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The pursuit of effective treatments for brain tumors has increasingly focused on the
promising area of nanoparticle-enhanced radiotherapy (NERT). This review
elucidates the context and significance of NERT, with a particular emphasis on its
application in brain tumor therapy—a field where traditional treatments often
encounter obstacles due to the blood-brain barrier (BBB) and tumor cells’
inherent resistance. The aims of this review include synthesizing recent
advancements, analyzing action mechanisms, and assessing the clinical potential
and challenges associated with nanoparticle (NP) use in radiotherapy enhancement.
Preliminary preclinical studies have established a foundation for NERT,
demonstrating that nanoparticles (NPs) can serve as radiosensitizers, thereby
intensifying radiotherapy’s efficacy. Investigations into various NP types, such as
metallic, magnetic, and polymeric, have each unveiled distinct interactions with
ionizing radiation, leading to an augmented destruction of tumor cells. These
interactions, encompassing physical dose enhancement and biological and
chemical radio sensitization, are crucial to the NERT strategy. Although clinical
studies are in their early phases, initial trials have shown promising results in
terms of tumor response rates and survival, albeit with mindful consideration of
toxicity profiles. This review examines pivotal studies affirming NERT’s efficacy and
safety. NPs have the potential to revolutionize radiotherapy by overcoming
challenges in targeted delivery, reducing off-target effects, and harmonizing with
other modalities. Future directions include refining NP formulations, personalizing
therapies, and navigating regulatory pathways. NERT holds promise to transform
brain tumor treatment and provide hope for patients.
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1 Introduction

1.1 Background on brain tumors

Brain tumors encompass a diverse array of neoplasms, each with unique pathological
and clinical characteristics. The classification of brain tumors is primarily based on the cell
of origin, as well as the molecular and genetic profile, which provides insight into the
tumor’s behavior and potential responsiveness to treatment (Louis, 2016). Brain tumors
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encompass a diverse array of neoplasms, each with unique
pathological and clinical characteristics.

Gliomas, which originate from glial cells, are the most common
primary brain tumors in adults. They are further classified into
subtypes based on their histological features and molecular profiles,
with glioblastoma (GBM) being the most aggressive and prevalent
subtype (Schueller et al., 2005; Jakacki et al., 2016). GBM is
characterized by rapid proliferation, diffuse infiltration, and a
high degree of intratumoral heterogeneity, contributing to its
poor prognosis (Drean et al., 2016).

Meningiomas, which arise from the meninges surrounding the
brain, are the second most common primary brain tumors in adults.
Although most meningiomas are benign (WHO grade I), a subset
exhibits atypical (WHO grade II) or malignant (WHO grade III)
features, associated with higher recurrence rates and poorer
outcomes (Ding et al., 2013; Sahm et al., 2017).

Other brain tumor types in which NERT has been explored
include primitive neuroectodermal tumors (PNETs), such as
medulloblastoma (Fink et al., 2015), which is the most common
malignant brain tumor in children, and brain metastases, which are
secondary tumors originating from primary cancers elsewhere in the
body (Chen X. et al., 2023).

Treatment strategies for brain tumors are tailored according to
the tumor type, size, location, and patient’s overall health status (Qiu
et al., 2022). Surgical resection remains the cornerstone of treatment
for accessible brain tumors, aiming to maximize tumor removal
while preserving neurological function. However, the infiltrative
nature of gliomas often precludes complete resection. Adjuvant
therapies, including radiotherapy and chemotherapy, are critical
components of the treatment regimen, especially for high-grade
tumors. Temozolomide, in combination with radiotherapy, has been
shown to improve survival in patients with GBM (Stupp et al., 2005).
Despite these interventions, the prognosis for malignant brain
tumors remains poor, underscoring the need for more effective
therapeutic approaches. Despite advancements in surgical
techniques, radiation therapy, and chemotherapy, the prognosis
for patients with malignant brain tumors remains poor (Corti
et al., 2022). The BBB presents a significant obstacle to the
effective delivery of therapeutic agents, while the inherent
resistance of tumor cells to conventional treatments further
complicates the management of these neoplasms (Li et al., 2022).
These challenges underscore the need for innovative strategies, such
as NERT, which has the potential to overcome these barriers and
improve treatment outcomes.

The treatment of brain tumors is fraught with challenges,
paramount among them being the BBB and tumor heterogeneity.
The BBB is a formidable obstacle to the delivery of therapeutic
agents, limiting the efficacy of systemic chemotherapy. NP-based
drug delivery systems are being explored to circumvent the BBB and
achieve targeted drug delivery (Saraiva C. et al., 2016). Tumor
heterogeneity, both inter- and intra-tumoral, complicates
treatment by providing a reservoir of cells with varying
sensitivity to therapies, facilitating recurrence and resistance.
Understanding the molecular underpinnings of this heterogeneity
is essential for the development of targeted therapies and
personalized medicine approaches (Patel et al., 2014). While
strides have been made in the understanding and treatment of
brain tumors, significant challenges remain. Advances in molecular

biology and genomics have started to inform more targeted and
individualized treatment strategies, offering hope for improved
outcomes. Continued research is essential to overcome the
current limitations and to provide patients with brain tumors a
better quality of life and a more optimistic prognosis.

1.2 Chemotherapy in cerebral gliomas

Chemotherapy plays a crucial role in the management of
cerebral gliomas, particularly in high-grade tumors such as
glioblastoma. The standard of care for newly diagnosed
glioblastoma involves maximal safe surgical resection followed by
concurrent chemoradiotherapy with temozolomide (TMZ) and
adjuvant TMZ (Yan et al., 2016). TMZ is an oral alkylating agent
that induces DNA damage and cell death in tumor cells. The
addition of TMZ to radiotherapy has been shown to improve
overall survival and progression-free survival compared to
radiotherapy alone (Lonardi et al., 2005).

However, the efficacy of chemotherapy in gliomas is often
limited by the presence of the BBB, which restricts the entry of
many chemotherapeutic agents into the brain. To overcome this
challenge, various strategies have been explored, including the use of
NPs as drug delivery vehicles. NPs can be engineered to cross the
BBB and deliver chemotherapeutic agents directly to the tumor site,
thereby increasing drug concentrations in the tumor while
minimizing systemic toxicity (Chester et al., 2018).

Another challenge in the chemotherapy of gliomas is the
development of drug resistance. Glioma cells can acquire
resistance to TMZ through various mechanisms, such as the
upregulation of DNA repair enzymes or the expression of drug
efflux transporters (Campos et al., 2016). To address this issue,
combination therapies involving multiple chemotherapeutic agents
or targeted therapies have been investigated. For example, the
combination of TMZ with other agents, such as lomustine or
bevacizumab, has shown promise in improving outcomes in
recurrent glioblastoma. Chemotherapy is an essential component
of the multimodal treatment approach for cerebral gliomas. The use
of NPs as drug delivery vehicles and the development of
combination therapies are promising strategies to overcome the
challenges associated with chemotherapy in gliomas, such as BBB
and drug resistance (Liau et al., 2023). Further research is needed to
optimize these approaches and improve patient outcomes.

1.3 Radiotherapy in brain tumor treatment

Radiotherapy remains a principal modality in the management
of brain tumors, both as a primary treatment and as an adjuvant to
surgery. The fundamental principle of radiotherapy lies in the
delivery of ionizing radiation to induce DNA damage, thereby
inhibiting tumor growth and causing cell death. Precise targeting
of the radiation dose is critical to maximize tumor control while
minimizing damage to surrounding normal brain tissue (Hall
et al., 2021).

Technical advancements have ushered in sophisticated methods of
radiotherapy delivery. Conformal techniques such as Three-
dimensional conformal radiotherapy ensure the radiation beams
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conform to the geometrical shape of the tumor. Intensity-modulated
radiotherapy further refines this approach by modulating the intensity
of radiation beams, allowing for higher doses to be delivered to the
tumor while sparing adjacent healthy tissue (Mayo et al., 2010).

Stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT)
are highly precise forms of radiotherapy that deliver a high dose of
radiation to a small focal area, typically used for smaller brain tumors or
those in critical locations. SRS is usually given in a single session,
whereas SRT delivers the dose over several sessions (Leksell, 1983).

Proton beam therapy is a more recent development that uses
protons rather than photons, offering a distinct advantage in the
form of the Bragg peak, which allows for most of the proton’s energy
to be deposited at a specific depth, minimizing exposure to
surrounding tissues (Brada et al., 2009).

Despite the therapeutic benefits, conventional radiotherapy is not
without limitations. The diffuse and infiltrative nature of certain brain
tumors, such as high-grade gliomas, makes it challenging to define the
targetmargins for radiotherapy. Moreover, the radiation dose that can
be safely delivered is often limited by the tolerance of normal brain
tissue, which can lead to potential long-term neurocognitive effects,
particularly in pediatric patients (Merchant et al., 2009).

Resistance to radiotherapy is another significant challenge.
The presence of hypoxic regions within the tumor has been
associated with radioresistance, as oxygen is a potent
radiosensitizer. Tumor cells in these hypoxic zones are less
susceptible to the DNA damage caused by radiation (Moeller
et al., 2007). Additionally, the inherent heterogeneity of brain
tumors at the cellular and molecular levels contributes to variable
responses to radiotherapy. Genetic mutations, such as those
affecting the TP53 or PTEN genes, can alter the sensitivity of
tumor cells to radiation (Begg et al., 2011).

The BBB presents a formidable challenge in the treatment of brain
tumors, as it restricts the entry of most therapeutic agents into the brain
parenchyma. The tight junctions between endothelial cells and the
presence of efflux transporters limit the penetration of conventional
chemotherapeutic drugs and radiotherapy sensitizers (Wu et al., 2023).
NERT has emerged as a promising strategy to overcome the BBB and
deliver therapeutic agents directly to the tumor site. By engineering NPs
with specific surface modifications, such as ligands targeting BBB
receptors or cell-penetrating peptides, researchers aim to facilitate
the transport of NPs across the BBB and enhance their
accumulation within brain tumors (Burger et al., 2023).

1.4 NPs in medicine

NPs have emerged as a revolutionary technology in the field of
medicine, offering novel solutions to challenges in diagnosis,
treatment, and drug delivery. These particles, typically ranging
from 1 to 100 nm in size, possess unique chemical, physical, and
biological properties due to their nanoscale dimensions and high
surface area to volume ratio. In medicine, NPs are engineered for
specific applications including targeted drug delivery, imaging, and
as therapeutic agents (Figure 1).

The medical applications of NPs are vast and diverse. For
instance, gold NPs are utilized in photothermal therapy, where
they are designed to accumulate in tumor tissues and convert
absorbed light into heat, causing localized tumor cell death

(Huang et al., 2008). Quantum dots, semiconductor NPs with
exceptional optical properties, are employed in imaging for their
stable fluorescence and ability to be tuned to emit light at various
wavelengths (Medintz et al., 2008). Lipid-based NPs such as
liposomes have been used for drug delivery, capitalizing on their
biocompatibility and ability to encapsulate both hydrophilic and
hydrophobic drugs (Sercombe et al., 2015).

The integration of NPs into medical practice is not without
challenges. The interaction of NPs with biological systems raises
concerns regarding toxicity, immunogenicity, and environmental
impact (De Jong and Borm, 2008). The development of NPs for
medical use must carefully consider these factors, ensuring safety
and efficacy through rigorous preclinical and clinical evaluations.

In drug delivery, NPs offer significant advantages over
conventional methods. They can be designed to improve the
solubility of poorly water-soluble drugs, enhance drug stability,
and control drug release rates, ensuring a sustained therapeutic
effect (Mura et al., 2013). Targeted drug delivery is another key
advantage; NPs can be functionalized with ligands such as
antibodies or peptides to recognize and bind to specific cell types
or tissues, thereby increasing the concentration of the drug at the
desired site of action while minimizing systemic exposure and side
effects (Peer et al., 2007).

NPs also play a pivotal role in overcoming biological barriers.
For instance, polymeric NPs have been engineered to cross the BBB,
a significant obstacle in the treatment of central nervous system
disorders. These NPs can transport therapeutic agents across the
BBB, offering a potential solution for the treatment of diseases such
as Alzheimer’s and brain tumors (Saraiva C. et al., 2016).

In therapeutic applications, NPs can act as anti-cancer agents by
delivering cytotoxic drugs directly to tumor cells, thereby reducing

FIGURE 1
Schematic representation of the multifaceted synergistic effects
of nanocarrier-enhanced radiotherapy for brain tumors. The
illustration depicts the key mechanisms by which nanocarriers can
enhance the efficacy of radiotherapy, including targeted delivery,
radiosensitization, and the ability to overcome the blood-brain barrier.
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the adverse effects associated with traditional chemotherapy. NP-
based hyperthermia therapy, where magnetic NPs are exposed to an
alternating magnetic field to generate heat, has been explored as a
treatment for cancer, demonstrating the ability to selectively kill
tumor cells (Laurent et al., 2011).

1.5 Scope and purpose of review

NERT represents a burgeoning field within oncological
treatments, aiming to augment the efficacy of conventional
radiotherapy through the integration of nanotechnology
(Figure 2). The rationale for incorporating NPs lies in their
unique physicochemical properties, which can be harnessed to
enhance radiosensitization, improve tumor targeting, and reduce
damage to surrounding healthy tissues (Hainfeld et al., 2004; Her
et al., 2017).

NERT leverages the unique properties of NPs to enhance the
efficacy of radiotherapy. The mechanisms of action involve physical
dose enhancement, resulting from the increased absorption of
radiation energy by high-Z materials, and biological/chemical
radio sensitization, mediated by the modulation of cellular
pathways and tumor microenvironment (McMahon et al., 2011;
Butterworth et al., 2012).

Furthermore, the surface of NPs can be engineered to recognize and
bind to specific tumor markers, allowing for selective accumulation
within the tumor microenvironment (Dreaden et al., 2012). This
targeted approach not only bolsters the therapeutic index of
radiotherapy but also enables the use of NPs as diagnostic agents,
facilitating image-guided radiotherapy (Kunjachan et al., 2015).

The scope of this review is to critically examine the current state
of NERT, analyzing preclinical and clinical studies, and to elucidate
the underlying mechanisms by which NPs potentiate radiotherapy.
The review will also address the challenges faced in translating
NERT from bench to bedside, including issues of biocompatibility,
toxicity, and regulatory hurdles.

2 Enhanced application of NPs in brain
tumor therapy

The advent of NP technology in brain tumor therapy marks a
pivotal shift towards surmounting the formidable barriers posed by
the brain’s protective mechanisms and the complex tumor
microenvironment. This integrated section elucidates the
multifaceted roles of NPs in drug delivery and treatment
enhancement, underlining the strategic selection of NP types based
on their unique attributes and therapeutic potential (Su et al., 2014).

2.1 Nanoparticle-driven strategies for
targeted therapy

NPs, with their diverse compositions and customizable surfaces,
present a novel paradigm for the targeted delivery of therapeutic agents
to brain tumors. The strategic selection of NPs is predicated on their
physicochemical properties, biocompatibility, and ability to navigate the
blood-brain barrier (BBB), thereby ensuring precise delivery and
controlled release of drugs within the tumor site. Key NP types
demonstrating significant promise in preclinical models include:

Metallic NPs: Metallic NPs, encompassing gold, silver, and iron
oxide, have garnered widespread application in brain tumor treatment
due to their high surface area, optical, and magnetic properties. These
NPs serve as effective drug carriers, facilitating efficient drug delivery
through adsorption or encapsulation. Research indicates that silver NPs
can suppress tumor cell proliferation and invasion, inhibiting tumor
growth through the induction of cell apoptosis and cell cycle arrest.
Furthermore, metallic NPs can achieve photothermal therapy by
exploiting surface plasmon resonance, effectively eradicating tumor
cells through localized hyperthermia (Huang et al., 2007; Zhang X. F.
et al., 2016; Shi et al., 2017).

Polymeric NPs: Polymeric NPs, commonly employed as
carriers, boast biocompatibility and tunable release capabilities. In
brain tumor treatment, these NPs find widespread utility in

FIGURE 2
Schematic illustration of the potential of gold nanoparticles (AuNPs) as innovative radiosensitizers. The figure highlights the effective X-ray
absorption, versatile synthesis, and distinctive chemical and optical properties of AuNPs. The interdisciplinary research efforts aimed at uncovering the
mechanisms behind the enhanced radiation effects of AuNPs are also represented.
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delivering chemotherapy agents and genetic materials. For instance,
poly (lactic-co-glycolic acid)-hydroxyapatite NPs efficiently
transport chemotherapy drugs, enhancing therapeutic outcomes
by controlling release rates. Moreover, surface modifications of
polymeric NPs can enhance their efficacy in brain tumor
treatment, achieved through selective drug release by targeting
specific receptors on tumor cell surfaces (Agrawal et al., 2015).

Carbon-Based Nanomaterials: Emerging as a novel class of
nanomaterials, carbon-based nanomaterials exhibit notable
biocompatibility and safety. These materials have been extensively
researched and applied in brain tumor treatment. Graphene
nanosheets, characterized by their unique two-dimensional structure
and high surface area, play a pivotal role in brain tumor treatment.
Research demonstrates that graphene nanosheets inhibit tumor growth
by inducing tumor cell apoptosis and cell cycle arrest, as well as enhance
photothermal effects for photothermal therapy (Zhao et al., 2017).

Lipid NPs: LNPs are engineered to mimic cellular membranes,
enhancing their compatibility with biological systems and
facilitating seamless BBB penetration. Their capacity for
controlled drug release positions them as effective carriers for
chemotherapy agents and genetic material, directly targeting
tumor cells while sparing healthy tissue (Ahmadi et al., 2020).

Silicon NPs: These NPs feature adjustable pore sizes, making
them versatile carriers for a range of therapeutic agents. Their
surface can be modified to bind specifically to tumor-associated
markers, enabling targeted therapy and potentially reducing off-
target effects (Mahawar et al., 2023).

Magnetic NPs: Leveraging the principle of magnetic guidance,
these NPs can be directed to tumor sites with precision, offering
applications in drug delivery and hyperthermia treatment. The
localized heat generated by magnetic NPs under an external
magnetic field can induce tumor cell death, adding a physical
dimension to the therapeutic arsenal (Estrader et al., 2022).

Cell membrane-camouflaged NPs represent an innovative strategy
for brain tumor treatment. By coatingNPswith cell membranes derived
from red blood cells, platelets, or tumor cells, these biomimetic NPs can
evade immune clearance, cross the BBB, and specifically target tumor
cells. For instance, Wang et al. developed a hypoxia-triggered RNAi
nanomedicine camouflaged with glioblastoma cell membranes for
synergistic chemo/radiotherapy (Wang et al., 2023). This biomimetic
NP could efficiently deliver siRNA and chemotherapy drugs to
glioblastoma cells, achieving hypoxia-activated gene silencing and
drug release. In orthotopic glioblastoma mouse models, this
nanomedicine significantly enhanced the efficacy of radiotherapy
and prolonged survival, demonstrating the potential of cell
membrane-camouflaged NPs for brain tumor treatment.

Lastly, researchers have employed NPs for immunotherapy in
brain tumor treatment. NPs activate the immune system, bolstering
immune responses against brain tumors (Thakkar et al., 2010).
Research reveals that encapsulating antigens and immune adjuvants
within biological NPs achieves immunotherapy for brain tumors
(Figure 3; Gregory et al., 2020).

2.2 Nanoparticle design for BBB penetration

The BBB is a highly selective permeability barrier that protects
the brain from pathogens and controls the homeostasis of the central

nervous system. However, this protective mechanism also restricts
the entry of most therapeutic agents, posing a significant challenge
in treating brain tumors. NPs have emerged as a versatile platform
for drug delivery, offering the potential to bypass the BBB and target
brain tumors effectively. The design of NPs, including their size,
charge, and surface modifications, is crucial for enhancing their
penetration through the BBB and ensuring their therapeutic efficacy.

2.2.1 Size
Research has demonstrated that NPs within the size range of

20–100 nm exhibit optimal BBB penetration (Chen et al., 2022;
Salatin et al., 2022). This size range leverages the EPR effect, allowing
NPs to accumulate preferentially in tumor tissues due to the leaky
vasculature characteristic of tumor microenvironments. Smaller NPs
(<20 nm)may be rapidly cleared from the bloodstream, while largerNPs
(>100 nm) may face difficulties in crossing the endothelial cell layer of
the BBB. Therefore, designing NPs within this optimal size range is
critical for maximizing their delivery to brain tumors.

2.2.2 Charge
The surface charge of NPs significantly influences their

interaction with the BBB. A neutral or slightly negative surface
charge is preferred to minimize non-specific interactions with the
BBB’s endothelial cells, which can lead to opsonization and
clearance by the immune system (Simonis et al., 2022; Devaraj
and Karthik Shree, 2023). Neutral or slightly negative NPs exhibit
enhanced penetration through the BBB, likely due to reduced
electrostatic repulsion with the negatively charged cell
membranes. Consequently, careful control of NP surface charge
is essential for improving BBB penetration and targeting efficiency.

2.2.3 Surface and core functional groups
The functionalization of NPs with specific ligands targeting

receptors overexpressed on the BBB or tumor cells is a promising
strategy for enhancing BBB penetration and tumor targeting. Ligands
such as transferrin or peptides can facilitate receptor-mediated
transcytosis, allowing NPs to cross the BBB more efficiently (Seven
et al., 2019; Simonneau et al., 2021; Choi et al., 2022). Additionally, the
incorporation of polyethylene glycol (PEG) chains, a process known as
PEGylation, can extend the circulation time of NPs by reducing their
recognition and clearance by the immune system (Chen et al., 2022;
Salatin et al., 2022). PEGylation also contributes to minimizing non-
specific interactions with non-target cells, further enhancing the
specificity and efficacy of NP-based therapies.

Several innovative strategies have been developed to facilitate NP
penetration of the BBB for enhanced brain tumor treatment. Receptor-
mediated transcytosis has shown promise, with studies demonstrating
the effectiveness of targeting receptors such as transferrin (Baghirov,
2023), low-density lipoprotein, and nicotinic acetylcholine for NP
transport across the BBB. Cell-penetrating peptides, such as TAT
and penetration, have also been successfully employed to enhance
NP translocation into the brain parenchyma (Thuenauer et al., 2017).

Temporary BBB disruption methods, including focused
ultrasound (FUS) and osmotic agents, have shown promising
results in preclinical studies (Gasca-Salas et al., 2021). FUS-
mediated BBB opening has been used to enhance the delivery of
various NP formulations, including liposomes and polymeric NPs,
leading to improved tumor accumulation and therapeutic efficacy.

Frontiers in Pharmacology frontiersin.org05

Liu et al. 10.3389/fphar.2024.1394816

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1394816


Osmotic agents, such as mannitol, have also been employed to
transiently disrupt the BBB and facilitate NP entry into the brain.

Comparative studies have provided valuable insights into the
relative effectiveness of these strategies. For example, a study
compared the BBB penetration and brain tumor accumulation of
transferrin-functionalized gold NPs and TAT-conjugated gold NPs,
demonstrating the superior performance of the transferrin-targeted
NPs (Durant et al., 2018). Another study evaluated the efficacy of
FUS-mediated BBB opening versus osmotic disruption for the
delivery of polymeric NPs to glioblastoma, revealing a more
localized and controlled NP accumulation with the FUS
approach. These recent advancements highlight the potential of
NERT strategies to overcome the BBB and enhance brain tumor
treatment, with each approach offering unique advantages and
considerations for clinical translation (Mehta et al., 2023).

3 Principles of radiotherapy and
interactions with NPs

3.1 Categories of therapeutic
radioactive particles

External Beam Radiotherapy (EBRT): EBRT is a common
radiotherapy method that precisely irradiates tumor sites using
external radiation beams. Various particles and energies, such as
X-rays, γ-rays, and protons, can be employed to achieve targeted
tumor treatment. Optimizing treatment plans maximizes tumor cell
destruction while minimizing damage to normal tissues. Data-driven
treatment planning has become a key strategy to enhance treatment
outcomes (Langendijk et al., 2013; Malakhov et al., 2018; Nunna
et al., 2021).

Brachytherapy: Also known as internal radiotherapy, brachytherapy
involves placing radioactive isotopic sources near tumors for localized

treatment. This approach delivers high radiation doses whileminimizing
damage to surrounding normal tissues. Advances in image-guided
precise placement have improved brachytherapy outcomes for
various cancers (Marinello et al., 1985; Potter et al., 2021).

Radioactive Isotope-Guided NP Therapy: This innovative
radiotherapy strategy loads radioactive isotopes onto NPs, enabling
targeted local tumor treatment through NP-guided delivery. This
approach releases radioactivity within tumor cells, maximizing
tumor tissue destruction while minimizing impact on surrounding
tissues. This strategy combines nanotechnology and radiotherapy,
offering new hope for brain tumor treatment (Giuliano et al., 2018).

Proton Therapy: Proton therapy, a precise radiotherapy method,
employs high-energy proton beams to target tumors, achieving more
accurate radiation treatment while reducing damage to surrounding
normal tissues. Protons have a relatively high relative biological
effectiveness, releasing more energy within tumor cells for improved
treatment effects (Tsujii and Kamada, 2012; Paganetti, 2014).

αParticle Radiotherapy: α particle radiotherapy utilizes high-energy,
highly ionizing α particles to directly damage tumor cells. Due to α
particles’ high energy release, they inflict significant damage within a
short range, presenting potential as a new avenue for radiotherapy
(McDevitt et al., 2001; Henriksen et al., 2003).

3.2 Principles of radiotherapy and radiation
biological effects

3.2.1 Principles of radiotherapy
The goal of radiotherapy is to damage tumor cells by introducing

high-energy radiation particles to inhibit their growth and division.
These particles can be X-rays, γ-rays, protons, or heavy ions such as
carbon ions (Table 1). Radiative particles interact with molecules
within cells, triggering a series of biological effects that lead to cell
damage and death. The objective of radiotherapy is to maximize

FIGURE 3
Formulation and in vivo biodistribution of targeted albumin nanoparticles. Schematic representation of the formulation process, including
crosslinking, loading of STAT3 inhibitors, and iRGD conjugation. Adapted from Gregory et al., 2020.
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damage to tumor cells while minimizing harm to surrounding
normal tissues (Sorce et al., 2021).

3.2.2 Radiation biological effects
When radiation interacts with biological tissues, it induces a

range of radiation biological effects. These effects can be classified
into two categories: direct effects and indirect effects.

Direct Effects: Radiation particles directly interact with DNA,
proteins, and other molecules within cells, causing changes in
molecular structures. This can result in DNA breaks, base
damage, and cross-linking, disrupting normal biological functions
of cells. Cells might fail to repair DNA damage, leading to cell death.

Indirect Effects: Radiation particles interact with water
molecules within cells, generating free radicals and other highly
reactive species. These free radicals can react with molecules within
cells, triggering intracellular oxidative stress and damage. Indirect
effects can impact normal cell metabolism and functions, ultimately
leading to cell death (Figure 4; Baskar et al., 2012).

Recent research advancements have indicated that different types of
radiation particles exhibit distinct mechanisms of action on tumor cells
and normal cells. For instance, proton and heavy ion radiation particles,
due to their high energy release, induce more DNA double-strand
breaks within tumor cells, thereby causingmore severe damage to them.
Conversely, these particles, owing to their shallower penetration depth,
have the potential to reduce harm to surrounding healthy tissues
(Paganetti, 2014; Corvo et al., 2016; Grassi et al., 2019).

3.3 Mechanisms of interaction between NPs
and radiation particles

The interaction between ionizing radiation andNPs is central to the
efficacy of NERT in brain tumor treatment. High-Z material-based
NPs, such as gold or gadolinium, can enhance the local dose deposition

within the tumor through the increased generation of secondary
electrons and reactive oxygen species. This physical dose
enhancement effect is complemented by chemical radio sensitization,
whereby NPs can be designed to deliver radio sensitizing agents
specifically to the tumor site. Furthermore, the biological interactions
between NPs and the tumor microenvironment, such as immune
activation and vascular normalization, may contribute to the overall
therapeutic response (Corvo et al., 2016).

It is worth noting that NPs can exhibit a phenomenon known as
the radiation enhancement effect. WhenNPs interact with radiation,
they may trigger local physical and chemical effects, increasing the
deposition of radiation energy within cells. For instance, metal NPs
can generate high-energy electrons under radiation exposure, which
can damage surrounding DNA and cell membranes, further
amplifying the effect of radiation therapy (Corvo et al., 2016).
Additionally, NPs can produce a hyperthermic effect through
interaction with radiation, causing localized heating and
increasing cell sensitivity. Research has found that iron oxide
NPs can enhance tumor cell sensitivity to X-rays, augmenting
radiation-induced damage. This discovery provides new evidence
for the application of NPs in radiation therapy (Hadi et al., 2019).

Furthermore, studies suggest that polymer NPs can enhance the
sensitivity of brain tumor cells to radiation therapy, thereby
improving treatment efficacy by intensifying the intracellular
damage caused by radiation (Corvo et al., 2016). The radiation
enhancement effect plays a crucial role in radiation particle therapy,
positioning NPs as potential adjuvants in radiation therapy.
Designed NPs carrying radiation sensitizers have been found to
promote radiation-induced damage and elevate treatment efficacy in
radiation therapy (Wu et al., 2020). However, it is important to note
that factors such as NP size, shape, composition, etc., can influence
their interaction with radiation. Thus, in NP-guided radiation
particle therapy, a thorough investigation of these interaction
mechanisms is required to achieve optimal treatment outcomes.

TABLE 1 Enhanced classification and insights on radioactive particles in NERT.

Radioactive
particles

Method
introduction

Key
advantages

Potential
applications

Challenges in
brain tumor
radiotherapy

Adverse effects
of brain

radiotherapy

References

EBRT EBRT precisely
irradiates tumor sites
using external radiation
beams

Minimizes exposure
to surrounding
healthy tissues;
adaptable to various
tumor types

Widely used in
treating brain, breast,
prostate, and lung
cancers

Limited penetration of
radiosensitizers and
chemotherapeutics due
to the blood-brain
barrier

Long-term
neurocognitive
impairment of normal
brain tissues, especially
in pediatric patients

Qu et al. (2020),
Antonucci et al.
(2022)

Brachytherapy Delivers high radiation
doses directly to the
tumor site, minimizing
damage to surrounding
normal tissues

High precision;
reduced systemic side
effects; shorter
treatment duration

Effective for prostate,
cervical, and breast
cancers

Difficulty in defining
target volumes for
diffusely infiltrative
tumors like high-grade
gliomas

Complications such as
radiation-induced brain
edema and
radionecrosis

Di et al. (2022),
Peng et al. (2022)

Radioactive Isotope-
Guided NP Therapy

Utilizes NPs loaded with
radioactive isotopes for
targeted tumor
treatment

Enhanced targeting
capability; minimizes
impact on
surrounding healthy
tissues

Emerging application
in brain and
pancreatic tumors

Restricted radiation
dose to tumor areas due
to limited tolerance of
normal brain tissue

Other toxicities like
alopecia and skin
damage

Moravan et al.
(2016)

αParticle
Radiotherapy

Employs high-energy,
highly ionizing α
particles to directly
damage tumor cells

Significant damage
within a short range;
high potential for
hard-to-treat tumors

Investigational use in
treating bone
metastases and
certain types of
leukemia

Radio resistance of
hypoxic tumor regions

Potential toxicity to
surrounding normal
brain tissues due to
high LET

Qian et al. (2022)
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While physical dose enhancement, chemical radio sensitization,
and biological interactions contribute to the efficacy of NERT, it is
essential to acknowledge the limitations and potential drawbacks
associated with each mechanism. For instance, the physical dose
enhancement effect may be limited by the concentration and
distribution of NPs within the tumor, as well as the energy of the
radiation source. Chemical radio sensitization, although promising,
may be hindered by the stability and specificity of the radio
sensitizing agents. Biological interactions, such as immune
activation, require further investigation to fully understand their
implications in the context of NERT.

4 Advantages of NP-Guided radiation
particle therapy

4.1 Targeted delivery advantage of NPs in
brain tumor treatment

NPs offer significant advantages in targeted delivery for brain
tumor treatment, particularly in the context of radiation particle
therapy. Conventional radiation therapy often struggles to avoid
harming surrounding normal brain tissues, leading to severe
neurological dysfunction and cognitive impairment. However,
NPs, acting as carriers, enable highly targeted delivery of drugs
and radioactive isotopes to tumor sites, thereby minimizing
exposure of normal tissues (Chang et al., 2019).

Through the action of NPs, radioactive isotopes can be precisely
guided to areas adjacent to tumor cells, facilitating localized
radiation therapy. This targeted delivery advantage substantially
reduces radiation exposure to surrounding normal brain tissues,
lowering the risks of neurological dysfunction and cognitive
impairment. Furthermore, by adjusting their surface properties,
NPs can more readily bind specifically to tumor cells, further
enhancing treatment precision. A study by Li et al. demonstrated

that NPs can traverse the BBB to achieve targeted delivery to brain
tumors, exhibiting excellent biocompatibility and drug-release
capabilities. This finding offers novel avenues and methods for
brain tumor treatment (Li J. et al., 2020). Wagner et al.
discovered through experiments that NPs, by means of passive
and active targeting mechanisms, can achieve accurate drug
delivery within brain tumors, providing a more precise and
effective approach to treatment (Wagner et al., 2012). Chen et al.
found that NPs can facilitate gene therapy for brain tumors through
gene delivery mechanisms, introducing a new personalized
treatment strategy (Chen et al., 2017). Additionally, Yu et al.
(2022) uncovered that NPs, besides achieving precise targeting,
can enhance brain tumor treatment efficacy by reducing drug
resistance. These findings offer innovative solutions for brain
tumor treatment. Through BBB penetration, NPs achieve targeted
delivery to brain tumors with good biocompatibility and drug-
release capabilities. Moreover, NPs can elevate treatment efficacy
through mechanisms such as photothermal effects, gene delivery,
and reduction of drug resistance. These discoveries provide new
insights and methodologies for brain tumor treatment. However,
these studies have certain limitations. For instance, issues regarding
the toxicity and long-term safety of NPs necessitate further research.
Additionally, NP fabrication and application techniques require
ongoing improvement and optimization. Future research should
further explore the potential applications of NPs in brain tumor
treatment and address the challenges faced by current studies.

4.2 Biological effects of NPs

NP-guided radiation particle therapy not only holds advantages
in targeted delivery but also enhances treatment efficacy through its
unique biological effects (Table 2).

4.3 Cellular toxicity and apoptosis

The cellular toxicity and apoptosis induced by NPs are
important considerations for researchers. Studies suggest that
NPs can induce cellular toxicity and apoptosis through various
pathways, including oxidative stress, cell membrane disruption,
DNA damage, etc. For instance, research indicates that silver NPs
can induce apoptosis and mitochondrial damage in human lung
epithelial cells, an effect possibly linked to the surface properties and
cellular uptake of these NPs (Gurunathan et al., 2018). Moreover,
some studies have found that factors such as NP size, shape, and
surface modifications can also impact their cellular toxicity and
apoptosis effects (García-Torra et al., 2021).

4.4 Autophagy

Autophagy is a cellular self-degradation process that provides
nutrients and energy by engulfing cellular proteins and organelles.
Recent research indicates that NPs can influence the autophagy
pathway, thereby impacting cell survival and death. For example, a
study revealed that titanium dioxide NPs can suppress the
autophagy pathway, leading to cell death (Li J. et al., 2020).

FIGURE 4
Schematic representation of the primary cell death mechanisms
triggered by radiation. The figure illustrates that radiation-induced cell
death occurs mainly through apoptosis or mitotic catastrophe.
Apoptosis is characterized by the activation of caspases, leading
to the formation of apoptotic bodies, while mitotic catastrophe results
from aberrant mitosis and the formation of giant cells with multiple
nuclei. Adapted from Baskar et al., 2012.
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Another study suggested that NPs of iron oxide can mitigate cell
damage induced by oxidative stress by promoting autophagic
degradation.

4.5 Oxidative stress

Oxidative stress refers to a series of reactions resulting from the
imbalance in cellular redox equilibrium, potentially leading to
oxidative damage of proteins, lipids, and DNA. NPs can induce
oxidative stress through various means, including direct interaction
with intracellular molecules and induction of free radical
production. Recent research suggests that the oxidative stress
effects of NPs may be linked to their surface chemistry and
biodegradability. For instance, a study found that the oxidative
stress effects of NPs of iron oxide are related to their surface
modifications, with different modifications possibly leading to
varying degrees of oxidative stress responses (Xuan et al., 2023).

4.6 Cellular signaling pathway regulation

NPs can regulate cellular signaling pathways through
multiple avenues, including activating or inhibiting specific pathways
and influencing cytokine production. Recent research indicates that the
signaling pathway regulation effects of NPsmay be associated with their
surface properties and cellular uptake. For instance, a study found that
titanium dioxide NPs can induce inflammation by activating the
Toll-like receptor four signaling pathway. Another study suggested
that gold NPs can modulate immune responses by affecting cytokine
production (Swartzwelter et al., 2020).

4.7 Immune activation

NPs can activate immune responses through various means,
including inducing cytokine production and eliciting inflammation.
Recent research suggests that the immune activation effects of NPs

may be linked to their surface properties and cellular uptake. For
example, a study found that silver NPs can induce inflammation by
activating the Toll-like receptor two signaling pathway (Kim et al.,
2012). Another study indicated that silica NPs can activate immune
responses by inducing cytokine production (Nakanishi et al., 2016).

4.8 Gene and protein expression regulation

NPs can regulate gene and protein expression through various
means, including influencing transcription factor activity and
modulating epigenetic modifications. Recent research suggests that
the effects of NPs on gene and protein expression regulation may be
associated with their surface properties and cellular uptake. For
instance, a study found that titanium dioxide NPs can affect gene
expression by modulating transcription factor activity (Alijagic et al.,
2019). Another study indicated that zinc oxide NPs can impact protein
expression by regulating epigenetic modifications (Safar et al., 2019).

In conclusion, the biological effects of NPs are a complex issue
encompassing multiple areas of research. Recent studies suggest that
the biological effects of NPs may be closely related to factors such as
their surface properties, size, shape, and biodegradability. Further
research will contribute to a comprehensive understanding of the
biological effects of NPs and provide guidance for their applications
in the fields of medicine and biology (Youden et al., 2022).

5 Review of clinical trials and research
applications

5.1 NERT in specific brain tumor types
and subtypes

NERT has been investigated in various brain tumor types and
subtypes, each presenting unique challenges and opportunities for
clinical translation. In GBM, gold nanoparticles (AuNPs) have been
the most extensively studied, with preclinical studies demonstrating
enhanced radio sensitization and improved survival in animal

TABLE 2 Comprehensive overview of biological effects of NPs in NERT.

Biological
effect

Mechanism Impact on cancer therapy Insights Key studies

Cellular Toxicity and
Apoptosis

NPs can induce cellular toxicity and
apoptosis through oxidative stress, cell
membrane disruption, and DNA damage

Enhances the efficacy of radiotherapy by
promoting tumor cell death

Studies suggest that the surface
properties and cellular uptake of NPs,
such as silver NPs, play a crucial role in
inducing apoptosis

Gurunathan et al.
(2018)

Autophagy NPs influence the autophagy pathway,
impacting cell survival and death

Can be leveraged to induce autophagic cell
death in tumor cells, complementing
radiotherapy

Research indicates that NPs, including
titanium dioxide, can induce autophagy-
mediated apoptotic cell death, offering a
potential therapeutic strategy

Li et al. (2020b)

Oxidative Stress NPs can lead to an imbalance in cellular
redox states, resulting in oxidative stress

Oxidative stress enhances the generation
of ROS, contributing to DNA damage and
tumor cell kill

Gold NPs have been shown to enhance
oxidative stress in chronic kidney disease
cell models, indicating their potential in
radio sensitization

Chen et al. (2022),
Zhao et al. (2021)

Inflammation Certain NPs can trigger inflammatory
responses by activating the NLRP-3
inflammasome

While inflammation can contribute to
tumor progression, controlled use of NPs
can potentially enhance the immune
response against tumors

Silver NPs have been found to induce
degradation of the endoplasmic
reticulum stress sensor, leading to
activation of the NLRP-3 inflammasome

(Simard et al.,
2015)
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models. However, the heterogeneity and infiltrative nature of GBM
pose significant challenges for NP delivery and distribution within
the tumor (Peng et al., 2020). Strategies to overcome these barriers
include the use of tumor-targeting ligands and convection-enhanced
delivery (Georgiou et al., 2023).

In meningiomas, AuNPs have shown promise in enhancing the
efficacy of radiation therapy, particularly in atypical and malignant
subtypes (Khoobchandani et al., 2021). However, the relatively low
incidence of high-grade meningiomas has limited the clinical
translation of NERT in this setting. Future studies should focus
on identifying biomarkers to predict which meningiomas are most
likely to benefit from NERT (Luo et al., 2020).

For PNETs, such as medulloblastoma, NERT has the potential to
improve treatment outcomes while minimizing the long-term
neurocognitive sequelae associated with conventional
radiotherapy (Treisman et al., 2022). Preclinical studies using
AuNPs and iron oxide NPs have shown encouraging results in
medulloblastoma models. However, the developing brain presents
unique challenges for NP delivery and toxicity assessment. Future
research should prioritize the development of biocompatible and
targeted NP formulations for pediatric brain tumors (Edelstein
et al., 2011).

In the context of brain metastases, NERT has the potential to
improve local control and reduce the need for whole-brain radiation
therapy, which is associated with significant neurocognitive decline.
Preclinical studies using AuNPs have demonstrated enhanced radio
sensitization in brain metastasis models (Rosoff et al., 2022).
However, the heterogeneity of primary tumor types and the
presence of multiple metastatic lesions complicate the clinical
translation of NERT in this setting. Future studies should
investigate the use of NERT in combination with systemic
therapies and immunotherapy to address both local and distant
disease control (Rosoff et al., 2022).

In summary, NERT has shown promise in various brain tumor
types and subtypes, but each presents unique challenges and
considerations for clinical translation. Future research should

focus on developing targeted and biocompatible NP formulations,
optimizing delivery strategies, and investigating combination
approaches to maximize the therapeutic potential of NERT in
specific brain tumor contexts.

5.2 Efficacy evaluation

NP-enhanced radiotherapy, as a novel treatment strategy, has
gained significant attention in clinical trials and research. Over the
past few years, researchers have conducted a series of clinical studies
to evaluate its application in patients with brain tumors. These
studies involve NP selection, guided radioisotope delivery,
optimization of treatment plans, as well as safety and efficacy
assessment (Youden et al., 2022).

In terms of NP selection, metal NPs and polymer NPs have been
particularly studied. Metal NPs exhibit radiation-enhancing effects and
local hyperthermia, giving them unique advantages in radiotherapy.
Polymer NPs, on the other hand, possess excellent drug carrier
properties and can facilitate combined delivery of chemotherapy
agents and radioisotopes for multi-modal therapy. Different types of
NPs play distinct roles in treatment strategies, providing patients with
more therapeutic options (Figure 5; Hoshyar et al., 2016).

5.3 Preclinical insights

The clinical application of NP-enhanced radiotherapy has shown
promising preliminary results in terms of safety and efficacy assessment.
Researchers have monitored treatment processes, side effects, and
treatment outcomes in brain tumor patients. Initial findings indicate
that NP-guided radiotherapy presents significant advantages in
reducing damage to normal brain tissue compared to traditional
radiotherapy. Patients’ neurological function and quality of life have
been preserved to some extent, positively impacting their recovery and
wellbeing (Zhang Y. N. et al., 2016).

FIGURE 5
Schematic illustration of the size-dependent membrane-wrapping behavior of nanoparticles (NPs). The figure shows that NPs with diameters above
60 nmdrive themembrane-wrapping process by binding extensively to receptors, while NPs below 30 nmattach to themembrane but require proximity for
efficacy. NPs with diameters between 30 and 60 nm effectively drive membrane-wrapping. Redrawn based on the content of Hoshyar et al., 2016.
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Preclinical research has been pivotal in unveiling the potential of
NERT for the treatment of brain tumors. Furthermore, NP-guided
radiotherapy might enhance treatment outcomes through biological
effects. Local hyperthermia can enhance the effects of radiotherapy,
making tumor cells more susceptible to damage. Immune activation
effects can stimulate the immune system’s attack on tumors, increasing
treatment durability. These effects are gradually becoming evident in
clinical applications, providing positive indications for the future
development of NP-enhanced radiotherapy strategies (Bag et al.,
2023). By selecting appropriate NPs, optimizing treatment plans,
and evaluating safety and efficacy, this strategy offers new
therapeutic opportunities for brain tumor patients, bringing new
hopes for improved treatment outcomes and prognosis (Table 3).

6 Challenges and future directions

The comparative analysis of NERT strategies for BBB
penetration has provided valuable insights into their relative
effectiveness and potential for clinical translation. However,
several challenges remain in optimizing these approaches for
targeted delivery and specificity. The heterogeneity of brain
tumors and the complexity of the BBB microenvironment
necessitate the development of more sophisticated NP designs
that can adapt to these variations (Kim and Lee, 2022).

Future research should focus on the systematic evaluation of
different BBB penetration strategies across a range of brain tumor
models, considering factors such as NP size, surface chemistry, and
targeting ligand density (Reddy et al., 2021). The integration of
multiple strategies, such as combining receptor targeting with
temporary BBB disruption, may offer synergistic effects and
warrants further investigation. Additionally, the long-term safety
and neurocognitive impact of these approaches must be carefully
assessed in relevant preclinical models and clinical trials.

Addressing these challenges and advancing the comparative
analysis of NERT strategies for BBB penetration will be crucial
for the successful translation of these innovative approaches into
clinical practice, ultimately improving the outcomes for patients
with brain tumors.

6.1 Targeted delivery and specificity

Targeting NPs to brain tumors involves both passive and active
mechanisms. Passive targeting exploits the enhanced permeability
and retention (EPR) effect, while active targeting uses ligands to bind
specific receptors on tumor cells (Jain, 2012; Saraiva J. et al., 2016).
Advanced in vivo models and clinical trials are essential to evaluate
the efficacy and safety of these targeted NP systems.

6.2 Optimization of NP formulations

Optimizing NP formulations for radio sensitization is crucial for
treating radioresistant tumors. High-Z material-based NPs, such as
gold, gadolinium, and hafnium, can significantly increase radiation
absorption and DNA damage. Surface modification with radio
sensitizing drugs or molecules that enhance tumor oxygenation
can further amplify therapeutic outcomes (Hainfeld et al., 2014;
Kunjachan et al., 2015).

The systemic toxicity of NPs is a significant concern that
limits their clinical translation. Optimization strategies are
focused on improving the biocompatibility and reducing the
off-target effects of NPs. Surface engineering of NPs with
polyethylene glycol has been widely adopted to enhance their
circulation time and reduce opsonization, thereby diminishing
mononuclear phagocyte system uptake and minimizing toxicity
(Knop et al., 2010). Additionally, the development of
biodegradable NPs that can safely disassemble and be cleared
from the body after fulfilling their therapeutic purpose is gaining
traction (Park et al., 2011).

The design of NPs with intrinsic antioxidant properties or
surface functionalization with anti-inflammatory agents can also
mitigate oxidative stress and inflammation associated with NP
administration (Sengupta et al., 2018). Moreover, the use of in
silico modeling and high-throughput screening can predict NP
toxicity and optimize their formulations before in vivo
application. The optimization of NP formulations for enhanced
radio sensitization and reduced toxicity is a crucial avenue for future
research. However, the development of such formulations may be

TABLE 3 Nanoparticles developed for radiotherapy in brain tumor treatment.

Nanoparticle
type

Key properties Applications in RT Therapeutic benefits References

Metallic NPs High surface area, optical and
magnetic properties

Drug delivery, Photothermal
therapy

Efficient drug delivery, tumor cell
eradication through localized
hyperthermia

Huang et al. (2007), Zhang
et al. (2016a), Shi et al. (2017)

Polymeric NPs Biocompatibility, tunable release
capabilities

Delivery of chemotherapy
agents and genetic materials

Enhanced therapeutic outcomes, selective
drug release targeting tumor cells

Agrawal et al. (2015)

Carbon-Based
Nanomaterials

Biocompatibility, high surface
area

Photothermal therapy Inhibition of tumor growth, induction of
tumor cell apoptosis and cell cycle arrest

Zhao et al. (2017)

Lipid NPs Biocompatible, BBB penetration Drug and genetic material
delivery

Precise targeting, controlled release,
reduced systemic toxicity

Ahmadi et al. (2020)

Silicon NPs Adjustable pore sizes, surface
modifiability

Efficient drug carriers, targeted
therapy

Enhanced drug delivery, reduced off-
target effects

Mahawar et al. (2023)

Magnetic NPs Responsive to external magnetic
fields, induces hyperthermia

Directed drug delivery,
hyperthermia treatment

Targeted therapy, localized tumor cell
destruction

Estrader et al. (2022)
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complicated by the complex interplay between NP properties, tumor
microenvironment, and radiation response.

6.3 Personalization of therapy

Personalized nanomedicine is an emerging paradigm that aims
to tailor NP-based therapies to the individual characteristics of a
patient’s tumor. This approach necessitates the integration of
comprehensive diagnostic information, including genetic,
proteomic, and metabolic profiles, to design NPs that can
selectively target and treat cancerous cells based on their unique
molecular signatures (Schroeder et al., 1998).

The functionalization of NPs with specific ligands that recognize
tumor-specific markers has shown potential in enhancing the
selectivity and efficacy of cancer therapies. Recent advancements
in the field have seen the development of multifunctional NPs
capable of simultaneous imaging and therapy, allowing for real-
time monitoring of treatment response and the adjustment of
therapeutic regimens accordingly (Davis et al., 2013). The
ongoing research and development in this field are likely to yield
novel NP-based therapeutics that can overcome current limitations
in cancer treatment and offer a more targeted, effective, and safer
approach to cancer management. Personalization of NERT also
presents significant challenges, as it requires a comprehensive
understanding of the patient’s tumor biology and the ability to
tailor NP design accordingly.

6.4 Integration with other therapies

6.4.1 Combination with chemotherapy,
immunotherapy, or targeted therapy

The integration of NP systems with conventional cancer
therapies such as chemotherapy, immunotherapy, and targeted
therapy is a burgeoning area of research that aims to enhance
therapeutic efficacy while minimizing adverse side effects. This
integrative approach leverages the unique properties of NPs to
improve drug delivery, modulate the immune response, and
facilitate targeted drug action.

Chemotherapy, one of the mainstays of cancer treatment, often
suffers from poor specificity and systemic toxicity. NPs can serve as
carriers for chemotherapeutic agents, enhancing their accumulation in
tumor tissues through the EPR effect. For instance, the development of
doxorubicin-loaded liposomal NPs has shown improved therapeutic
outcomes by reducing cardiotoxicity and increasing tumor drug
concentration (Barenholz, 2012). Similarly, polymeric NPs have been
engineered to release chemotherapeutic agents in response to specific
stimuli within the tumor microenvironment, thereby enhancing the
precision of drug delivery (Wang et al., 2019).

Immunotherapy, which harnesses the patient’s immune system
to combat cancer, can also benefit from NP integration. NPs can be
designed to deliver immunomodulatory agents directly to the tumor
site or lymphoid tissues, thus amplifying the immune response
against cancer cells. For example, NPs loaded with checkpoint
inhibitors have been reported to enhance antitumor immunity
and show synergistic effects when combined with other
therapeutic modalities (Patel et al., 2020).

Targeted therapy, which involves agents that specifically target
molecular pathways essential for tumor growth and survival, has
also seen advancements through NP integration. The
functionalization of NPs with ligands that recognize tumor-
specific antigens or receptors enables the selective delivery of
targeted therapies, thereby reducing off-target effects. A notable
example is the development of NPs conjugated with antibodies
against the epidermal growth factor receptor (EGFR), which have
shown enhanced targeting and treatment of EGFR-overexpressing
tumors (Wang et al., 2007).

6.5 Synergistic effects and
treatment protocols

The synergy between NPs and other cancer therapies can lead to
the development of novel treatment protocols that offer superior
efficacy over single-modality treatments. The combination of NPs
with radiation therapy, as discussed previously, can be further
enhanced by integrating chemotherapy or immunotherapy,
leading to multimodal treatment regimens that exploit the
strengths of each approach.

For instance, the simultaneous delivery of radio sensitizing NPs
and DNA-damaging chemotherapeutic agents can lead to enhanced
tumor cell kill due to the increased generation of reactive oxygen
species and DNA damage. The sequential delivery of radiation
therapy and NP-mediated chemotherapy has been shown to
result in a synergistic tumor response, as radiation can increase
the permeability of tumor vessels, thereby enhancing NP
accumulation (Chen Q. et al., 2023).

Moreover, the combination of NPs with immunotherapy can
result in synergistic effects by modulating the tumor
microenvironment to be more conducive to immune cell
infiltration and activity. NPs can be engineered to release
cytokines or other immune-stimulating agents in response to
radiation, thus potentiating the immune-mediated eradication of
cancer cells (Duan et al., 2021).

6.6 Regulatory and manufacturing
considerations for NERT

The production of NPs for NERT requires rigorous
standardization to ensure safety, efficacy, and reproducibility. Key
characteristics such as size, shape, surface charge, and drug loading
efficiency must be controlled. Implementing Good Manufacturing
Practice guidelines is vital for quality control and minimizing risks
like contamination or dosage inconsistencies (Wilhelm et al., 2011;
Rai et al., 2016).

The clinical translation of NERT faces several challenges,
including the optimization of NP formulations for targeted
delivery and radio sensitization, while minimizing toxicity
(Tinkle et al., 2014). Navigating the regulatory landscape and
addressing safety concerns will be critical for the successful
implementation of NERT in clinical practice (Moghimi
et al., 2012).

Navigating the regulatory landscape will be a critical hurdle
in the clinical translation of NERT, necessitating close
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collaboration between researchers, manufacturers, and
regulatory bodies to ensure the safety and efficacy of these
novel treatments (Tinkle et al., 2014).

6.7 Potential toxicity of nanoparticles
in humans

The increasing use of NPs in medical applications, including
NER), has raised concerns about their potential toxicity in humans.
While the unique properties of NPs make them attractive for
therapeutic purposes, their small size and high surface area-to-
volume ratio can also lead to unintended biological interactions
and adverse effects (Lewinski et al., 2008).

One of the main concerns is the systemic toxicity of NPs following
their administration. NPs can distribute to various organs and tissues,
leading to accumulation and potential damage. The liver, spleen, and
kidneys are particularly susceptible toNP toxicity due to their role inNP
clearance andmetabolism (Zhang Y. N. et al., 2016). In vitro and in vivo
studies have shown that certain NPs can induce oxidative stress,
inflammation, and DNA damage, which may contribute to long-
term health consequences (Wang et al., 2013).

Another concern is the potential immunogenicity of NPs. Some
NPs have been shown to activate the immune system, leading to the
production of pro-inflammatory cytokines and the recruitment of
immune cells (Yang et al., 2021). This immune activation can be
beneficial in the context of cancer immunotherapy but may also lead
to undesirable side effects and autoimmune reactions.

The long-term effects of NP exposure are still not fully
understood. There is a need for more comprehensive
toxicological studies to evaluate the chronic toxicity of NPs,
including their potential carcinogenicity and genotoxicity (Fattal
et al., 2014). Additionally, the environmental impact of NPs and
their potential to accumulate in the food chain should be considered.

To mitigate the potential toxicity of NPs, several strategies have
been proposed. These include the use of biocompatible and
biodegradable materials, surface modification to reduce
immunogenicity, and the development of targeted delivery systems
to minimize off-target effects (Yang et al., 2021). Furthermore, rigorous
safety assessment and regulatory guidelines are essential to ensure the
safe and responsible use of NPs in medical applications. While the
potential of NPs in NERT is promising, it is crucial to carefully consider
and address their potential toxicity in humans. Ongoing research and
safety evaluations are necessary to develop NPs that are both effective
and safe for clinical use. By understanding and mitigating the potential
risks, we can harness the full potential of NPs in the treatment of brain
tumors and other medical applications.

7 Conclusion

NERT is an emerging approach in treating brain tumors, offering
potential where conventional therapies are limited by the brain’s
protective barriers and the sensitivity of surrounding tissues. The
design of NPs for NERT involves careful consideration of size,
surface charge, and functionalization to facilitate BBB crossing and
targeted tumor accumulation. NPs in the size range of 20–100 nm, with
neutral or slightly negative surface charge, and functionalized with

targeting ligands such as transferrin or peptides, have shown promise in
traversing the BBB and delivering therapeutic agents to brain tumors.

The use of NERT leverages the enhanced permeability and
retention (EPR) effect for selective tumor accumulation, amplifying
treatment effects while minimizing damage to healthy cells. Metallic
NPs, such as gold and gadolinium, have demonstrated significant
potential in enhancing radiation-induced damage, leading to
improved tumor control and survival benefits in preclinical models.

However, clinical adoption of NERT is still in its early stages,
focusing on safety, dosage, and NP distribution. Challenges remain,
including tumor heterogeneity, consistency in NP delivery across the
BBB, and long-term safety considerations. Additionally, the complex
regulatory landscape and the need for standardization in NP
production and characterization present hurdles in translating
NERT from research to clinical practice.

Despite these challenges, NERT holds significant promise in
improving outcomes for patients with brain tumors, particularly
those with inoperable or treatment-resistant tumors, by enabling
more precise and potent radiation delivery. The approach also opens
doors to theranostic applications, combining treatment with
diagnostic imaging for real-time monitoring and treatment
adaptation.

Future directions in NERT for brain tumors include the
development of multifunctional NPs that combine imaging,
targeting, and therapeutic capabilities, as well as the integration
of artificial intelligence and personalized medicine approaches to
optimize treatment planning and delivery. Collaborative efforts
among researchers, clinicians, and regulatory bodies will be
crucial in addressing the challenges and realizing the full
potential of NERT in the management of brain tumors.
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