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Hepatocellular Carcinoma (HCC) patients often develop resistance to tyrosine
kinase inhibitors (TKIs) like sorafenib (SR) and lenvatinib (RR). We established
HCC cell lines resistant to these drugs and analyzed the correlation between
protein and metabolite profiles using bioinformatics. Our analysis revealed
overexpression of MISP, CHMP2B, IL-18, TMSB4X, and EFEMP1, and
downregulation of IFITM3, CA4, AGR2, and SLC51B in drug-resistant cells.
Differential signals are mainly enriched in steroid hormone biosynthesis,
cell adhesion, and immune synapses, with metabolic pathways including
cytochrome P450 drug metabolism, amino acid metabolism, and glycolysis.
Proteomics and metabolomics analysis showed co-enrichment signals in drug
metabolism, amino acids, glucose metabolism, ferroptosis, and other
biological processes. Knocking down MISP, CHMP2B, IL-18, TMSB4X, and
EFEMP1 significantly reduced drug resistance, indicating their potential as
therapeutic response biomarkers. This study characterizes protein and
metabolic profiles of drug-resistant HCC cells, exploring metabolite-protein
relationships to enhance understanding of drug resistance mechanisms and
clinical treatment.
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Introduction

Sorafenib and lenvatinib, both belonging to the class of tyrosine kinase inhibitors (TKIs),
serve as molecularly targeted drugs for the treatment of HCC. Their primary focus is on
suppressing multiple crucial targets involved in tumor angiogenesis, signal transduction
pathways, and immune regulation (Chan and Chan, 2023; Villarruel-Melquiades et al., 2023).
Sorafenib and lenvatinib effectively restrain the advancement of HCC by impeding an assortment
of receptor tyrosine kinases (RTKs) (Faivre et al., 2020). Sorafenib primarily suppresses the
growth and angiogenesis of HCC cells by targeting and inhibiting vascular endothelial growth
factor receptors (VEGFR) as well as the Raf/MEK/ERK signaling pathway (Jiang et al., 2023). In
addition, sorafenib can also affect the regulation of tumor related immune cells and their factors,
promoting the body’s immune response. Lenvatinib mainly inhibits various receptors and
pathways within cells, such as VEGFR, platelet-derived growth factor receptors (PDGF),
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fibroblast growth factor receptors (FGFR) and hepatocyte factor receptor
(c-KIT), to inhibit cell proliferation, promote cell apoptosis, and block
angiogenesis, thereby achieving the effect of treating HCC (Laface et al.,
2022). Despite the availability of TKIs, the reality is that most patients
with advanced HCC eventually develop either innate or acquired
resistance to these therapies (De Mattia et al., 2019). It is imperative
to develop novel treatment strategies to address TKI resistance in
advanced HCC patients.

Recent studies have shown that epigenetics, transport processes,
regulated cell death, tumor microenvironment, hypoxia and viral
reactivation play a role in the production and development of
sorafenib resistance in HCC (Tang et al., 2020; Ladd et al., 2024).
Lenvatinib resistance also has a similar mechanism to sorafenib
resistance, including noncoding RNA regulation, tumor immune
microenvironment and expansion of cancer stem cells (Tao et al.,
2023). In addition, the combination of immune checkpoint inhibitors
(ICI) and TKIs has important therapeutic significance in the treatment
of HCC (Starzer et al., 2024). However, understanding the mechanism
of TKIs resistance from a global perspective is still unclear.

The aim of this study is to investigate the mechanism of TKIs
resistance and identify new therapeutic targets. In addition, this
study attempts to determine the protein and metabolic profiles of
TKIs resistance, providing insights for overall treatment rather than
targeted therapy alone.

Materials and methods

Reagents and kits

Reagents and antibodies are as follows: sorafenib
(MedChemExpress, Cat# HY-10201); lenvatinib
(MedChemExpress, Cat# HY-10981); fetal bovine serum (Gemini
Bio, Sacramento, CA); Lipofectamine 3,000 (Invitrogen); Dulbecco’s
Modified Eagle Medium (DMEM) (Gibco, Grand Island, NY);
Fluoromount with 4′, 6- diamidino-2-phenylindole (DAPI)
(Sigma-Aldrich, St. Louis, MO); Puromycin (Solarbio Life
Science, Beijing, China); GAPDH (Proteintech, Cat# 60004-1-Ig);
MISP (Proteintech, Cat# 26338-1-AP); CHMP2B (Proteintech, Cat#
12527-1-AP); TMSB4X (Proteintech, Cat# 19850-1-AP); IL-18
(ABclonal, Cat# A1115); EFEMP1 (Abcam, Cat# ab256457).

Clinical specimens

Retrospective collection of tissue paraffin embedded samples from
HCC patients admitted to Fujian Provincial Hospital from January
2023 to December 2023. This research protocol has been approved by
the Ethics Committee of Fujian Provincial Hospital (K2023-05-016).

Cell lines

The Huh7 cell lines (RRID: CVCL_0336, JCRB0403, Japan) were
cultured in DMEM, supplemented with 10% FBS and 100 U/mL
Penicillin/Streptomycin, and maintained at 37°C in a 5% CO2

atmosphere. The cells underwent routine testing for mycoplasma
contamination, which confirmed their freedom from contamination.

Establishment of sorafenib-resistant and
lenvatinib-resistant HCC cells

The Huh7/SR and Huh7/RR cell lines, which are resistant to
sorafenib or lenvatinib, were created in a previous study (Wang
et al., 2023b; Leung et al., 2023). Briefly, Huh7 cells were cultured
with gradually increasing doses of sorafenib or lenvatinib. Both
Huh7/SR and Huh7/RR cells were cultured at a constant
concentration of 10 μM.

siRNA transfection

si MISP (target sequence: TTCCGTTTCTATCTTCCTTTA
GA), si CHMP2B (target sequence: AAGAAAACCGTGGATGGA
ATTAG), si IL-18 (target sequence: AACTATTTGTCGCAGGAA
TAAAG), si TMSB4X (target sequence: TAGCTGTTTAACTTT
GTAAGATG), si EFEMP1 (target sequence: CGCACAGATTCA
CAATGTTGAAA) and scrambled control si RNA (si Control), were
purchased from Tsingke Biotechnology Co., Ltd. All siRNA
transfections were performed using Lipofectamine 3,000
according to the manufacturer’s protocol.

Cell viability assay

The CCK-8 reagent was used to test cell viability in accordance
with the manufacturer’s instructions. In brief, the 96 well plate had
5,000 cells per well. Next, 10 μL of CCK-8 reagent was added to each
well. The absorbance of every well was measured at 450 nm with a
microplate reader (BioTek, Winooski, VT).

Immunoblotting

Immunoblotting was based on our previous research (Wang
et al., 2023a). The total protein samples (25 μg) were separated
through SDS-PAGE were separated via SDS-PAGE and transferred
onto PVDFmembranes (Biosharp, Hefei, China). Following this, the
membranes were blocked with 5% bovine serum albumin (BSA) at
room temperature for 1 h. The primary antibodies were applied to
the membranes and incubated overnight at 4°C. After this step,
secondary antibodies were added and incubated at room
temperature for 1 h. The resulting bands were detected and
visualized using a Hypersensitive ECL Chemiluminescence Kit
(NcmECL Ultra, ABP Biosciences, Beltsville, MD, USA). The
study utilized several primary antibodies: anti-MISP (1:1,000),
anti-CHMP2B (1:1,000), anti-IL-18 (1:1,000), anti-TMSB4X (1:
1,000), and anti-EFEMP1 (1:1,000), anti-GAPDH (1:5,000).

Cell proliferation assay

The EdU Cell Proliferation Kit (Solarbio, China) was utilized to
quantify cell proliferation as per the guidelines furnished by the
manufacturer. Upon combining with a fluorescent azide,
proliferating cells emitted a vibrant red fluorescence that was
visualized under a fluorescent microscope.
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4D-DIA quantitative proteomics

4D-DIA quantitative proteomics was detected and analyzed by
Novogen Co., Ltd. The software used for integrating metabolomics
and proteomics data were presented in Supplementary Table S1. The
steps are as follows.

Protein extraction
The sample was treated with lysis buffer (8 M urea

supplemented with 1 mM PMSF and 2 mM EDTA) and
subjected to ultrasonic waves to break down the cells. Following
this, the residual debris was eliminated by centrifuging the mixture
at 15000 g and at a temperature of 4°C for a duration of 10 min. BCA
protein quantitation assay was employed to deduce the total protein
concentration.

Digestion and cleanup
For tryptic digestion, an identical quantity of proteins from each

sample was employed. The supernatants were supplemented with
8 M urea (200 µL) and reduced using 10 mM DTT at 37°C for a
period of 45 min, following which they were alkylated using 50 mM
iodoacetamide (IAM) at room temperature for 15 min in a
darkroom. The resulting mixture was precipitated by adding
4× volume of chilled acetone and incubating at −20°C for 2 h.
After centrifuging, the protein precipitate was air-dried, and then
resuspended in a solution of 200 µL of 25 mM ammonium
bicarbonate along with 3 µL of trypsin (Promega). The mixture
was allowed to undergo overnight digestion at 37°C. Next, the
resulting peptides were purified using a C18 Cartridge.
Afterward, the peptides were dried using a Vacuum
Concentration Meter, concentrated by vacuum centrifugation and
eventually redissolved in a solution of 0.1% (v/V) formic acid.

LC-MS/MS analysis
A nanoElute UHPLC (Bruker Daltonics, Germany) was utilized to

perform liquid chromatography (LC). The reverse-phase C18 column,
which was commercially available with an integrated CaptiveSpray
Emitter, allowed for the separation of approximately 200 ng peptides at
a flow rate of 0.3 μL/min for 40 min. The integrated Toaster column
ovenmaintained the separation temperature at 50°C. Themobile phases
usedwereA andB, with 0.1 vol.-% formic acid inwater and 0.1% formic
acid in ACN respectively. Over the initial 25 min, mobile phase B was
increased from 2% to 22%, and then, over the subsequent 5 min, it was
augmented to 35%, further progressing to 80% over a period of
subsequent 5 min while being held at 80% for a further 5 min. The
LC was linked online to a hybrid timsTOF Pro2 (Bruker Daltonics,
Germany) via a CaptiveSpray nano-electrospray ion source. In order to
identify the suitable acquisition windows for diaPASEF mode, the
timsTOF Pro2 was initially managed in Data-Dependent Parallel
Accumulation-Serial Fragmentation (PASEF) mode with 4 PASEF
MS/MS frames in 1 complete frame. The capillary voltage of 1500 V
was set, while the MS and MS/MS spectra were gathered from 100 to
1700 m/z. As for the ion mobility range (1/K0), 0.85–1.3 Vs/
cm2 was employed.

Database search and quantification
DIA-NN (v1.8.1) was utilized to analyze the MS raw data using a

library-free approach. The uniprot_proteomeUP000005640_

human_20230504.fasta database (which amounted to
82492 sequences) was employed to develop a spectra library via
deep learning algorithms of neural networks. The MBR option was
employed to produce a spectral library from DIA data, which was
then reanalyzed utilizing this library. The search results were
subjected to FDR adjustments to less than 1% at both protein
and precursor ion levels; the remaining identifications were
implemented for further quantification analysis.

Untargeted metabolomics

Untargeted metabolomics was detected and analyzed by
Novogen Co., Ltd. The steps are as follows.

Cell samples class I
A 500 μL solution, containing the internal standard, was added

to the cell sample, vortexed for 3 min, and subsequently subjected to
a single freeze-thaw cycle consisting of placement in liquid nitrogen
for 5 min followed by dry ice for 5 min, after which it was thawed on
ice and vortexed for 2 min. A 300 μL supernatant was collected and
stored at −20°C for 30 min. Afterward, it was centrifuged once again
at 12000 rpm for 3 min, at 4°C. Following which, 200 μL aliquots of
the supernatant were transferred for LC-MS analysis.

HPLC conditions
All of the samples were subjected to two LC/MS assays. One

aliquot was analyzed using positive ion conditions, and was
eluted from the T3 column (Waters ACQUITY Premier HSS
T3 Column 1.8 µm, 2.1 mm * 100 mm), utilizing 0.1% formic acid
in water as solvent A and 0.1% formic acid in acetonitrile as
solvent B across the following gradient: 5%–20% within 2 min,
followed by an increase to 60% in the subsequent 3 min, then an
increase to 99% within 1 min, followed by a retention time of
1.5 min, thereafter returning to the initial 5% mobile phase B
within 0.1 min, and a retention time of 2.4 min. The second
aliquot was analyzed using negative ion conditions, utilizing the
same elution gradient as the positive mode.

MS conditions (AB)
Data acquisition was performed using the information-

dependent acquisition (IDA) mode, and the Analyst TF
1.7.1 Software (Sciex, Concord, ON, Canada) was used for this
purpose. The TOF MS scan parameters were set at a mass range of
50–1,000 Da, with an accumulation time of 200 ms, and a dynamic
background subtract was enabled. The product ion scan parameters
were set at a mass range of 25–1,000 Da, with an accumulation time
of 40 ms.

Statistical analysis

The results are expressed as mean ± SD and conducted using
GraphPad Prism V.8. For normally distributed data with
homogeneous variance, use unpaired t-tests to compare two
samples. The comparison between multiple groups was
conducted using one-way analysis of variance. A p-value <0.05 is
considered statistically significant.
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Results

Quality evaluation of quantitative results
between proteomic samples

We produced Huh7 sorafenib resistant and lenvatinib resistant cell
lines (Huh7/SR, Huh7/RR), respectively. Compared to the parental
Huh7 cells, both Huh7/SR and Huh7/RR cells have higher IC50

values (Figure 1A). We next used the EdU proliferation detection kit
to compare the number of EdU positive cells between parental cells and
drug-resistant cells. It was found that compared to parental cells, both
sorafenib and lenvatinib resistant cells had fewer Edu positive cells
(Figures 1B, C). This indicates a decrease in the proliferation ability of
drug-resistant cells. To evaluate the co-resistance mechanism of these
two types of drug-resistant cells, we used 4D-DIA quantitative
proteomics technology to explore the differences in protein
expression. Both Huh7 and Huh7/RR, as well as Huh7 and Huh7/
SR, have correlation coefficients greater than or equal to 0.94 (Figure 1D).

Protein differential expression analysis

Cluster heatmaps display differences in protein expression patterns
between two drug-resistant cells and parental cells (Figure 2A). In
comparison to Huh7 cells, Huh7/SR cells displayed an increase in
972 protein expressions and a decrease in 1,051 protein expressions.
Similarly, Huh7/RR cells showed an increase in 1,071 protein

expressions and a decrease in 1,072 protein expressions (Figures 2B,
C). Compared to Huh7/SR cells, Huh7/RR cells upregulated
504 proteins and downregulated 389 proteins (Supplementary Figure
S1). Notably, we identified the top 10 upregulated and downregulated
proteins. Co-upregulated proteins included MISP, CHMP2B, IL-18,
TMSB4X and EFEMP1, while co-downregulated proteins comprised of
IFITM3, CA4, AGR2 and SLC51B (Figures 2B, C). Subcellular
localization analysis of proteins found that they are mainly
concentrated in the nucleus, cytoplasm, mitochondrion and plasma
membrane (Figures 2D, E). Venn diagram showed that there are
1,315 common differentially expressed proteins in both groups
(Figure 2F). These data indicate that many proteins in drug-resistant
cells have undergone changes, indicating that the protein profile has
been reconstructed.

Functional enrichment of differentially
expressed proteins

The gene ontology (GO) enrichment analysis revealed that, in
comparison to Huh7 cells, both Huh7/SR and Huh7/RR cells
exhibited shared differential enrichment signals. These signals
were primarily associated with integral components of the plasma
membrane, extracellular space, extracellular region, basolateral
plasma membrane, apical plasma membrane, chaperonin-
containing T-complex, calcium-dependent phospholipid binding,
and immunological synapse (Figures 3A, B). KEGG pathway

FIGURE 1
Quality evaluation of quantitative results between proteomic samples. (A) The IC50 values of Huh7, Huh7/SR, and Huh7/RR cells were detected. n =
3. Data were analyzed by unpaired t-test: ***p < 0.001. (B,C) The Edu proliferation detection kit was used to detect the number of Edu positive cells, n = 6.
Bar = 50 μm.Data were analyzed usingOne-Way ANOVA analysis: **p < 0.01. (D) Pearson’s Correlation Coefficient. The value of |R| indicates the strength
of the correlation between two samples, with values approaching 1 indicating a strong correlation.
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analysis showed that the common differential enrichment signals in
Huh7/SR and Huh7/RR cells primarily involved steroid hormone
biosynthesis, cell adhesion molecules, mucin type O-glycan
biosynthesis, and glycosphingolipid biosynthesis—lacto and
neolacto series (Figures 3C, D). Furthermore, the structural
domain enrichment analysis revealed that the common
differential structural domains in Huh7/SR and Huh7/RR cells
were primarily associated with immunoglobulin-like folds and
subtypes, immunoglobulin-like domains and their superfamily,
immunoglobulin subtype 2, chaperone tailless complex
polypeptide 1 (TCP-1), chaperonin TCP-1, conserved sites,
groEL-like equatorial domain superfamily, and fibronectin type
III (Figures 3E, F). Protein protein interaction analysis (PPI)
showed that both Huh7/SR vs. Huh7 and Huh7/RR vs.
Huh7 exhibited highly complex differentially expressed protein
interactions, while the interaction of Huh7/RR vs. Huh7/SR was
relatively reduced (Figure 3G). These results indicate that the Huh7/
SR and Huh7/RR cell populations exhibit unique molecular
characteristics, revealing rich pathways and structural domains

involved in cellular signaling, biosynthesis, and immune
responses, which can provide valuable insights for drug resistance
in HCC treatment.

Quality evaluation of quantitative results
between metabolomic samples

Because both proteins and metabolites are closely related to
cellular function. We have constructed a proteomic profile of drug-
resistant cells, and we next continue to construct a metabolomic
profile of drug-resistant cells. PCA results showed differences in
metabolomic separation trends among groups (Figure 4A).
PC1 Scores suggested that the test samples were within the range
of 3 standard deviations (SD) (Figure 4B). The clustering heatmap
provided the differences in metabolites between two types of drug-
resistant cells and parental cells (Figures 4C, D). The differential
metabolite volcano plots displayed a visual representation of the
statistical significance and magnitude of differences in metabolite

FIGURE 2
Protein differential expression analysis. (A) Differential protein clustering heatmap. Rows represent clustering of differentially expressed proteins,
while columns represent clustering of samples. (B,C) Differential protein volcano plot. The horizontal axis represents log2 of the differential multiple, the
vertical axis represents -log10 p-value, and the red and green scatter dots represent the up and downregulated differential proteins. (D,E) Subcellular
localization of proteins that were differentially expressed is depicted with each subcellular compartment represented by a distinct color. The
number of proteins that were annotated for each subcellular compartment is noted outside the parentheses, while the proportion of differentially
expressed proteins annotated for each subcellular compartment is noted within the parentheses as compared to the total subcellular annotation. (F)
Differential protein Venn diagram. n = 3.
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FIGURE 3
Functional enrichment of differentially expressed proteins. (A,B) Bubble charts depicted the GO enrichment analysis results. The horizontal axis
showed the enrichment factor (DiffRatio/BgRatio ratio), reflecting the degree of enrichment, while the vertical axis displayed the name of the GO entry.
(C,D)Bubble charts illustrated the KEGG enrichment analysis results. The horizontal axis showed the enrichment factor, reflecting the level of enrichment,
while the vertical axis showed the KEGG pathway. (E,F) Bubble diagrams suggested the results of the structural domain enrichment analysis. The
horizontal axis exhibited the enrichment factor, reflecting the level of enrichment, while the vertical axis showed the description of the IPR entry. (G)
Differential expression protein interaction network. The differential expression protein interaction network diagram demonstrated the differentially
expressed proteins. Each node represented a protein, with color change from red to blue indicating the expression level change from up to down. n = 3.
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abundance between groups. Compared to the Huh7 cells, the Huh7/
SR cells had 176 metabolites elevated and 272 metabolites decreased
(Figure 4E), while the Huh7/RR cell group had 89 metabolites
elevated and 444 metabolites decreased (Figure 4F). These results

can aid in understanding the metabolic pathways and regulatory
mechanisms underlying cellular function and disease, providing a
basis for potential biomarker discovery and therapeutic
intervention.

FIGURE 4
Quality evaluation of quantitative results betweenmetabolomic samples. (A) PCA was performed to analyze the variance in the data. (B) The Sample
PC1 control chart showed the PC1 value of the experimental and quality control samples plotted against the order of detection. The yellow and red lines
depicted positive and negative 2 and 3 standard deviation ranges, respectively. (C,D) The cluster diagrams exhibited sample and metabolite information
grouped according to the standardized relative content values. The horizontal axis represented sample information, the vertical axis represented
metabolite information, and different colors indicated the degree of variation in the content (red represents high, green represents low). (E,F) Differential
metabolite volcano map. n = 3.
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FIGURE 5
Functional enrichment analysis of differential metabolites. (A–C) Diagram portraying the correlation network of differential metabolites. The pink
lines denoted positive correlation, while the blue lines indicated negative correlation. The line thickness was indicative of the absolute value of the
correlation coefficient, with thicker lines denoting greater correlation strength. (D,E) Analysis of Metabolic Enrichment (MSEA). (F,G) Differential
metabolite KEGG enrichment map. The horizontal axis corresponds to the Rich Factor associated with each pathway. The color of the point
reflected the p-value, with redder points indicating greater significance of enrichment. The point size was proportional to the number of enriched
differential metabolites. n = 3.
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FIGURE 6
Combination analysis of proteomic and metabolomic profiles. (A,B) KEGG enrichment analysis bubble chart. The horizontal axis represented the
enrichment factor (Diff/Background) of the pathway in different omics, while the vertical axis represents the name of the KEGG pathway. The gradient of
red, yellow, and green showed a significant change in the degree of enrichment from high to medium to low, with p-value as the representative. The
bubble shapes represented different omics, while the bubble sizes demonstrated the number of differential metabolites or proteins. The dots
became larger as the numbers increase. (C,D) Correlation analysis nine quadrant chart. The horizontal axis represents the log2 FC of proteins, and the
vertical axis represents the log2 FC of metabolites. (E,F) O2PLS analysis. n = 3.
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Functional enrichment analysis of
differential metabolites

To conduct in-depth analysis of differential metabolites, we
conducted correlation analysis and enrichment analysis on
differential metabolites. The correlation between differential
metabolites indicated that amino acid and its metabolites were
most significant among the three groups compared (Figures
5A–C). Metabolic Enrichment Analysis (MSEA) found that a
large number of metabolic pathways were enriched, including:
drug metabolism cytochrome P450, amino acid metabolism, fatty
acid biosynthesis, pure metabolism, and glycolis/gluconeogenesis
(Figures 5D, E). KEGG analysis of differential metabolites
uncovered that the signal pathways jointly enriched in Huh7/SR
and Huh7/RR cells involve the activation of chemical carcinogenesis
receptors, the CGMP-PKG signaling pathway, and ABC
transporters (Figures 5F, G).

Combination analysis of proteomic and
metabolomic profiles

By combining the proteomics and metabolomics analysis, it can
be seen from the KEGG analysis results that the co-enriched signals
of metabolism and proteomics in the two resistant cells are mainly
reflected in: drug metabolism cytochrome P450, alanine, aspartate
and glucose metabolism, ferroptosis, biosynthesis of amino acids,
bill secretion, nucleotide metabolism, and pure metabolism (Figures
6A, B). The correlation analysis between proteins and metabolites
revealed a intricate relationship within drug-resistant cells.
Specifically, the third and seventh quadrants exhibited proteins
and metabolites displaying a positive correlation, whereas the
first and ninth quadrants indicated proteins and metabolites with
discordant regulatory patterns (Figures 6C, D). Subsequently, we
selected all proteins and metabolites that exhibited differential
expression and utilized them to construct an O2PLS model. We
then conducted a preliminary variable screening process where we
identified variables that possessed a high correlation and weight in
different data groups through load plots (Figures 6E, F). Through
these analyses, we established a connection between differential
metabolites and proteins, allowing for a comprehensive
understanding of the underlying mechanisms of drug resistance.

MISP, CHMP2B, IL-18, TMSB4X, and
EFEMP1 are associated with drug resistance
recurrence

To validate the protein family spectrum findings in drug-
resistant cells, we selected HCC tissues from patients who
underwent lenvatinib treatment and those with recurrence after
such treatment. HE staining revealed necrosis in HCC tissue from
patients treated with lenvatinib, along with an enhanced presence of
immune infiltrating cells in para-carcinoma tissues and a notable
increase in cancer cells in recurrent carcinoma tissue. These
observations corroborate our understanding of the proteomic
profiles in drug-resistant HCC cells (Figure 7A). The expression
of MISP, CHMP2B, IL-18, TMSB4X, and EFEMP1 proteins in

carcinoma tissue was higher than that in para-carcinoma tissues
(Figure 7B). Survival analysis showed that high expression of MISP,
CHMP2B, IL-18, TMSB4X, and EFEMP1 is not associated with poor
prognosis in HCC (Figure 7C). Therefore, we speculated that these
5 proteins may not be related to tumor growth, but rather to drug
resistance. We found that the expression levels of these 5 proteins in
drug-resistant cells were significantly higher than those in parental
cells, both in sorafenib resistant cells and lenvatinib resistant cells
(Figure 7D). In addition, we used siRNA technology to knock down
the expression of these 5 proteins one by one, and after being
knocked down, the IC50 values of drug-resistant cells significantly
decreased (Figures 7E, F). These results suggest that targeting these
proteins will reduce drug resistance.

Discussion

Many HCC patients may develop drug resistance or relapse
shortly after receiving first-line drug treatment, leading to poor
treatment outcomes (Wang et al., 2024). The heterogeneity of HCC
cells, their escape mechanisms, the existence of single nucleotide
polymorphisms in drug metabolism, and the inadequate resilience
of the patient’s immune system can all potentially contribute to the
resistance of HCC patients to TKIs (Chen et al., 2022; Salani et al.,
2022). Therefore, in-depth research on drug resistance mechanisms
is essential for understanding the emergence of drug resistance in
HCC cells. In our previous study, we discovered that knocking out
XPO1 can effectively reduce the resistance of HCC cells to sorafenib
(Wang et al., 2023b). The combination of XPO1 inhibitor KPT-8602
and sorafenib has a better tumor treatment effect than sorafenib
alone. In this study, we established a comprehensive resistance
spectrum, encompassing both metabolites and proteins. Notably,
the co-enrichment signals observed in drug-resistant cells are
primarily reflected in drug metabolism, specifically involving
cytochrome P450 (Wei et al., 2022; McGill et al., 2023), amino
acids and glucose metabolism (Guo et al., 2023b), ferroptosis (Guo
et al., 2023a; Li et al., 2023), biosynthesis of amino acids, bill
secretion, nucleotide metabolism, and pure metabolism. This also
suggests that for the resistance mechanism of TKIs, we should not
only focus on a single resistance target, but more research needs to
be mapped to the overall resistance spectrum.

The protein and metabolic profile of drug-resistant cells is
reshaped. We found that common differentially enriched signals
in drug-resistant cells involve cell adhesion molecules. Previous
studies have also shown that highly enriched in the processes of
cell-cell adhesion response to sorafenib resistance (Chai et al., 2021).
We also found that cell adhesion molecules are highly expressed in
drug-resistant cells. Focal adhesion kinase (FAK) is a key factor in
the resistance of lenvatinib in HCC (Hou et al., 2024). FAK inhibitor
TAE226 combined with sorafenib reduces HCC growth in vitro and
in vivo (Romito et al., 2021). In addition, we suggest that MISP,
CHMP2B, IL-18, TMSB4X and EFEMP1 may serve as predictive
biomarkers for TKIs treatment. Cultivating NK cells by activating
IL-12 and IL-18 can promote the therapeutic effect of sorafenib
(Eresen et al., 2024). Combined with the GEPIA database analysis, it
was confirmed that the expression of these genes is not significantly
correlated with the prognosis of HCC patients, which also suggests
their potential important relationship with TKIs resistance.
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FIGURE 7
MISP, CHMP2B, IL-18, TMSB4X, and EFEMP1 are associated with drug resistance recurrence. (A)HE staining, Bar = 100 μm. (B) Immunoblotting was
used to detect the expression levels of MISP, CHMP2B, IL-18, TMSB4X, and EFEMP1 proteins. Data are means ± SD from three experiments, analyzed by
unpaired t-test: *p < 0.05; #p < 0.05; @p < 0.05; $p < 0.05; &p < 0.05, n = 3. (C)Overall survival of patients, grouped by high/low expression status of MISP,
CHMP2B, IL-18, TMSB4X, and EFEMP1, plotted as Kaplan-Meier curve using the Gene Expression Profiling Interactive Analysis module (GEPIA). (D)
Immunoblotting was used to detect the expression levels of MISP, CHMP2B, IL-18, TMSB4X, and EFEMP1 proteins. Data are means ± SD from three
experiments, analyzed by One-Way ANOVA analysis: **p < 0.01; #p < 0.05; @p < 0.05; $p < 0.05; &p < 0.05, n = 3. (E,F) IC50 values of drug-resistant cells
and drug-resistant cells transfected with si RNA. Data were analyzed by unpaired t-test: **p < 0.01, n = 3.
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Drug-resistant cells exhibit reduced expression of IFITM3, CA4,
AGR2, and SLC51B. Notably, SLC51B, a gene linked to liver
metabolism and immune microenvironment (Cheng et al., 2021),
suggests a pivotal role in the intricate relationship between TKIs
resistance and liver metabolic immunity. Paradoxically, AGR2 is
highly expressed in sorafenib resistant cells, supporting endoplasmic
reticulum homeostasis and cell survival (Guo et al., 2016). This may
be due to inconsistent drug concentrations used to establish drug-
resistant cells. Additionally, we propose an important relationship
between cellular metabolites and TKIs resistance. Drug metabolism
cytochrome P450 (Naveed et al., 2021), amino acid metabolism,
fatty acid biosynthesis, pure metabolism, and glycolis/
gluconeogenesis are significantly enriched in drug-resistant cells.
Sorafenib enhances cytochrome P450 lipid metabolites in patient
with HCC (Leineweber et al., 2023), further underscoring the
intricate link between cellular metabolism and drug resistance.

This study is not without limitations. While we detect
the expression of MISP, CHMP2B, IL-18, TMSB4X, and
EFEMP1 proteins in liver tissue samples from HCC patients
receiving lenvatinib treatment, the same proteins were not
detected in those receiving sorafenib treatment. This may be
due, in part, to the fact that lenvatinib is currently the preferred
drug in clinical practice. Nonetheless, we have further validated
these results using drug-resistant cells and siRNA. In addition,
the mechanisms of action between metabolic and protein profiles,
as well as their relationship with drug resistance, require in-
depth research.

In summary, targeting a single drug resistance mechanism is
insufficient. A comprehensive approach combining protein and
metabolomics interventions is crucial for reducing drug resistance
in HCC from a holistic perspective.
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