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Background: Sepsis is marked by a dysregulated immune response to infection.
Calcineurin inhibitors (CNIs), commonly used as immunosuppressants, have
unique properties that may help mitigate the overactive immune response in
sepsis, potentially leading to better patient outcomes. This study aims to assess
whether CNIs improve prognosis in septic patients and to evaluate any associated
adverse reactions.

Methods: We utilized the Medical Information Mart for Intensive Care IV 2.2
(MIMIC-IV 2.2) database to identify septic patients who were treated with CNIs
and those who were not. Propensity score matching (PSM) was employed to
balance baseline characteristics between the CNI user group and the non-user
group. The primary outcome was 28-day mortality, analyzed using the Kaplan-
Meier method and Cox proportional hazard regression models to examine the
relationship between CNI use and patient survival.

Results: From theMIMIC-IV database, 22,517 septic patients were identified. After
propensity scorematching, a sample of 874 patientswas analyzed. TheCNI group
exhibited a significantly lower 28-day mortality risk compared to the non-user
group (HR: 0.26; 95% CI: 0.17, 0.41) in the univariate Cox hazard analysis. Kaplan-
Meier survival curves also demonstrated a significantly higher 28- and 365-day
survival rate for CNI users compared to non-users (log-rank test p-value = 0.001).
No significant association was found between CNI use and an increased risk of
new-onset infection (p = 0.144), but an association with mild hypertension (P <
0.001) and liver injury (P < 0.001) was observed.

Conclusion: The use of calcineurin inhibitors was associated with reduced short-
and long-term mortality in septic patients without an increased incidence of
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new-onset infections, hyperkalemia, severe hypertension, or acute kidney injury
(AKI). However, CNI use may lead to adverse effects, such as liver injury and mild
hypertension.
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1 Introduction

Sepsis is currently defined as life-threatening organ dysfunction
resulting from a dysregulated host response to infection (Singer et al.,
2016; Evans et al., 2021). A study published in The Lancet estimated
that from 1990 to 2017, there were approximately 48.9million cases of
sepsis worldwide, with 11million resulting in death. This accounts for
19.7% of global mortality (Rudd et al., 2020), highlighting the
significant threat sepsis poses to human health and the substantial
economic burden it imposes (Maurizio et al., 2018). The dysregulated
immune-inflammatory response is central to the development of
organ dysfunction and poor outcomes in sepsis. This has made
immune modulation therapy a key area of research in recent years
(van der Poll et al., 2017). Numerous immunomodulatory agents are
currently used as adjunctive treatments for sepsis, ranging from
conventional glucocorticoids to various immune checkpoint
inhibitors (Sprunge et al., 2008; Djillali et al., 2018; Fabienne and
Guillaume, 2018; Marik, 2018). Calcineurin inhibitors (CNIs), which
include cyclosporine A (CsA) and tacrolimus (FK506), are widely
used immunosuppressants in clinical practice, particularly following
organ transplantation and in the treatment of anaphylaxis and
autoimmune diseases (Lane and Gbadegesin, 2023; O Grady et al.,
2002; Rafael-Vidal et al., 2021). Calcineurin, a phosphatase enzyme, is
crucial in immune activation. By dephosphorylating Nuclear factor of
activated T-cells (NFAT) family transcription factors, it promotes
T-cell differentiation and activation, stimulates the production of
inflammatory factors, recruits inflammatory cells to affected tissues,
and provides co-stimulation to B cells (Crabtree and Schreiber, 2009;
Chen et al., 2022). Given these mechanisms, CNIs have the potential
to mitigate the excessive immune-inflammatory response associated
with sepsis, potentially reducing organ damage and improving patient
outcomes. However, CNIs may also increase the risk of infection, lead
to new infections, and cause serious adverse effects, such as liver and
kidney damage (Ahmed et al., 2021; Emal et al., 2019; Deppermann
et al., 2021). Therefore, it is essential to assess the safety and efficacy of
CNIs in septic patients, yet research in this area is currently limited. To
address this gap, we aim to conduct an observational cohort study
using the Medical Information Mart for Intensive Care IV 2.2
(MIMIC-IV 2.2) database. Our goal is to provide more specific
recommendations for the clinical use of CNIs in septic patients
and to evaluate the overall benefits and potential risks associated
with their use.

2 Methods

2.1 Data source

The data for this study were obtained from the Medical
Information Mart for Intensive Care IV (MIMIC-IV v2.2)

database (https://physionet.org/content/mimiciv/2.2/), a freely
accessible critical care database comprising 730,141 ICU
admissions between 2008 and 2019 at Beth Israel Deaconess
Medical Center, United States. The database contains
demographics, laboratory measurements, medications, survival
data and more. Use of the database was approved by the
Institutional Review Boards of MIT and Beth Israel Deaconess
Medical Center. As the database is anonymized and contains
standardized data, this study did not require separate ethics
approval per the Declaration of Helsinki (Johnson et al., 2023a;
Johnson et al., 2023b).

2.2 Study population

Patients diagnosed with sepsis based on Sepsis-3 criteria were
included. Exclusion criteria were: 1) ICU length of stay <24 h due to
discharge or death; 2) Age <18 years; and 3) Diagnosis of acquired
immunodeficiency syndrome (AIDS). For patients with multiple
ICU admissions, only the first admission was analyzed.

Patients who received administration of calcineurin inhibitors
(CNIs), including cyclosporin A (CsA) or tacrolimus (FK506),
during their ICU stay were defined as the CNIs group. The
remaining patients who did not receive CNIs were defined as the
control group.

2.3 Variables and outcome

We extracted several variables from the MIMIC-IV database for
analysis, including demographic information (age, gender, race),
clinical measurements on admission (body weight, mean arterial
pressure (MAP), white blood cell count (WBC)), illness severity
scores (SOFA, SAPSII), comorbidities (chronic heart failure (CHF),
cancer, chronic obstructive pulmonary disease (COPD),
rheumatism, chronic kidney disease (CKD)), and treatments
received (vasopressor drugs, invasive ventilation, continuous
renal replacement therapy (CRRT), glucocorticoids).

The primary endpoint was 28-day mortality. Secondary
outcomes included utilization of treatments, length of ICU and
hospital stay, other mortality timepoint, and safety outcomes.
Treatment measures assessed included use of invasive ventilation,
vasopressor drugs, and CRRT. Mortality outcomes examined were
28-day, 90-day, 180-day, 1-year, and in-hospital mortality. Safety
outcomes were assessed and encompassed new infections during the
ICU stay, acute kidney injury (AKI), liver injury, hypertension, and
hyperkalemia. AKI was defined in accordance with the KDIGO
criteria (Ostermann et al., 2020; Levey et al., 2020), involving an
increase in serum creatinine of ≥0.3 mg/dL (≥26.5 μmol/L) within
7 days compared to baseline, or a ≥1.5 times increase in serum
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creatinine within the same timeframe, or a urine output ≤0.5 mL/kg/
h for 6 h. Liver injury was characterized by serum alanine
aminotransferase (ALT) or aspartate aminotransferase (AST)
levels exceeding 5 times the upper limit of normal. Hypertension
was identified as systolic blood pressure exceeding 140 mmHg or
diastolic blood pressure exceeding 90 mmHg. Severe hypertension
was specifically defined as systolic blood pressure over 180mmHg or
diastolic blood pressure over 110 mmHg. Hyperkalemia was defined
as a serum potassium level surpassing 5.5 mmol/L.

2.4 Statistical analysis

For continuous variables with non-normal distribution,
medians and interquartile ranges were reported, and the Mann-
Whitney U test was used for comparisons. Categorical variables were
presented as counts and proportions, with chi-square tests used to
compare the two groups.

A Cox regression model was constructed in the original cohort
to explore the relationship between CNI use and 28-day mortality,
with all baseline variables included for multivariate adjustment.

Propensity score matching (PSM) was utilized to control for
confounding between the groups. A generalized linear model
determined propensity scores for each patient based on selected
covariates (age, sex, weight, illness severity scores, MAP, WBC,
oxygen saturation, treatments, comorbidities). Patients were
matched at a 1:2 ratio using nearest neighbor matching with a
0.2 caliper. Standardized mean differences (SMDs) were calculated
between the matched groups.

Kaplan-Meier curves displayed 28-day and 365-day mortality
incidence and median survival times in the CNIs-use and control
groups. The Cox proportional-hazards model was used to estimate
the relationships between patients treated or untreated with CNIs
and the 28-day mortality, hazard ratios (HR) and 95% confidence

intervals (CI) were analyzed. For subgroup analyses, the study
population was stratified based on age, sex, race, WBC levels,
SOFA score, CHF, COPD, CKD, organ transplantation status,
invasive ventilation use, vasopressor drugs, and glucocorticoid use.

3 Results

3.1 Baseline characteristics

A total of 22,517 patients with sepsis admitted to the ICU were
screened from the MIMIC-IV database. Based on the predefined
inclusion and exclusion criteria, 20,121 patients were included in the
final analysis, with 432 patients receiving calcineurin inhibitors
(CNIs) and 19,689 not receiving CNIs (Figure1).

Compared to the control group, the CNIs-use group had a
higher proportion of males, higher mean arterial pressure, oxygen
saturation, comorbidity index, SAPS II and SOFA scores, and
greater use of CRRT. The CNIs-use group also had a higher
prevalence of kidney disease, malignant tumors, and organ
transplantation, while having a lower mean age, white blood cell
count, and prevalence of heart failure and COPD (all p < 0.05). After
1:2 propensity score matching, the matched cohort consisted of
874 patients, including 313 who received CNIs and 561 who did not.
Standardized mean differences for all observed variables were less
than 0.1, indicating good balance between the two matched groups.
Table 1 shows these baseline characteristics.

3.2 Primary outcomes

In the original cohort, the use of CNIs was associated with a
reduced 28-day mortality rate (HR = 0.40, 95% CI = 0.28–0.56; p <
0.001). This association remained significant after including all

FIGURE 1
Flow chart of patient selection. MIMIC-IV, Medical Information Mart for Intensive Care IV; AIDS, acquired immune deficiency syndrome; CNIs,
Calcineurin inhibitors; ICU, intensive care unit.
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baseline variables in a multivariate regression model (HR = 0.33,
95% CI = 0.23–0.50; p < 0.001) (Figure 2). In the propensity score
matched cohort, the 28-day all-cause mortality was 7.3% (23/313) in
the CNIs-use group compared to 24.8% (139/561) in the control
group (Table 2). Kaplan-Meier survival curves were generated using
the log-rank test to evaluate the effect of CNIs treatment (Figure 3).
The CNIs group had significantly higher cumulative survival rates
compared to the control group (p < 0.01). In Cox proportional
hazards regression models, CNIs-use group was associated with
lower 28-day all-cause mortality (HR = 0.26, 95% CI = 0.17–0.41; p <
0.001). (Figure 2).

3.3 Secondary outcomes

Compared to the control group, the CNIs-use group had lower
90-day mortality, 180-day mortality, in-hospital mortality, and
longer hospital stays. For mechanical ventilation outcomes, a
higher proportion of the CNIs-use group were extubated within

TABLE 1 Comparisons of baseline characteristics between the original cohort and matched cohort.

Variables Before matching After matching

Control CNIs group SMD△ Control CNIs group SMD△

N 19,689 432 561 313

Age (Year) 66.65 (16.30) 58.94 (11.60) −0.665 57.40 (16.52) 58.39 (11.38) 0.092

Gender (Male) 11,382 (57.8) 289 (66.9) 0.193 398 (70.9) 211 (67.4) −0.044

Weight (Kg) 83.27 (23.83) 84.12 (21.64) 0.039 86.02 (23.80) 84.60 (22.14) −0.010

MAP (mmHg) 76.61 (9.99) 81.73 (11.79) 0.434 81.44 (13.09) 82.00 (12.11) 0.033

SpO2(%) 97.09 (2.20) 97.47 (1.86) 0.209 97.62 (1.86) 97.56 (1.87) −0.026

WBC(*10^9/L) 15.84 (12.32) 12.94 (7.13) −0.407 13.07 (7.40) 13.26 (7.56) 0.031

Hyper-WBC 14,896 (75.7) 263 (60.9) −0.303 339 (60.4) 193 (61.7) 0.039

SOFA 5.84 (3.45) 7.79 (3.59) 0.544 8.22 (4.15) 8.04 (3.70) −0.031

SAPSII 39.95 (14.02) 41.55 (13.47) 0.119 40.80 (15.52) 41.55 (13.63) 0.057

CCI 5.04 (2.94) 5.69 (2.41) 0.268 5.52 (3.31) 5.55 (2.29) 0.014

CHF (%) 5,137 (26.1) 72 (16.7) −0.253 91 (16.2) 50 (16.0) −0.013

COPD (%) 5,657 (28.7) 88 (20.4) −0.208 85 (15.2) 57 (18.2) 0.024

Cancer (%) 2,555 (13.0) 123 (28.5) 0.343 188 (33.5) 104 (33.2) 0.011

Rheumatism (%) 705 (3.6) 12 (2.8) −0.049 15 (2.7) 9 (2.9) −0.019

CKD (%) 3,986 (20.2) 220 (50.9) 0.614 243 (43.3) 136 (43.5) −0.048

Transplantation (%) 59 (0.3) 189 (43.8) 0.876 58 (10.3) 71 (22.7) 0.084

Vasopressor (%) 1,312 (6.7) 26 (6.0) −0.027 24 (4.3) 20 (6.4) 0.074

Invasive MV (%) 11,333 (57.6) 257 (59.5) 0.039 373 (66.5) 200 (63.9) −0.003

CRRT (%) 559 (2.8) 53 (12.3) 0.287 53 (9.4) 40 (12.8) 0.073

GC-use (%) 1854 (9.4) 52 (12.0) 0.081 79 (14.1) 39 (12.5) −0.069

SMD, standardized mean difference; MAP, mean arterial pressure; WBC, write blood cell; SOFA, sequential organ failure assessment; SAPSII, simplified acute physiology score; CCI, charlson

comorbidity index; COPD, chronic obstructive pulmonary disease; CKD, chronic kidney disease; MV, mechanic ventilation; CRRT, continuous renal replacement therapy; GC, glucocorticoid.

FIGURE 2
COX analysis of the relationship between CNIs-use and 28-Day
mortality, illustrated by a forest plot.
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24 h and 3 days, and they had more ventilator-free days versus the
control group. Regarding vasopressor use, a higher proportion of the
CNIs-use group were weaned off vasopressors within 6 h compared
to controls. There was no significant difference between the two
groups in utilization of renal replacement therapy.

In terms of adverse effects, the CNIs-use group had a higher
incidence of hypertension and liver injury, and a mild increasing of
serum potassium compared to the control group. However, there
were no significant differences between the groups in new onset of
infection, severe hypertension, AKI, or hyperkalemia (Table 2).

3.4 Subgroup analyses

Figure 4 displays the results of a subgroup analysis of 28-day all-
cause mortality in the propensity score matched cohort. The

association between CNIs use and lower 28-day mortality was
consistent across most subgroups, with significant interactions
observed only in patients with COPD, organ transplantation, and
glucocorticoid use. Specifically, CNIs use was associated with
reduced mortality in patients without COPD (HR = 0.19, 95%
CI = 0.11–0.33; p = 0.012), without glucocorticoid use (HR =
0.16,95% CI = 0.09–0.30; p < 0.001), and without organ
transplantation (HR = 0.18, 95% CI = 0.10–0.32; p < 0.001).

4 Discussion

Our study demonstrates that the use of CNIs in septic patients is
associated with lower 28- and 365-day mortality, earlier weaning
from invasive mechanical ventilation and vasopressors, and only
mild side effects. Importantly, there was no significant association

TABLE 2 Association of CNIs use and outcomes in septic patients.

Outcome Control CNIs group p

n 561 313

Mortality

28-day (%) 139 (25%) 23 (7.3%) <0.001

90-day (%) 183 (33%) 34 (11%) <0.001

180-day (%) 208 (37%) 37 (12%) <0.001

1-year (%) 237 (42%) 52 (17%) <0.001

Hospital (%) 114 (20%) 23 (7.3%) <0.001

Life-support treatment

24-h weaned from Invasive MV (%) 290 (52%) 193 (62%) 0.006

3-day weaned from Invasive MV (%) 402 (72%) 250 (80%) 0.009

Invasive MV-free days (Median (IQR)) 27 (17, 28) 27 (25, 28) 0.002

6-h weaned from vasopressors (%) 499 (89%) 293 (94%) 0.032

24-h weaned from vasopressors (%) 518 (92%) 300 (96%) 0.059

Vasopressor-free days (Median (IQR)) 28 (28, 28) 28 (28, 28) 0.118

CRRT (%) 69 (12%) 52 (17%) 0.095

Adverse outcome

New onset of infection (%) 164 (29%) 76 (24%) 0.135

AKI (%) 462 (82%) 257 (82%) >0.999

Hypertension (%) 421 (76%) 227 (90%) <0.001

Severe hypertension (%) 191 (34%) 123 (40%) 0.114

Liver injury 98 (31%) 121 (52%) <0.001

Hyperkalemia 74 (15%) 53 (18%) 0.281

Potassium (mean (SD)) 4.07 (0.51) 4.26 (0.47) <0.001

Length of stay

ICU (Median (IQR)) 3.7 (2.1, 7.9) 3.1 (1.9, 6.9) 0.111

Hospital (Median (IQR)) 10 (6, 19) 12 (7, 21) 0.001

CNIs, calcineurin inhibitors; ICU, intensive care unit; MV, mechanical ventilation; AKI, acute kidney injury; CRRT, continuous renal replacement therapy.
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with new infections or other severe adverse reactions. Additionally,
the use of CNIs enables patients to be liberated from mechanical
ventilation earlier, suggesting a better overall condition and reduced
dependence on organ function support (Jaber and De Jong, 2023).
The partial interactions observed in the subgroup analysis could be
attributed to the smaller sample sizes within these subgroups.

This marks the first clinical cohort study to investigate the use
of CNIs in septic patients. Although CNIs are extensively used to
prevent organ transplant rejection and treat various immune-
related diseases (Lane and Gbadegesin, 2023; O Grady et al., 2002;
Rafael-Vidal et al., 2021), research on their use in sepsis is scarce.
While the role of immune dysregulation and inflammation in
sepsis progression has been long recognized, research into anti-
inflammatory and immunomodulatory treatments remains a

recent focus, and studies specifically examining CNIs as an
immunosuppressive option in sepsis are limited. The anti-
inflammatory and immunomodulatory effects of CNIs are
extensive. For instance, cyclosporine A (CsA) exerts its effects
by binding to cyclophilin A (Cyp-A), thereby preventing the
nuclear translocation of activated nuclear factor of activated
T-cells (NF-AT). This action reduces the transcription of pro-
inflammatory cytokines such as interleukin-2 (IL-2), thereby
mitigating the inflammatory response during infection.
Additionally, when CsA binds to cyclophilin D (CypD), it
prevents the opening of the mitochondrial permeability
transition pore (mPTP), a critical step in cell death. This
protective effect helps reduce cellular dysfunction and death
(as shown in the right panel) (Liddicoat and Lavelle, 2019;

FIGURE 3
Kaplan-Meier survival curves between two groups indicated the 28- and 365- day mortality risk for the septic patients.
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Cour et al., 2020). Studies have found that CsA’s protective effect
on lung injury is dependent on inhibiting 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) and the release of
cytochrome C (CytC), thereby suppressing the activation of
the mitochondrial apoptosis pathway and the expression of
apoptosis-related proteins, as well as reducing the expression
levels of Adenine nucleotide translocator 1 (ANT1) and voltage-
dependent anion channel 1 (VDAC1) (Fonai et al., 2015; Li et al.,
2017). Previous research has demonstrated that non-cytotoxic
concentrations of cyclosporine can inhibit the replication of
various viruses, including coronaviruses, hepatitis viruses, and
HIV (Natacha et al., 2022; Wang et al., 2014). During the
COVID-19 pandemic, cyclosporine significantly reduced key
serum cytokines and chemokines in cases of excessive
inflammation, leading to lower mortality rates in severe
COVID-19 patients (Cour et al., 2020; Galvez-Romero et al.,
2021; Rudnicka et al., 2020; Emily et al., 2022).

For septic patients in the ICU, the primary concern with
using CNIs is the potential exacerbation of existing infections
and the emergence of new infections due to immunosuppression
(Sanskriti et al., 2021; Fishman, 2007; Borges et al., 2022). In our
study, we found no statistically significant difference in the
incidence of new infections between the CNI and non-CNI
groups. Although the database did not provide direct evidence
of whether CNIs exacerbated existing infections, the clear
improvement in overall patient outcomes strongly suggests
that the use of CNIs did not worsen pre-existing infections.
This indicates a level of safety and reliability in using these
drugs for septic patients.

The mechanism by which CNIs induce hypertension is linked to
the overactivity of the renal sodium chloride cotransporter (NCC)
and increased phosphorylation of N-methyl-D-aspartate (NMDA)
receptors in the paraventricular nucleus (PVN) of the
hypothalamus, leading to heightened sympathetic output (Hoorn

FIGURE 4
Subgroup analysis of the relationship between CNIs-use and 28-Day mortality, illustrated by a forest plot.
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et al., 2011; Zhou et al., 2022). Although the CNI group experienced
an increase in hypertension, the mild elevation in blood pressure
appears to have limited clinical implications for critically ill patients.
Severe hypertension (SBP > 180 mmHg or DBP > 110 mmHg) can
significantly increase the risk of acute cardiovascular and
cerebrovascular events, but no significant differences in such life-
threatening events were observed between the two groups. On the
other hand, the blood pressure elevation caused by CNIs might also
have a beneficial effect on improving septic shock.

CNIs have also shown beneficial effects on the cardiovascular
system. The activation of calcineurin, a component in ventricular
remodeling, suggests that tacrolimus may slow the progression of
ventricular hypertrophy in mice, preventing the transition to
heart failure (Sakata et al., 2000). Cyclosporine and tacrolimus
have been found to inhibit endotoxin-mediated cardiac
contractile dysfunction by reducing nitric oxide (NO)
production and preserving mitochondrial function (Mandar
et al., 2006). Additionally, a randomized controlled study
demonstrated that cyclosporine pre-treatment in patients with
acute myocardial infarction undergoing percutaneous coronary
intervention (PCI) can reduce the opening of the mitochondrial
permeability transition pore, thereby reducing myocardial
damage during reperfusion and limiting the area of
myocardial infarction (Christophe et al., 2008). These
mechanisms may help protect organ function during sepsis,
improving both short- and long-term outcomes for patients.

Hyperkalemia is another common adverse reaction attributed to
CNIs, though its mechanism is not fully understood (Fleming et al.,
1997; Tantisattamo et al., 2016). It is currently believed to be related
to reduced aldosterone secretion or resistance, as well as the
inhibition of inward rectifying potassium channels (Kir) in renal
tubules (Berber et al., 2021; Kortenoeven, 2023). Some studies
suggest that hormone replacement with fludrocortisone and the
use of statin drugs can mitigate these inhibitory effects on potassium
channels, offering a therapeutic effect for CNI-induced
hyperkalemia (Ma, 2013; Unsal et al., 2021; Gheith et al., 2022).
In our study, the CNI group showed a mild elevation in serum
potassium compared to the control group, with no significant
difference in the incidence of hyperkalemia. This may be due to
the more stringent electrolyte monitoring typically conducted in
ICU patients. However, given the myocardial toxicity associated
with elevated potassium levels, clinicians should closely monitor
electrolyte status in patients receiving CNIs.

Liver and kidney damage from CNIs also warrants attention.
Reports on CNI-induced hepatotoxicity are relatively few,
possibly due to the liver’s strong compensatory and
regenerative abilities. This side effect mainly manifests as
enzyme elevation and does not seem to significantly affect
essential liver functions, thus having minimal impact on
patient prognosis (El-Magd et al., 2022; Bingül et al., 2019). In
our study, the CNI group showed an increased likelihood of liver
injury (defined as ALT or AST levels exceeding five times the
upper limit of normal) compared to the control group. Clinicians
should be vigilant about this and may consider administering
hepatoprotective drugs, particularly for patients with pre-
existing chronic liver dysfunction. More attention is generally
directed toward CNI-induced renal damage, primarily
manifesting as chronic toxicity characterized by renal vascular

injury, thrombotic microangiopathy, and interstitial fibrosis
(Nagao et al., 2021; Bk and Betiuk, 1986; Nahman et al.,
1987). Although this study did not find differences in the
incidence of acute kidney injury (AKI) or the need for
continuous renal replacement therapy (CRRT) between the
two groups, the pre-matched cohort indicated that the CNI
group had more baseline characteristics of chronic kidney
disease (CKD). This renal toxicity could impact patient
prognosis, especially in the long term. The use of statins and
other renal protective drugs, such as glutathione, may help
mitigate this renal damage (Huang et al., 2018; Mahmoud
et al., 2022; Deger et al., 2021; Khanna et al., 2004).

This study has several limitations: 1) It is a retrospective cohort
study based on electronic medical records from a single center,
which may introduce residual confounding due to unmeasured
covariates. 2) CNIs have potent anti-inflammatory and
immunosuppressive effects, which could increase the risk of
new infections or exacerbate existing ones in individual
patients. Given the heterogeneity of sepsis, responses to CNI
treatment may vary depending on the pathogen and disease
state. Further research, including animal studies or larger
observational trials, is necessary to better assess the safety and
efficacy of CNIs, and to clarify critical parameters such as timing,
dosage, and indications for their use. 3) The specific impact of
CNIs on the progression of sepsis remains unclear. Immunological
parameters, such as cytokine levels and leukocyte subtypes, were
not available in the database. Future studies exploring the cellular
and molecular mechanisms of CNIs in sepsis could provide deeper
insights into the findings of this research.

5 Conclusion

In summary, the use of CNIs in septic patients significantly
reduces both 28- and 365-day mortality and facilitates earlier
liberation from invasive mechanical ventilation and vasoactive
drugs. Aside from a mild elevation in liver enzymes, no
significant increase in severe adverse reactions, such as new-onset
infections, hyperkalemia, severe hypertension, or acute kidney
injury (AKI), was observed. However, further research is essential
to fully understand how CNIs improve outcomes in septic patients.
Larger studies are needed to confirm their safety and efficacy, as well
as to determine the optimal dosage, timing, and indications
for their use.
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