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Introduction: In recent years, graph neural network has been extensively applied
to drug discovery research. Although researchers have made significant progress
in this field, there is less research on bibliometrics. The purpose of this study is to
conduct a comprehensive bibliometric analysis of graph neural network
applications in drug discovery in order to identify current research hotspots
and trends, as well as serve as a reference for future research.

Methods: Publications from 2017 to 2023 about the application of graph neural
network in drug discovery were collected from theWeb of Science Core Collection.
Bibliometrix, VOSviewer, and Citespace were mainly used for bibliometric studies.

Results and Discussion: In this paper, a total of 652 papers from 48 countries/
regions were included. Research interest in this field is continuously increasing.
China and the United States have a significant advantage in terms of funding, the
number of publications, and collaborations with other institutions and countries.
Although some cooperation networks have been formed in this field, extensive
worldwide cooperation still needs to be strengthened. The results of the keyword
analysis clarified that graph neural network has primarily been applied to drug-
target interaction, drug repurposing, and drug-drug interaction, while graph
convolutional neural network and its related optimization methods are
currently the core algorithms in this field. Data availability and ethical
supervision, balancing computing resources, and developing novel graph
neural network models with better interpretability are the key technical issues
currently faced. This paper analyzes the current state, hot spots, and trends of
graph neural network applications in drug discovery through bibliometric
approaches, as well as the current issues and challenges in this field. These
findings provide researchers with valuable insights on the current status and
future directions of this field.
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1 Introduction

Drug discovery is the first stage in the process of drug
development, which is both costly and time-consuming. It entails
testing and experimenting with thousands of compounds to identify
safe and effective drugs (Schneider et al., 2020). In order to tackle this
difficulty, researchers have begun to experiment with novel methods to
save time and financial costs, and applying artificial intelligence to the
field of drug discovery is one of them (Paul et al., 2020). Artificial
Intelligence (AI) is a technology that focuses on the application of
computer programs to simulate human intelligent behavior. It involves
several fields such as informatics, mathematics, and biology (Shen
et al., 2022a). Artificial neural networks, a fundamental technology in
the field of AI, have received growing interest in recent years. For
example, algorithms such as convolutional neural networks (CNN),
recurrent neural networks (RNN), and autoencoders can automatically
capture useful feature information. This addresses the previous
requirement where traditional machine learning algorithms had to
depend on the manual extraction of information features (Yazdani-
Jahromi et al., 2022). However, traditional algorithms can only handle
Euclidean spatial data but have limitations in processing non-
Euclidean spatial data, such as social networks and biological
networks. Therefore, researchers have used the concept of deep
learning models, such as CNN and RNN, to establish and develop
a novel artificial neural network called the graph neural network
(GNN) for processing graph data (Wu et al., 2021a). GNN has
shown excellent performance in processing non-Euclidean spatial
data and has been widely used for traffic prediction (Cui et al.,
2020; Zhao et al., 2020), recommendation systems (Zhang and
Yang, 2019; Wu et al., 2022), and other fields.

Drug discovery also involves a large number of molecular
structures and relationships between compounds, which may be
represented as graph data. For example, in the molecular structure
data of drugs, the atomic species may be regarded as the nodes of the
graph, and the chemical bond types may be seen as the edges of the
graph (Liu et al., 2023a; Ma and Lei, 2023). These graph data may be
used to characterize the topology of molecules, chemical features, and
other important information to screen and design new drug
candidates. Aside from the molecular structure of the drug, several
networks that exhibit interaction relationships may also be regarded as
graph data. These networks include the interaction network between
drugs, the interaction network between a drug and a target, and the
interaction network between proteins (Zhao et al., 2021; Shao et al.,
2022; Liu et al., 2023b). Therefore, researchers began to apply GNN in
the field of drug development, with the aim of using graph data to
improve and optimize the process of drug discovery. In 2016, Kearnes
proposed (Kearnes et al., 2016) applying graph convolutional networks
(GCN) to extract features from molecular graphs, which allowed the
model to better utilize the information contained within the graph
structure. In the following year, Pande combined (Altae-Tran et al.,
2017) GCN with iterative refinement long-short-term memory
networks, which significantly improved the learning of meaningful
distance metrics over small molecules. These advancements marked
the beginning of the application of GNN in the field of drug discovery.

As GNN technology is increasingly applied to the drug discovery
field, it has demonstrated outstanding performance in various aspects. In
contrast to traditional machine learning algorithms, GNN has the
capability to directly analyze the graph structure of a molecule or

protein, which naturally expresses the atomic structure inside the
molecule and the interactions between them. Simultaneously, GNN
automatically learns the representation of molecules through graph
embedding and integrates multi-modal data, which has obvious
advantages in understanding the multilevel mechanism of drug
action and improving prediction accuracy (Xiong et al., 2020; Zhou
et al., 2020). GNN can be trained to predict multiple target tasks at the
same time, such as predicting the solubility and toxicity of molecules at
the same time. This approach eliminates the need for traditional
machine learning algorithms to create separate models for each
prediction task and overcomes the challenge of enabling knowledge
sharing amongmultiple independent models (Stokes et al., 2020). While
GNN has obvious advantages in drug discovery, it also presents
challenges such as the insufficient interpretability of the model, the
need for large amounts of labeled data for training, and the high
consumption of computing resources (Zhou et al., 2020; Wu et al.,
2021a). Therefore, scientists are constantly exploring and improving
GNN, and the output of related research results has been increasing.
However, it is difficult for researchers to grasp the latest progress and
research hotspots in the field from numerous research results. Hence,
summarizing the development status and research hotspots is crucial for
establishing research directions and guiding future research. Bibliometric
analysis is an information visualization tool that offers researchers who
have been or will be engaged in the field a scientific and reliable analysis
of the research dynamics. For example, scholars can analyze the present
status of research across different nations, institutions, authors, and
publications to discover active researchers, investigate new collaboration
opportunities, and examine the present research hotspot and trend by
examining the highly cited papers, reference burst detection, keyword
co-occurrence network, and thematic map.

This study aims to provide a comprehensive overview of GNN in
the field of drug discovery over the last 7 years, utilizing bibliometric
analysis and discussing the following aspects:

The pace of development of GNN applications in drug discovery
from 2017 to 2023.

The distribution and cooperation status of main countries,
authors, institutions, and journals in the field of GNN
applications in drug discovery.

The research hot spots and emerging developments in the field
of GNN applications in drug discovery.

The paper is organized into four distinct sections: The first part
introduces the background of the article and the bibliometric
methodology. The second part describes the approach used for
collecting and processing data. The third part presents various
aspects of the collected publications, including the quantity
across different years, countries, institutions, journals, and
authors, as well as papers frequently cited in the field and
frequently occurring keywords. The fourth part summarizes and
discusses these aspects, focusing on the research hot spots, trends,
and unresolved issues of GNN applications in drug discovery.

2 Material and methods

2.1 Data sources

We used the Science Citation Index Expanded (SCI-Expanded
2002–present) from Clarivate Analytics’ Web of Science Core
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Collection (WoSCC) as our data source. WoSCC is a professional
and authoritative citation database with a powerful indexing
function that is widely used in bibliometric research.

2.2 Data retrieval strategy

In this study, all of the obtained publications were retrieved
and downloaded from the WoSCC database on 6 January 2024,
using the following search equation for publication collection: #1:
TS = (graph NEAR/2 network*); #2: TS = (drug) OR TS =
(medicine) OR TS = (pharmaceutical); and the final search
equation was #1 AND #2. To obtain as many relevant sources
as possible, wildcard characters (*) were used to represent one or
more other characters and allow for variable endings of keywords.
For example, network* also includes the plural of a network,
networks. The use of NEAR/2 specifies that the maximum
number of words separating search terms connected by this
operator is 2. Examples included topics such as graph neural

networks and graph neural convolutional networks. The
literature publication period was 2017–2023, and the language
was limited to English. The publication type was limited to articles
and reviews. Figure 1 presents the specific exclusion criteria.

2.3 Data processing

We retrieved a total of 843 literature candidates. The titles and
abstracts of the literature were then manually checked to exclude
literature unrelated to the research topic. Finally, 652 pieces of
literature were included for the data analysis. Table 1 summarizes
the relevant information from these papers. All 652 retrieved papers
were downloaded as “Full Record and Cited References” and
exported in plain text format. Some of the inherent shortcomings
of the WOS database were checked and merged, and information
from various regions was included in their affiliated countries. For
example, publications from England, Northern Ireland, Scotland,
and Wales were assigned to the UK (Cheng et al., 2022).

FIGURE 1
Flowchart of the publication search and selection process.
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2.4 Analytical tools

Microsoft Excel 2019 and the R package bibliometrix (Aria and
Cuccurullo, 2017) were used to perform the basic statistical analyses
of the annual number of publications and citations, countries/
regions, institutions, authors, funding agencies, journals, and
keywords. The country/institution/author collaboration analysis,
the author/journal co-citation analysis, and the keyword co-
occurrence analysis were performed using VOSviewer 1.6.19. The
journal discipline distribution and reference burst detection were
performed using CiteSpace V6.1. Bibliometrix is a new bibliometrics
software introduced in 2017 that can perform comprehensive
science mapping analysis. It is an open-source tool for
programming with R that can be quickly upgraded and
integrated with other statistical R packages. CiteSpace, developed
by Prof. Chaomei Chen, is another tool for visualizing and
constructing bibliometric networks by creating visual maps of
specific literature to analyze the current state of research and
infer trends (Chen, 2006; Chen et al., 2014).

VOSviewer is a free Java-based soft bibliometric analysis
piece that provides three types of visualization maps,
including network visualization, overlay visualization, and
density visualization (van Eck and Waltman, 2010). Generally,
in these visualization maps, different nodes represent different
items such as authors, countries, institutions, journals, and
keywords, and the size of the nodes reflects the number of
published papers, publication citations, or occurrence
frequency for the corresponding items. Links between nodes
represent co-citations or co-occurrence associations between
nodes. However, the layout of the cooperative network
diagram is crucial to visualizing and understanding the results.
In this study, by adjusting the hyperparameters of VOSviewer,
Attraction and Repulsion are set to 3 and −3, respectively, to

obtain the best network layout. Such a setting can make the nodes
of the network map better distributed in space, reduce overlap
and congestion, so that the cooperative relationship is more
clearly displayed, and help researchers better understand the
cooperative relationship between the literature.

3 Results

3.1 Publication and citation trends

Figure 2 displays the annual number of GNN publications in the
field of drug research. There was only one relevant paper published in
2017 and 2018. Since 2019, the number of papers published has been
increasing, reaching 243 in 2023. In the first 5 years, the citation
frequency of papers increased continuously. The slight decrease in the
last 2 years is also related to the recent proximity of the current
analysis dates. Table 2 shows the annual paper count and citation
frequency. TP represents total publications, and TC represents total
citations. And four thresholds for the number of paper citations are
described: the number of papers with equal to or more than 100, 10, 1,
and 0 citations. To a certain extent, these four thresholds for the
number of citations in papers reflect the paper’s quality.

3.2 Country/region analysis

Among the 652 papers included, a total of 48 countries/regions
were found to be involved in the research work in this field.
Figure 3A shows the geographical distribution of the number of
publications in the different countries/regions, and the countries
with the most research in this field were located in Asia and North
America, with Europe and Australia also involved. This result shows
that the combination of GNN and drug discovery, as a newly
explored research area in recent years, has not yet been studied
and discussed globally. Table 3 lists the top 10 countries and regions
in terms of the number of publications in this field. China, the
United States, and Korea were the countries with the highest number
of total publications, respectively. Figure 3B shows a plot of the top
10 countries in terms of the number of annual publications in
2017–2023. The proportion of each country in the chart represents
its number of publications relative to the total number of
publications in the top ten. It can be observed that only the
United States published papers in this field in 2017 and 2018.
However, as time progressed, other countries also began to
conduct research in this field, with China’s publication
proportion increasing annually. Figure 3C shows the cooperation
network among the 48 countries/regions involved in issuing papers.
The size of the node indicates the number of publications, and the
thickness of the lines indicates the strength of cooperation. It is
worth noting that China and the United States have the highest
number of publications and show a close cooperative relationship.

3.3 Institutional analysis

In this field, research institutions can reflect the distribution of
scientific research units. According to a VOSviewer analysis of

TABLE 1 Main information about data.

Description Results

Timespan 2017:2023

Sources (Journals, Books, etc.) 168

Papers 652

article 619

article; data paper 4

article; proceedings paper 13

review 16

Annual Growth Rate % 149.8

Paper Average Age 2.04

Average citations per doc 13.29

References 19,174

Keywords Plus 836

Author’s Keywords 1215

Authors 2654

Authors of single-authored docs 2
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institutional partnerships, more than 800 institutions were involved
in paper publication. The number of issuing institutions with more
than or equal to five papers in the past 7 years was counted, for a
total of 55 institutions. Table 4 reveals that the top 10 institutions in
terms of the number of papers issued were all from China. Figure 4
illustrates the network of the institutional cooperation analysis,
which VOSviewer clustered based on the cooperation

relationships between these 55 institutions. The various clusters
highlight the differences in the cooperation relationships and
research directions among these institutions. Among them, the
Chinese Academy of Science node is the largest, indicating that
this institution published the most papers and had the same color as
the nodes of the University Chinese Academy of Science and
Northwestern Polytech University, indicating that they belonged

FIGURE 2
Overall trend in the number of publications over the past 7 years.

TABLE 2 Annual scientific production and average citations per year.

Year TP TC ≥102 ≥101 ≥100 0 TC/TP

2017 1 390 1 1 1 0 390

2018 1 526 1 1 1 0 526

2019 16 1319 4 16 16 0 82.44

2020 48 1844 5 39 48 0 38.42

2021 113 2698 4 67 110 3 23.88

2022 230 1594 0 57 199 31 6.93

2023 243 292 0 4 110 133 1.2

Total 652 8663 15 185 485 167

Percentage 100% _ 2.30% 28.37% 74.39% 25.61%

Note: TP: total publications, TC: total citations; ≥102, ≥101, ≥100, 0: Number of papers with equal or more 100,10, 1 and 0 citations.
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to the same cluster (cooperation group), which suggests that the
research direction of these institutions was similar and the frequency
of their cooperation was also higher. In addition to cooperation and
communication with domestic institutions, the Chinese Academy of
Science has also established good cooperation and communication
with foreign institutions, such as Nanyang Technological University.

3.4 Journal analysis

Currently, research papers related to the application of GNN to
drug discovery have been published in 168 academic journals.
According to the results in Table 5, the journal Briefings in

Bioinformatics had the highest number of publications with a
total of 1303 citations, followed by Bioinformatics and the
Journal of Chemical Information And Modeling. The total
number of citations for Bioinformatics was 1580, which was
higher than any other journal. According to the Journal Citation
Report (JCR) 2023, the top 10 journals were located in Q1/Q2, with
Briefings in Bioinformatics (IF = 9.5) having the highest impact
factor (IF). Journal co-citations are also an important indicator of
journal impact. In this study, 50 journals were co-cited at least
100 times, and we used VOSviewer to generate a map of journal co-
citation networks (Figure 5A). The top three journals with the
highest citations were Bioinformatics, Journal of Chemical
Information And Modeling, and Nucleic Acids Research.

FIGURE 3
Country/region analysis (A). Geographical distribution of the total number of publications in the different countries and regions (B). Percentage of
annual publications in the top 10 countries over the past 7 years (C). Visualization of country cooperation.
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Figure 5B is a double-graph overlay of journals that shows the flow
of knowledge between different disciplines in this field. The graph’s
left side indicates the basic disciplines of the citing journal, while the
right side indicates the basic disciplines of the cited journal. The
thickness of the lines shows the frequency with which the left side
referenced the right side.

3.5 Author analysis

The 652 papers included a total of 2654 authors. Among them,
the number of papers published by the most published authors was
11. According to the Price’s law, the number of published papers
should be more than 2.48 in order to be recognized as the core
author. Therefore, authors with at least three papers are considered
core authors. Figure 6A shows the core author collaboration analysis
graph generated using the VOSviewer. The different colors represent

different clusters, the size of nodes represents the number of
publications, and the thickness of the lines represents the
frequency of author collaboration. There were 177 authors with
more than three publications, and this generated 36 clusters,
indicating that there were many author cooperation groups for
GNN in the field of drug discovery. Table 6 summarizes the top
10 most published authors, all of whom are from China, with You
Zhu-Hong, Deng Lei, and Chen Calvin Yu-Chian ranking in the top
three with eleven, ten, and nine papers, respectively. Figure 6B shows
the top 10 most productive authors’ production over time; the size
and color of node represent the annual number of papers and the
total citations per year, respectively. Figure 6C shows the density
map of the author co-citation collaboration networks, which
includes 61 authors with at least 50 citations. Each point in the
item density visualization has a color that indicates the density of
items at that point, colors range from blue to green to yellow. The
larger the number of items in the neighborhood of a point and the

TABLE 3 Top 10 highly producing countries and regions.

Rank Country TP Percentage (%) TC TC/NP PY_start

1 China 426 65.34 4148 9.74 2019

2 United States 142 21.78 3401 23.95 2017

3 South Korea 38 5.83 574 15.11 2019

4 United Kingdom 28 4.29 522 18.64 2019

5 Japan 21 3.22 376 17.90 2019

6 Australia 20 3.07 415 20.75 2019

7 Germany 19 2.91 238 12.53 2020

8 Canada 17 2.61 152 8.94 2020

9 Singapore 14 2.15 270 19.29 2020

10 India 11 1.69 80 7.27 2021

10 Switzerland 11 1.69 202 18.36 2021

Note: PY_start: Publication Year start.

TABLE 4 Major research institutions and number of publications.

Rank Institute TP TC TC/TP Country

1 Chinese Academy Of Sciences 39 844 21.64 China

2 Central South University 36 438 12.17 China

3 Northwestern Polytechnical University 21 404 19.24 China

4 Shanghai Jiao Tong University 20 132 6.60 China

5 University Of Chinese Academy Of Sciences 19 477 25.11 China

6 Zhejiang University 19 260 13.68 China

7 Sun Yat Sen University 18 256 14.22 China

8 Hunan University 17 244 14.35 China

9 Huazhong Agricultural University 15 199 13.27 China

10 East China University Of Science & Technology 13 86 6.62 China

10 Xiamen University 13 128 9.85 China
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FIGURE 4
Visualization of institutional cooperation.

TABLE 5 Top 10 journals in terms of publications.

Rank Journal title h_index TC TP PY_start IF (2023) JCR

1 Briefings In Bioinformatics 20 1303 75 2020 9.5 Q1

2 Bioinformatics 15 1580 44 2018 5.8 Q1

3 Journal of Chemical Information And Modeling 16 996 38 2019 5.6 Q1

4 Ieee-Acm Transactions on Computational Biology And Bioinformatics 8 200 31 2021 4.5 Q1\Q2

5 Bmc Bioinformatics 6 168 30 2020 3 Q2

6 International Journal of Molecular Sciences 6 170 17 2019 5.6 Q1\Q2

7 Journal of Cheminformatics 6 351 17 2019 8.6 Q1

8 Computers In Biology And Medicine 4 58 16 2022 7.7 Q1

9 Methods 5 253 14 2019 4.8 Q2

10 Frontiers In Pharmacology 4 30 12 2021 5.6 Q1

10 Ieee Access 4 50 12 2020 3.9 Q2

10 Acs Omega 3 104 12 2020 4.1 Q2

Note: h-index: Measured in terms of the ‘h’ number of publications with at least “h” citations.
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higher the weights of the neighboring items, the closer the color of
the point is to yellow. Kipf, TN, was the only author with more than
200 citations and had the highest impact.

3.6 Documents analysis

Papers with a high citation frequency are often representative of the
field and have a great impact on its development. 15 out of 652 papers
were citedmore than 100 times. Table 7 shows the filtering of the highly
cited TOP10 papers based on the total citation frequency. Research
papers published in Bioinformatics in 2018 had the highest citation
frequency, with over 500 citations (Zitnik et al., 2018), followed by paper
published in ACS in 2017. the 2020 paper from the Journal ofMedicinal
Chemistry ranked third (Xiong et al., 2020). In addition, references with

strong citation bursts were explored using CiteSpace, and Figure 7
displays the top 25 references with the strongest citation bursts, sorted
by the burst’s beginning year. These strong burst of literatures provide a
solid technical foundation for the application ofGNN in drug discovery,
which mainly include research on GNN algorithms and drug-target
interaction (DTI) research.

3.7 Keyword analysis

The VOSviewer program was used to build a high-frequency
keyword co-occurrence network map. By assessing the frequency of
keyword occurrences, research hotspots and developing research
trends in this sector were identified. Figure 8A displays the high-
frequency keyword co-occurrence maps produced. The larger the

FIGURE 5
Journal analysis (A). Visualization of journal co-citation analysis (B). Double-graph overlay of journals.
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FIGURE 6
Author analysis (A). Visualization of author cooperation (B). Author co-citation collaboration network density map (C). Top 10 Authors’ Production
over Time.

TABLE 6 Top 10 most productive authors.

Authors Country h_index TC NP TC/NP PY_start

You Zhu-Hong China 7 157 11 14.27 2021

Deng Lei China 5 74 10 7.4 2021

Zheng Mingyue China 6 391 9 43.44 2020

Chen Calvin Yu-Chian China 5 102 9 11.33 2021

Zhang Wen China 5 198 9 22 2021

Hou Tingjun China 4 199 9 22.11 2021

Jiang Hualiang China 6 391 8 48.88 2020

Hsieh Chang-Yu China 5 266 8 33.25 2021

Wang Dingyan China 5 337 8 42.13 2020

Cao Dongsheng China 4 199 8 24.88 2021

Note: PY_start: Publication Year start.
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TABLE 7 Top 10 highly cited papers.

Rank Document (Author/
Year/Journal)

Title Year Global
citations

Local
citations

1 Zitnik M, 2018, Bioinformatics modeling polypharmacy side effects with graph convolutional 2018 526 81

2 Altae-Tran H, 2017, Acs
Central Sci

low data drug discovery with one-shot learning 2017 390 31

3 Xiong Zp, 2020, J Med Chem pushing the boundaries of molecular representation for drug discovery
with the graph attention mechanism

2020 273 72

4 Tsubaki M, 2019, Bioinformatics compound-protein interaction prediction with end-to-end learning of
neural networks for graphs and sequences

2019 260 53

5 Nguyen T, 2021, Bioinformatics graphdta: predicting drug-target binding affinity with graph neural
networks

2021 215 61

6 Sun My, 2020, Brief Bioinform graph convolutional networks for computational drug development and
discovery

2020 182 48

7 Li Y, 2019, Methods deep learning in bioinformatics: introduction, application, and
perspective in the big data era

2019 168 1

8 Lim J, 2019, J Chem Inf Model predicting drug-target interaction using a novel graph neural network
with 3days structure-embedded graph representation

2019 166 35

9 Jiang Dj, 2021, J Cheminformatics could graph neural networks learn better molecular representation for
drug discovery? a comparison study of descriptor-based and graph-based

modelsSource

2021 166 26

10 TorngW, 2019, J Chem Inf Model graph convolutional neural networks for predicting drug-target
interactions

2019 153 42

FIGURE 7
Top 25 references with the strongest citation bursts.
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nodes in the graph, the higher the co-occurrence frequency of the
keywords they represent, and the closer the color of the nodes is to
yellow, which indicates that the keywords appeared later. Figure 8B
is a thematic map of keywords created with Bibliometrix (Cobo
et al., 2011; Ampah et al., 2021), which uses the walk trap clustering
algorithm with each cluster displaying only one label. The quadrants
represent different thematic spaces: central and developed,
peripheral and developed, peripheral and undeveloped (emerging
or declining themes), and central and undeveloped, reflecting the
emergence of major themes and new themes in the field since 2017.
Figure 8C is a word cloud of keywords.

4 Discussions

Bibliometrics is an interdisciplinary field that uses mathematical
and statistical techniques to quantify and visually examine literature.
Unlike systematic reviews and meta-analyses, bibliometric
visualization approaches, such as VOSviewer and CiteSpace,
provide a more intuitive analysis of the current status,
development trends, and hotspots of a research field (Merigo and
Yang, 2017). The assessment findings show enhanced reliability and
repeatability. This study provides a comprehensive overview of the
current state of GNN applications in the field of drug discovery. We
conducted a bibliometric analysis to summarize the existing research
and presented the results visually using different software tools. The
analysis includes insights into the development trends and future
research hotspots in this field.

4.1 Discussions of publication year, leading
countries, institutions, journals, and authors

To a certain extent, the number of scientific papers published
reflects the development of research in a particular field (Shen et al.,
2022b). The changes in the number of publications during different
periods reflect the theoretical level and speed of the field’s academic
research development. According to the results of the annual
distribution of publications, only one relevant paper was
published in 2017 and 2018, both from Stanford University in
the United States. Since then, the application of GNN in drug
discovery has gradually entered the researchers’ minds. In 2020,
there was a significant increase in the number of annual papers, and
2021 and 2022 showed explosive growth. In terms of the number of
papers cited, TC/TP indicates the average number of citations per
paper, which aids in evaluating the average impact and quality of
published research outputs. Higher TC/TP values typically indicate a
greater impact and higher quality of research outputs. The average
number of citations per paper between 2017 and 2021 exceeded 25,
indicating that the research results in this field have a high degree of
academic impact and paper quality. In addition, 74.39% of papers
were cited more than 1, and the 2023 papers’ TC/TP was also more
than 1. These results demonstrate that research on GNN in the drug
field is a topic of great interest to the scientific community. These
were attributed to the fact that many excellent researchers have
discussed the expressive ability of various GNN architectures in
depth. Gradually, GNN technology has matured and gained
widespread use. Therefore, the application of GNN in the drug

discovery field has gradually attracted people’s attention. The field is
at a high growth stage, with broad prospects and good development.

In terms of the country/region distribution results, China
(426 papers, 65.34%) had the highest number of published
papers, followed by the United States (142 papers, 21.78%).
China and the United States accounted for 3/4 of the total
number of publications in this field, indicating their leading
position in this research area. However, although the number of
publications in China was approximately two times that of the
United States, the total citation frequency of papers was nearly the
same. This is because the United States has taken the lead in this field
since 2017 and has published several high-quality papers
consecutively, which have become important papers for other
researchers to study and refer to repeatedly. Figure 3B
demonstrates that the United States initiated the field study,
publishing the only paper in 2017 and 2018. China began
publishing research results in this field in 2019 and has already
published some classic papers in high-quality journals
(Supplementary Table S1). For example, Jiang’s team’s paper on
predictive molecular property modeling in the Journal of Medicinal
Chemistry has been cited up to 274 times, indicating that these
Chinese research teams’ output has been widely recognized and
cited in the field. However, in terms of average citation frequency,
the United States and Australia both have an average citation
frequency of more than 20, especially the United States, which is
clearly leading in terms of the number and quality of papers. China’s
average citation frequency is only higher than India’s and Canada’s
in the top ten. It is also clear from Supplementary Table S1 that most
of China’s highly cited papers were published in 2020 and 2021,
indicating that citations usually take some time to accumulate.
China consistently demonstrates a strong research fervor in this
field, publishing numerous papers in 2022 and 2023, thereby
enhancing its academic value and influence in this field over time.

The mapping of national cooperation networks also showed that
44 of the 48 countries and regions involved in the publications have
established cooperation with other countries and regions in field
research. Among them, China has established international research
collaborations with several countries/regions around the world and
is the country with the most extensive international collaborative
research in this field. For example, the United States, Australia,
Singapore, Canada, and the United Kingdom. However, North
America, Asia, and some European countries dominated the
most collaborative research; there remained a small number of
individual nodes in the network that had not established
cooperative relationships with other countries. Four
countries—Greece (Harigua-Souiai et al., 2021), Netherlands
(Reau et al., 2023), Tunisia (Vella and Ebejer, 2022), and
Romania (Albu et al., 2023)—have not yet constructed
collaborative relationships with other countries, probably because
these countries have initially begun to conduct research in this field
and still need to strengthen international communication and
cooperation. It is undeniable that financial support also plays an
important role in supporting research output. When we look at the
number of publications involving funding agencies (Supplementary
Table S2), the top 10 funding agencies (there was a tie for 10th place)
in this research area were primarily located in China (5 agencies), the
United States (3 agencies), and Korea (2 agencies), with the National
Natural Science Foundation of China (NSFC), the National Key
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Research and Development Program of China, and the National
Institutes of Health (NIH USA) being the primary funders. This
result clearly demonstrates the close relationship between China’s
and the United States’ leading positions in this field and their robust
financial support for research. This suggests that countries that value
research and development in this field need to increase their
financial support for scientific research so that they may become
important players in this field in the future.

Among the research institutions involved in publishing papers in
this research field, the Chinese Academy of Science had the most
publications (39 papers), indicating that the Chinese Academy of
Sciences holds a leading position in this field. According to the
layout of the entire map (Figure 4), Chinese research institutions
have intensive internal cooperation as well as extensive cooperation
with other research institutions, thereby forming a certain scale of stable
cooperation relationships in China. The Chinese Academy of Sciences
had frequent contact with Shanghai Technology University and the East
China University of Science and Technology (Xiong et al., 2021; Wan

et al., 2022). It has also established cooperationwith theCentral Southern
University (Wu et al., 2021b), which has a large number of publications.
Most of the Chinese institutions shown in Figure 4 have only established
contacts with domestic institutions, and a few of them cooperate with
foreign universities and research institutes. International institutions
have yet to form a sizable cooperative group. Korean institutions,
such as the Korea Advanced Institute of Science and Technology and
Seoul National University, have also established only internal
collaborative networks (Ryu et al., 2019) without communicating
with other international institutions. This may be due to the fact that
applying GNN to the field of drug discovery is still a relatively new topic,
and many institutions have just begun their research.

In terms of institutional distribution, the research institutions
with a high number of publications were primarily located in the
Asian region, with more universities in China, South Korea, and
Singapore, indicating a high level of interest in the field in these
countries. Research institutions consist mostly of research institutes,
colleges, and universities that possess significant research

FIGURE 8
Keyword analysis (A). Keyword collaboration network overlay visualization map (B). Strategic diagram representing research trends of GNN in drug
discovery (C). Keywords’ wordcolud.
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capabilities, ample resources, and a high level of research excellence.
In addition to higher education and research institutes, there were
also pharmaceutical companies, hospitals, and other organizations.
These institutions can provide university laboratories with
experimental data to test models. The DeepDDS model
developed by Nanjing Tech Univ, Sch Comp Sci & Technol’s
team (Wang et al., 2022a) to predict the synergistic effects of
drug combinations used an independent test set released by
AstraZeneca to verify the predictive accuracy of the model. In
addition, pharmaceutical companies and hospitals can use the
prediction results provided by universities for experimental
validation to determine whether they can enter clinical use. The
two complement each other’s strengths and promote each other.

Journals are an important vehicle for presenting academic
information and knowledge dissemination results, and journal
analysis can provide researchers with a large amount of reliable
reference information that helps them identify high-quality and
appropriate target journals when searching the literature or
submitting research. In addition to the total citation frequency,
the impact factor (IF) (Garfield, 2006) and JCR category are also
important indicators for evaluating the academic status of journals.
The top 10 journals, in terms of the number of publications, were
primarily in the fields of bioinformatics and cheminformatics. These
journals were all located in Q1/Q2, with an average IF value of
5.73 and a total of 318 papers, accounting for 48.8% of the total
number of publications. The finding indicates that the majority of
the papers related to the application of GNN in drug discovery were
published in high-impact journals. A journal co-citation analysis
reflects the connection between different research results. Among
these, Bioinformatics was cited more than 2,000 times,
demonstrating that these journals have a higher likelihood of
being cited for research papers related to GNN applications in
this research field. Figure 5A reveals that Bioinformatics
frequently receives citations alongside the Journal of Chemical
Information Models, Brief Bioinformatics, and Nucleic Acids
Research, indicating their high relevance in this field.
Additionally, Bioinformatics and the Journal of Chemical
Information Models ranked among the top three in terms of
published papers, demonstrating their great influence, and these
journals have a higher likelihood of being cited for research papers
related to GNN applications.

Figure 5B is a double-graph overlay of journals. The left side
represents the basic disciplines of the citing journals, also referred to
as the knowledge frontier, while the right side represents the subject
discipline of the cited journal, also known as the knowledge base.
The double-graph superposition graph of the journal can show the
reference relationship between the knowledge frontier and the
knowledge foundation when the GNN is applied to drug research
from a macro perspective and grasp the historical trajectory of
discipline development. Figure 5B clearly displays two prominent
yellow lines, symbolizing the primary citation pathways in this field.
The themes on the cited side (right side), Theme 4
(#4 CHEMISTRY, MATERIALS, PHYSICS), and Theme 8
(#8 MOLECULAR, BIOLOGY, GENETICS), were cited 769 and
1436 times, respectively, by the themes on the citing side (left side),
Theme 4 (#4 MOLECULAR, BIOLOGY, IMMUNOLOGY). The
two subject topics converge into one subject on the cited side, and
the development pattern of the subject shows a confluence state,

indicating that the application of GNN in drug research requires
knowledge from multiple disciplines. The field now involves
molecular, biological, and immunological disciplines.

Among the core authors published in this field, the team
represented by Zheng Mingyue and Jiang Hualing had close
collaboration and a large network layout, both of whom belong
to the Institute of the Shanghai Institute for Advanced
Immunochemical Studies (SIAIS), and they had more outputs
and maintained a high scientific impact during 2020–2023. The
most-cited paper by the team was published in 2020. As the most
published author, You Zhu-Hong had published numerous high-
quality papers between 2021 and 2023, and his H-index was at a high
level, with the main research direction of miRNA-disease
associations prediction (Li et al., 2021). In addition, the author,
Zitnik Marinka, is also a core author and has begun research in this
field in 2018, and the total number of citations for the author
reached 500, which demonstrates the outstanding contribution and
importance of the author in this field. And although there are
clusters and more collaborative groups in Figure 6A, most of
them were internal collaborations with fewer communication
links with other groups. Future studies should strengthen
external collaboration. Table 6 shows that the top 10 authors
with the most papers were all Chinese authors, indicating that
China pays more attention to research in this field compared to
other countries. As for the author co-citation analysis, the highest
co-cited author was Kipf, TN, indicating that Kipf is a very
influential author. His paper, “Semi-Supervised Classification
with Graph Convolutional Networks” is a seminal work in the
direction of graph convolutional neural networks (Kipf andWelling,
2016). Although Kipf is not a scholar of GNN in the field of drug
discovery applications, his contributions have had a significant
impact on the field’s development.

4.2 Research hot spots and trends

In bibliometric studies, paper citation analysis is an important
tool to identify important papers, evaluate research progress, and
predict research development frontiers. Highly cited papers are
typically high-quality studies with strong innovation and
significant impact. It is worth mentioning that the number of
local citations is one of the important indicators to measure the
influence of a paper, which reflects the importance of researchers in
the same field. Table 7 displays the top 10 highly cited papers, each
with more than 100 global citations and four with more than 50 local
citations. Among these, the research paper “Modeling
Polypharmacy Side Effects with Graph Convolutional Networks”
published in Bioinformatics was cited 526 times, which is currently
the most cited and was the only paper published in the field in 2018.
In the paper, the authors propose a Decagon model for predicting
side effects exhibited by drug combinations in clinical settings using
graph convolutional neural networks. Altae-Tran H published
another paper in 2017 that received nearly 400 citations,
introducing a new architecture that, when combined with GCN,
showed significant improvements in low-data predictive power in
drug discovery. In third place was a paper published in 2020 about
the application of graph attention mechanisms in drug discovery
and development. However, with the increasing application of GNN
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technology in the drug discovery field, the method is likely to
encounter additional questions and challenges. According to
Table 7, Jiang’s research (Jiang et al., 2021) puts forward the
point that an optimal predictive model should have a good
balance between prediction accuracy and computational
efficiency, but graph-based models have an overwhelmingly
slower training speed than descriptor-based models, so graph-
based models have more computational cost and less
computational efficiency. Therefore, while the GNN is a rapidly
emerging deep learning algorithm in the drug discovery field, there
are still some issues that require further resolution and optimization.

Burst detection is an algorithm that can capture a sharp increase
in the heat of a reference in a certain period of time and can be used
as an effective method for identifying research hotspots and
emerging trends over time. Figure 7 shows the top 25 references
with the strongest citation bursts. The results of the study suggested
that the first burst of reference citations in the field began in
2017 and continued until 2021. Steven Kearnes et al., 2016
published this paper on molecular graph convolution in the
Journal of Computer-Aided Molecular Design in 2016. The paper
argued that although molecular “fingerprinting” is the primary force
in encoding structural information in current drug discovery, it has
other shortcomings, such as the need to emphasize specific aspects
of the molecular structure. They argued that molecular graph
convolution can make better use of graph structural information,
providing new methods and opportunities for improvements in
virtual screening for drug discovery. This was also one of the earliest
papers we discovered while collecting publication on applying GNN
to drug discovery. From 2018 to 2023, Gilmer et al., 2017 paper has
consistently garnered substantial citations. This paper describes a
general framework for supervised learning on graphs called Message
Passing Neural Networks (MPNNs). This framework abstracts
commonalities among some of the most promising existing
neural models designed for graph-structured data. The goal is to
facilitate a better understanding of the relationships between these
models and generate novel variations. Meanwhile, there are two
references (Luo et al., 2017; Wen et al., 2017) citation outbreaks that
are still ongoing, and both are related to DTI prediction, indicating
that DTI is a hot research topic for the application of GNN in drugs.

According to Figure 8A, drug-target interaction prediction and
drug-drug interaction prediction were the most frequent co-
occurrence keywords for the range of drugs, which once again
reflects that they are research hotspots in the application of GNN
in drug discovery.

Most drugs achieve therapeutic effects through in vivo
interactions with specific target molecules such as enzymes,
nuclear receptors, G-protein-coupled receptors, and ion channels
(Zhang et al., 2022a). Therefore, the identification of DTI is an
important field of drug discovery. It is of great significance to
develop effective computational methods for identifying DTI (Li
et al., 2022a). For example, Zang’s team (Zhao et al., 2021) used drug
networks and protein networks to generate drug-protein pairs
(DPP) networks. In the DPP network, each node is a DPP, and
the edges of the DPP network are inferred from the respective drug
and protein networks. Here, DPP is a combination of any drug and
any protein. If the drugs and proteins in a particular DPP can
interact with each other, it is labeled as a true DPP and can be
referred to as a DTI. The five unknown DTIs identified using the

GCN-DTI model, supported by existing literature, demonstrate the
reliability of the results and the effectiveness of GCN-DTI in
recognizing real-world drug-target interactions. In recent studies,
the application of multi-modal data features extraction and fusion
techniques, such as node2vec and CNN, has been instrumental in
enhancing the performance of DTI prediction. For example, Sajjad’s
team (Dehghan et al., 2024) introduced a multimodal fusion CCL-
DTI algorithm with contrastive loss. This method uses node2vec to
extract features from protein-protein and drug-drug interaction
networks, as well as 1D-convolutional neural networks to extract
features from drug structures, protein sequences, and other data.
Subsequently, a two-sided attention mechanism is utilized for the
fusion of multi-modal features. Finally, a multi-layer perceptron is
employed to predict the affinity value of DTI. Notably, during the
MLP training process, the introduction and comparison of
contrastive loss functions before evaluating the prediction loss
function significantly enhanced the accuracy and reliability of the
model. Similarly, Parvin’s team (Palhamkhani et al., 2023) proposed
the DeepCompoundNet model, which shares similarities with the
CCL-DTI algorithm. This model utilizes 1D-CNN and node2vec for
feature extraction from proteins and compounds, as well as protein-
protein and drug-drug interactions. Subsequently, based on the
fused eigenvectors, the model determines the similarity between
proteins and chemical vectors in the latent space and predicts
interactions between them. These innovative GNN models, which
are based on multi-modal data feature extraction and fusion,
effectively capture and learn complex data patterns, resulting in
significant improvements in DTI prediction performance.

The process of discovering new drugs is both expensive and
time-consuming. Therefore, the exploration of novel target proteins
that may be targeted is a crucial approach to repurposing drugs (Lu
et al., 2017). It is well recognized that one drug may have an effect on
several target proteins, and one target protein can be associated with
multiple disorders. This forms the basis of drug repositioning.
Therefore, drug repositioning is a form of drug-target interaction.
GNN is also being widely used for drug repositioning. Lei’s team
(Zhang et al., 2022b) proposed a newmethod based on Graph SAGE
and clustering constraints (DRGCC) to investigate the potential
therapeutic properties of drugs for drug repositioning. The team (Lei
et al., 2022) also proposed a drug repositioning method for
predicting drug-disease associations using a graph auto coder.
These methods can be used to predict anti-COVID-19 drugs
based on the existing drug and disease data.

The treatment of complex diseases by taking multiple
medications is becoming increasingly popular, but it is equally
important to circumvent the risk of drug-to-drug adverse reactions
or unknown toxicity (Takeda et al., 2017). Therefore, the
development of computational models for predicting drug-drug
interactions (DDI) as preventable medical errors is also a research
focus of GNN applied in the field of drugs, and good results have been
achieved. Zitnik developed (Zitnik et al., 2018) Degacon, a method for
predicting the side effects of drug pairs. First by constructing large
multimodal maps of protein-protein interactions, drug-protein
interactions, and drug-drug interactions, and then using modeling
to process them in order to predict polypharmacy side effects. Zhang’s
team (Feng et al., 2020) proposed a prediction model called DPDDI
based on GCN and deep neural networks. GCN learns the low-
dimensional feature representation of drugs by capturing the
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topological relationships of drugs in the DDI’s network. DPDDI can
predict potential DDI without considering the chemical and
biological properties of drugs. This solves the problem of high or
unavailable acquisition costs for some drug properties. Although
recent computational methods exhibit promising performance in
DDI screening, their practical implementation faces two significant
challenges: the necessity for comprehensive datasets for clinical
utilization and the inference of DDI types for new drugs not
encompassed in existing datasets. To address these obstacles, Yu’s
team proposed (Feng et al., 2023) MM-GANN-DDI, a multimodal
graph-agnostic neural network for predicting drug interaction events.
The model was assessed using two datasets (DB-v1 and DB-v2)
derived from the DrugBank database, which is a comprehensive
resource that integrates biological and chemical information. It
provides detailed data on drugs verified through experiments,
making it a crucial source for studying DDI. Importantly, their
model exhibits the potential to discover unobserved DDIs,
demonstrating its practical application in clinical medication. Most
of the above studies are done based on heterogeneous information
networks, which can integrate different types of data in the form of
graphs, providing rich information in drug discovery to help
researchers obtain more accurate research results.

ADMET (absorption, distribution, metabolism, excretion, and
toxicity) prediction was an important research direction emerging in
the early stages (Liu et al., 2019), and the co-occurrence frequency of
keywords such as molecular property prediction and molecular
characterization was higher. Accurate prediction of molecular
properties, such as physicochemical and bioactive properties, as
well as ADMET properties, remains a fundamental challenge for
molecular design, especially for drug design and discovery (Cai et al.,
2022). Therefore, molecular property prediction is another research
hotspot in this field.

As can be seen from Figure 8B, GCNwas the central and developed
theme. It can be preliminarily concluded that the GCN was the core
algorithm of GNN in the field of drug application. According to Figures
8A,B, contrastive learning is a new method in this field. It is a method
for self-supervised learning.Wang’s team (Wang et al., 2022b) proposed
a MolCLR (Molecular Contrastive Learning of Representations via
Graph Neural Networks) framework and showed that the contrastive
learning framework significantly improved the performance of graph-
neural-network encoders on various molecular property benchmarks,
including both classification and regression tasks. And more
sophisticated GNNs, which cannot utilize unlabeled data. Simple
GNN models trained via MolCLR demonstrate significant
improvements on all molecular benchmarks, benefited from pre-
training on large unlabeled data, and improved the problem of
insufficient data in molecular learning. The combination with
transformer networks is also a recently popular combination, which
can preserve the original information about the interactions between
atoms in the chemical structure of a drug, overcoming the problem of a
lack of learning of edge features by the graph convolutional neural
network (Zhang et al., 2022c). In addition, improving the explainability
of models is a common challenge for current machine learning models
(Karimi et al., 2021; Verhaeghe et al., 2022). Existing methods to
improve the interpretability of GNN are to introduce an attention
mechanism (Karimi et al., 2021; Yang et al., 2022a), Yang’s team
(Karimi et al., 2019) developed the Deep Affinity model by
introducing an attention mechanism based on a unified RNN-CNN.

It makes compound-protein affinity predictions easier to understand by
measuring the importance of protein, compound, or pair-specific
features. However, the graph attention mechanism only considers
the neighborhood of a vertex (also known as masked attention),
which cannot capture the global relationship between each
molecule’s atoms. To this end, Chen’s team (Yang et al., 2022b)
developed a novel visual explanation method, gradient-weighted
affinity activation mapping (Grad-AAM), to analyze a deep learning
model from the chemical perspective, which may help us gain chemical
insights directly from data beyond human perception and improve the
generalization and interpretation capability of drug target affinity
(DTA) prediction modeling. Pablo’s team (Puentes et al., 2022)
proposes a protein-ligand adversarial augmentation network (PLA-
Net). PLA-Net is based on a gradient method to calculate antagonistic
molecular amplification, thereby retaining biological consistency and
essential class features in molecular graphs to improve the
interpretability of target-ligand interactions (TLI) predictions.

Moreover, as shown in Figure 8C, GNN has been widely used in
other areas closely related to drug discovery, such as drug response
prediction (Liu et al., 2020; Nguyen et al., 2022), miRNA-disease
association (Li et al., 2020; Li et al., 2022b), and protein-protein
interaction (Schulte-Sasse et al., 2021; Yuan et al., 2022).

4.3 Summary and prospect

In light of the above, GNN has been widely applied in various
fields of drug discovery, such as drug target interaction, drug-drug
interaction, and ADMET prediction. These research results
demonstrate that utilizing GNN for drug discovery can effectively
reduce research and development costs and time, expedite the
introduction of new drugs to the market, and facilitate faster
entry of drugs into the clinical application stage. However, there
are several challenges.

The first is interpretability. The GNNmodel is a black box with an
opaque prediction process, which is especially important for drug
discovery. For example, when the GNN’s prediction results
recommend a certain molecule as a potential drug candidate,
researchers need to understand the prediction process and the
features that affect the prediction results in order to conduct further
experimental verification. To improve the interpretability of GNN
models, researchers optimized the GNN algorithm by introducing
attention mechanisms and gradient methods. To a certain extent,
this helps researchers understand the impact of data features on
prediction results, but these methods only provide global
interpretability and cannot provide detailed explanations for the
decision-making logic for specific prediction aims.

The second is data availability and ethics. GNN models require
large amounts of labeled data to support accurate predictions.
Obtaining high-quality, comprehensive data is key to utilizing
GNNs for drug discovery. The patient data and biometric
information involved in this process need to strictly comply with
ethical guidelines to protect patient privacy and data security. This
issue has not garnered enough attention in current research.
Furthermore, GNNs are known as black-box models, which
complicates the interpretation of their predictions, which may
affect the trust and acceptance of the models by clinical
researchers and regulatory agencies. Therefore, GNN needs to
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formulate and follow scientific and reasonable specifications in drug
discovery applications, which is crucial to ensuring data availability
and regulatory compliance.

The third is the model’s computing resources. GNN models
usually require extensive computing resources to train, especially
when processing large-scale bioinformatics datasets. How to
effectively utilize limited computing resources and improve
model training efficiency is a problem that needs to be solved.

Therefore, developing novel GNN models that comply with
clinical data ethics and regulatory frameworks, have high
computational efficiency and predictive performance, lower
computing resources, and better interpretability is a key technical
issue to promote better drug discovery in the future.

5 Limitations

As far as we know, this is the first bibliometric thesis that maps and
describes the application of GNN in the field of drug discovery. As far as
we know, this is the first bibliometric thesis to chart and explain the
application of GNN in drug discovery. In contrast to other narrative
reviews, this thesis included multiple types of bibliometric software and
tools for analysis and visualization, enhancing the analysis’s
concreteness and intuitiveness while somewhat mitigating subjective
biases. In addition, we conducted an analysis of the annual publication
volume, publication countries, and publication institutions, providing a
clear and complete overview of the research’s progress. Thus,
researchers can accurately understand the field’s development.
However, our study also has some limitations. Because of the
limitations of the bibliometric software, our analysis was restricted
to the texts available in the WoSCC database, potentially missing some
publications not from WoSCC. Furthermore, we only studied English
papers andmay have missed non-English papers of exceptional quality.
Future researchmay includemore databases and languages, resulting in
greater insights and findings in the field.

6 Conclusion

Our study investigated the current research status and hot spots
of GNN in the field of drug discovery. Since 2021, the number of
publications has increased dramatically. With reference to the
annual publication volume trends, future research in this field
will continue to increase and develop rapidly. So far, China and
the United States have a significant advantage in terms of funding
and the number of publications. They have also established good
collaborations with other institutions and countries, as well as
produced representative and high-quality papers. Other countries
are also forming and growing small-scale research collaborations.
More external collaborations between countries and institutions will
encourage the creation of new research groups and the production of
high-quality research. In addition, we also focused on the specific
application of GNN in the prediction of DTI, DDI, and ADMET,
discussed the new trend of GNN in the field of drug discovery, and
summarized the practical significance and challenges of GNN in the
field of drug discovery. In summary, our study utilized a bibliometric

approach and provided the research status and hot spots of GNN in
the field of drug discovery for researchers who will be engaged in this
field, which has certain guiding values.
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