervical fibroids or carcinoma in situ (Choi
et al., 2013). A meta-analysis published in 2021 that evaluated the
results of 25 studies confirmed that although there was no significant
association between the levels of adiponectin and disease severity,
the patients with EMs did exhibit significantly lower levels of
adiponectin and significantly higher levels of leptin compared to
the concentrations in the control groups (Zhao Z. et al., 2021).
Furthermore, a recent study that assessed adiponectin
concentrations in the plasma, PF, and endometrioma fluids of
56 women with ovarian EMs reported that adiponectin levels

FIGURE 2
Protein Structure of APN. Adiponectin consists of an N-terminal signal peptide, variable region, collagen domain, and C-terminal globular c1q head
region, with a total of 244 amino acids. Globular adiponectin is produced by proteolysis of full-length adiponectin. Three adiponectin monomers
combine to form a trimer (LMW), two trimers combine to form a single hexamer (MMW), and four to six trimers combine to form a multimer (HMW).
Created with BioRender.com.
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were significantly lower in endometrioma fluids and PF than in
serum, with a positive correlation between the concentrations in
endometrioma fluids and PF (Wójtowicz et al., 2023). In addition,
another group discovered that two polymorphisms in the
adiponectin gene, rs2241766 and rs1501299, were associated with
EMs susceptibility among women of childbearing age in Henan
Province, China, and that the G mutation in the rs2241766 locus
may affect splicing and modification of gene expression, resulting in
the promotion of adiponectin secretion, which, in turn, induces
AMPK phosphorylation and regulates its downstream pathway,
thereby protecting against the development of EMs (Zhang et al.,
2021). Both AdipoR1 and AdipoR2 are expressed in the
endometrium, and their mRNA levels become significantly
elevated in the mid-secretory phase (Takemura et al., 2006).

In addition, the relationship between adiponectin and EMs has
been explored using animal models and in vitro experiments. In
studies on animal models, the number of stem cells in adipose tissue
in mouse models of EMs decreased, and EMs changed the
expression of multiple adipocyte metabolic genes, including

adiponectin and leptin (Zolbin et al., 2019). In vitro cell
experiments, Adiponectin has been shown to inhibit the
proliferation of ectopic endometrial cells in a dose- and time-
dependent manner while simultaneously increasing the
expression of both AdipoR1 and AdipoR2 to inhibit EMs
development; these findings suggest that adiponectin may serve
as a beneficial factor that limits the pathogenesis of EMs (Bohlouli
et al., 2016). Despite the plethora of studies conducted to date, the
detailed regulatory role of adiponectin in the pathogenesis of EMs
has yet to be elucidated, and further research is needed to deepen the
understanding of the complex biological mechanisms through
which adiponectin protects against EMs pathogenesis.

5 Possible associations of adiponectin
with the pathogenesis of EMs

The formation of ectopic endometriotic lesions involves a series
of complex events, including the adhesion, invasion, and

TABLE 1 Clinical studies on adiponectin levels in endometriosis.

References Experiment Control Sample size
(experiment vs

control)

Location Change
(experiment vs

control)

Takemura et al.
(2005b)

Patients with
endometriosis

Women of reproductive age without
endometriosis

54:26 PF ↓

Takemura et al.
(2005a)

Patients with
endometriosis

Women of reproductive age without
endometriosis

48:30 Serum ↓

Pandey et al. (2010) Infertile patients with
pelvic endometriosis

Infertile patients without pelvic
endometriosis

15:35 PF NS

Serum NS

Yi et al. (2010) Patients with
endometriosis

Patients without endometriosis who
underwent surgical procedures for pelvic
pain, infertility and ⁄ or other benign

diseases

48:36 PF NS

Huang et al. (2011) Patients with
endometriosis

Patients without endometriosis 57:30 PF ↓

Patients with
endometriosis (Ⅲ~Ⅴ)

Patients with endometriosis (Ⅰ~Ⅱ) 32:25 NS

Choi et al. (2013) Patients with ovarian
endometriosis

Age-matched patients who underwent
hysterectomy because of myoma or
carcinoma in situ of uterine cervix

44:42 Ectopic lesion NS

Shah et al. (2013a) Patients with
endometriosis

Women of reproductive age without
endometriosis

350:694 Blood NS

Qin et al. (2014) Patients with ovarian
endometriosis

Healthy women 38:42 Serum ↓

Meng and Hao
(2020)

Patients with
endometriosis

Healthy women 30:30 Serum ↓

Wójtowicz et al.
(2023)

Patients with ovarian
endometriosis

Self-control 56 Plasma 9.8 μg/mL

(7.3–13.1)

PF 1.2 μg/mL

(0.1–2.4)

Endometrioma
fluids

0.1 μg/mL

(0.0–1.3)
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angiogenesis of Endometrial cells to “take root, grow, and become
sick.” First, due to an imbalance in immune function, ectopic
endometrial cells are able to evade immune clearance (Symons
et al., 2018). In addition, there is an imbalance between the
proliferation and apoptosis of ectopic endometrial cells, which
contributes to their survival in ectopic sites (Reis et al., 2013;
Azam et al., 2022). After the adhesion of ectopic endometrial
cells to ectopic sites, an inflammatory response is initiated,
leading to increased secretion of pro-inflammatory mediators,
and more inflammatory mediators are recruited to invade
surrounding tissues (Wei et al., 2020; Artemova et al., 2021;
Kapoor et al., 2021). Periodic bleeding of ectopic lesions and
chronic inflammation activate the deposition and adhesion of
fibrin and scar formation, leading to fibrogenesis of the lesion
(Eming et al., 2014; Garcia et al., 2023). Simultaneously, the
production of angiogenesis-related factors increases, promoting
neoangiogenesis, providing nutrients for the survival and growth
of ectopic lesions (Wei et al., 2020). In addition, ectopic endometrial
cells also have changes in mitochondrial morphology and function,
which helps to increase the energy supply to ectopic lesions andmeet
the growth needs of lesions (Ye et al., 2023). EMs is an estrogen-
dependent disease in which estrogen and estrogen receptor (ER)
levels are elevated in ectopic lesions (Burney and Giudice, 2012;
Chantalat et al., 2020). Dysregulation of estrogen signal transduction
causes ectopic endometrial cells to appear abnormal in cell
proliferation and apoptosis, migration, invasion, angiogenesis and
immune function, accompanied by increased inflammation and
enhanced mitochondrial biosynthesis, which further promote
lesion progression (Monsivais et al., 2016; Wu L. et al., 2019; Xu
Z. et al., 2019; Marquardt et al., 2019; Qi et al., 2020; Kobayashi et al.,
2021a). Therefore, EMs is a complex disease that is simultaneously
affected by multiple factors. In addition to estrogen dependence, its
pathogenesis mainly involves apoptosis, autophagy, inflammation,
angiogenesis, fibrogenesis, and energy metabolism. Current research
on the pathogenesis of EMs and the function of adiponectin have
shown that adiponectin may play a special regulatory role in multiple
biological processes related to the pathogenesis of EMs, such as
apoptosis, autophagy, inflammatory response, angiogenesis,
fibrogenesis, energy metabolism, and estrogen regulation. This
aspect is noteworthy; hence, we have summarized the following
important biological processes to reveal the mysterious relationship
between EMs and adiponectin.

5.1 Apoptosis and autophagy

EMs is characterized by the invasive growth of active
endometrial tissue at sites other than the uterus, and these events
may be related to a disequilibrium between proliferation and
apoptosis in ectopic endometrial cells. During these processes,
these cells are less sensitive to apoptotic signals (Reis et al., 2013;
Azam et al., 2022), therefore, ectopic endometrial cells can easily
escape clearance and invade the peritoneum. Moreover, their
proliferative activity is markedly increased (Jiang and Wu, 2012),
leading to neovascularization and the establishment of endometrial
implants, which leads to the development of the disease and further
malignant progression. Compared to that of healthy controls, the
expression level of the anti-apoptotic gene B-cell lymphoma 2 (Bcl-

2) is significantly elevated in the ectopic endometrium of patients
with EMs (Agic et al., 2009; Jiang R. et al., 2020), whereas that of the
pro-apoptotic genes p53 and caspase-3 is decreased (Sang et al.,
2019; Duan R. et al., 2020; Zhang and Zhao, 2023). Cyclin D1 and
cyclin E2 are key regulatory proteins that control the transition from
the G1 phase into the S phase during the cell cycle (Zabihi et al.,
2023), and the expression of cyclin D1 mRNA has been shown to be
significantly elevated in ectopic endothelial tissues compared to that
in normal and eutopic endothelium (Pellegrini et al., 2012).
Knockdown of cyclin D1 in human ectopic endometrial cells has
been shown to significantly reduce their rate of proliferation while
significantly increasing the number of cells in the G1/G0 phase
(Hirakawa et al., 2017). Akt is a major protein kinase that exists
downstream of PI3K and regulates the expression of various
proteins associated with both cellular proliferation and apoptosis
(Cinar et al., 2009; Revathidevi and Munirajan, 2019), and a recent
study demonstrated that PI3K expression increases and Akt
phosphorylation levels become elevated in the eutopic and
ectopic endometrium of patients with EMs compared to the
levels in healthy controls, indicating that the PI3K/Akt signaling
pathway may play an active role in facilitating the establishment of
ectopic endometrial tissue (Madanes et al., 2020).

Another important factor downstream of the PI3K/Akt pathway
is mTOR, an evolutionarily conserved serine/threonine protein
kinase (Driva et al., 2023). Researchers have reported an
upregulation in mTOR signaling in endometriotic foci (Choi
et al., 2014), and the protein is involved in the modulation of key
pathophysiological processes such as proliferation, differentiation,
apoptosis, autophagy, and decidualization of endometrial cells (Guo
and Yu, 2019; Driva et al., 2022). Administration of the mTOR
inhibitor everolimus was shown to promote apoptosis and inhibit
the formation of endometriotic foci, making it a potential
therapeutic option for the treatment of EMs (Kacan et al., 2017).
In addition, it has been demonstrated that the MAPK signaling
pathway is involved in the survival and proliferation of ectopic
endometrial cells as well as various other processes including but not
limited to invasion and metastasis, inflammation, and angiogenesis
(Bora and Yaba, 2021; Zhang et al., 2023). In the late proliferative
and early secretory stages, the phosphorylation level of p38-MAPK
becomes significantly elevated in both eutopic and ectopic
endometriotic tissues in patients with EMs compared to that in
the normal endometrium (Cakmak et al., 2018), and aberrant
activation of the MAPK signaling pathway can aggravate the
severity of EMs (Jiang Y. et al., 2020; Bora and Yaba, 2021).
Extracellular signal-regulated kinase (ERK), a member of the
classical MAPK family (Samson et al., 2022), transmits
extracellular signals following its activation, thereby promoting
MAPK phosphorylation and regulating the expression of
downstream effectors; thus, it plays a significant role in cell
proliferation, differentiation, and apoptosis (Zhu et al., 2019;
Bora and Yaba, 2021).

In humans, adiponectin has been reported to inhibit the
proliferation of both normal and ectopic endometrial cells in a
dose- and time-dependent manner (Bohlouli et al., 2013,2016),
thereby playing a potentially important role in the pathological
processes that lead to EMs. Additionally, other studies have shown
that adiponectin can inhibit the proliferation of focal cells and exert
pro-apoptotic effects in various diseases, including uterine fibroids
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as well as endometrial, ovarian, and breast cancers. The presence of
both AdipoR1 and AdipoR2 has been confirmed in uterine
leiomyoma cells, and adiponectin exerts a significant inhibitory
effect on the proliferation of uterine Eker leiomyoma tumor
3(ELT-3) cells in rats (Wakabayashi et al., 2011; Strzałkowska
et al., 2021). Adiponectin has been shown to decrease the
expression of both cyclin D1 in the human endometrial
adenocarcinoma cell lines HEC-1-A and KLE and cyclin E2 in
the RL95-2 cell line by activating the AMPK signaling pathway,
which led to the blockage of the cell cycle to inhibit the proliferation
of cancer cells (Cong et al., 2007; Moon et al., 2011). In addition,
adiponectin can mediate anti-proliferative and pro-apoptotic
responses in endometrial cancer by inhibiting the activation of
the Akt and ERK signaling pathways (Zhang et al., 2015).
Administration of the AdipoR agonist AdipoRon has been shown
to exert anti-tumor effects by inducing G1-phase cell cycle arrest and
upregulating the expression of the pro-apoptotic gene caspase-3 via
the activation of the AMPK and inhibition of mTOR signaling
pathways, in human ovarian cancer cells (Ramzan et al., 2019). In
the human breast cancer cell line MDA-MB-231, adiponectin was
shown to inhibit cell growth by significantly reducing the expression
of both cyclin D1 protein and the anti-apoptotic gene Bcl2, while
simultaneously upregulating the expression of the pro-apoptotic
genes p53 and Bax (Dos Santos et al., 2008; Delort et al., 2012).
Furthermore, in MCF7 human breast cancer cells, adiponectin has
been shown to induce anti-proliferative and pro-apoptotic responses
by activating the AMPK signaling pathway and inhibiting the
MAPK signaling pathways (Dieudonne et al., 2006).

While the pro-apoptotic effects of adiponectin can protect
against the development of various diseases, some studies have
also demonstrated its anti-apoptotic activity. For example, in a
mouse model of sepsis, adiponectin has been shown to inhibit
lipopolysaccharide (LPS)-induced cardiomyocyte apoptosis by
downregulating connexin 43 (Cx43) expression and activating the
PI3K/AKT signaling pathway to protect myocardial function (Liu
et al., 2021). AdipoRon administration reduces high glucose-
induced oxidative stress and apoptosis and ameliorates
endothelial dysfunction via the activation of the AMPK/PPAR-α
pathway, thereby exerting a nephroprotective effect in diabetic
nephropathy (Kim Y. et al., 2018). In rheumatoid arthritis (RA),
adiponectin has been shown to promote the proliferation and
differentiation of B cells by inducing the activation of the PI3K/
Akt and activator of transcription 3 (STAT3) signaling pathways,
exacerbating RA development (Che et al., 2021). Additionally, in
early pregnancy in pigs, adiponectin was shown to induce porcine
uterine luminal epithelial cell proliferation while inhibiting
apoptosis through the activation of the PI3K/Akt and MAPK
signaling pathways, enhancing uterine tolerance to embryonic
implantation (Lim et al., 2017). It is important to note, however,
that some studies have also demonstrated no effect of adiponectin on
apoptosis (Arditi et al., 2007; Pfeiler et al., 2008); thus, its role in such
processes remains controversial, and its effects may be related to the
disease, the source of adiponectin, as well as differences in
conformations, concentrations, and treatment durations between
studies (Sun and Chen, 2010).

Apoptosis is not the sole mechanism of endometrial cell death
(Choi et al., 2015). Autophagy, another form of programmed cell
death, involves a series of catabolic processes that depend on the

lysosomal degradation of proteins and cytoplasmic organelles,
which are closely related to cellular proliferation and apoptosis
(Popli et al., 2022). The expression levels of autophagy-related
genes such as microtubule-associated protein light chain 3 (LC3)
and Beclin-1 have been shown to be reduced in the serum, PF, and
eutopic endometrial tissue of patients with EMs compared with the
levels in healthy controls (Sui et al., 2018), and the level of
expression of autophagy-related genes (LC3B-II) was
significantly reduced in ectopic endometrium compared with
that in the eutopic endometrial tissues of patients with EMs (Li
et al., 2018). Inhibition of autophagy can promote the expression of
inflammatory cytokines, trigger inflammation and immune
responses leading to autoimmune damage, enable endometrial
cells to evade immune surveillance, and ultimately promote
ectopic growth and implantation of ectopic endometrial cells in
the peritoneal cavity (Ji et al., 2022). Autophagy and apoptosis are
not two independent processes but two crosstalk mechanisms.
Autophagy promotes the phagocytosis of apoptotic bodies and
degradation of lysosomes (Mariño et al., 2014); therefore,
decreased autophagic activity in ectopic and eutopic
endometrial cells would lead to a decrease in apoptosis (Choi
et al., 2014; Yu et al., 2016). As mTOR is a major negative regulator
of autophagy, several studies have reported that cellular autophagy
can be induced by inhibiting the mTOR signaling pathway in
ectopic endometrial cells (Choi et al., 2015; Xu H. et al., 2019;
Huang et al., 2023). In addition, in mouse models of EMs, in
addition to inhibiting autophagy, the upregulation of mTOR in
EMs tissues promoted the survival of ectopic endometrial cells
(Yang et al., 2017). In terms of other signaling pathways, AMPK
activation results in the downregulation of PI3K/Akt/mTOR
signaling, leading to decreased phosphorylation of the protein
autophagy-related 13 (ATG13) (Yang et al., 2017; Assaf et al.,
2022; Ge et al., 2022) and an increase in the level of the unc-51-like
autophagy activating kinase 1 (ULK1) complex formed by the
interaction of ATG13 with ULK1, FAK family kinase-interacting
protein of 200 kDa (FIP200), and autophagy-related 101
(ATG101); this complex is an important factor in the initiation
of autophagy (Yang et al., 2017). Administration of AdipoRon can
activate AMPK/mTOR signaling to promote autophagy (Duan Z.
X. et al., 2020) and reduce the dysregulated expression of proteins
involved in the autophagy-lysosomal pathway (He et al., 2021).
Moreover, researchers have shown that adiponectin can induce
autophagy in breast cancer cells by activating the AMPK-ULK1
axis mediated by serine/threonine kinase 11 (STK11)/liver kinase
B1 (LKB1), which, in turn, promotes breast cancer cell apoptosis
(Chung et al., 2017).

It must be acknowledged that the regulatory effect of
adiponectin on autophagy is not unilateral, as others have shown
that adiponectin inhibits autophagy and reduces angiogenesis in the
choroidal retinal endothelial cell line RF/6A in monkeys through
activation of the PI3K/AKT/mTOR pathway (Li et al., 2019).
Adiponectin can protect against hypoxia/reperfusion injury-
induced cardiomyocyte damage by inhibiting autophagy as well,
an effect that may be related to the inhibition of the AMPK/mTOR/
UKL1/Beclin-1 pathway (Guo et al., 2022).

Although the role of adiponectin in the regulation of apoptosis
and autophagy may be bidirectional, many studies have provided
ample evidence that it plays a role in protecting against the
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development of various diseases and may serve as a potentially
therapeutic strategy. Although relevant studies have confirmed the
role of adiponectin in the inhibition of endometrial cells
proliferation in EMs, whether the mechanism of action is related
to the regulation of apoptotic genes and signal pathways such as
AMPK, MAPK, PI3K/Akt/mTOR and so on, more research is
needed to explain.

5.2 Angiogenesis

The shed endometrial cells undergo migration, adhesion,
invasion and implantation with retrograde menstruation to form
ectopic lesions, during which massive neovascularization occurs and
a new blood supply is established to provide nourishment for the
survival and growth of the lesions (Wei et al., 2020). Therefore,
angiogenesis is considered a critical step in the establishment and
persistence of endometriotic lesions. The results of studies involving
animal models have suggested that anti-angiogenic therapies
substantially reduce the size of ectopic lesions (Liu et al., 2016);
in EMs, angiogenesis is regulated by a multitude of factors and
pathways involved in those processes. For example, vascular growth
factors may play an essential role in promoting the growth and
differentiation of ectopic endometrial tissue, with vascular
endothelial growth factor (VEGF) being the most critical.
Members of the VEGF family, which includes VEGF-A, VEGF-B,
VEGF-C, VEGF-D, and VEGF-E, as well as placental growth factors,
have been shown to increase vascular permeability, accelerate
vascular endothelial cell migration and proliferation, and
promote angiogenesis (Ferrara and Adamis, 2016), and VEGF
and its signaling pathway are considered the optimal targets for
anti-angiogenic and anti-tumor therapies for a variety of cancers
(Potente et al., 2011; Gao et al., 2020). VEGF expression was elevated
in healthy controls, in the eutopic endometrium of patients with
Ems, and in ectopic lesions sequentially (Di Carlo et al., 2009), and
elevated VEGF expression in the serum and PF of patients with EMs
may serve as a secondary diagnostic indicator of the disease (Bourlev
et al., 2010; Li et al., 2020). VEGF expression in EMs is regulated by
multiple factors and associated pathways, and it plays a pivotal
regulatory role in neovascularization.

Adiponectin is an important regulator of angiogenesis, exerting
its effect through the regulation of VEGF. In prostate cancer cells,
adiponectin can prevent neovascularization by suppressing VEGF-A
secretion (Gao et al., 2015), and adiponectin treatment has been
shown to downregulate VEGF-B and VEGF-D mRNA expression
while increasing the serum concentration of the anti-angiogenic
factor IL-12 in mouse colon cancer cells (Moon et al., 2013). Other
important factors to consider are the matrix metalloproteinases
(MMPs), which are involved in the degradation of the
extracellular matrix and the induction of vascular endothelial cell
proliferation and angiogenesis (D’Amico et al., 2020). MMP-2
expression has been shown to be significantly elevated in the
ectopic foci, PF, and serum of patients with EMs (Sui et al.,
2018). And adiponectin inhibits angiogenesis by downregulating
MMP expression. For example, in liver cancer tissues in mice,
adiponectin has been shown to downregulate the mRNA
expression of VEGF and MMP-9, thereby inhibiting tumor
angiogenesis (Man et al., 2010). Furthermore, in human renal

carcinoma cells, adiponectin can activate AMPK via binding to
AdipoR1, inhibiting the mTOR signaling pathway and suppressing
the production of VEGF, MMP-2, and MMP-9 (Kleinmann et al.,
2014). There have also been reports that adiponectin can inhibit the
proliferation and migration and angiogenesis of endothelial cells
(Dubois et al., 2013; Li et al., 2019; Palanisamy et al., 2019). Such an
inhibitory effect may indirectly hinder angiogenesis of ectopic
lesions. Additionally, adiponectin can induce endothelial
apoptosis, which occurs during angiogenesis (Watson et al.,
2016), by activating caspase-8, thereby leading to the activation
of caspase-3 or caspase-9 (Bråkenhielm et al., 2004).

The inhibitory role of adiponectin in angiogenesis has been
demonstrated in multiple types of cancer, including fibrosarcoma
(Bråkenhielm et al., 2004), hepatocellular carcinoma (Man et al.,
2010), renal cell carcinoma (Kleinmann et al., 2014), basal cell breast
cancer (Dubois et al., 2013), and prostate cancer (Gao et al., 2015).
However, several other studies have shown that adiponectin can
enhance angiogenesis by upregulating the expression of pro-
angiogenic factors in human umbilical vein endothelial cells
(HUVECs) and human microvascular endothelial cells (HMECs)
(Adya et al., 2012; Nigro et al., 2021), and it has been shown to
promote angiogenesis in chondrosarcoma (Lee et al., 2015), invasive
colon cancer (Cai et al., 2016), and ovarian cancer (Ouh et al., 2019),
possibly via the regulation of CXC motif chemokine ligand 1
(CXCL1), VEGF, and AMPK. Adiponectin enhances
CXCL1 secretion, which, in turn, promotes VEGF secretion and
angiogenesis (Kiefer and Siekmann, 2011) in various cancers,
including colon (Cai et al., 2016) and ovarian cancer (Ouh et al.,
2019). AMPK is a key molecule involved in the regulation of
biological energy metabolism, and inhibition of its activity
significantly attenuates VEGF secretion (Fisslthaler and Fleming,
2009). In HUVECs and HMEC-1 cells, adiponectin has been shown
to induce angiogenesis by activating the AMPK/Akt pathway and
phosphorylating endothelial nitric oxide synthase (eNOS) (Ouchi
et al., 2004; Adya et al., 2012), which is various with the findings of
another study that showed angiogenesis was inhibited by
adiponectin (Dubois et al., 2013). In addition, adiponectin may
play a pro-angiogenic protective role in ischemic tissue injury. For
example, the overexpression of adiponectin was shown to induce the
upregulation of VEGF mRNA expression within ischemic regions of
the brains of mice, enhancing focal angiogenesis (Shen et al., 2013).
Another study showed that recovery following ischemic reperfusion
injury of a limb in mice was accelerated by giving adenovirus-
mediated adiponectin and exogenous adiponectin administration
stimulated angiogenesis in response to ischemic stress by activating
the AMPK pathway (Shibata et al., 2004).

Collectively, angiogenesis in EMs has similar features to
pathological angiogenesis in tumor growth and metastasis, being
co-regulated by multiple factors. Existing studies have shown that
adiponectin plays a role in the inhibition of angiogenesis in many
oncological diseases; however, it is not clear whether adiponectin has
a beneficial role in EMs by regulating signaling pathways such as
AMPK and cytokines such as VEGF and MMPs to promote
endothelial cell apoptosis, inhibit endothelial cell migration and
thus inhibit angiogenesis. However, for this conjecture, we are
currently inconclusive, because the regulation of adiponectin-
mediated angiogenesis is bidirectional, especially in oncological
diseases, with different modes of action. This paradoxical
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phenomenon could be due to variability between studies in terms of
the differences in cell types, in vivo and in vitro experimental
methodologies, and the physiological and pathological conditions
in which angiogenesis is observed.

5.3 Inflammatory processes

Chronic inflammation and immune dysregulation are essential
microenvironment and pathophysiological features of EMs (Zhang
et al., 2018; Encalada Soto et al., 2022). Due to the dysregulation of
immune mechanisms, ectopic endometrial cells evade immune
clearance to survive, adhere, and invade ectopic sites (Symons
et al., 2018). Subsequently, during the formation of endometriotic
lesions, the secretion of a large number of pro-inflammatory
cytokines is increased. Inflammatory cells are recruited to the
lesion site, which secrete a variety of inflammatory mediators to
form an inflammatory microenvironment. These mediators
counteract inflammatory cells and factors, leading to the
recruitment of more inflammatory cells to the lesion site, forming
a vicious circle in which these immune molecules not only promote
cell proliferation and adhesion but also contribute to the cell evasion
of immunosurveillance, further exacerbating the invasion of ectopic
endometrial cells and promoting lesion formation and progression
(Wei et al., 2020; Artemova et al., 2021; Kapoor et al., 2021).
Numerous studies have shown that the lymphocytes present
within the peritoneal cavity in EMs are predominantly
macrophages (Bacci et al., 2009; Shao et al., 2016; Ramírez-Pavez
et al., 2021), which are broadly classified into two main phenotypes,
including the pro-inflammatory M1-type and the anti-inflammatory
M2-type (Laskin et al., 2011). M1 macrophages predominantly
secrete pro-inflammatory factors such as tumor necrosis factor
alpha (TNF-α), IL-6, and IL-1β (Gordon, 2003,2007), all of which
have been shown to be expressed at elevated levels in the PF, serum,
and ectopic lesions of patients with EMs (Bergqvist et al., 2001;
Richter et al., 2005; Cho et al., 2007; Wang F. et al., 2018; Wang X. M.
et al., 2018; Jaeger-Lansky et al., 2018; Volpato et al., 2018).
M2 macrophages mainly secrete transforming growth factor beta
(TGF-β), interleukin-10 (IL-10), and other anti-inflammatory
cytokines, while inhibiting the production of pro-inflammatory
cytokines (Wang et al., 2019; Yao et al., 2019; Gao et al., 2022).
In endometriotic lesions, M2-type macrophages are predominant
(Bacci et al., 2009; Hogg et al., 2020); however, their numbers become
significantly reduced throughout the menstrual cycle in patients with
EMs compared with the changes observed in healthy controls in the
same time period (Takebayashi et al., 2015). There have been reports
suggesting that anti-inflammatory factors may play a dual role in the
later stage of EMs, as they can promote the immune escape of ectopic
endometrial cells and induce inflammation, while also inhibiting
inflammatory responses and reducing disease activity; however,
further studies are required to establish a better understanding of
their roles in EMs (Zhou et al., 2019).What is known is that NF-κB, a
major regulator of inflammation and immune responses, can
stimulate LPS-induced pro-inflammatory cytokine expression in
macrophages (Monaco and Paleolog, 2004). NF-κB is overactive
in endometriotic lesions, enhancing the proliferation, adhesion,
migration, and invasive ability of ectopic endometrial cells (Liu
et al., 2022).

Reduced serum levels of adiponectin have been reported to be
associated with chronic inflammation in various metabolic diseases,
including type 2 diabetes, obesity, atherosclerosis, and non-alcoholic
fatty liver disease, where the anti-inflammatory effects of
adiponectin have been demonstrated (Fantuzzi, 2008; Achari and
Jain, 2017; Choi et al., 2020). The anti-inflammatory effects of
adiponectin are mainly mediated via the targeting of
macrophages (Tsatsanis et al., 2005; Ohashi et al., 2014; Fang
and Judd, 2018), which can suppress the growth of
myelomonocytic progenitor cell as well as the function of mature
macrophages, hindering their phagocytotic ability and lowering
TNF-α production, as well as reducing the expression levels of
class A scavenger receptors, as well as reducing the expression levels
of class A scavenger receptors (Yokota et al., 2000; Ouchi et al.,
2001). Adiponectin inhibits the progression of various metabolic
and cardiovascular diseases by promoting the transition of
macrophages from the pro-inflammatory M1 phenotype to the
anti-inflammatory M2 phenotype (Ohashi et al., 2010). In
humans, the adiponectin-induced differentiation of monocytes
into anti-inflammatory M2-type macrophages is mediated via
PPAR-α, and these M2 macrophages inhibit the secretion of pro-
inflammatory molecules from M1 macrophages, which may
contribute to the stability of atherosclerotic plaques (Lovren
et al., 2010). Although adiponectin can affect macrophage
function through multiple other signaling pathways as well, the
main targets are the AdipoR1/Toll/NF-κB and AdipoR2/IL-4/
STAT6 signaling pathways, which inhibit effects on macrophage
activation to the M1 phenotype and promote macrophage
polarization toward the M2 phenotype, respectively (Yamaguchi
et al., 2005; Mandal et al., 2011; Wang N. et al., 2014). Other
researchers have discovered that adiponectin can attenuate LPS-
induced TNF-α and IL-6 production by macrophages while
upregulating the expression of anti-inflammatory IL-10 (Wulster-
Radcliffe et al., 2004). Several studies have demonstrated that
adiponectin expression is also negatively regulated by pro-
inflammatory TNF-α and IL-6, which may contribute to the
presence of hypoadiponectinemia in inflammatory diseases (Tilg
and Wolf, 2005; Brezovec et al., 2021). Furthermore, adiponectin
effectively inhibits the activation of the NF-κB pathway by
suppressing the expression of the NF-κB nuclear protein p65,
which, in turn, reduces the expression of NF-κB-regulated pro-
inflammatory factors and potently attenuates the inflammatory
response to atherosclerosis (Wang et al., 2016). Within the
endometrium, adiponectin plays a similar anti-inflammatory role
by stimulating the phosphorylation of AMPK in Endometrial cells
and inhibiting the IL-1β-induced secretion of the pro-inflammatory
factors IL-6, IL-8, and MCP-1 (Takemura et al., 2006). These anti-
inflammatory effects of adiponectin in Endometrial cells may be
associated with endometrium-related events, such as endometrial
implantation and the pathogenesis of EMs.

Although adiponectin is generally considered an anti-
inflammatory adipokine, at high expression levels, it is positively
correlated with the clinical progression of systemic autoimmune
rheumatic diseases (SARDs), which are typically accompanied by
high levels of inflammation; paradoxically, some studies have
reported low expression levels of adiponectin in SARDs, with low
levels of inflammation and a negative correlation with disease
progression (Brezovec et al., 2021). Some recent studies have also
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shown that adiponectin can act as an inducer of pro-inflammatory
factors and that elevated levels of adiponectin may exacerbate the
inflammatory response associated with various autoimmune
diseases such as RA, osteoarthritis (OA), systemic lupus
erythematosus, and inflammatory bowel diseases (Choi et al.,
2020; Brezovec et al., 2021). Others have also found that HMW
adiponectin promotes the secretion of TNF-α and IL-6 by fibroblasts
from fibroblastic synoviocytes in patients with RA, aggravating the
severity of inflammation (Kontny et al., 2015; Li et al., 2015; Liu
et al., 2020). In OA, adiponectin has been shown to promote IL-8
secretion in osteoblasts, thereby affecting osteophyte development
(Junker et al., 2017). In addition, others have reported than
adiponectin can enhance the mRNA expression and protein
secretion of IL-8 in human colonic epithelial and macrophage
cell lines (Peng et al., 2018). Furthermore, globular adiponectin
was shown to be capable of activating the NF-κB pathway and
upregulating the expression of pro-inflammatory cytokines in
human placenta and adipose tissue (Lappas et al., 2005),
HUVECs (Hattori et al., 2006), and RAW264.7 murine
macrophages (Lee et al., 2018).

Adiponectin can participate in the inflammatory response of
many diseases by regulating macrophage polarization and
proliferation and signaling pathways, such as NF-κB and AMPK,
as well as the expression of related inflammatory mediators.
However, depending on its isoforms and effector tissues,
adiponectin may exert differential effects in various physiological
processes (Choi et al., 2020), and its bidirectional regulatory
function in inflammatory diseases may be related to the severity
and stage of disease progression. Further studies is requires to
determine whether adiponectin could inhibit the inflammatory
response in EMs by regulating signaling pathways, such as NF-
κB and AMPK, as well as the expression of related inflammatory
mediators and macrophage polarization and proliferation.
Moreover, whether adiponectin plays different roles, such as
inhibiting or promoting inflammation depending on the severity
and progression of EMs, needs to be established.

5.4 Fibrogenesis

Over time, ectopic endometrial cells gradually form ectopic
lesions through migration, invasion, proliferation, and growth.
The lesions undergo repeated bleeding and injury, triggering a
recurrent cycle of inflammatory responses and tissue repair
(Garcia et al., 2023). Dysregulated repair mechanisms result in
excessive accumulation of extracellular matrix, leading to the
formation of adhesions, permanent scarring, and the disruption
of tissue structure, causing organ dysfunction and ultimately
resulting in fibrosis of the endometriotic tissue. Immune cells
migrate to the fibrotic region, releasing inflammatory factors,
increasing local inflammatory response, and exacerbating the
growth and invasion of endometrial cells (Izumi et al., 2018).
Fibrosis is inherent in all forms of EMs, and it is associated with
painful symptoms, altered tissue function, and impaired fertility in
patients with EMs (Eming et al., 2014; Garcia et al., 2023). Fibrosis of
ectopic lesions in EMs is an abnormally proliferative disorder that
occurs with repeated rupture of the ectopic cyst wall and outflow of
the cyst contents, which irritate the adjacent tissues, followed by a

localized inflammatory response and fibrosis formation. The
histopathological features of ectopic endometriotic lesions are
dominated by a large amount of fibrotic tissue, in addition to the
endothelial glands and mesenchymal stromal cells (Liu et al., 2018).
Fibrogenesis is an important process in the development of EMs;
therefore, probing the mechanism underlying fibrogenesis in EMs
and finding specific and effective therapeutic targets to inhibit
fibrogenesis may be a potential methodology for the treatment of
EMs (Vigano et al., 2018). The process of fibrosis in EMs requires the
involvement of a variety of cytokines and cells, including
macrophages, myofibroblasts, platelets (Kendall and Feghali-
Bostwick, 2014; Weiskirchen et al., 2019; Yang and Plotnikov,
2021). Of particular importance is TGF-β, a multipotent cytokine
that regulates cell growth, development, differentiation,
proliferation, immunomodulation, the maintenance of
homeostasis, and fibrosis via its downstream signal transduction
pathway (Morikawa et al., 2016). TGF-β1 is a major regulator of
tissue repair as well as fibrosis, initiating the collagen accumulation
program and mediating the fibrotic process through multiple
signaling pathways (Kim K. K. et al., 2018; Hu et al., 2018;
Lodyga and Hinz, 2020; Ye and Hu, 2021). Significantly elevated
levels of TGF-β1 have been reported in the serum, PF, and ectopic
endometrial tissue of patients with EMs (Chang et al., 2017;
Gueuvoghlanian-Silva et al., 2018; Sikora et al., 2018). In ovarian
EMs, these ectopic endometrial cells secrete TGF-β1 and activate the
Smad signaling pathway to disrupt the extracellular matrix and
promote fibrosis in the tissue surrounding the ectopic lesions (Shi
et al., 2017). The degree of fibrosis in human ovarian EMs (Ding
et al., 2020) and superficial peritoneal EMs (Ibrahim et al., 2019) was
positively correlated with the expression levels of alpha-smooth
muscle actin (α-SMA). Elevated α-SMA expression is a signifier of
the transformation of fibroblasts into myofibroblasts, which is a key
process of fibrosis (Malmström et al., 2004; Duan et al., 2018).

In recent years, many studies have demonstrated that
adiponectin plays a role in preventing fibrosis in a wide range of
organs and tissues and that it may represent a potential therapeutic
target for the treatment of fibrosis. The anti-fibrotic effects are
mediated through the altered signaling of various pathways such as
AMPK, PPAR, and TGF-β1/Smad, inhibiting the differentiation of
fibroblasts to myofibroblasts and reducing the production as well as
the deposition of extracellular matrix. Numerous studies have
investigated its mechanism of action in fibrotic diseases of the
kidneys (Jing et al., 2020; Zhao D. et al., 2021), liver (Dong et al.,
2015; Udomsinprasert et al., 2018), heart (Fujita et al., 2008; Qi et al.,
2014), lungs (Kökény et al., 2021;Wang et al., 2022), and skin (Wang
et al., 2023), among other organs and systems, confirming its
protective effects. Adiponectin was found to be capable of
ameliorating tubulointerstitial fibrosis and suppressing
angiotensin II-induced secretion of TGF-β1 and fibronectin in
human renal mesangial cells, thereby reducing extracellular
matrix synthesis (Tan et al., 2015). Additionally, α-SMA
expression was shown to be downregulated by adiponectin in the
renal cortex of mice with progressive renal injury induced by the
administration of deoxycorticosterone acetate and angiotensin II, as
well as in the lung tissues of mice with bleomycin-induced idiopathic
pulmonary fibrosis (Tian et al., 2018; Wang et al., 2022). Another
showed that the administration of the AdipoR agonists JT002,
JT003, and JT004 significantly reduced the protein expression
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level of α-SMA in hepatic stellate cells and slowed the progression of
hepatic fibrosis in mice (Xu et al., 2020).

While most studies to date have reported a protective effect of
adiponectin, a few have shown the opposite effect, with adiponectin
driving the pathogenesis of fibrosis. For example, one group showed
that in mouse bone marrow-derived macrophages, adiponectin
activated the AMPK signaling pathway in a time- and dose-
dependent manner, induced α-SMA expression, enhanced the
production and deposition of extracellular matrix, and promoted
the cells’ transformation into fibroblasts, which accelerated renal
interstitial fibrosis (Yang et al., 2013). Several other researches have
suggested an association between high serum levels of adiponectin
and renal functional decline (Panduru et al., 2015; Zha et al., 2017).

Low levels of adiponectin are associated with fibrosis. Serum
adiponectin levels in patients with non-alcoholic fatty liver disease
are an independent predictor of advanced fibrosis and are negatively
correlated with the stage of liver fibrosis (Savvidou et al., 2009). A
study showed that serum adiponectin levels in patients with
hypertension significantly correlated negatively with biomarkers
of myocardial fibrosis (Balmaceda et al., 2020). However, some
controversial views have been reported (Arvaniti et al., 2008; Korah
et al., 2013; Yan et al., 2013). Adiponectin can inhibit fibrogenesis by
regulating signaling pathways, such as TGF-β1/Smad, inhibiting α-
SMA expression, and reducing the production and deposition of the
extracellular matrix. Adiponectin acts as an important protective
factor in fibrotic diseases of the liver, kidneys, heart, lungs, and skin,
and low serum adiponectin levels may be an indicator of the
progression of fibrogenesis. TGF-β1 is highly expressed in EMs,
and activation of the Smad signaling pathway by TGF-β1 can
promote fibrosis in tissues surrounding ectopic endometriotic
lesions. EMs-associated fibrosis is a relatively new area of
research, it is necessary to determine whether the low
adiponectin levels in patients with EMs are related to the severity
of fibrosis in EMs or whether adiponectin plays a protective role in
fibrosis of EMs by modulating signaling pathways, such as TGF-
β1/Smad.

5.5 Energy metabolism

The peritoneal microenvironment undergoes significant
alterations in patients with EMs; these changes are characterized
by imbalances in inflammation, hypoxic conditions, and increased
oxidative stress (McKinnon et al., 2016; Ito et al., 2017; Lin et al., 2018;
Wu M. H. et al., 2019), which can adversely affect mitochondrial
respiration and dysfunctional activity in ectopic endometrial cells,
leading to metabolic abnormalities (Atkins et al., 2019; Kobayashi
et al., 2021b). In order to adapt to the complex environment and meet
the energetic needs of proliferating lesions, ectopic endometrial cells
regulate the morphology and function of mitochondria by
transforming metabolic processes and activating various signaling
pathways, such as that of AMPK, promoting mitochondrial energy
production and increasing the supply of available energy to meet the
growing requirements of diseased tissues; ultimately, these changes
promote the migration, invasion and proliferation of ectopic
endometrial cells and create an environment that is conducive to
the progression of the lesions (Kasvandik et al., 2016; Kobayashi et al.,
2021b; Assaf et al., 2022).

Mitochondria are the organelles that produce the energy
required to sustain cellular activity by constantly undergoing
repeated cycles of fusion and division (Ye et al., 2023).
Mitochondrial dysfunction and reduced energy metabolism have
been reported in granulosa and ectopic endometrial cells of patients
with EMs (Hsu et al., 2015; Kobayashi et al., 2023), and the altered
mitochondrial dynamics and morphology increase the survivability
of ectopic endometrial cells in hypoxic and oxidative-stress-related
environments, thereby facilitating EMS progression (Ye et al., 2023).
Oxidative stress is defined as an imbalance between oxidants, such as
reactive oxygen species (ROS), and antioxidants, such as the enzyme
superoxide dismutase (SOD). ROS are chemically reactive
substances that mediate redox signaling and regulate cellular
functions; in patients with EMs, they are involved in maintaining
the uterine proliferative phenotype of endometrial cells, increasing
the likelihood of ectopic tissue invasion and implantation
(Cacciottola et al., 2021). It has been shown that the production
of endogenous ROS is increased above normal levels in ectopic
endometrial cells of patients with EMs (Ngô et al., 2009); this is
accompanied by elevated concentrations of oxidative stress markers
in the PF, such as advanced oxidation protein products (Santulli
et al., 2015). As a consequence of long-term exposure to oxidative
stress, the mitochondria of ectopic endometrial cells promote ROS
secretion through an elongation mechanism, further exacerbating
oxidative stress and forming a vicious circle that promotes the
progression of lesions in EMs (Assaf et al., 2022). Plasma SOD
activity has been shown to be reduced in patients with EMs, which is
an indicator that the antioxidant capacity has been compromised
(Prieto et al., 2012).

Maintaining systemic energy homeostasis is an essential
function of most adipocyte-derived hormones. Adiponectin is an
adipocyte-derived hormone that improves insulin sensitivity in the
liver and skeletal muscle. Studies have shown that in addition to
insulin sensitization, adiponectin plays an important role in
maintaining systemic energy homeostasis (Wang and Scherer,
2016; Fang and Judd, 2018); it can also promote mitochondrial
biogenesis and oxidative metabolism in skeletal muscles of both
animals and humans (Lee and Shao, 2014), protect the morphology
and function of mitochondria, facilitate the restoration of
mitochondrial antioxidant capacity, and protect against oxidative
damage following traumatic brain injury (Zhang et al., 2022).
Another study demonstrated that adiponectin can also prevent
neuroinflammation associated with mitochondrial damage,
thereby regulating senescence in the brain (He et al., 2023).
Furthermore, adiponectin can inhibit oxidative stress by
regulating the balance between ROS and SOD, counteracting
obesity-related metabolic changes and cardiovascular diseases and
protecting the vascular endothelium and myocardium from tissue
damage (Matsuda and Shimomura, 2014). Mechanistically,
adiponectin was shown to alleviate LPS-induced oxidative stress
during the pre-differentiation of adipocytes through modulation of
the peroxisome proliferator-activated receptor gamma (PPAR-γ)/
Nnat/NF-κB axis, significantly reducing the concentration of ROS
and increasing the level of SOD in cells (Yang et al., 2019). It was also
shown to inhibit oxidative stress by enhancing SOD activity in the
serum of homozygous apolipoprotein E-deficient (ApoE −/−) mice,
thereby reducing the formation of atherosclerotic plaques (Wang X.
et al., 2014). In mouse hepatocytes and podocytes, adiponectin was

Frontiers in Pharmacology frontiersin.org11

Zhao et al. 10.3389/fphar.2024.1396616

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1396616


shown to inhibit palmitic acid-induced ROS secretion and protect
against liver and kidney injury (Dong et al., 2020; Xu et al., 2021).

However, a small number of studies have reported contradictory
findings; for example, one group showed that adiponectin inhibits
SOD activity and promotes ROS secretion in rat RINm insulinoma
cells, but without reaching pathological concentrations (Chetboun
et al., 2012), and others have reported that full-length adiponectin
inhibits ROS production in human phagocytes, whereas globular
adiponectin exerts the opposite effect (Chedid et al., 2012). The
discrepant results of these studies suggest that adiponectin can
modulate oxidate stress in a differential manner depending on
the isoform.

Studies have shown that adiponectin can protect the
morphology and function of the mitochondria, regulate the
balance of ROS and SOD, and inhibit oxidative stress. Increased
oxidative stress, mitochondrial dysfunction, and other abnormalities
in energy metabolism in EMs increase the survival of ectopic
endometrial cells; therefore, adiponectin may regulate energy
metabolism in Endometrial cells in the microenvironment of the
ectopic lesions to affect the ability of Endometrial cells to proliferate,
migrate, and invade ectopic sites, and thus play a role in the
pathogenesis of EMs; however, the specific mechanism requires
further research.

5.6 Synthesis, metabolism, and effects
of estrogen

EMs is an estrogen-dependent disease (Soares et al., 2012) and is
characterized by estrogen-dependent growth of the ectopic
endometrium and increased local estrogen secretion (Mori et al.,
2019). Estrogen is mainly secreted by the ovarian granulosa and
endothelial cells and includes three main types: estrone, estradiol
(E2), and estriol, of which E2 has the highest expression and plays
the greatest role (Mahboobifard et al., 2022). Aromatase P450, an
important enzyme in the synthesis of estrogen, catalyzes the
conversion of androstenedione and testosterone produced in
ovarian follicular cells to estrone and E2 in ovarian granulosa
cells, and its expression is increased in endometriotic lesions
(Peitsidis et al., 2023). Aromatase inhibitors, such as anastrozole,
letrozole, and exemestane, may be effective agents for the treatment
of EMs, as they have the potential to control the symptoms
associated with EMs in cases where no therapeutic response was
achieved with an initial pharmacological intervention (Soares et al.,
2012; Peitsidis et al., 2023). Estrogen plays a biological role by
binding to ER. ERα expression is downregulated, and ERβ
expression is abnormally high in ectopic endometrial cells
compared with normal Endometrial cells. Moreover, ERβ can
directly inhibit ERα expression (Monsivais et al., 2014; Yilmaz
and Bulun, 2019). Localized high estrogenic environment and
abnormally high ERβ levels promote ectopic endometrial cells
proliferation, adhesion, and angiogenesis, as well as upregulated
expression and release of pro-inflammatory factors, leading to
immune dysfunction and enhancement of mitochondrial
biosynthesis, which provides favorable conditions for lesion
progression (Monsivais et al., 2016; Wu L. et al., 2019; Xu Z.
et al., 2019; Marquardt et al., 2019; Qi et al., 2020; Kobayashi
et al., 2021a).

Serum HMW adiponectin is negatively correlated with
E2 concentrations in healthy premenopausal women (Merki-Feld
et al., 2011), and this negative correlation may be related to the
strong association between adiponectin and sex hormone-binding
globulin (SHBG) (Tworoger et al., 2007). There is a significant
positive correlation between serum adiponectin levels and SHBG
levels (Tworoger et al., 2007; Wildman et al., 2013). SHBG can bind
to estrogen in the plasma and directly regulate the bioavailability of
estrogen and its access to target cells (Fortunati et al., 2010), whereas
increased insulin resistance leads to inhibition of SHBG expression,
which in turn leads to an increase in the concentration of
biologically active estrogen (Hammond et al., 2008; Caselli, 2014;
Winters et al., 2014). Adiponectin may counteract the inhibitory
effect of SHBG by ameliorating insulin resistance. In addition,
AdipoRon can activate the AMPK and PPAR-α pathways in
human luteinized granulosa cells, down-regulating cyclic
adenosine monophosphate production and aromatase protein
expression, thereby reducing E2 production (Grandhaye et al.,
2021). Similarly, Tao et al. found that in polycystic ovary
syndrome disease, adiponectin downregulates P450 aromatase
expression in human luteal granulosa cells and human chorionic
gonadotropin-induced E2 synthesis, at least in part, through the
activation of PPAR-α (Tao et al., 2019). A large number of studies
have now demonstrated the correlation between low adiponectin
levels and an increased risk of developing estrogen-dependent
diseases (including cervical, endometrial, and breast cancers, as
well as uterine fibroids) (Gelsomino et al., 2019; Strzałkowska
et al., 2021). For example, Vivian et al. found that adiponectin
inhibits the effects of estrogen on breast cancer cell proliferation by
decreasing aromatase activity and ER mRNA levels (Morad et al.,
2014). Low adiponectin levels are present in female patients with
uterine fibroids, and adiponectin may inhibit smooth muscle tumor
growth by lowering estrogen levels through the inhibition of the E2/
ERα and insulin-like growth factor 1/insulin-like growth factor
1 receptor pathways (Strzałkowska et al., 2021).

The above studies revealed that adiponectin influences the
synthesis, metabolism, and effects of estrogen by inhibiting
aromatase expression and estrogen production through the
regulation of AMPK and PPAR-α signaling pathways.
Adiponectin may play a role in estrogen-dependent diseases by
influencing insulin- and estrogen-dependent pathways. Studies have
shown that there are high estrogen and low level of adiponectin
expression in ectopic endometriotic lesions, and the regulatory
effects of adiponectin on estrogen and estrogen receptor may be
related to a series of pathogenetic processes, such as proliferation,
adhesion, and invasion of ectopic endothelial cells.

6 Discussion

Most studies that have investigated the function of adiponectin
have primarily been based on rodents and cellular modeling. Many
of the effects of adiponectin appear to be paradoxicales with
adiponectin, such as its proven ability to increase systemic
insulin sensitivity, however, insulin resistance can also occur at
high adiponectin levels (Kalkman, 2021). In some highly
inflammatory diseases, serum adiponectin levels are high and are
positively correlated with disease progression, while low adiponectin
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levels have been observed in some diseases in the absence of
pronounced inflammation, with the expression levels being
negatively correlated with disease severity (Brezovec et al.,
2021). Furthermore, low levels of adiponectin have been shown
to be associated with an increased prevalence of diseases such as
cardiovascular disease and type 2 diabetes (Fantuzzi, 2008; Achari
and Jain, 2017; Choi et al., 2020). However, in some cases, high levels
of adiponectin may not be associated with any beneficial effects and
may even be harmful (Francischetti et al., 2020). The paradoxes and
controversies surrounding the actions of adiponectin must be
further investigated.

There is evidence suggesting that low levels of adiponectin may be
present in EMs and that they are associated with disease severity, a
possibility that is supported by the findings of a recent meta-analysis.
Therefore, adiponectin may be a beneficial factor that protects against
EMs. However, there are many questions still to answer, including
whether there is a clear, specific reduction in the expression level of
adiponectin in EMs, whether its expression levels differ at various sites
such as in ectopic lesions, PF, and serum, and whether there these levels
correlate with disease severity. In addition, EMs tends to be
accompanied by a low BMI, which has been reported to be
negatively correlated with adiponectin levels. However, this does not

explain the low BMI and smaller than expected concentrations of
adiponectin in many patients with EMs, as suggested by the current
research evidence. These paradoxical observations could be related to
the fact that the release of adiponectin depends on the quality rather
than the quantity of adipose tissue, although this must be investigated
further. Additionally, it will be necessary to determine whether there is
an optimal window in which the adiponectin concentration protects
against EMs, and it is currently unclear whether adiponectin could serve
as a clinical and/or biochemical marker of EMs.

Relatively few studies have investigated the role of
adiponectin in the pathogenesis of EMs at the clinical and
cellular levels, although most have confirmed that adiponectin
is an important participant in many biological processes,
including apoptosis, autophagy, angiogenesis, inflammatory
responses, fibrosis, energy metabolism, and estrogen-mediated
effects, and an important correlation has been shown between
many factors and their related pathways and the pathogenesis of
EMs (Figure 3). However, many unexpected and interesting dual
biological functions of adiponectin have been identified,
including the bidirectional regulation of apoptosis,
inflammation, and angiogenesis, in which there are still many
questions that need to be answered. There is currently insufficient

FIGURE 3
Adiponectin Signaling. Adiponectin signal transduction mainly depends on receptor ligand interaction, in which adiponectin binds to AdipoR1 and
AdipoR2, and through AMPK,PPAR, PI3K/AKT, MTOR, MAPK, NF-κB, and other pathways initiate the activation of intracellular signal cascades and play a
role in apoptosis, autophagy, inflammation, angiogenesis, fibrosis, energy metabolism, estrogen and other aspects, which may be related to the
pathogenesis of endometriosis. Created with BioRender.com.
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data to definitively conclude whether adiponectin plays a
protective role against EMs. The relationship between
adiponectin and EMs has many mysteries to be explored, and
elucidating its role in the pathogenesis of EMs may provide
important insights into the pathogenesis and treatment of EMs.
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Glossary

AdipoR1 adiponectin receptor 1

AdipoR2 adiponectin receptor 2

Akt protein kinase B

AMPK adenosine monophosphate-activated protein kinase

α-SMA alpha-smooth muscle actin

ATG13 autophagy-related 13

Bcl-2 B-cell lymphoma 2

BMI body mass index

Cx43 connexin 43

CXCL1 CXC motif chemokine ligand 1

CYP2R1 cytochrome P450 2R1

ELT3 Eker leiomyoma tumor-3

EMs endometriosis

eNOS endothelial nitric oxide synthase

ERK extracellular signal-regulated kinase

E2 estradiol

FABP4 fatty acid binding protein 4

FIP200 FAK family kinase-interacting protein of 200 kDa

GBP-28 gelatin-binding protein 28

HMEC-1 human microvascular endothelial cell 1

HMW high-molecular weight

HUVECs human umbilical vein endothelial cells

IGFBP1 insulin-like growth factor binding protein 1

IL-1β interleukin 1 beta

IL-6 interleukin 6

IL-8 interleukin 8

IL-10 interleukin 10

LC3 microtubule-associated protein light chain 3

LKB1 liver kinase B1

LMW low-molecular weight

LPS lipopolysaccharide

MAPK mitogen-activated protein kinase

MCP-1 monocyte chemoattractant protein 1

MMD2 monocyte to macrophage differentiation associated 2

MMPs matrix metalloproteinases

MMW medium-molecular weight

MRC-1 mannose receptor C-Type I

mTOR mammalian target or rapamycin

NF-κB nuclear factor kappa B

OA osteoarthritis

PCOS polycystic ovary syndrome

PF peritoneal fluid

PI3K phosphoinositide 3-kinase

PPAR-α peroxisome proliferator-activated receptor alpha

PPAR-γ peroxisome proliferator-activated receptor gamma

RA rheumatoid arthritis

ROCK2 Rho-associated coiled-coil containing protein kinase 2

ROS reactive oxygen species

SARDs systemic autoimmune rheumatic diseases

SHBG sex hormone-binding globulin

SOD superoxide dismutase

STAT3 signal transducer and activator of transcription 3

STK11 serine/threonine kinase 11

T-cad T-cadherin

TGF-β transforming growth factor beta

TNF-α tumor necrosis factor alpha

ULK1 unc-51-like autophagy activating kinase 1

VEGF vascular endothelial growth factor
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