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Muscular dystrophies encompass a heterogeneous group of rare neuromuscular
diseases characterized by progressive muscle degeneration and weakness.
Among these, Duchenne muscular dystrophy (DMD) stands out as one of the
most severe forms. The present study employs an integrative approach
combining network pharmacology, quantitative structure-activity relationship
(QSAR) modeling, molecular dynamics (MD) simulations, and free energy
calculations to identify potential therapeutic targets and natural compounds
for DMD. Upon analyzing the GSE38417 dataset, it was found that individuals
with DMD exhibited 290 upregulated differentially expressed genes (DEGs)
compared to healthy controls. By utilizing gene ontology (GO) and protein-
protein interaction (PPI) network analysis, this study provides insights into the
functional roles of the identified DEGs, identifying ten hub genes that play a
critical role in the pathology of DMD. These key genes include DMD, TTN, PLEC,
DTNA, PKP2, SLC24A, FBXO32, SNTA1, SMAD3, and NOS1. Furthermore, through
the use of ligand-based pharmacophore modeling and virtual screening, three
natural compounds were identified as potential inhibitors. Among these,
compounds 3874518 and 12314417 have demonstrated significant promise as
an inhibitor of the SMAD3 protein, a crucial factor in the fibrotic and inflammatory
mechanisms associated with DMD. The therapeutic potential of the compounds
was further supported by molecular dynamics simulation and Molecular
Mechanics/Generalized Born Surface Area (MM/GBSA) analysis. These findings
suggest that the compounds are viable candidates for experimental validation
against DMD.
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1 Introduction

Muscular dystrophies (MD) refer to a variety of inherited
conditions that cause progressive weakening and degeneration of
skeletal muscles. This group of disorders is known for its genetic and
clinical diversity, with symptoms appearing from birth to late
adulthood depending on the specific type. The most diverse
forms of MD include limb-girdle, facioscapulohumeral,
oculopharyngeal, emery-Dreifuss, distal, and Duchenne and
Becker muscular dystrophies (Angelini, 2010). MD encompass a
range of genetic disorders that can be X-linked, autosomal recessive,
or autosomal dominant. These conditions manifest as muscular
discomfort, weakness, and degeneration. Mutations in proteins
within the sarcomere, nucleus, basement, or outer membrane of
muscle cells and nonstructural enzymatic proteins are implicated in
the pathogenesis of MD (Amato and Griggs, 2011). Different genetic
deletions or mutations can lead to enzymatic or metabolic disorders,
resulting in a variety of MDs (Gao and McNally, 2015; Allen et al.,
2016). Variation in the X-lined gene DMD, where dystrophin is
mutated frequently, causes Duchenne muscular dystrophy (DMD),
which is the most severe form (Brinkmeyer-Langford and Kornegay,
2013). This condition affects around 1 in every 3,500 to 5,000 male
infants born globally (Hoffman et al., 1987). Downregulation of
protein expression during DMD or BMD is an outcome of
mutations associated with Dytrophin gene (Le Rumeur, 2015).
Limb-girdle muscular dystrophy (LGMD) is a progressive muscle
weakness affecting the pelvic and shoulder girdles, primarily caused
by mutations in proteins like myotilin, lamin, caveolin-3, calpain-3,
dysferlin, γ-sarcoglycan, TCAP, TRIM32, FKRP, and titin. These
mutations cause various subtypes of LGMD and are associated with
other forms of muscular dystrophies, including distal and congenital
dystrophies (Lovering et al., 2005).

Genetic profiling has revealed significant changes in gene
expression in DMD. These changes offer insights into the disease’s
molecular basis and highlight potential therapeutic targets. Altered
gene expression contributes to characteristic features of the disease.
These altered gene expression leads to inflammation, fibrosis, and
muscle degeneration. Studies have identifiedmultiple genes associated
with these biological processes, suggesting potential therapeutic
interventions. Wang et al. (2013) found several hub genes
associated with DMD, including C3AR1, TLR7, IRF8, and CD33,
which are linked to immune and inflammation responses.Wang et al.
(2021) identified proteins acting as hubs for DMD and BMD, finding
1,281 genes overexpressed and 189 downregulated. The informational
evolution underscores the complexity of DMD and the need for
ongoing research to understand its molecular intricacies.

Based on the immunomodulators of DMD pathology,
various drug targets were used in phase I and preclinical
trials (Malik et al., 2012; Tripodi et al., 2021). Inhibiting the
SMAD3 signaling pathway to help reduce inflammation and
fibrosis in DMD patients. SMAD3 is a protein with two domains,
MH1 and MH2, crucial for TGF-β-induced transcriptional
activation. The MH2 domain interacts with transcriptional
cofactors and the type I TGF-β receptor. It binds to various
proteins without a common sequence motif, making it essential
for activating TGF-β signals, as demonstrated by studies the
domain of SMAD3 in transforming growth factor-β signaling
(Imoto et al., 2005a).

Halofuginone was tested in the mouse model to inhibit
SMAD3 signaling, and it was observed that the inhibition of
SMAD3 reduced fibrosis and improved muscle function (Tripodi
et al., 2021). Osseni et al. (2022) found that tubastatin A can inhibit
HDAC6, thereby enabling the acetylation of SMAD3. It also
prevents nuclear translocation and Smad2/3 phosphorylation,
reducing muscle atrophy and fibrosis by downregulating TGF-β
signaling through Smad3 acetylation. Overall, both studies showed
that inhibiting SMAD3 restricts the progression of fibrosis improves
muscle movement.

This study aims to focus on the SMAD3 gene, which is a key
mediator in the TGF-β signaling pathway in DMD. The gene
expression data from the GEO database was used to identify
differentially expressed genes and to construct a Protein-Protein
Interaction network. Molecular docking was used to screen
2,569 natural compounds against SMAD3’s MH2 domain,
selecting three compounds with strong binding affinities. The
study validated these compounds’ potential as therapeutic
agents through molecular dynamics simulations, principal
component analysis (PCA), free energy landscape analysis
(FEL analysis), and MM/GBSA calculations. This approach
addresses a gap in current management strategies for DMD
and sets the stage for developing more targeted and effective
therapeutic options. The study’s integrative approach combines
high-throughput gene expression analysis, network-based
bioinformatics, and advanced computational docking and
simulation methods.

2 Methodology

2.1 Data collection, preprocessing and
differential gene expression analysis

In order to find the gene expression data, a search was performed
in the Gene Expression Omnibus (GEO) database using the keyword
“muscular dystrophy” (Clough and Barrett, 2016). The data was
filtered specifically for the species “Homo sapiens.” The microarray
dataset with the accession number GSE38417 was selected for further
examination based on the data processing. The selected dataset
contains the microarray datasets of healthy (control) and active
MD patients. The microarray gene expression data from the
selected groups were analysed using the GEO2R tool to determine
the DEGs (Rezaei and Jabbari, 2022). The GEO2R software was used
to obtain the p-value and false discovery rate (FDR) using the T-test
and the Benjamini and Hochberg technique (Aubert et al., 2004).
DEGs were selected by using a cut-off value of an absolute value of the
log(fold change) | > 2 and a significance threshold of p < 0.05. DEGs
were classified as upregulated or downregulated according to logFC ≥
2 and logFC ≤ −2, respectively.

2.2 Protein-protein interaction network
analysis, gene ontology and
pathway analysis

This study integrated GEO for expression data, STRING for
building interaction networks, and Cytoscape for network
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visualization (Menche et al., 2015). In order to examine the protein-
protein interaction (PPI) network of DEGs, the search Tool for the
Retrieval of Interacting Genes’ (STRING, version 12.0) (Szklarczyk
et al., 2021) was utilised. The PPI network was visualised using the web-
based software Cystoscope. The next step was to locate the hub genes in
Cytoscape (Shannon et al., 2003) by using the MCC method and the
CytoHubba plugin (Chin et al., 2014). Further, gene ontology was
employed to evaluate the roles of the genes.

Here, the GO approach was used to analyze the molecular
function of the gene. To perform GO analysis, the g:Profiler
server (Reimand et al., 2007) was used, and the GOST tool was
used to define the advanced parameters. Over-representation
analysis (ORA), also known as gene set enrichment analysis,
functional enrichment analysis, and other similar analyses, are all
services provided by the GOST programme (Raudvere et al., 2019).
This analysis is carried out on a list of input genes. Annotated genes
were the primary ones chosen in this case under the advanced
option. After that, g:SCS was selected as a significance threshold and
set the user threshold to 0.5. When determining the p-values, the
default parameter was used as the starting point, and a false
discovery rate (FDR) threshold of p < 0.05 was implemented in
order to analyze the data. A statistically significant p-value of less
than 0.05 was achieved by using the ShinyGO 0.80 programme to
carry out the route analysis (Ge et al., 2020). The pathway database
known as the Kyoto Encyclopaedia of Genes and Genomes (KEGG)
was used by this algorithm in order to discover the genes that were
implicated (Kanehisa and Goto, 2000). The KEGG pathway
representation predominantly focuses the intricate relationship of
gene products, primarily proteins, while additionally includes
functional RNAs (Kanehisa and Goto, 2000). The FDR cut-off in
the KEGG pathway has been set as 0.05. Consequently, relevant
genes were acquired, and among them, additional selection was
conducted based on the enrichment score (0.05).

2.3 Target preparation

The top hub genes were identified using information from the
literature to analyze their functions. Based on this data, a possible
target gene was selected. This selected gene was then queried in the
Uniprot database (UniProt Consortium, 2015), and the results were
refined by applying a filter for humans (H. sapiens). The data was
then examined and further analyzed based on family and domain
information. As a result, a specific domain was selected as the target
protein for further investigation.

2.4 Molecular docking

2.4.1 Protein preparation
The target protein SMAD3 (PDB: 1MJS) was downloaded from

the protein data bank (PDB) (UniProt Consortium, 2015). CASTp
server (Tian et al., 2018) was used to identify the residues, and the
CASTp server (Tian et al., 2018) was used associated with binding
sites. The protein was prepared using the Autodock tool. The grid
box with the following dimensions, 18 Å × 22 Å × 26 Å, was
generated to cover the binding site residues. The centre of the
grid box was situated at 28.39 Å × 5.22 Å × 4.37 Å along the x, y,

and z-axes Hydrogen atoms and Gasteiger charges are added, while
water molecules and heteroatoms are removed before docking.

2.4.2 Ligand preparation
The compound library preparation process began with a search

of the Selleckchem database for the desired natural substance.
(https://www.selleckchem.com/screening/natural-product-library.
html). The retrieved compounds were later converted into SMILES
for PubChem (Kim et al., 2023) CID using the “PubChem Identifier
Exchange Service.” By removing duplicate entries from both
conversion processes, distinct CIDs were obtained. Then, the
CIDs corresponding to the 3D-SDF structures were acquired
using the PubChem API. The other 2D-SDF structures were
Collected and converted retrieved and converted to 3D-SDF.
After that, the 3D-SDF files were optimized in size using the
MMFF94 force field, and Open-babel was used to convert these
to PDBQT (O’Boyle et al., 2011). Ligand was converted to PDB
from SDF using an open-babel tool. Similarly, open- Babel was
used to convert the PDB file to a PDBQT file. The addition of
hydrogen was also done by the open-Babel programme.

2.4.3 Ligand-protein docking
The AutoDock 4.2 software (Morris et al., 2009) and AutoDock

Vina 1.2.0 (Eberhardt et al., 2021) were used in order to carry out the
protein-ligand docking process. AutoDock Vina is a validated and
robust molecular docking tool favoured for its advanced scoring
function, efficient optimization algorithms, and multithreading
capabilities (Trott and Olson, 2010). These features enhance the
accuracy and speed of docking simulations, which is crucial for the
reliable prediction of binding energies and modes in protein-ligand
interactions. The tool’s development focuses on both empirical and
knowledge-based potentials, which ensures improved prediction
accuracy compared to its predecessors (Forli et al., 2016).
Additionally, in the process of conducting docking-based virtual
screening, the following characteristics were taken into
consideration: twenty binding modes, ten exhaustiveness, and a
maximum energy difference of four (kcal/mol).

2.4.4 Molecular dynamics (MD) simulation
The protein-ligand complex has been simulated employing the

poses were used for a 100 ns molecular dynamics simulation using
Gromacs 2022.4 (2022) (Bauer et al., 2022) (MD). The
CHARMM36 force field parameter was used to establish the
molecular topology (Huang and MacKerell, 2013). The CGneFF
server was used to build topologies and force-field parameters for
both the hit molecule and the control inhibitor (Vanommeslaeghe
et al., 2010). The Ewald particle mesh method was used to determine
the electrostatic force across a specific distance. The system was
hydrated using the TIP3P model after being placed into a solvation
box (cubic) with a distance of 1.0 nm from the wall (Harrach and
Drossel, 2014). The neutralisation process was then carried out using
Na+ and Cl− ions. After fifty thousand cycles of the steepest descent
(SD) method, the system was able to get rid of steric conflicts.
Afterwards, the LINCS approach was employed to attain system
stability and restrict the bonds (Hess et al., 1997). Furthermore,
during a 100 ps simulation period in the NVT ensemble, the
system’s temperature was raised to 310 K using a 2 fs
timestep. Furthermore, the system was exposed to continuous
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pressure (NPT ensemble) at 310 K and 1 atmosphere for 1 ns. The
simulation was run for 100 ns. The velocity-rescaling technique
(Hess et al., 1997) was used to include temperature coupling, while
the Parrinello-Rahman pressure method (Hess et al., 1997) was used
to provide constant pressure was employed to maintain constant
pressure. Hydrogen bonding, root mean square fluctuation (RMSF),
and root mean square deviation (RMSD) were evaluated with the use
of the GROMACS internal tool during a subsequent post-MD
examination.

2.4.5 Principal component analysis (PCA)
Prior to principal component analysis, the trajectory was cleaned

by eliminating the periodic boundary condition. For computing the
covariance matrix, the Gmx covar tool that is included in the
GROMACS package was used. It is possible to utilise the
covariance matrix in order to characterise the connection that
exists between the atomic variations that are present in the
protein-ligand complex. The eigenvalues and eigenvectors of the
covariance matrix were obtained via the gmx anaeig function. The
following step utilized the GROMACS software, specifically the
"gmx anaproj" function, to obtain the PC coordinates for each frame.

2.5 Free energy landscape (FEL)

The processes of biomolecule recognition, aggregation, and
folding are some of the processes that can be better understood
by examining the steady state, which is represented by the minima of
the Free Energy Landscape (FEL), and the transient state, which is
represented by the barriers of the FEL, in biological systems (Papaleo
et al., 2009). The FEL was calculated by calculating the energy
distribution according to Eq. 1a:

ΔG X( ) � −kBTln P X( ) (1a)

The variables X, G, kB, T, and P(X) represent the reaction
coordinate, Gibbs free energy, Boltzmann constant, absolute
temperature, and probability distribution of the system along the
reaction coordinate, respectively.

2.6 Binding-free energy

When estimating the binding free energy of the protein-ligand
complex, the GROMACS add-on tool gmx MM/PBSA was used as
the information source (Valdes-Tresanco et al., 2021). The
equations applied to compute the MM/GBSA are shown in Eqs 1–6.

ΔG � Gcomplex − Greceptor + Gligand[ ] (1b)
ΔGbinding � ΔH –TΔS (2)
ΔH � ΔGGAS + ΔGSOLV (3)

ΔGGAS � ΔEEL + ΔEVDWAALS (4)
ΔGSOLV � ΔEGB + ΔESURF (5)

ΔESURF � γ.SASA (6)
Here, ΔG is defined as the variation in the protein-ligand

formation’s Gibbs free energy in Eq. 1b. In the solvent, Gcomplex,
Greceptor, and Gligand denote the total free energies of the protein-

ligand complex, free enzyme, and ligand, respectively. ΔGbinding

signifies the modification in the Gibbs free energy corresponding
to the protein-ligand binding interaction, while ΔH stands for the
modification in enthalpy that incorporates both the gas-phase
energy (ΔGGAS) and the total solvation free energy (ΔGSOLV).
The binding free energy, shown as TΔS, is the cumulative sum of
the change in entropy. ΔEEL represents a change in electrostatic
energy, while ΔEVDWAALS signifies the change in van der Waals
energy. These two components combine to yield ΔGGAS.
Moreover, ΔEGB indicates the change in polar solvation energy
brought on by polar group interaction, while Δ,E-SURF. denotes a
change in solvation-free energy brought on by the non-polar
interaction. A variation of the solvent-accessible surface area
(SASA) was made using the solvent surface tension parameter (γ)
in order to compute the solvent-accessible surface area (SURF) of
the solvent.

3 Results

3.1 Healthy vs. active comparison for
Duchenne muscular dystrophy (DMD)

Using microarray datasets from healthy persons and those with
active DMD, the current research tried to discover the genes that are
expressed differently between the two groups of people. The
GSE38417 dataset was derived from the GEO database, which
served as its primary source. The GEO2R approach was used to
find DEGs in the dataset. A volcano plot is used to show the
differential gene expression analysis results (Figure 1A). The
x-axis displays the log2 fold change between healthy and DMD
conditions; each gene’s expression level varies from condition to
condition. The importance of the expression change is shown by
negative log10 of the p-value, displayed along the y-axis. The genes
thought to be more differently expressed are those with greater and
further to the left or right points. Following the requirements of an
adjusted p-value (P.adj) less than 0.05 and a logarithmic function
(logFC) more than 2, genes that are substantially upregulated are
represented by red dots, while genes that are significantly
downregulated are represented by blue points. Here, we observed
290 upregulated and 977 downregulated DEGs. Figure 1B) illustrates
a mean difference (MA) plot for gene expression data from DMD
versus control samples. The y-axis shows the log2FC, log2 Fold
change and the x-axis shows the log2Exp, log2 expression. The genes
with red dots show a highly differentially expressed gene set, whereas
genes with blue points may have modest expression levels but large
fold changes.

Figure 1C shows the box plot that compares the distribution of
gene expression levels between the healthy (green boxes) and the
active DMD (blue boxes) for a series of samples on a logarithmic
scale. The centre line in each box shows the median expression level,
while the height of the box shows the interquartile range (the middle
50% of data points). There were 1,267 genes found to have
differential expression between healthy and active DMD
conditions, out of a total of 53,408, with an adjusted p-value less
than 0.05. These plots were used to analyse and visualise the
microarray dataset data and understand the biological
significance of gene expression changes in diseases like Duchenne
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muscular dystrophy. There is a chance that the genes that are
elevated (290 DEGs) are responsible for the production of
proteins that play an important part in the development of DMD
disease. Therefore, the purpose of the research was to examine the
dataset GSE38417 in order to identify the DEGs that were elevated.

3.2 Protein-protein interaction

Using the STRING platform, the upregulated differentially
expressed genes (DEGs) were analysed for protein-protein
interactions (PPIs). The medium confidence level was set at 0.90,
which is the lowest needed interaction score. Figure 2 illustrates the
PPI, which represents the interaction network between DEGs.
Disconnected nodes were ignored in the analysis as shown in the
Figure 2. Multiple significant nodes and links were among the

290 upregulated DEGs identified from GSE38417. TTN had the
highest node degree, with a value of 11. The genes DMD and
SLC2A4 exhibited a node degree of 10, which was the second
highest among all genes. PLEC and SMAD3 followed this, which
was 8 node degree. FBXO32 and MAPT exhibited significant node
degree, with a value of 7. The genes were subjected to additional
analysis using the Cytohubba plugin of Cytoscape. Cytoscape
employed a colour gradient that spanned from red to yellow in
order to represent the hubs, thereby signifying their varied degrees
of importance within the network. Through this study, the most
notable hubs are identified, which are subsequently used in
constructing a PPI network. Figure 3 displayed the protein-
protein interaction (PPI) network of the top 10 hubs, and
Table 1 presented a ranking of the genes based on their scores.
Both of these figures were shown in the same document. Figure 3
shows the use of Maximal Clique Centrality (MCC) values to

FIGURE 1
Gene expression analysis in DMD: (A) volcano plot, (B)MAplots highlighting differential expression between control and DMDcases, with (C) Sample
distribution bar graphs.
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display the gene gradient. The top 10 hubs found by PPI network
analysis were DMD, TTN, PLEC, DTNA, PKP2, SLC24A,
FBXO32, SNTA1, SMAD3, and NOS1. The DMD gene
exhibited the highest MMC score of 29, while the TTN gene

scored 23. These two genes, DMD and TTN, are the most
significant differentially expressed genes (DEGs) that contribute
to the development of muscular dystrophy. The PLEC gene scored
17, the DTNA gene exhibited a score of 12, and the PKP2, SLC24A,

FIGURE 2
Protein-protein interaction network depicting upregulated genes with hidden disconnected nodes. Node colours indicate different entity
classifications, while edge colors represent the nature and source of interactions—ranging from experimentally determined (red) to predicted
connections (green) and associations identified through text mining (blue) and co-expression (purple).
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FBXO32, and SNTA1 genes exhibited scores of 10. SMAD3 and
NOS1 exhibited an MCC score of 9. The top 10 hubs were
subsequently used for a literature analysis to examine the
association between these genes and muscular dystrophy.

3.3 Gene ontology

Studies on the enrichment of pathways using Gene Ontology
(GO) and the Kyoto Encyclopaedia of Genes and Genomes (KEGG)
were carried out with the assistance of the g: Profiler tool. These
efforts enhanced the understanding of the biological significance of
the upregulated DEGs in the GSE38417 dataset. Examining the
functional and route links between these DEGs helped researchers
better understand their potential roles in biological systems. The
user’s threshold was set to 0.5 in this case, which used the g:SCS
threshold. The cellular components (CC), biological processes (BP),

and molecular functions (MF) domains were the primary areas of
concentration for the GO analysis as shown in Figure 4. Sodium
channel regulator activity, PDZ (PSD-95/Dlg/ZO-1) domain
binding, dystroglycan binding, nitric-oxide synthase binding, and
structural components of muscle were among the molecular
processes linked to the DEGs. It was shown that the top ten hub
proteins are linked to several biological processes, including those
involving the cardiovascular system, striated muscle contraction,
blood circulation, and cardiac muscle contraction. The top 10 hub
proteins were shown to be connected with several cellular
components, including the sarcolemma, Z disc, I band,
syntrophin complex, and sarcomere. Duchenne muscular
dystrophy (DMD) disrupts a complicated network of interactions
and activities, as shown by the association between DEGs and these
biological processes and cellular components. Hub proteins have
recently been identified, which raises the possibility that they are
therapeutic treatment targets due to their potential importance in
disease progression. Gaining insight into these connections aids in
understanding the underlying pathological processes of DMD and
has the potential to identify efficient therapies.

3.4 Pathway analysis

Further, pathway enrichment analysis using the top 10 hub
genes was performed. Figure 5 shows that each pathway has a
horizontal line ending in a dot, with the dot’s position indicating the
fold enrichment. The colour of the dot, which is a statistical metric
that is used when testing several hypotheses, correlates to the
-log10 of the false discovery rate (FDR). In terms of statistical
significance, a deeper shade indicates a greater enrichment than a
lighter shade does. The size of the dot is a representation of the
number of genes that are involved in the pathway; bigger dots will
indicate that there are more genes involved. The arrhythmogenic
right ventricular cardiomyopathy and dilated cardiomyopathy
pathways exhibit the highest fold enrichment, accompanied by a

FIGURE 3
A key regulatory protein interaction network highlights central hub proteins as identified by cytohubba analysis. Gene interaction network with a
gradient scale indicating Maximal Clique Centrality (MCC) values for each gene. The gradient bar on the right, ranging from dark orange to light yellow,
visually represents the MCC values from highest to lowest, facilitating an understanding of the hierarchical importance of these genes in the network.

TABLE 1 Top 10 hub proteins in network STRING network ranked by MCC
method.

Rank Name Score Gene symbol

1 ENSP00000354923 29 DMD

2 ENSP00000467141 23 TTN

3 ENSP00000323856 17 PLEC

4 ENSP00000470152 12 DTNA

5 ENSP00000070846 10 PKP2

5 ENSP00000320935 10 SLC24A

5 ENSP00000428205 10 FBXO32

5 ENSP00000217381 10 SNTA1

9 ENSP00000332973 9 SMAD3

9 ENSP00000477999 9 NOS1
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highly significant FDR (indicated by the red colour). Hypertrophic
cardiomyopathy shows a slightly lower fold enrichment but still
maintains a significant FDR. On the other hand, the FoxO signaling
pathway and Apelin signaling pathway display lower fold

enrichments and less significant FDRs (indicated by the blue
colour). The enrichment scores and the genes involved in the
pathway are listed in Table 2. It was observed that DMD, TTN,
and SMAD3 were involved in most of the pathways.

FIGURE 4
Gene Ontology insights into cellular components (CC), biological processes (BP), and molecular functions (MF) of the top 10 hub genes.

FIGURE 5
Pathway enrichment analysis of top hub genes identified from the PPI network analysis.
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3.5 SMAD3 a key target in Duchenne
muscular dystrophy

The target identified by reviewing various literatures, the
upregulation of specific genes in muscular dystrophies, including
DMD, might involve intricate interactions between compensatory
mechanisms, cellular stress responses, and pathogenic processes.
The therapeutic genes involved in DMD were discussed here. The
Dystrophin gene is generally not excessively expressed in DMD.
However, mutations result in a lack or substantial decrease of
dystrophin protein (Duan et al., 2021). Titin (TTN) could
potentially be up-regulated as a compensatory mechanism in
response to muscle injury. The function of titin in preserving
muscle flexibility and structural integrity is critical. In order to
preserve the structure and functionality of the muscles, the body
may respond to damage to the muscle fibers by up-regulating TTN
expression (Loescher et al., 2022). Plectin, or PLEC, serves as a link
between the cell membrane and the cytoskeleton, especially in
muscle cells. The overexpression of this gene may occur as a
reaction to heightened mechanical strain and cellular instability
in dystrophic muscles. The overexpression of DTNA may be a way
for the dystrophin-associated protein complex to compensate for
dystrophin’s loss or malfunction by stabilising the membrane of the
muscle cell (Wiche, 1998). The PKP2 gene, also known as
Plakophilin 2, has a role in cell adhesion and may be upregulated
in muscular dystrophies as a protective reaction to cellular stress and
damage, in an effort to preserve cellular integrity (Papaleo et al.,
2009). The SLC24A gene family is responsible for encoding sodium/
potassium/calcium exchangers. Overexpression may be associated
with disrupted ion homeostasis in dystrophic muscles, a prevalent
characteristic in muscular diseases.

The FBXO32 gene, also known as Atrogin-1, plays a role in the
development of muscular atrophy. Overexpression of this gene in
muscular dystrophy may serve as an indicator of continuous muscle
loss and atrophy, which are characteristic features of these disorders
(Ghasemi et al., 2022). The SNTA1 gene, also known as Syntrophin
Alpha 1, is a constituent of the dystrophin complex. Overexpression
may arise as a compensatory strategy to stabilise the muscular
membrane when functional dystrophin is lacking (Jimenez-
Vazquez et al., 2022). NOS1, also known as Nitric Oxide
Synthase 1, plays a role in the synthesis of nitric oxide, which
serves as a signaling molecule. The overexpression of this gene may
be associated with changes in blood circulation or inflammation in
muscles affected by dystrophy (Buchwalow et al., 2006).
SMAD3 overexpression, which is implicated in TGF-beta
signaling, may be associated with fibrosis, a prevalent

consequence in muscular dystrophies (Liu et al., 1997). The
upregulation of these genes is frequently a reaction to the
underlying muscle dysfunction and not a primary instigator of
the disease itself. These alterations can be involved in intricate
feedback loops where the body endeavors to counterbalance or
react to muscle injury, but they can also contribute to the
advancement of disease in certain instances. Comprehending
these alterations in gene expression is crucial for the
development of precise treatments for muscle dystrophies.

SMAD3 overexpression has been associated with muscular
dystrophies, according to research. The significance of this
discovery lies in the fact that SMAD3 is an essential component
of the TGF-β signaling pathway, which plays a role in the processes
of tissue remodeling, inflammation, and fibrosis. There are a total of
two domains that make up SMAD3. The N-terminus is the location
of one of the two, whereas the C-terminus is the location of the
other. Because the MH2 domain engages in interactions with a
multitude of transcriptional cofactors and the type I TGF-β receptor
(TβR-I), it is essential for the activation of transcription by TGF-β.
One of the earlier studies indicated that the four particular lysine
residues that make up the SMAD3 MH2 domain—Lys333, Lys341,
Lys378, and Lys409—were essential to the operation of the domain
(Imoto et al., 2005b). Therefore, the goal of targeting the
MH2 domain of SMAD3 was to impede the fibrosis process
associated with Duchenne muscular dystrophy (DMD).

The SMAD3 gene plays a critical role in DMD, primarily
through its involvement in the TGF-β signaling pathway, which
is instrumental in processes such as tissue remodeling,
inflammation, and fibrosis. These processes are central to the
pathology of DMD, where progressive muscle degeneration is
compounded by excessive fibrosis and chronic inflammation. The
activation of SMAD3 in TGF-β signaling leads to the upregulation of
extracellular matrix proteins, contributing significantly to the
muscle stiffness and fibrosis seen in DMD patients (Bernasconi
et al., 1999; Qin et al., 2011). By modulating SMAD3 activity, there is
potential to alter the course of tissue remodeling and inflammatory
responses that exacerbate muscle damage (Roberts et al., 2003).
Furthermore, the role of SMAD3 in DMD shares mechanistic
similarities with its function in cancer metastasis, where it
regulates cellular proliferation, migration, and
invasion—processes similarly detrimental in DMD albeit through
different pathological outcomes (Ismaeel et al., 2019). This crossover
highlights SMAD3 as a versatile target in both oncological and
muscular pathologies, underpinning its importance across different
disease contexts. Targeting the TGF-β/SMAD3 pathway in DMD
could therefore mitigate fibrotic tissue development and reduce

TABLE 2 Enrichment scores of key signalling pathways and their related genes.

Enrichment FDR Fold enrichment Pathway Genes

0.007792883 66.03463203 Arrhythmogenic right ventricular cardiomyopathy DMD, PKP2

0.007792883 56.4962963 Hypertrophic cardiomyopathy DMD, TTN

0.007792883 52.96527778 Dilated cardiomyopathy DMD, TTN

0.009610153 38.81424936 FoxO signalling pathway FBXO32, SMAD3

0.009610153 36.84541063 Apelin signalling pathway SMAD3, NOS1
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inflammation, potentially preserving muscle function and
improving patient outcomes (Flanders, 2004). Given this pivotal
role, targeting SMAD3 presents a promising therapeutic strategy for
managing DMD, as evidenced by research models showing reduced
fibrosis and improved muscle functions upon modulation of this
pathway (Zhou and Lu, 2010). These studies collectively advocate
for further exploration of SMAD3 inhibitors as potential therapeutic
agents in DMD treatment regimens.

3.6 Virtual screening

The MH2 domain of SMAD3 was tested against 2,569 natural
compounds. The binding site residues of the MH2 domain of
SMAD3 were GLN315, PRO317, ASN320, ALA328, ARG367,
THR370, ILE371 and ARG372, as predicted by CASTp server.
Top three hits were selected that showed a top binding
energy > −9 kcal/mol (Table 3). The three compounds were
12,314,417 (Ojv-VI), 3,874,518 (Hederacoside C), and 5,281,600
(Amentoflavone). These compounds had binding values
of −9.6 kcal/mol, −9.5 kcal/mol, and −9.5 kcal/mol, respectively.

Figure 6 shows the best-docked complexes had protein-ligand
interactions. It was observed that 5,281,600 forms five hydrogen
bonds with residues Pro87, Gln85, Glu152, Tyr153, and Thr136
(Figure 6A). 3,874,518 forms nine hydrogen bonds with the residues
Tyr7, Glu166, Gln85, Arg154, Glu152, Gln91, Pro87, Ala98, and
Arg142, (Figure 6B). 12,314,417 forms six hydrogen bonds with the
residues Arg142, Thr140, Glu166, His168, Tyr133, and Thr136. The
stability of interactions between proteins and ligands is dependent on
hydrogen bonds. The identification of the individual residues involved
in these interactions can offer valuable insights about the binding
mechanism of the compound to the protein and its impact on the
protein’s function (Salentin et al., 2014). Therefore, in order to facilitate
molecular-dynamic simulation, these three compounds were selected.

The 2D structure of the identified compounds are shown in the
Supplementary Figure S1 The Tanimoto similarity of compounds
12,314,417, 3,874,518, and 5,281,600 with SIS3, the known inhibitor
of SMAD3 phosphorylation, compared to study the fundamental
differences in their mechanisms of action. The values in
Supplementary Table S1 suggest that 5,281,600 has low to

moderate structural resemblance to SIS3, while 3,874,518 and
12,314,417 show very little similarity. The Tanimoto scores
indicate considerable structural differences from SIS3, suggesting
that similar biological effects can be achieved through entirely
different chemical structures and binding mechanisms.

3.7 Molecular dynamics simulation

The post-dynamics simulation study provides critical insights
into the flexibility of protein-ligand complexes. During the 100 ns
production run, only the best-docked complexes were analyzed. The
Root Mean Square Deviation (RMSD) of both the protein and
ligand, as shown in Figure 7, highlights the stability and
conformational changes over time. These RMSD values indicate
how closely the system maintains its initial structure, offering
valuable information about the dynamic behavior and potential
binding efficacy of the ligand within the active site of the protein.

3.7.1 RMSD
The RMSD is a statistical measure that evaluates the degree

toward which protein complexes deviate from their initial structure.
This allows for the determination of the overall stability of the
complexes. As can be seen in Figure 7A, the magnitude of the
protein varied from 0.2 nm to 0.37 nm. The protein in the
3,874,518 complex first showed a variance of between 0.2 and
0.3 nm. After that, the more significant fluctuation rose to a
range of 0.32–0.36 nm. With the exception of a single, more
notable deviation at 45 ps by 0.3 nm, the protein molecule in the
5,281,600-ligand complex changed consistently between 0.2 nm and
0.25 nm. A stable conformation between 0.25 and 0.24 nm was also
observed in the protein combination with 12,314,417. In general, the
prediction of a stable conformation in the simulation was supported
by the protein RMSD. Figure 7B displays the ligand’s Root Mean
Square Deviation (RMSD). At the initial stage, the ligand
3,874,518 exhibited significant fluctuation and reached 0.7 nm,
followed by a subsequent period of consistent configuration.
Similarly, during the early phase, 12,314,417 exhibited
fluctuations with variations reached 0.7 nm and 1.2 nm. On the
other side, after 70 ps, it arrived at a stable conformation with a

TABLE 3 Average and top binding scores of the ligands, along with the number of hydrogen bonds (selected compounds are shown in Bold).

Ligands Average binding energy (kcal/mol) Top binding energy Hydrogen bonds

5,281,600 −8.43 −9.6 5

72,950,887 −7.64 −9.6 1

3,874,518 −7.97 −9.5 9

12,314,417 −7.84 −9.5 6

4,485,132 −7.38 −9.4 4

4,463,283 −7.96 −9.3 6

437,080 −7.82 −9.3 6

5,281,847 −8.15 −9.2 3

4,441 −8.08 −9.2 6

328,441 −7.99 −9.2 0
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difference of 77 nm regarding the original docked stance.
Meanwhile, the 5,281,600 showed deviation ranging from 0.5 nm
to 0.4 nm and stability in the last 20 ps. Overall, in the last 20 ps all
ligands showed stability.

3.7.2 Conformation analysis
Figures 8A,B,C show the positions of the compounds at 0, 90,

and 100 ns during the molecular dynamics simulation, respectively.
It was noted that the 3,874,518 showed a deviation from its starting
state at 90 ns. However, from 90 to 100 ns, it maintained a similar
conformation. Similarly, compounds 5,281,600 and 12,314,417 pose
at 0, 90, and 100 ns, as shown in Figures 8D–J, showing a deviation
from their starting states at 90 ns. However, from 90 to 100 ns, it
maintained a stable conformation.

Despite some early spatial configurational deviations, all three
compounds were able to achieve stable conformations by the
conclusion of the simulation duration, as seen above. This
suggests that, during the course of 100 ns, these compounds’

molecular motions go through an adaptation phase and then
enter a stable state.

3.7.3 RMSF and SASA studies
Figure 9A displays the protein’s root mean square fluctuation. In

this case, it was shown that complexed protein residues with
compound 3,874,518 showed larger fluctuations of 0.3 nm than
residues with ASP31, PRO32, SER33, ASN34, and SER35. Protein
in the complex of compound 5,281,600 showed a higher fluctuation
of 0.3 nm, which appears in the residues VAL46 and ASN467.
Similarly, protein complexed with compound 12,314,417 showed
the maximum fluctuation of 0.3 nm that occurred in the residue
HIS96 and PRO97. In general, the complexed form did not exhibit
significant changes in protein residues. The SASA plot of SMAD3 is
shown in Figure 9B when it is coupled to the ligands 3,874,518,
5,281,600, and 12,314,417. The 3,874,518 complex was shown to
have a stable conformation at first, but in the last 20 ns, it diverged,
suggesting changes in the solvent-exposed surface area. Similarly, in

FIGURE 6
2D interaction representation of the top three docked complex (A) 5,281,600 (B) 3,874,518 (C) 12,314,417 (Green lines with residues indicate
hydrogen bonds).

FIGURE 7
Conformational analysis over the 100 ns molecular dynamics simulation (A) RMSD of the Protein (SMAD3) (B) RMSD of the ligands.
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FIGURE 8
Initial (0 ns), stable (90 ns), and final (100 ns) conformation of the protein-ligand complexes extracted from 100 ns molecular dynamics simulation
(A–C) 3,874,518 (D–F) 5,281,600 and (G–I) 12,314,417.

FIGURE 9
(A) RMSF of the complex (B) The SASA plot showed change in exposed surface area (on y-axis) with simulation time in picosecond (on x-axis).
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the initial phase, 5,281,600 showed stable conformation, but at the
last 20 ns, it deviated downward from 105 nm2 to 110 nm2 which
indicated the extension of the molecule in the solvent. Additionally,
12,314,417 shows relatively stable SASA, suggesting a stable
structure in the solvent during the simulation period. Change in
SASA showed the conformational change, however, this change was
in the acceptable range.

3.7.4 Hydrogen bonds analysis
Hydrogen bonds are crucial in molecular dynamics simulations as

they significantly impact the structure, function, and interactions of
biomolecules within a simulated environment. This facilitates the
understanding of their behaviour within actual biological systems
(Salo-Ahen et al., 2020). Within the context of the actual case, an
estimation of the formation of hydrogen bonds was carried out
during the molecular dynamics simulation of the protein-ligand pair.
As the ligand 3,874,518 is attached to the protein, Figure 10A shows that it
forms 6–8 hydrogen bonds during the 20–60 ns simulation and then
progressively reduces to 3–6 hydrogen bonds after 60 ns until 100 ns.
Figure 10B depicts the formation of a hydrogen bond when ligand
5,281,600 binds to the protein. It was found that the compound
5,281,600 produced 4–5 bonds within the first 70 ns, however, after
that time period, the number of bonds rapidly decreased from 4 to 2.
Figure 10C shows the synthesis of hydrogen resulting from the binding of
the compound 12,314,417 to the protein. During the initial period of
20 ns, there was a downward trend of sloping down in the formation of
hydrogen bonds. However, the value shifted from 20 to 40 ns to 2 to 5. At
a time interval of 45 ns, it established a total of 7 hydrogen bonds. The
bond formation steadily dropped from 45 ns to of the range of 6 to 4.
Throughout the simulation, the amount of hydrogen bonds fluctuated,
creating an uneven pattern. However, it is noticeable that detection of
H-bonds is highly sensitive to the interatomic distance. These interatomic
distances changed marginally during the simulation that can affect the
detection of H-bonds. Moreover, the positive side of the observation
shown in Figure 10 is that compounds always shown presence of
minimum one hydrogen bond.

3.7.5 Principal component analysis (PCA) and free
energy landscape (FEL)

A scatter plot is used to display the trajectory that was generated
by the MD simulation. The Principal Component Analysis is used to
provide this plot (PCA). Figure 11A showed the formation of four

distinct clusters by molecule 3,874,518 during the MD run,
illustrating its transition from its initial to final state. Similarly,
the 12,314,417 formed three distinct clusters, but these clusters
exhibited a higher level of interconnection as shown
inFigure 11C. This suggests that for this compound complex,
there was a lower degree of transition compared to the 3,874,518.
The 5,281,600 complex formed two closely grouped clusters as
shown in Figure 11B, suggesting a higher level of stability
compared to other molecules. Additionally, the free energy
landscape (FEL) of the 3,874,518, 5,281,600, and 12,314,417,
respectively, is shown in Figures 11(D–F). Figures 11(D–F)
demonstrates the energy distribution across the conformational
landscape. The plot shows regions of low free energy basin in
blue, which correspond to more stable conformations or states
that the protein-ligand complex frequently occupies. The
surrounding areas in orange and yellow represent higher free
energy states. The plots represented the stability states of several
conformations for the aforementioned system that developed
throughout the simulation run. The x-axis showed PC1, while
the y-axis plotted PC2. These principal components served as
reaction coordinates to show various conformations and their
corresponding free energy. Here, in Figure 11C, the plot of
3,874,518 showed four energy basins with multiple energy
barriers that suggested an stable conformations of the system
separated in the space by barriers. Similarly, Figure 11E
12,314,417 showed three energy basins with multiple energy
barriers this suggested unstable system conformation during
simulation. However, the FEL of 5,281,600 showed two energy
basins with a single energy barrier, as observed in Figure 11D,
which indicated stable conformation of the system. Overall, PCA
and FEL results indicated that the 5,281,600 could be a strong binder
of SMAD3. Overall, complex 5,281,600 and 12,314,417 showed
more stable characteristics than 3,874,518 where the
conformations are distributed in wider space with few minimas.
The total portion occupied by the blue color in the plots were larger
for 5,281,600 and 12,314,417 that also suggests larger for
5,281,600 and 12,314,417, suggesting its higher chance of
reaching minima.

3.7.6 Binding free energy
Several different energetic components were used to determine

the binding-free energy of the protein-ligand combination.

FIGURE 10
Hydrogen bonds formed during the MD run of 100 ns for (A) 3,874,518 (B) 5,281,600 (C) 12,314,417.
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According to the data shown in Figure 12A, the 3,874,518 complex,
which is composed of the GGAS and GSOLV, has a total binding
energy of −36.34 kcal/mol overall. Moreover, in Figure 12B, total
binding free energy was observed as −21.46 kcal/mole for the
5,281,600 complex, and in Figure 12C, total binding energy of
the 12,314,417 complex observed as −36.51 kcal/mole. This
suggested that the 12,314,417 complex showed strongest binding
affinity with the protein molecule. Later, close observation on the
different energetic components were made, van der Waals
contributed most negatively (−64.07, −37.87, and −47.94 kcal/
mol) in all three complexes. This showed that steric clashes were
perfectly removed in all the complexes. Electrostatic interaction was
also favorable for all the three complexes, in the 12,314,417 complex

the electrostatic interaction was best. The complex 3,874,518 and
12,314,417 showed very similar binding energy and emerged as the
best ligand to bind with the target protein.

Additionally, the binding free energy of the compounds were
calculated using the MM/PBSA technique. Supplementary Figure S2
showed the binding free energy of the complexes. 12,314,417 had the
lowest binding free energy was 29.38 kcal/mol 3,874,518 also showed
similar binding free energy with 27.81 kcal/mole 5,281,600 had
binding free energy of 17.09 kcal/mol. The binding free energy
trend was similar in both MM/GBSA and MM/PBSA technique.
Morever, binding free energy was calculated for comparative analysis
of the three compounds. Among the three compounds, both
3,874,518 and 12,314,417 better binding free energy than 5,281,600.

FIGURE 11
The scatter plot representation of PCA for (A) 3,874,518 (B) 5,281,600 (C) 12,314,417 and FEL of (D) 3,874,518 (E) 5,281,600 (F) 12,314,417.

FIGURE 12
Binding Free Energy using MMGBSA technique representation for the complex of compound (A) 3,874,518 (B) 5,281,600 (C) 12,314,417.
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3.8 Discussion

Recent studies on DMD have highlighted gene-targeted medicines,
including exon skipping and gene editing, as effective methods to slow
down the disease’s advancement. The main goal of these therapies is to
repair or substitute the function of the faulty dystrophin gene, which
plays a crucial role in DMD pathogenesis (Chung Liang et al., 2022;
Moorwood et al., 2011). Advancements in comprehending the
interaction between the immune system and skeletal muscles have
revealed new possibilities for therapeutic targeting. Studies have
emphasised the significance of T-Cell profiling and transcriptome
analysis of circulating immune cells in DMD, indicating their
potential as new biomarkers or therapeutic targets. This
immunological analysis could assist in identifying specific groups of
cells that either worsen or can reduce muscle damage, allowing for a
more customised therapeutic approach (Molinaro et al., 2024). Research
on gene therapy and cell transplantation is ongoing. The procedures
entail directly introducing accurate copies of the dystrophin gene or
transplanting genetically repaired muscle stem cells into patients.
Although these technologies show promise, they also pose notable
technological and ethical obstacles such as delivery mechanisms, lasting
effectiveness, and possible unintended consequences (Sun et al., 2020).

DMD is characterised by abnormal gene expression, and this work
comprehensively evaluates those genes. The gene expression patterns of
healthy individuals, as well as those with active DMD, are compared to
achieve this. Specifically, the GSE38417 dataset from the Gene
Expression Omnibus is used for the study (GEO). In a prior study,
Lombardo et al. (2021) andWu et al. (2022) used a dataset that was quite
similar to GSE38417 in order to explore gene modules and their
relationships with DMD. Additionally, 290 differentially expressed
genes (DEGs) that were upregulated were discovered in the first
analysis, demonstrating that substantial gene expression changes
connected with DMD. The upregulation genes directly impact the
diseased condition. Controlling these upregulated genes would bring
down the physiopathology for a given disease, the investigation by
Moorwood et al. (2011) revealed that utrophin gene upregulationmay be
used as a treatment strategy for DMD. Additionally, Kemaladewi et al.
(2019) demonstrated that in pre-symptomatic MDC1A mice, up-
regulating Lama1 via the CRISPR/dCas9-based approach averted
muscle fibrosis and hindlimb paralysis when started early. According
to Kemaladewi et al. (2019), it partially reversed the course of the illness
and reduced dystrophic features when administered to symptomatic
mice with muscle fibrosis and hind limb paralysis that were already
evident. The enhancedDEGs were then constructed for PPI networks by
using the STRING database and a stringent interaction confidence score
threshold of 0.90. This was done in order to guarantee optimal analytical
accuracy. It was recognised that the expression of particular genes in
DMD might represent a compensatory response to cellular stress or a
manifestation of pathogenic processes. Hence, a thorough literature
study was used to identify gene targets strategically. The DMD gene
typically exhibits low expression in DMD due to mutations that result in
a marked reduction of dystrophin protein. Conversely, genes such as
TTN, SMAD3 and PLEC may be upregulated in response to muscle
injury or cellular instability. However, on the basis of enrichment scores,
SMAD3 is identified as the most connected gene. Likewise, Multiple
studies have demonstrated that TGFβ1/SMAD3 directly interact with
the muscular membrane and inhibits the progression of muscle
weakening (Goodman et al., 2013; Zhang et al., 2019). Moreover,

Pathway enrichment studies offer a valuable understanding of the
functional and pathway connections of these genes that are expressed
differently (DEGs), highlighting their involvement in immune-related
activities. Consequently, it becomes clear that it might be a great target
for the therapy of muscular dystrophy, especially Duchenne muscular
dystrophy. It was then tested against a library of naturally occurring
chemicals. Natural compound PGC-1 α have shown effective results in
DMD conditions by targeting PPARγ (Suntar et al., 2020). Another
study demonstrated that Isolecanoric acid (ILA), a natural product, was
used to explore its anti-inflammatory effect in DMD conditions (Matias-
Valiente et al., 2024). Three compounds in the presented study were
identified as themost promising candidates for targeting SMAD3 and its
desired domain. The protein molecule in the complex state showed a
minimum deviation from its native state, and RMSD was under 0.3 nm
during the complete simulation. Studies have shown that under 0.3 nm,
RMSD could be considered as minimum and acceptable deviation
(Sharma et al., 2021). This confirmed that the binding of the ligand
brought some change in the protein conformation, but these were
considered stable. However, the RMSD of the ligand molecule was
higher than that of the protein molecule. The deviation in the ligand
molecule in the protein-bound state is acceptable at the early stage of the
simulation, which also underline the limitation of the rigid
docking algorithm.

Themolecular interactions betweenmolecules 3,874,518, 5,281,600,
and 12,314,417, which target theMH2 domain of SMAD3, are essential
for influencing the TGF-β signaling pathway implicated in conditions
such as DMD, which is distinguished by an excessive accumulation of
fibrosis (Chen et al., 2014). These molecules exhibit a strong affinity for
the MH2 domain and a low free energy of binding, indicating that they
establish stable and energetically advantageous interactions. The
stability of these compounds is of the utmost importance for their
potential as therapeutic agents, as it indicates that they can consistently
and effectively disrupt the normal functioning of SMAD3 within the
TGF-β pathway, which is well-known for its substantial contribution to
the promotion of fibrosis (Budi et al., 2021). Based on the interaction
between these molecules and critical residues in the MH2 domain, it is
possible that they could alter the activity of SMAD3 by impeding its
normal signaling functions. This could involve impeding essential
phosphorylation processes that are required for the activation of
genes associated with fibrosis. Consequently, these molecules may
reduce the pathological signaling responsible for fibrotic tissue
formation, a primary component of DMD pathology, by inhibiting
SMAD3. This activity corresponds to the therapeutic objectives of
managing and alleviating fibrosis in muscular dystrophies,
presenting a potentially fruitful pathway for advancing treatments.
Extensive research has been conducted previously on the role of the
TGF-β/SMAD signaling pathway in fibrosis across various diseases,
underlining the therapeutic potential of modulating this pathway
(Bujak and Frangogiannis, 2007; Schiro et al., 2011; Piersma et al., 2015).

The suggested chemical interactions of these drugs with
SMAD3 present a potential therapeutic approach for treating
disorders marked by excessive fibrosis, such as DMD. Additional
empirical research, including thorough biochemical testing and
clinical studies, is necessary to validate these results and
guarantee the safety and effectiveness of these compounds for
human usage. The future applications of targeting the
SMAD3 pathway in fibrotic diseases such as DMD are promising
and diverse. Precision medicine initiatives could leverage genetic
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insights to tailor SMAD3 inhibitors to the unique genetic makeup of
individual patients, potentially enhancing treatment efficacy and
reducing side effects. Insights like these are crucial for creating
specific treatments that can control these pathways. The study’s
discussion on prospective treatment strategies, like using natural
chemicals that target specific genes or pathways critical in DMD,
emphasises the study’s translational potential. This component
shows promise by indicating potential pathways for translating
the findings of this study into clinical therapies. This thorough
method improves the comprehension of DMD on a molecular scale
and paves the way for future therapeutic advancements focused on
more efficient treatment or control of the condition.

4 Conclusion

The present study was performed to identify hit molecules
targeting the MH2 domain of SMAD3 that is involved in DMD.
SMAD3 upregulation showed a significant impact on DMD.
Screening of natural compounds found three most promising hit
compounds: (a) 3,874,518 (b) 5,281,600 (c) 12,314,417. In the
molecular dynamic study, 3,874,518 and 12,314,417 showed
stable conformation after initial conformational jump. Combined,
these two compounds a protein-ligand complex with a greater
binding free energy. The fact that these chemicals remain stable
at the protein’s binding site suggests that they may impose some
kind of inhibitory mechanism on the protein. Further, experimental
assays are required to validate the computational findings.
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