Skip to main content

ORIGINAL RESEARCH article

Front. Pharmacol.
Sec. Ethnopharmacology
Volume 15 - 2024 | doi: 10.3389/fphar.2024.1396001
This article is part of the Research Topic Preparation, Bioactivity Evaluation, and Quality Control of Natural Products and Their Derivatives View all 13 articles

Screening of anti-inflammatory activities components of Angelica dahurica root based on spectrum-effect relationship analysis and NF-κB pathway

Provisionally accepted
  • 1 Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
  • 2 Hebei Chemical and Pharmaceutical College, Shijiazhuang, Hebei Province, China

The final, formatted version of the article will be published soon.

    Angelica dahurica root (ADR), a commonly utilized herbal medicine in China and other Asian nations, which has anti-inflammatory effects on diverse inflammatory ailments. However, the bioactive components and underlying mechanism responsible for the anti-inflammatory effect of ADR are still unclear. This work attempted to discover the anti-inflammatory bioactive compounds and explore their underlying mechanism in ADR based on spectrum-effect relationship analysis and NF-κB signaling pathway. Chromatographic fingerprints of ADR samples were established by high performance liquid chromatography with diode array detection (HPLC-DAD), and a total of eleven common peaks were selected. Then, high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC-Q/TOF-MS) was employed for identification of eleven common peaks in ADR Meanwhile, the anti-inflammatory activities of ADR samples were assessed by inhibition of NO, interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) production in LPSinduced RAW264.7 cells. The spectrum-effect relationships between the eleven common peaks in HPLC fingerprints and anti-inflammatory effects of ADR samples were investigated to identify the potential anti-inflammatory bioactive compounds by grey relational analysis (GRA) and partial least squares regression (PLSR). The spectrum-effect relationship analysis results indicated that six coumarin compounds, including bergapten, xanthotoxin, phellopterin,isoimperatorin, xanthotoxol and imperatorin could be potential anti-inflammatory bioactive compounds in ADR. The further validation experiments also showed that these six coumarins demonstrated significant inhibition of NO, IL-1β, IL-6, and TNF-α production in LPS-induced RAW264.7 cells. In addition, western blot analysis was conducted to explore the mechanisms of two potential anti-inflammatory bioactive compounds (phellopterin and isoimperatorin) by assessing the protein levels in the NF-κB signaling pathway. The western blot results illustrated that phellopterin and isoimperatorin could significantly down-regulate the phosphorylated NF-κB p65 (p-p65), phosphorylated IκBα (p-IκBα) and iNOS, and depress the proportion of p-p65/p65 and p-IκBα/IκBα, which indicated that these two coumarins in ADR could potentially exert anti-inflammatory effects by suppressing of NF-κB pathway.

    Keywords: Angelica dahurica root, anti-inflammatory, HPLC-Q/TOF-MS, Spectrum-effect relationships, NF-κB

    Received: 05 Mar 2024; Accepted: 26 Jul 2024.

    Copyright: © 2024 Shi, Wang, Chang, Zheng, Zhang, Zhao and Guo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence:
    Dan Zhang, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei Province, China
    Yunsheng Zhao, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei Province, China
    Long Guo, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei Province, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.