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Introduction: Machine learning (ML) methods are promising and scalable
alternatives for propensity score (PS) estimation, but their comparative
performance in disease risk score (DRS) estimation remains unexplored.

Methods: We used real-world data comparing antihypertensive users to non-
users with 69 negative control outcomes, and plasmode simulations to study the
performance of ML methods in PS and DRS estimation. We conducted a cohort
study using UK primary care records. Further, we conducted a plasmode
simulation with synthetic treatment and outcome mimicking empirical data
distributions. We compared four PS and DRS estimation methods: 1.
Reference: Logistic regression including clinically chosen confounders. 2.
Logistic regression with L1 regularisation (LASSO). 3. Multi-layer perceptron
(MLP). 4. Extreme Gradient Boosting (XgBoost). Covariate balance, coverage of
the null effect of negative control outcomes (real-world data) and bias based on
the absolute difference between observed and true effects (for plasmode) were
estimated. 632,201 antihypertensive users and nonusers were included.

Results: ML methods outperformed the reference method for PS estimation in
some scenarios, both in terms of covariate balance and coverage/bias.
Specifically, XgBoost achieved the best performance. DRS-based methods
performed worse than PS in all tested scenarios.

Discussion: We found that ML methods could be reliable alternatives for PS
estimation. ML-based DRS methods performed worse than PS ones, likely given
the rarity of outcomes.

KEYWORDS

treatment effect, observational research, machine learning, propensity scores, disease
risk scores, negative control

OPEN ACCESS

EDITED BY

André Coelho,
Instituto Politécnico de Lisboa, Portugal

REVIEWED BY

Shouheng Tuo,
Xi’an University of Posts and
Telecommunications, China
Xutong Zheng,
China Medical University, China

*CORRESPONDENCE

Yuchen Guo,
yuchen.guo@ndorms.ox.ac.uk

RECEIVED 04 March 2024
ACCEPTED 17 October 2024
PUBLISHED 28 October 2024

CITATION

Guo Y, Strauss VY, Català M, Jödicke AM,
Khalid S and Prieto-Alhambra D (2024) Machine
learning methods for propensity and disease
risk score estimation in high-dimensional data:
a plasmode simulation and real-world data
cohort analysis.
Front. Pharmacol. 15:1395707.
doi: 10.3389/fphar.2024.1395707

COPYRIGHT

© 2024 Guo, Strauss, Català, Jödicke, Khalid
and Prieto-Alhambra. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 28 October 2024
DOI 10.3389/fphar.2024.1395707

https://www.frontiersin.org/articles/10.3389/fphar.2024.1395707/full
https://www.frontiersin.org/articles/10.3389/fphar.2024.1395707/full
https://www.frontiersin.org/articles/10.3389/fphar.2024.1395707/full
https://www.frontiersin.org/articles/10.3389/fphar.2024.1395707/full
https://www.frontiersin.org/articles/10.3389/fphar.2024.1395707/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2024.1395707&domain=pdf&date_stamp=2024-10-28
mailto:yuchen.guo@ndorms.ox.ac.uk
mailto:yuchen.guo@ndorms.ox.ac.uk
https://doi.org/10.3389/fphar.2024.1395707
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2024.1395707


1 Introduction

Observational studies complement randomised controlled trials
in assessing medicine and vaccine risks and benefits. Large
healthcare records, known as “real-world data,” offer insights
into medical interventions in diverse populations but can
introduce bias (Ryan et al., 2012; Rosenbaum and Rubin, 1983).
In causal inference, propensity scores (PS) and disease risk scores
(DRS) are used to mitigate confounding by balancing covariates
between treated and untreated groups, enabling treatment effect
estimation. Both PS and DRS can be used with methods like
matching and weighting to estimate causal treatment effects
(Desai et al., 2015; Nguyen et al., 2024; Rosenbaum and Rubin,
1983; Lee et al., 2010; Wyss et al., 2015).

PS, estimating the probability of receiving treatment based on
covariates, mitigate confounding in pharmaco-epidemiology
(Austin, 2011). PS are often estimated using logistic regression
with predetermined confounders based on previous clinical
knowledge. Logistic regression with L1 regularisation (LASSO), a
data-driven method, is increasingly popular and well implemented
for PS estimation (Ryan et al., 2013; Tian et al., 2018; Greenland,
2008). While LASSO has shown good performance and scalability in
PS estimation, various machine learning (ML) methods, including
neural networks and tree-based methods can be applied. (Abdia
et al., 2017; Cannas and Arpino, 2019; Collier et al., 2023; Lee et al.,
2010; Setoguchi et al., 2008). We selected Multi-layer perceptron
(MLP) and Extreme Gradient Boosting (XgBoost) for their distinct
advantages. MLP is capable of modelling complex, non-linear
relationships, making it suitable for capturing interactions
between covariates in high-dimensional data (Setoguchi et al.,
2008). XgBoost is well-known for its effectiveness in handling
large data and robust performance, while boosting methods
consistently highlighted in the literature for PS estimation (Chen
and Guestrin, 2016; Lee et al., 2010; Abdia et al., 2017). These
characteristics make both MLP and XgBoost appropriate choices for
our large data, where optimising hyperparameters is crucial to avoid
the pitfalls of using default settings (Collier et al., 2023).

DRS, based on the estimated probability of outcome given
confounders, offer an alternative to PS for confounding
mitigation. Less popular than PS, DRS have shown worse
performance than PS in some simulation studies (Wyss et al.,
2015; Xu et al., 2016), but are easier to understand and interpret
as they represent disease severity or outcome risk. However, the
potential of ML methods for DRS estimation in treatment effect
estimation has not been widely investigated.

Although LASSO has been extensively studied with respect to
hyperparameter tuning, most non-regularisation-based ML
methods, such as neural networks and tree-based algorithms,
have often been applied using default settings in PS estimation.
To our best knowledge, among studies using simulation for
methodology research, only Collier et al. (2023) and Weberpals
et al. (2021) tuned a neural network model, Vegetabile et al. (2020)
tuned a Gaussian processes model, and Sales et al. (2018) tuned a
random forest model. No study has yet compared regression-based
methods with well-tunedMLmethods when comparing PS and DRS
method. Recent study investigating into hyperparameter tuning
suggest that tuning ML method produced more accurate
treatment effect estimation (Amusa, North and Zewotir, 2023).

This highlights the importance of our study within the field of
ML applications for PS and DRS estimation.

We aimed to demonstrate the use of various ML methods for PS
and DRS estimation in the context of large real-world data and
plasmode simulations.We compared logistic regression informed by
previous knowledge with three data-driven ML methods: LASSO,
MLP, and XgBoost. The real-world data analysis explored the
association between antihypertensive treatment and negative
control outcomes. Plasmode simulations were conducted to
mimic real-world data but with known true treatment effects.

2 Methods

2.1 Real-world data

First, we conducted a real-world data analysis of the effects of
antihypertensives on fracture risk in elderly people (see Study
Population Section 2.1.2). Since the true causal relationship
between antihypertensives and fractures is unknown, we used
negative control outcomes to evaluate potential bias in different
methods. We modelled 69 negative control outcomes (See
Supplementary Material for list) selected based on clinical
expertise, while the clinical outcome (fracture) was only used to
identify confounders for the reference method in PS and DRS
estimation.

2.1.1 Data source
Data was obtained from the Clinical Practice Research Datalink

(CPRD GOLD) (Herrett et al., 2015), a UK primary care database
with a representative sample of over 6 million people active during
the study period. Data were mapped to the Observational Medical
Outcomes Partnership Common Data Model (OMOP) (Stang
et al., 2010).

2.1.2 Study population
The source population included individuals aged over 65 at the

beginning of the study on 1 January 2010. These individuals had to
be registered with a medical practice meeting the “up-to-standard”
criteria for at least 1 year. Those who had taken antihypertensive/s in
the year preceding the study start were excluded. Additionally, a
minimum follow-up of 1 day was required.

2.1.3 Exposure
Antihypertensive treatment episodes were generated using

Gardarsdottir et al. (2010) method by concatenating prescriptions
with a < 90-day refill gap and used as a time-varying exposure.

Participants started as “non-users” (1/1/2010), until
antihypertensive initiation. The first prescription marked the shift
to “drug user” status, maintained until the end of follow-up. Details
of the study design can be found in Supplementary Material.

2.1.4 Outcome
First, the main outcome of clinical interest was identified using

previously used codes for fractures (see Supplementary Material).
This outcome was only used for expert selection of confounders for
the reference logistic model, as the unknown true effect size makes
method comparison infeasible, we did not include the estimation of
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treatment effect on outcome in the main result. Nonetheless, the
estimated effect size of antihypertensive treatment on fractures is
provided in the Supplementary Material for reference.

To measure bias and compare model performance in the real-
world data analysis with an unknown treatment effect, we conducted
a negative outcome control analysis using 69 outcomes presumed to
have no causal relation with antihypertensive treatment (Lipsitch
et al., 2010). These outcomes, expected to have a true hazard ratio of
1, served as a benchmark. The coverage of the expected null effect
within confidence intervals for each of these negative control
outcomes acted as a proxy for bias. See Supplementary Material
for the list of proposed negative control outcomes.

2.1.5 Covariates
To estimate PS and DRS in the real-world data analysis, we used

all available information of relevance in CPRD GOLD, including
demographics, year of treatment initiation, conditions, procedures,
and drugs (Marc Overhage et al., 2012), after excluding covariates
with low prevalence (≤0.004). Details of these can be found in
Supplementary Material.

2.2 Plasmode simulation

Second, we conducted a plasmode simulation (Franklin et al.,
2014) by generating synthetic exposures and outcomes based on the
essential covariates and distributions observed in the previous real-
world data. Using this method, we conducted a similar cohort
analysis to investigate the effect of time-varying synthetic
exposure among users versus non-users in relation to a synthetic
outcome. Details are in Supplementary Material.

2.2.1 Data source and study population
Plasmode simulations used in this study were based on

resampling with replacement of the observed covariates and
controlling the treatment effect via parameters for the outcome
associated with covariates, ensuring that associations among
covariates were representative of real-world scenarios. The same
covariates and observations from real-world data introduced above
were selectively used in plasmode simulation.

2.2.2 Exposure and outcome generation
Exposure and outcome were simulated based on confounders

(affecting both treatment and outcome), instrumental variables
(only affecting treatment) and risk factors (only affecting
outcome) selected. Details can be found in Supplementary Material.

2.2.3 Covariates
90 covariates were selected from the data generated above to be

covariates that affect treatment or outcome or both. Among
90 covariates, 50 of them were confounders, 20 of them were
instrumental variables, and 20 of them were risk factors.

2.3Machine learning and referencemethods

In the plasmode simulation, as explained above, the reference
method incorporated true confounders that affect both treatment

and outcome, representing the clinically informed covariates. Other
ML methods used for PS and DRS estimation considered all
covariates as input and selected relevant covariates through a
data-driven modelling approach. Specifically, we applied LASSO,
MLP and XgBoost. LASSO is a form of logistic regression that
includes an L1 regularisation term, which adds a constraint to the
model that shrinks the coefficients of less important variables to zero
(Tibshirani, 1996). This helps with variable selection and
regularisation, reducing overfitting while maintaining
interpretability. MLP is a type of feedforward neural network,
which consists of multiple layers of interconnected neurons
(Rumelhart et al., 1986; Goodfellow et al., 2016). Each neuron
performs a weighted sum of its inputs followed by an activation
function to introduce non-linearity. XgBoost is a tree-based
ensemble method that builds decision trees sequentially, with
each tree attempting to correct the errors made by the previous
ones (Chen and Guestrin, 2016). It uses a gradient descent approach
to minimise the loss function, making it highly effective for tasks
with structured data.

Each model was hyperparameter-tuned using 10-fold cross-
validation, aiming to minimise the average Brier score across the
folds. For LASSO, the shrinkage parameter was optimised. MLP
tuning included the optimiser, batch size, number of epochs, kernel
function, number of hidden layers, number of units in each layer,
and activation function. For XgBoost, we tuned parameters such as
the number of estimators, minimum sum of instance weight
(hessian) in a child, minimum loss reduction for partitioning,
subsample ratio, learning rate, and maximum tree depth. The
Python codes used for implementation and full details on
hyperparameter tuning are available in the GitHub repository
(https://github.com/MimimimiGuo/plasmode) and in
Supplementary Material for reproducibility.

2.4 Propensity scores and disease risk
scores settings

PS represents the probability of receiving treatment conditional
on confounders. Many PS methods have been tested to reduce
confounding effects (Austin, 2011; Ali et al., 2016).

DRS, proposed by Miettinen (Miettinen, 1976), addresses
confounding by conditioning on the estimated probability of
outcome, calculated either as an unexposed DRS or a full cohort
DRS. The unexposed DRS is computed by regressing the outcome to
covariates Y ~X |T = 0 for the unexposed population, then extending
the model to the entire population, resulting in fitted values P(Y = 1 |
X) as the unexposed DRS. The full cohort DRS is obtained by
regressing the outcome to covariates and treatments using the
entire study population Y ~ X, T, and computing fitted values for
the full population by setting treatment status to unexposed T = 0.
Additionally, methods like out-of-sample DRS approaches have
been explored to apply the DRS to external populations for
improved generalisability (Wyss et al., 2014), such extensions are
beyond the scope of this study. For this study, we used the full cohort
DRS as it is known to outperform the unexposed DRS in reducing
bias when estimating treatment effects (Arbogast and Ray, 2011).

A greedy matching method (Rassen et al., 2012) was applied
with a maximum ratio of 5:1 and a caliper of 0.05, following the
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study done by Tian et al. (2018) on large scale PS estimation. After
matching, we obtained the average treatment effect on the
treated (ATT).

In the real-world data, we applied Cox regression to estimate
hazard ratios for treatment effects on negative control outcomes
using matched data. In the plasmode simulation data, logistic
regression was applied to matched data, with treatment as the
only covariate and the simulated outcome as the response variable.

2.5 Estimates and metrics

Average Absolute Standardised Mean Difference (ASMD)
measured covariate balance across all the available covariates in
the real-world data and plasmode simulation data.

The coverage and root mean square error (RMSE) of the
estimated hazard ratio for negative control outcomes was
reported for real-world data analysis, where a true hazard ratio of
one is assumed.

Relative bias with 95% confidence intervals was used as a metric
to evaluate the accuracy of treatment effect estimation in the
plasmode analysis, and it was presented on the scale of the
treatment variable’s coefficients. It is calculated as

β̂t − βt
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

βt

if denoting βt as the true treatment effect coefficient and β̂t as the
estimated treatment effect.

In addition to these metrics, we used Brier score loss after 10-
fold cross-validation as an out-of-sample performance measure for

ML methods (see Supplementary Material). Together, these metrics
allow for a comprehensive evaluation of model performance in
estimating PS, DRS and treatment effects.

3 Results

3.1 Cohort

A total of 163,597 antihypertensive drug users and 468,604 non-
users were included from CPRD data, with 637 baseline covariates
available for PS/DRS estimation and outcome risk of 0.0075. Details
of plasmode data generation are available in
Supplementary Material.

3.2 Propensity scores results

3.2.1 Propensity scores covariate balance in real-
world data and plasmode simulation

Covariate balance was evaluated in both real-world data and
plasmode simulation analyses through ASMD after matching
(Table 1). Details of the balance for each covariate before and
after PS matching are plotted in Figure 1. In real-world data
analysis, XgBoost-based PS matching resulted in the best
covariate balance, with the lowest ASMD leading to all covariates
with ASMD < 0.1 post-matching. On the other hand, PS matching
based on LASSO, reference method and MLP resulted in a
comparatively poorer balance, with certain covariates displaying
an ASMD exceeding 0.1 after matching. Details of imbalanced
covariates are available in Supplementary Material. In the

TABLE 1 Covariate balance for real-world data and plasmode simulation: before and after PS matching scatterplot of absolute standardised differences.

ASMD - PS plasmode ASMD - PS real-world data

Reference method 0.1032 (0.1020, 0.1045) 0.0394

LASSO 0.0991 (0.0978, 0.1003) 0.0167

XgBoost 0.0990 (0.0968, 0.1011) 0.0150

MLP 0.1010 (0.0992, 0.1027) 0.0480

FIGURE 1
Average standardised absolute mean difference before (X-axis) and after propensity score matching (Y-axis) in real-world data. The horizontal line
highlights the pre-specified threshold for the desired average standardised absolute mean difference below 0.1 after matching.
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plasmode simulation, the ASMD results for all methods showed a
similar level of balance, with XgBoost and LASSO being able to
achieve the lowest ASMD.

3.2.2 Treatment effect estimation after propensity
score matching - negative control outcome
analysis in real-world data

All tested methods showed some residual bias, with negative
control outcomes coverage of the null consistently below 70% for all
tested methods (Table 2).

Figure 2 illustrates effect estimates and 95% confidence intervals
for each negative control outcome after PS matching. The y-axis (ID
1-69) represents all tested negative control outcomes introduced
above. The hazard ratio estimates, including the null effect of 1,
indicate coverage of negative control outcomes. XgBoost achieved
the highest coverage for negative control outcomes (63.8%), while
MLP resulted in the lowest (53.3%). For RMSE in hazard ratio
estimation, all methods had similar values (Table 2).

TABLE 2 Negative control outcome analysis for propensity score matching
results.

PS estimation method Coverage (%) RMSE

Reference 62.3 0.1766

XgBoost 63.8 0.1741

LASSO 57.1 0.1709

MLP 53.3 0.1763

FIGURE 2
Coverage plots of negative control outcomes for each propensity score method: XgBoost, LASSO, MLP and reference. Each dot represents the
hazard ratio estimation for a negative control outcome. Hazard ratios significantly different from 1 (based on a significance level of 0.05) are highlighted in
orange, indicating potential bias or confounding, while non-significant results are shown in blue. The horizontal lines depict the confidence intervals for
each hazard ratio.
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3.2.3 Treatment effect estimation after propensity
score matching - plasmode simulation

Table 3 presents relative bias for the estimated treatment effect
after PS matching using the four methods in the plasmode
simulation. XgBoost showed the lowest average relative bias
(0.5473 (0.4802, 0.6144)), consistent with the best covariate
balance. Although confidence intervals overlapped for all
methods, the results aligned with real-world data analysis
findings, pointing to XgBoost-based PS as the best-
performing method.

3.3 Comparison of disease risk scores and
propensity scores results

3.3.1 Propensity scores vs. disease risk scores
covariate balance in real-world data and plasmode
simulation

Covariate balance post-DRS matching was evaluated in both
real-world and plasmode simulation data. Figure 3 depicts the pre-
and post-matching ASMD for each covariate in real-world data
analysis. The pre-matching ASMD was 0.1977 for real-world data
and 0.1943 (0.1934, 0.1952) for plasmode simulation. Figure 3 shows
ASMD before and after DRS matching. For all estimation methods,
there were covariates with ASMD over 0.1 after DRS matching.
Details of these imbalanced covariates and average ASMD after DRS
matching can be found in Supplementary Material.

The ASMD values after matching for DRS in plasmode
simulation were 0.0973 (0.0961, 0.0986), 0.1223 (0.1192, 0.1253),

0.1167 (0.1140, 0.1195) and 0.1007 (0.0988, 0.1026) for the
reference, LASSO, XgBoost and MLP method respectively, in
real-world data analysis the ASMD after DRS matching were
0.0426, 0.0442, 0.0430 and 0.0703 for the reference, LASSO,
XgBoost and MLP method respectively.

Notably, DRS matching, regardless of the estimation method,
resulted in a similar or stronger covariate imbalance, compared to
PS. The reference method achieved the lowest ASMD in both real-
world data and plasmode simulation analyses.

The plot comparing ASMD values after DRS matching for each
covariate against those after PS matching is shown in Figure 4.

Matched on PS, particularly estimated by XgBoost and LASSO,
achieved better covariate balance than DRS matching with the same
methods. However, the performance of PS estimated by the
reference method was similar to that of DRS.

3.3.2 Propensity scores vs. disease risk scores
treatment effect estimation after matching
negative control outcome analysis in real-
world data

Figure 5 illustrates negative control outcomes for each DRS
estimation method. The wider blue confidence intervals, show
hazard ratio estimations with lower statistical power compared to
PS matching (Figure 2). Despite higher coverages, DRSmatching led
to higher RMSEs for negative control outcome hazard ratio
estimations.

The coverage for negative control outcome hazard ratio
estimation and RMSE for hazard ratio estimation after DRS
matching is shown in Table 4. All of the DRS estimation
methods showed residual bias, as evidenced by the observed
coverage for all negative control outcomes being below 70%. In
contrast to the PS coverage when evaluating real-world data, both
the MLP and XgBoost methods yielded worse results when used for
DRS estimation, with a reduced coverage of only 37.7% for MLP-
based DRS, and 62.3% for XgBoost-based DRS matching.
Conversely, the LASSO method had an increase in coverage,
from 57.1% to 63.8%, thereby attaining the highest coverage.

The LASSOmethod excelled in hazard ratio estimation, yielding
the lowest RMSE of 0.1766. For negative control outcomes, all ML
methods, except the reference method, exhibited increased RMSEs

TABLE 3 Propensity score method: treatment effect estimation relative bias
with 95% Confidence Intervals for the plasmode experiment.

PS estimation method Relative bias - plasmode
simulation

Reference 0.5593 (0.4950, 0.6237)

LASSO 0.5709 (0.5037, 0.6382)

XgBoost 0.5473 (0.4802, 0.6144)

MLP 0.5585 (0.4905, 0.6264)

FIGURE 3
Visualisation for real-world data analysis: Each panel shows the average standardised absolute mean difference (ASMD) before (X-axis) and after
disease risk score matching (Y-axis). The horizontal line indicates the threshold of 0.1, below which the ASMD after matching is considered acceptable.
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with DRS matching compared with PS matching. This emphasises
that, in ML-based PS and DRS estimation, PS matching consistently
resulted in reduced RMSE for treatment effects relative to DRS,
consistent with earlier observations on covariate balance.

3.3.3 Propensity scores vs. disease risk scores
treatment effect estimation after matching -
plasmode simulation

Relative bias after DRS matching using four DRS estimation
methods is shown in Table 5. The reference method and the MLP
method led to the lowest bias. In contrast, LASSO and XgBoost
registered slightly higher average relative biases, at 0.7142 and
0.7091 respectively. In the comparison between PS and DRS, the
relative bias observed from PS matching was consistently lower than
that from DRS matching.

4 Discussion

This study provides key insights into ML-based PS and DRS
estimation. Beyond treatment effect estimation bias, we also used
outcome-independent metrics like ASMD to provide a more
objective assessment of model effectiveness. This aligns with the
literature’s emphasis on the importance of not relying solely on
outcome-dependent metrics like bias (Tian et al., 2018).
Furthermore, while external validation would further strengthen
these findings, the internal validation approach provides valuable
insights into the relative performance of the models. We used 10-
fold cross-validation to tune hyperparameters and assess model
performance using Brier score loss as an out-of-sample metric. This
approach helps ensure the generalisability of the models. While
external validation would provide additional robustness, the 10-fold
cross-validation serves as a rigorous internal validation method,
preventing overfitting and offering valuable insights into the relative
performance of the methods. Future work could explore external
validation if suitable data become available to further strengthen
the findings.

To our knowledge, no studies have systematically compared PS
versus DRS using ML methods for estimating treatment effects.
Most research has focused on regression methods, underlining the

novelty of this study and emphasising the need for further
exploration of ML-based methods in PS and DRS estimation.

Each ML method selected in this study carries inherent
assumptions that influence performance. LASSO assumes
linearity and sparsity, making it less effective for non-linear
relationships, while XgBoost’s additive decision tree structure
handles non-linear interactions and imbalanced data better
(Chen and Guestrin, 2016). MLP, though powerful for complex
non-linear modelling, requires balanced data and large sample sizes,
making it more sensitive to the imbalanced data in this study
(Huang et al., 2022). These assumptions help explain the
superior performance of XgBoost in both PS and DRS
estimation, particularly in handling nonlinear real-world data,
while LASSO’s regularisation proved effective in managing less
complicated simulated data. Moreover, after hyperparameter
tuning, XgBoost demonstrated superior performance in PS
estimation, exhibiting the lowest ASMD and relative bias for
treatment effect estimation, consistent with prior research on
using ASMD for hyperparameter selection (McCaffrey et al.,
2004; Cannas and Arpino, 2019). However, XgBoost’s efficacy in
DRS estimation was less pronounced, possibly due to imbalanced
targets under the rare event data. Future research could explore
methods like synthetic minority oversampling method (Rivera et al.,
2014) to improve ML performance in imbalanced data scenarios.

Our findings suggest that XgBoost and LASSO can estimate PS
comparably or better than logistic regression models based on prior
confounder knowledge. These methods are scalable for large data,
especially when analysing multiple treatments or outcomes.
Additionally, evolutionary computation methods like genetic
algorithms and harmony search (Tuo et al., 2022) show potential
for complementing the ML methods explored here, offering future
directions for refining PS and DRS estimation. Moreover, ensemble
approaches like Super Learner, which combine multiple algorithms for
robust predictions, present promising avenues for further enhancing
model accuracy and generalisability (Pirracchio et al., 2015).

Despite these promising results, the study has limitations. The low
coverage in 95% confidence intervals for negative control outcomes
likely extends beyond confounding bias and may involve selection or
information bias. In addition, the absence of external validation and
potential unmeasured confounders restrict the generalisability of these

FIGURE 4
Comparison of propensity score and disease risk score matching methods: average standardised absolute mean difference (ASMD) after propensity
score matching (X-axis) versus ASMD after disease risk score matching (Y-axis). The horizontal line indicates the threshold for acceptable
balance (ASMD <0.1).
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findings. However, incorporating RMSE for negative control outcomes
provided a more comprehensive evaluation, and the plasmode
simulation results further validated these findings.

In real-world data analyses, ML methods like XgBoost and MLP
may face challenges in widespread implementation due to the need
for expert input in tuning and interpretation. XgBoost, while highly

FIGURE 5
Coverage plots for negative control outcomes using XgBoost, LASSO,MLP, and Reference. Each dot represents a hazard ratio estimate for a negative
control outcome. Significant deviations from one (p < 0.05) are shown in orange, indicating potential bias or confounding, while non-significant results
are shown in blue. Horizontal lines depict confidence intervals for each hazard ratio.

TABLE 4 Negative control outcome analysis for disease risk score matching results, and compared to PS matching.

Estimation method Coverage (DRS) (%) Coverage (PS) (%) RMSE (DRS) RMSE (PS)

Reference 62.3 62.3 0.1766 0.1766

XgBoost 62.3 63.8 0.1809 0.1741

LASSO 62.3 57.1 0.1766 0.1709

MLP 37.7 53.3 0.2783 0.1763
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effective for structured data, is computationally intensive,
particularly when optimising numerous hyperparameters for
large data (Chen and Guestrin, 2016). MLP, though capable of
modelling complex non-linearities, requires careful tuning to handle
imbalanced data effectively and to prevent biased estimation (Huang
et al., 2022). In contrast, LASSO is faster to tune and
computationally efficient, making it easier to apply in large-scale
clinical data. However, it is less capable of capturing complex
relationships between covariates, making it more suitable for
simpler, linear models. Furthermore, ethical considerations, such
as model transparency and algorithmic bias, must also be addressed,
as they have implications for decision-making and patient outcomes
(Chin et al., 2023). As ML methods continue to evolve, the
consideration of these factors will be crucial for their successful
application into clinical practice.

5 Conclusion

ML methods with hyperparameter tuning and the logistic
regression model with pre-selected covariates were tested on real-
world data and plasmode simulation data for PS and DRS estimation
to assess treatment effects. ML methods, particularly XgBoost,
demonstrated superior covariate balance and less treatment effect
estimate bias compared to traditional logistic regression. ML-based
PS methods performed better than DRS methods, highlighting the
need for future research on their application in diverse scenarios.
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