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Cardiovascular disease (CVD) is a serious public health risk, and prevention and
treatment efforts are urgently needed. Effective preventive and therapeutic
programs for cardiovascular disease are still lacking, as the causes of CVD are
varied and may be the result of a multifactorial combination. Mitophagy is a form
of cell-selective autophagy, and there is increasing evidence that mitophagy is
involved in cardioprotective processes. Recently, many studies have shown that
FUN14 domain-containing protein 1 (FUNDC1) levels and phosphorylation status
are highly associated with many diseases, including heart disease. Here, we
review the structure and functions of FUNDC1 and the path-ways of its
mediated mitophagy, and show that mitophagy can be effectively activated by
dephosphorylation of Ser13 and Tyr18 sites, phosphorylation of Ser17 site and
ubiquitination of Lys119 site in FUNDC1. By effectively activating or inhibiting
excessive mitophagy, the quality of mitochondria can be effectively controlled.
The main reason is that, on the one hand, improper clearance of mitochondria
and accumulation of damaged mitochondria are avoided, and on the other hand,
excessive mitophagy causing apoptosis is avoided, both serving to protect the
heart. In addition, we explore the possible mechanisms by which FUNDC1-
mediated mitophagy is involved in exercise preconditioning (EP) for
cardioprotection. Finally, we also point out unresolved issues in FUNDC1 and
its mediated mitophagy and give directions where further research may
be needed.

KEYWORDS

FUN14 domain-containing protein 1, mitophagy, cardioprotection, mitochondria,
exercise preconditioning

1 Introduction

Myocardial infarction (MI) is an acute coronary syndrome in cardiovascular disease
(CVD) that progresses from myocardial cell death to myocardial injury and cardiac
dysfunction as a progressive factor in heart failure (HF) and death (Yellon and
Hausenloy, 2007; Li et al., 2022a; Lv et al., 2022). Myocardial reperfusion is the primary
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strategy for reducing the size of MI. However, it relieves symptoms
while not addressing myocardial cell death and loss, and reperfusion
itself induces ischemia/reperfusion (I/R) injury (IRI), which has
been one of the significant challenges in the field. At the same time,
mitochondrial dysfunction, oxidative stress, calcium overload,
pH paradox, and inflammation are all potential factors in the
pathogenesis of IRI (Mitrega et al., 2016; Bi et al., 2018; Heusch,
2020; Mao et al., 2021; Xing et al., 2022). As research progresses,
more and more pieces of evidence point to mitochondria, which
bear the brunt when ischemic damage occurs in cardiomyocytes (Li
et al., 2019; Livingston et al., 2019; Pecoraro et al., 2019).

The emergence of mitochondria was a turning point in the
evolution of species. Although theories are numerous and varied,
they all point to the endosymbiotic theory that mitochondria
originated from bacteria, which suggests that bacteria engulfed by
eukaryotes evolved and adapted over time to form mitochondria to
adapt to the highly oxygenated environment that occurred in the
atmosphere (Szklarczyk and Huynen, 2010). The mitochondria are
highly dynamic organelles that form a mitochondrial network by
continuously fusing, fissioning, and moving along the cytoskeleton
(Tagaya and Arasaki, 2017). It was demonstrated that mitochondria
are not only random sites of oxidative and calcium-mediated
damage but also trigger mitochondrial remodeling and activation
of cellular responses and regulate the balance between cell death and
recovery (Lesnefsky et al., 2017). Mitochondria in eukaryotic cells
are involved in energy production, thermoregulation, metabolite
biosynthesis, calcium signaling, redox homeostasis, inflammatory
response, and apoptosis through oxidative phosphorylation
(OXPHOS) and the electron respiratory chain, and their nature
and function are not identical in different organs, tissues or cells, and
this multifunctionality enables adapting cells to changes in various
environments and stimuli (Ong et al., 2013; Mohsin et al., 2021;
Zhang, 2021). Senescent and damaged mitochondria produce large
amounts of reactive oxygen species (ROS), which can induce
oxidative stress damage and even apoptosis, therefore needing to
be removed promptly, a role played by selective mitochondrial
autophagy (Ji et al., 2021). During pathological conditions,
noxious stimuli may inhibit mitophagy or increase its impaired
amount beyond its ability to selectively regulate autophagy, which in
turn leads to the accumulation of damaged mitochondria and the
release of cytochrome C and a series of pro-apoptotic factors, thus
inducing oxidative stress or mitochondrial-dependent cell death (Ji
et al., 2021).

Autophagy is an evolutionarily conserved degradation process,
and mitophagy is a type of selective autophagy, which is the process
of removing damaged or dysfunctional mitochondria by selective
autophagy, including typical and atypical mitophagy (Ray and
Mukherjee, 2021). Typical mitochondrial autophagic pathways
include PINK1/PARKIN, BCL2 interacting protein 3 (BNIP3)/
pro-apoptotic protein Nip3 (NIX), and the FUN14 domain-
containing protein 1 (FUNDC1) -mediated mitophagy (Lampert
et al., 2019; Teresak et al., 2022; Ma et al., 2024). Atypical
mitochondrial autophagic pathways include autophagy and Beclin
1 regulator 1 (AMBRA1), prohibitin-2 (PHB-2), nucleotide-binding
(NB) domain -and leucine-rich repeat (LRR)-containing proteins
(NLR) X1 (NLRX1), lipids, cardiolipids (especially
diphosphatidylglycerol CL), ceramides, BCL2L13, FKBP8, Rab-
mediated mitophagy and micro-mitophagy (When mitochondria

are mildly damaged or present only in small areas, mitochondrial-
derived vesicles (MDVs) containing specific proteins that can be
degraded after transport to lysosomes with the assistance of PINK1)
(McLelland et al., 2014; Bhujabal et al., 2017; Lim and Lim, 2017;
Saito et al., 2019; Belousov et al., 2021; Li et al., 2021b; Ma et al., 2021;
Ray and Mukherjee, 2021; Choubey et al., 2022). In this review, we
focus on the role of FUNDC1 and its mediated mitophagy in
cardioprotection. In addition, we explore the possible
mechanisms by which FUNDC1-mediated mitophagy is involved
in exercise preconditioning (EP) for cardioprotection. This work
contributes to the development of new strategies for the treatment of
many diseases, especially CVD.

2 Mitochondria and mitophagy and
their roles in the heart

Studies have shown that cardiomyocytes contain a large number
of mitochondria, equivalent to 30%–40% of their total volume, and
that approximately 6 kg of adenosine triphosphate (ATP) consumed
daily under physiological conditions in the adult heart is produced
through mitochondria (equivalent to approximately 90% of total
cardiac energy consumption); mitochondria face challenges in
performing their cellular duties such as oxidative stress, altered
protein relationships (protein import, folding and degradation) and
mitochondrial DNA damage, they respond to these challenges
through robust quality control mechanisms, including post-
translational modification of mitochondrial proteins,
mitochondrial dynamics, antioxidant defence, biogenesis and
mitophagy, which are critical to mitochondrial and even cellular
homeostasis under physiological or pathological conditions; failure
of quality control will result in damage to mitochondria, which in
turn will cause altered substrate utilisation, failure of quality control
will result in impaired mitochondria, leading to altered substrate
utilisation, OXPHOS impairment, ATP deficiency, excessive ROS
accumulation, impaired metabolic signalling and inflammation
(Deng et al., 2017; Wang et al., 2017; Fan et al., 2020; Li et al.,
2022a; Choubey et al., 2022). The accumulation of dysfunctional
mitochondria is detrimental to cells and organisms and is a typical
feature of the etiology of related diseases, therefore maintaining a
healthy mitochondrial pool (compensating for mitochondrial
function through mitochondrial biogenesis, fusion, and fission, as
well as degrading damaged mitochondria through mitophagy) is
necessary for cell function and survival, and mitophagy is generally
considered to play a crucial role in this (Vigie and Camougrand,
2017; Yoo and Jung, 2018; Sun et al., 2021; Zhang, 2021). The term
“mitophagy” was first used in 1998, but it is generally accepted that
mitophagy was first discovered in 1914 and confirmed by the
observation of mitochondrial fragments in the electron
microscope in 1962 (Lewis and Lewis, 1914; Ashford and Porter,
1962; Scott and Klionsky, 1998; Wang et al., 2019a). The mechanism
mainly involves depolarization and loss of the outer membrane
potential upon mitochondrial damage by external stimulation,
followed by autophagosome engulfment of the mitochondria to
form mitochondrial autophagosomes and subsequent degradation
by lysosomal binding.

Mitochondria exhibit structural and functional abnormalities in
CVD, such as cardiac hypertrophy, heart failure, and ischaemic
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cardiomyopathy (Pecoraro et al., 2019). The critical role of
mitochondria in cardiac function also makes them an essential
target for IRI, and I/R induces mitochondrial cristae damage,
abnormal membrane potential, and excessive opening of the
permeability transition pore (PTP), leading to mitochondrial
dysfunction. The damaged mitochondria produce ten times more
ROS than normal mitochondria, exacerbating mitochondrial
dysfunction and causing further damage, and so on, in a vicious
cycle (Tombo et al., 2020; Luan et al., 2021; Mao et al., 2021).
Excessive damage to mitochondria also triggers the cell death
pathway, which ultimately leads to tissue breakdown (Goldenthal,
2016; Li et al., 2022a; Pei et al., 2024). Mitochondrial dysfunction is
considered to be the most critical molecular mechanism responsible
for myocardial IRI and heart disease and is also closely linked to
functional mitophagy, which further constitutes a developmental
program and occurs in high crosstalk with apoptosis (Cung et al.,
2015; Hamacher-Brady and Brady, 2016; Aghaei et al., 2019; Luan
et al., 2021).

Mitochondria are the hub of the cellular metabolic network and
an essential organelle for the regulation of oxidative stress,
autophagy, and apoptosis, whose quality control is mainly
dependent on the stability of mitophagy, and a growing body of
evidence suggests that mitochondrial quality control in
cardiomyocytes has a critical role in improving cardiac function,
rescue dying cardiomyocytes and prevent the deterioration of CVD
in response to external environmental stress, and where functional
mitophagy is essential to maintain their quality and quantity,
allowing rapid clearance of damaged mitochondria before they
can cause damage to the cell (Yang et al., 2019; Fan et al., 2020;
Zhang et al., 2021a; Li et al., 2021c; Ji et al., 2021; Zhang, 2021;
Choubey et al., 2022). It has been well demonstrated that autophagy,
particularly mitophagy, acts as an agent in the protective effect of
ischemic preconditioning (IPC) (Livingston et al., 2019). The
process of mitophagy needs to be confined to senescent or
dysfunctional mitochondria and maintained at an equilibrium
level, the disruption of which inevitably leads to cardiomyocyte
damage and dysfunction (Li et al., 2019). Therefore, scholars believe
that proper mitophagy can protect the myocardium from IRI (Xiao
et al., 2020; Huang et al., 2021; Ji et al., 2022). Autophagy targeting
mitochondria, so-called mitophagy, has also been suggested as a
possible promising strategy to protect the myocardium from IRI
(Cung et al., 2015; Aghaei et al., 2019; Yu andMiyamoto, 2021). Due
to its great potential utility, mitophagy is a current burning topic in
the molecular mechanisms of organelle-specific autophagy.

3 Structure and function of
FUNDC1 and its mediated pathways
of mitophagy

3.1 Structure and function of FUNDC1

FUNDC1 is an outer mitochondrial membrane protein with a
conserved sequence ranging fromDrosophila melanogaster toHomo
sapiens, discovered and named by the State Key Laboratory of
Membrane Biology, Institute of Zoology, Chinese Academy of
Sciences, in 2012 (Liu et al., 2012). The human FUNDC1 protein
contains 155 amino acids and contains three transmembrane

fragments, with the C-terminal extending into the membrane gap
and the N-terminal (AAs1-50) exposed in the cytoplasm, and is
widely expressed, especially in the heart (Figure 1) (Liu et al., 2012).
It was shown that autophagic receptors always target cargoes to be
degraded (damaged organelles, protein aggregates, or invading
pathogens) with microtubule-associated protein 1 light chain 3
(MAP1LC3) members (including MAP1LC3A, MAP1LC3B,
MAP1LC3B2, and MAP1LC3C) or homologs (GABARAP,
GABARAPL1, and GABARAPL2) interact through the
LC3 interaction region (LIR), tethering them to the
autophagosomal membrane, where typical LIRs include a (W/F/
Y)XX (L/I/V) core pattern interacting with MAP1LC3, and two
hydrophobic pockets of LIR docking sites in the homologs anchored
to the autophagosomal membrane (Zhang et al., 2021c). Related
studies tested 30 LIRs, 12 of which (40%) were selective for
GABARAP, but only one LIR motif (Y18-E19-V20-L21)
FUNDC1 preferentially interacted with LC3, and mutations in
the LIR motif would impair its interaction with LC3 and
subsequently impede the process of mitophagy (Liu et al., 2012;
Kuang et al., 2016; Rogov et al., 2017; Zhang, 2021; Liu et al., 2022).

In addition to inducing mitophagy, FUNDC1 has a critical role
in the maintenance of normal mitochondrial morphology and
function in cardiomyocytes, interacting with inositol-1,4,5-
triphosphate receptor 2 (IP3R2) in modulating Ca2+ release from
the endoplasmic reticulum (ER) into the mitochondria and
cytoplasm, and disruption of its interaction decreases Ca2+ levels
in the mitochondria and cytoplasm, triggering abnormal
mitochondrial fission, mitochondrial dysfunction, cardiac
dysfunction, and HF (Wu et al., 2017a). Under basal conditions,
FUNDC1 binds to the mitochondria-associated ER membranes
(MAMs) protein calnexin (CNX), and with mitophagy, the
FUNDC1/CNX association decreases, and the FUNDC1-exposed
cytoplasmic loop interacts with dynamin-related protein 1 (DRP1),
which is recruited to MAMs, promoting fission of mitochondria and
preventing them from experiencing hypoxic stress (Chen et al., 2016;
Wu et al., 2016; Chai et al., 2021). FUNDC1 also has several other
functions, such as activating the unfolded protein response (UPR) of
mitochondria (UPRmt) for maintaining mitochondrial quality
control, participating in analgesia with hyperbaric oxygen,
promoting adaptive thermogenesis, and regulating body
metabolism (Wu et al., 2019a; Liu et al., 2020; Liu et al., 2021b;
Ji et al., 2022). It was demonstrated that endogenous UPRmt and
mitophagy may be mildly activated in response to myocardial stress
and that both act together to maintain mitochondrial performance
and cardiac function, whereas exogenous UPRmt is a downstream
signal of mitophagy and serves as a compensatory role in
maintaining mitochondrial homeostasis in the presence of
mitophagy inhibition, and mitophagy coordinates UPRmt to
attenuate inflammation-mediated myocardial injury (Wang
et al., 2021).

3.2 FUNDC1-mediated pathways
of mitophagy

FUNDC1 is expressed at a high level in the myocardium,
providing support for its critical role in cardiac function (Wu
and Zou, 2019). The FUNDC1, a mitophagy receptor, occupies a
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critical role in mitochondrial quality control by regulating
mitophagy and is also strongly associated with the development
of some CVD (Li et al., 2021a; Liu et al., 2021a). It was shown that
FUNDC1-mediated mitophagy is activated primarily in
cardiomyocytes and is essential for mitochondrial network
remodeling in the process of cardiac progenitor cell homeostasis
and differentiation (Lampert et al., 2019; Zhang, 2021).
FUNDC1 deficiency aggravated doxorubicin-induced cardiac
dysfunction, mitochondrial damage, and cardiomyocyte
PANoptosis (Bi et al., 2022). The mechanism of transcriptional
regulation of mitophagy remains unclear (Li et al., 2023). It was
shown that miR137 mimics introduced under hypoxic conditions
could inhibit mitophagy by targeting FUNDC1 (Hu et al., 2020).
Overexpression of miR-137 triggers a series of molecular alterations
such as Nix, LC3B, and FUNDC1, leading to fragmentation and
densification of mitochondrial ultrastructure, and ultimately leading
to aberrant mitophagy (Khadimallah et al., 2021). miR-137 may
reduce FUDC1-LC3 by inhibiting the overexpression of fundc1
(CDS+3UTR) rather than fundc1 (CDS), and thus inhibiting
FUDC1-LC3 interaction, which in turn inhibits mitophagy (Li
et al., 2014). A different view also pointed out that no
downregulation of FUNDC1 was found in miR-137-transfected

pancreatic cancer cells PANC-1, but downregulated the mRNA
and protein levels of endogenous ATG5 (Wang et al., 2019b). It
suggests that miR137 may have multiple functions. However, the
post-translational regulation of FUNDC1 has been more
clearly defined.

3.2.1 The dephosphorylation pathway of Ser13 on
the LIR motif

The phosphorylation status of FUNDC1 significantly affects its
mediated mitophagy, and reversible phosphorylation modification
of the mitophagy receptors might be the molecular switch for
selective mitophagy (Lv et al., 2017). Casein kinase 2 (CK2) is a
constitutive serine/threonine kinase that inhibits mitophagy by
inducing phosphorylation of Ser13 on the LIR motif in
FUNDC1 under normal conditions while, in contrast, activating
mitophagy when dephosphorylated at Ser13 (Kuang et al., 2016;
Zhou et al., 2018). Disruption of the two catalytic subunits α1 and
α2 of CK2 under physiological conditions significantly abolished its
ability to phosphorylate Ser13 on FUNDC1 and enhanced
FUNDC1-mediated mitophagy, confirming that CK2 is the
protein kinase with responsibility for Ser13 site phosphorylation
of FUNDC1 (Zhang, 2021). The FUNDC1-mediated activity of

FIGURE 1
Structure of FUNDC1 and the pathways that inhibit and activate mitophagy. C, C-terminal; N, N-terminal; IMM, inner mitochondrial membrane;
OMM, outer mitochondrial membrane; LIR, LC3 interaction region; BCL2L1, BCL2-like1; CK2, Casein kinase 2; FUNDC1, FUN14 domain-containing
protein 1; IMM, inner mitochondrial membrane; OMM, outer mitochondrial membrane; MARCH5, mitochondrial E3 ubiquitin ligase membrane-
associated RING-CH5; PGAM5, phosphoglycerate mutase 5; SRC, Src proto-oncogene kinase; Ub, ubiquitination; ULK1, unc-51-like autophagy-
activated kinase 1.
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mitophagy is also fine-tuned by the anti-apoptotic protein BCL2-
like1 (BCL2L1, also known as BCL-XL) through the regulation of
phosphoglycerate mutase 5 (PGAM5) activity, which is inhibited
during steady-state by the BCL2 homology 3 domain (BH3) in a
mechanism based on the formation of a complex of BCL-XL in a
non-phosphorylated form with the pro-apoptotic proteins BAX,
BAK, and PGAM5, which then inhibits the dephosphorylation of
FUNDC1 at the Ser13 site and consequently the subsequent
mitophagy (Wu et al., 2014a). The direct interaction of BCL-XL
with PGAM5 also regulates apoptosis, as when BCL-XL in the
complex is released, PGAM5 reactivates its anti-apoptotic
function by dephosphorylating BCL-XL in its dimeric state (Ma
et al., 2020). In contrast, PGAM5 oligomerization due to mild
oxidative stress eliminates its ability to bind to BCL-XL while
retaining its ability to dephosphorylate FUNDC1, thus acting to
activate mitochondrial division and mitophagy for cell survival (Ma
et al., 2020). It has been shown that both hypoxia and carbonyl
cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) attenuate
the interaction of BCL-XL with PGAM5 and release PGAM5, which
in turn promotes the dephosphorylation of FUNDC1 and activates
mitophagy (Wu et al., 2014a). CK2 counteracts the effects of
PGAM5 under basal conditions by reversible phosphorylation of
the Ser13 site on FUNDC1 to prevent autophagic clearance of
mitochondria (Figure 1) (Chen et al., 2014).

At the initiation of mitophagy, PGAM5 can be cleaved by a
rhombic protease called PARL (which degrades PINK1 in healthy
cells), which later promotes the phagocytosis of damaged
mitochondria via dephosphorylation of the mitophagy receptor
FUNDC1 by autophagosomes (Sugo et al., 2018). Recently,
syntaxin17 (STX17) located in MAMs was also demonstrated to
be critical for PGAM5 dephosphorylation of FUNDC1 during
mitophagy, and interestingly, like NIX/BNIP3L and BNIP3,
FUNDC1 may also be involved in PINK1-PARKIN-dependent
mitophagy, as FUNDC1 deletion inhibits carbonyl cyanide-m-
chlorophenylhydrazone (CCCP)-induced mitochondrial clearance,
but also prevents complete PARKIN coverage of mitochondria and
the mitochondrial aggregation observed after CCCP treatment
(Sugo et al., 2018). The process of mitophagy induced by
BINP3L, FUNDC1, and PARKIN probably does not arise
independently, as these factors promote their recruitment not
only through a positive feedback loop but also through the
recruitment of other factors that promote mitophagy (Zhang
et al., 2021d). However, a different view has also been proposed
that FUNDC1 regulates mitophagy in rotenone-treated SH-SY5Y
cells in an independent manner from the PINK1/PARKIN-
dependent pathway (Park and Koh, 2020). These findings above
suggest the possibility that different pathways of mitophagy may
coordinate with each other, so it could be very interesting to further
investigate whether BNIP3 or NIX/BINP3L-mediated mitophagy
can compensate for the depletion of FUNDC1 (Choubey
et al., 2022).

3.2.2 The dephosphorylation pathway of Tyr18 on
the LIR motif

LC3 preferentially interacts with dephosphorylated FUNDC1,
probably because phosphorylated FUNDC1 conflicts with the
hydrophobic pocket of LC3, which in turn eliminates the affinity
of FUNDC1 to bind LC3 (Kuang et al., 2016). Normally, Src proto-

oncogene kinase (SRC) could induce phosphorylation of Tyr18 on
the LIR motif in FUNDC1 and attenuate the interaction with LC3,
thereby inhibiting mitophagy (Kuang et al., 2016; Zhou et al.,
2017b). Unlike other LIR-containing autophagy receptors where
dephosphorylation normally inhibits binding affinity to LC3 and
suppresses autophagy, dephosphorylation of the LIR in
FUNDC1 promotes its LC3-dependent binding, which in turn
enhances hypoxia-induced mitophagy (Zhang, 2021). It was
noted that inhibition of either CK2 or SRC could not fully
activate FUNDC1-mediated mitophagy, but synergistic inhibition
of both kinases significantly activated mitophagy, while further
structural and functional analyses indicated that reversible
phosphorylation modification of Tyr18 on LIR of FUNDC1 is a
novel molecular switch for its mediated mitophagy and that the
phosphorylation state of Tyr18 in the LIR motif characterized by Y
(18)EVL (21) characterizes the phosphorylation state of Tyr18 in the
LIR motif plays a central role in regulating the affinity of
FUNDC1 to bind LC3 and controls FUNDC1-mediated
mitophagy activity, whereas the phosphorylation state of Ser13 in
the LIR of FUNDC1 does not significantly alter its affinity to bind
LC3, and therefore FUNDC1 phosphorylation at
Ser13 dephosphorylation may act as an adjunct to promote
FUNDC1-mediated mitophagy (Zhang, 2021). So far nothing has
been found to mediate the dephosphorylation of the LIR motif
Tyr18 in FUNDC1, which seems to be a gap, and future exploration
in this direction will be fascinating (Figure 1).

3.2.3 Phosphorylation pathway of Ser17 on the
LIR motif

It was shown that in addition to dephosphorylation of Ser13 and
Tyr18 sites on the LIR motif in FUNDC1 could activate mitophagy,
phosphorylation of Ser17 site on FUNDC1 could also promote
mitophagy (Kuang et al., 2016). By forming a hydrogen bond
between the Arg10 side-chain of LC3B and the Ser13 side-chain
and the carbonyl group of the FUNDC1 backbone, the
phosphorylation of this residue prevented the LC3B-FUNDC1
interaction through steric effects (Kuang et al., 2016; Lv et al.,
2017). In response to reduced ATP, adenosine monophosphate-
activated protein kinase (AMPK) phosphorylates the Ser313, Ser555,
and Ser777 sites in unc-51-like autophagy-activated kinase 1
(ULK1), and phosphorylated ULK1 promotes phosphorylation of
the Ser17 site on the LIR motif in FUNDC1, and consequently,
selective mitochondrial incorporation into the LC3 or GABARAP-
bound isolation membrane, followed by cleared by autolysosomes
(Wu et al., 2014b; Liu et al., 2022; Turkieh et al., 2022). Which
phosphatase is currently involved in the dephosphorylation of
FUNDC1 at the Ser17 site is still unknown, and enhanced
exploration of this aspect is important for future studies (Figure 1).

3.2.4 The ubiquitination pathway at the Lys119 site
In addition to phosphorylation and dephosphorylation,

mitochondrial E3 ubiquitin ligase membrane-associated RING-
CH5 (MARCH5/MITOL)-mediated ubiquitination of
FUNDC1 at Lys119 could also inhibit initial hypoxia-induced
mitophagy through degradation of the proteasome of FUNDC1
(Chen et al., 2017a; Wu et al., 2017b; Chen et al., 2023). Under
hypoxic stress, MARCH5 degrades excessive FUNDC1 to fine-tune
hypoxia-induced mitophagy, while ablation of MARCH5 results in
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an exaggerated phenotype of mitophagy and
FUNDC1 accumulation, whereby the mechanism is that hypoxic
damage enhances the Lys119 site of MARCH5 ubiquitinating
FUNDC1 for subsequent degradation, which avoids inappropriate
mitochondrial clearance, and severe hypoxia-induced
dephosphorylation of FUNDC1 increases the flux of mitophagy,
and therefore the mechanism regulating the MARCH5/
FUNDC1 axis may be negative feedback, avoiding inappropriate
clearance of intact mitochondria (Chen et al., 2017a; Chen et al.,
2017b). The level of ubiquitination of FUNDC1 can be both
inhibited by the proteasome inhibitor MG-132 and activated by
the proteasome activator MF-094 (Chen et al., 2022a). The increased
FUNDC1 ubiquitination levels inhibited mitophagy and changes in
mitochondrial membrane potential (Δψm) in hypoxic trophoblast
cells, thereby reducing oxidative damage, which again demonstrates
that FUNDC1 ubiquitination of Lys119 in FUNDC1 can regulate
mitophagy (Figure 1) (Chen et al., 2022a).

In summary, the mechanism by which FUNDC1 mediates
mitophagy is that when dephosphorylation of the Ser13/Tyr18 site
on the LIR motif or phosphorylation of the Ser17 site on the LIR motif
or deubiquitination of Lys119 in FUNDC1 can result in mitochondria
being selectively admitted to LC3-bound or GABARAP-bound
detachment membranes and subsequently cleared by autolysosomes.
With the progression of mitophagy, the association of FUNDC1 with
calnexin is weakened and the exposed FUNDC1 cytoplasmic loop
interacts with DRP1, which is consequently recruited to the
mitochondria-associated ER-membranes, and mitochondrial fission
ensues (Chen et al., 2016; Wu et al., 2016). On the contrary, the
affinity of FUNDC1 for LC3 and GABARAP was hindered, which in
turn inhibited mitophagy.

4 Roles of FUNDC1-mediated
mitophagy in cardioprotection

4.1 Activation of FUNDC1-
mediated mitophagy

It was shown that, on the one hand, 45 min of ischemia
significantly reduced the inhibitory phosphorylation by the SRC
at the Tyr18 site of FUNDC1, and on the other hand, the interaction
of PGAM5 with the Ser13 site of FUNDC1 during hypoxia
dephosphorylated FUNDC1, which combined to enhance the
interaction of FUNDC1 with LC3 and thus activate mitophagy
(Chen et al., 2014). In response to I/R stress, cardiac structure,
and function could be maintained by reducing the effects of CK2 and
upregulating FUNDC1-dependent mitophagy, while an increase in
CK2 is induced after cardiac IRI (Zhou et al., 2018). FUNDC1-
mediated mitophagy is also regulated by other factors, such as
activation of the AMPKα1/ULK1/FUNDC1/mitophagy pathway
can attenuate cardiac microvascular IRI, and a study on the
Danqi pill also showed that Danqi pill could enhance FUNDC1-
mediated mitophagy by modulating ULK1 and PGAM5 to protect
HF after acute MI (Wang et al., 2022b; Cai et al., 2022). Similarly, a
study on alpha-lipoic acid showed that it could protect the heart
from pressure overload-induced HF by activating FUNDC1-
mediated mitophagy (Li et al., 2020). FUNDC1-mediated
mitophagy may also act synergistically with other responses, such

as BAX inhibitor-1 (BI-1) can ameliorate myocardial injury in type
3 cardiorenal syndrome by activating UPRmt and FUNDC1-
associated mitophagy (Wang et al., 2022a). It has also been
shown that mammalian sterile 20-like kinase 1 (MST1) can
promote cardiac IRI by inhibiting FUNDC1-dependent
mitophagy by inhibiting the mitogen-activated protein kinase
(MAPK)/ERK-CREB pathway, while the genetic ablation of
MST1 can reverse this FUNDC1-involved mitophagy, thereby
eliminating mitochondrial damage and cardiomyocyte death and
ultimately preventing IRI in the heart (Yu et al., 2019; Shang et al.,
2022). It indicates that MST1 may be one of the upstream regulators
of FUNDC1-mediated mitophagy. A cellular-level study showed
that irisin in lipopolysaccharide-stimulated H9c2 cardiomyocytes
could abrogate mitochondrial dysfunction, oxidative stress, and
apoptosis through FUNDC1-related mitophagy, and thus act as a
treatment for infectious cardiomyopathy (Jiang et al., 2021b). These
studies provide definite evidence for modulating mitophagy and
provide a reference for drug development.

4.2 Inhibition of FUNDC1-
mediated mitophagy

After IRI, progressively increased CK2 in the heart inhibits
protective mitophagy by post-transcriptional inactivation of
FUNDC1, which in turn promotes mitochondrial apoptosis in
cardiomyocytes and the progression of myocardial IRI (Zhou et al.,
2018). Utilizing Beclin1+/−, FUNDC1 gene knockout, and
FUNDC1 transgenic mice combined with starvation and MI model,
it was found that after MI, the FUNDC1 knockout group caused more
severe mitochondrial and cardiac dysregulation than the Beclin1+/−

group, suggesting that mitophagy but not macroautophagy promotes
cardioprotection primarily by regulating mitochondrial function (Xu
et al., 2022). The same results were seen with baseline genetic ablation of
FUNDC1, as evidenced by reduced early to late ventricular filling
velocity, prolonged left ventricular isovolumic diastole, and reduced
ejection fraction in mice and these phenotypic alterations suggest that
FUNDC1 knockout mice are susceptible to HF (Wu et al., 2017a; Zhu
et al., 2021). It has also been shown that serine/threonine-protein kinase
3 (RIPK3) can directly bind to FUNDC1 and inhibit mitophagy (Zhou
et al., 2017b). Deletion of RIPK3 in cardiomyocytes or microvascular
endothelial cells in IRI reduces cardiomyocyte apoptosis, ROS
production, and mitochondrial fragmentation and activates
mitophagy (Zhou et al., 2017b). Deletion of RIPK3 in vivo also
improved cardiac function, whereas overexpression of
RIPK3 exacerbated cardiac dysfunction by inhibiting FUNDC1-
mediated mitophagy (Zhou et al., 2017b).

In contrast to the view that activation of mitophagy facilitates
cardiac function, some investigators have suggested that excessive
mitochondrial elimination induced by I/R increases the death of
cardiomyocytes (Lesnefsky et al., 2017; Ji et al., 2021). A study
showed that melatonin could effectively inhibit platelet activation by
restoring peroxisome proliferator-activated receptor gamma
(PPARγ) levels in platelets, thereby blocking FUNDC1-mediated
mitophagy to protect the heart from IRI (Zhou et al., 2017a). The
effect of moxibustion in relieving chronic HF may also be related to
the inhibition of FUNDC1-mediated mitophagy (Xia et al., 2022).
The removal of FUNDC1-dependent mitophagy could render the
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myocardium resistant to paraquat-induced contractile dysfunction
(Peng et al., 2022). A similar result was reported in the study of
electroacupuncture preconditioning, which attenuated myocardial
IRI by inhibiting mTORC1/ULK1/FUNDC1 pathway-mediated
mitophagy (Xiao et al., 2020). This was also supported by
another study, which showed that I/R increased the expression of
FUNDC1 and LC3II/LC3I ratio and decreased the expression of
p-mTORC1/mTORC1, while electroacupuncture preconditioning
reversed this trend and suggested that electroacupuncture
preconditioning could reduce brain deficit IRI by inhibiting
mitophagy (Mao et al., 2020).

5 EP/exercise and hypoxia modulate
FUNDC1-mediated mitophagy in
cardioprotection

5.1 Exercise/EP

IPC has previously been clinically demonstrated to exhibit
cardioprotective effects, and EP has been both experimentally
and clinically demonstrated to exhibit cardioprotective effects due
to its similar effects to IPC (Quindry and Hamilton, 2013). EP can be
divided into early EP (EEP) and late EP (LEP), both of which have a
myocardial protective effect (Thijssen et al., 2018). Appropriate
exercise has a variety of functions, including but not limited to
enhancing memory, improving cognition, suppressing obesity, and
reducing inflammation (Chen et al., 2021; De Miguel et al., 2021; Li
et al., 2022b). Exercise is an effective instrument for the prevention,
intervention, and treatment of metabolic diseases, and although
there are many possible mechanisms by which EP mediates
cardioprotection, it appears that mitochondria exert an essential
role in some of these mechanisms, with growing evidence
supporting the protection induced by exercise mediated by
autophagy, mitophagy, and mitochondrial biogenesis (Roberts
and Markby, 2021; Li et al., 2022b; Ma et al., 2023). Exercise also
induces FUNDC1-mediated mitophagy, removes damaged
mitochondria, reverses mitochondrial dysfunction, stimulates
mitochondrial biogenesis, and has a significant effect on
mitochondrial fission and fusion via the AMPK-ULK1 pathway
(Laker et al., 2014; Moreira et al., 2017; Gao et al., 2020; Yu et al.,
2020; Memme et al., 2021). An acute exercise study concluded that
PINK1 was not associated with skeletal muscle exercise-induced
mitophagy because no significant PINK1 was present in
mitochondria separated from skeletal muscle at any time points
after acute exercise, but there was unambiguous evidence of stable
PINK1 in mitochondria after treatment of HeLa cells with the
uncoupling agent CCCP (Drake et al., 2019). This may be related
to FUNDC1-mediated mitophagy, but whether similar results are
found in the heart requires further studies to confirm. One study
suggests that FUNDC1-mediated mitophagy may be influenced by
the type of exercise (Laker et al., 2017).

Exercise may have a cardioprotective role by modifying
FUNDC1 to regulate MAMs. FUNDC1, which tethers IP3R2,
regulates both Ca2+ homeostasis and MAMs, exerts a crucial role in
mitochondrial quality control, and is closely associated with the
development of multiple CVD (Liu et al., 2021a). Research in septic
mice found that upregulation of FUNDC1-dependent formation of

MAMs promotes cardiac dysfunction (Jiang et al., 2021a). Conversely,
FUNDC1 deficiency exacerbated high-fat diet-induced remodeling of
the heart, mitochondrial aberrations, cell death, elevated IP3R3, and
Ca2+ overload in FUNDC1−/− mice (Ren et al., 2020). Diabetes may
induce the formation of MAMs by downregulating AMPK, and
activation of AMPK may play a part in ameliorating diabetic
cardiomyopathy by downregulating FUNDC1 and FUNDC1-
associated MAMs (Wu et al., 2019b; Chen Y. et al., 2022). Lack of
FUNDC1 decreases IP3R2 and Ca2+ levels in mitochondria and
cytoplasm and reduces mitochondrial dysfunction, cardiac
dysfunction, and HF by inhibiting Ca2+-sensitive CREB-mediated
fission 1(FIS1) expression (Wu et al., 2017a; Zhang et al., 2018).
Although the role of MAMs in FUNDC1-mediated mitophagy
needs to be further investigated, the available evidence demonstrates
that MAMs provide a platform for FUNDC1 to exert its bio functions
(Yang et al., 2020).

Although the merits of autophagy on myocardial ischemic injury
remain controversial, the protective effect of exercise on the
myocardium is clear, and modulation of mitophagy by exercise may
be a promising cardioprotective strategy (Gedik et al., 2014). Although
some exercise regimens are known to promote the protective effects of
mitophagy in the heart, further research is still needed to determine the
precise mechanisms of interaction between functional mitophagy and
physical activity, to analyze and identify the possible factors influencing
these mechanisms, and to investigate exercise modalities that are both
convenient and induce mitochondrial adaptation, which would also
greatly help to address exercise compliance (Moreira et al., 2017;
Memme et al., 2021).

5.2 Hypoxia

The promotion of FUNDC1-mediated mitophagy under hypoxic
conditions can play a role in protecting cardiomyocytes (Li et al., 2018).
Hypoxia activates mitophagy through the phosphorylation of ULK1 at
the Ser555 site induced by AMPK, while the inhibition or knockdown
of the AMPK gene inhibits mitophagy by preventing the translocation
of ULK1 (Tian et al., 2015; Ponneri Babuharisankar et al., 2023).
Mechanistically, the ULK1 is upregulated and translocated to the
damaged mitochondria during hypoxia, which proceeds to interact
with FUNDC1 and phosphorylate FUNDC1 at the Ser17 site,
enhancing the binding of FUNDC1 to LC3 and promoting
mitophagy (Wu et al., 2014b). Mitophagy plays a critical role in the
reduction of IRI by hypoxic preconditioning, and the decrease in
oxygen levels induced by hypoxia or ischemia increases mitophagy
by decreasing FUNDC1 phosphorylated at the Tyr18 site, induced by
mitochondrial degradation (Zhang et al., 2016). In contrast, it has been
suggested that inhibition of mitophagy may protect cells from hypoxia-
induced damage, such that inhibition of mitophagy by introducing
miR-137 mimics targeting FUNDC1 under hypoxic conditions
promotes mitochondrial mass, ATP synthesis, and mitochondrial
transcriptional activity, and a similar effect was obtained by specific
siRNA knockdown of FUNDC1 (Hu et al., 2020). It was recently shown
that miR-130a can regulate FUNDC1-mediatedmitophagy by targeting
GJA1 in myocardial IRI (Yan et al., 2023). However, more studies
support that activation of mitophagy is protective and suggest that the
phosphorylation state of FUNDC1 at Tyr18 may serve an essential role
for several main reasons: first, under normoxic/physiological
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conditions, FUNDC1 phosphorylation level at Tyr18 is high and only
slight phosphorylation occurs at Ser13, suggesting that
Tyr18 phosphorylation mainly controls the baseline activity of
FUNDC1; second, during hypoxia or ischemia, the phosphorylation
levels of total FUNDC1 decreased significantly, while the
Ser13 phosphorylation level of FUNDC1 remained relatively
unchanged, indicating that the activation of FUNDC1 was achieved
through dephosphorylation of Tyr18; third, during the reperfusion
phase after ischemia or hypoxia, the phosphorylated FUNDC1Tyr18

changed slightly during the reperfusion phase after ischemia or
hypoxia, whereas phosphorylated FUNDC1Ser13 gradually increased,
indicating that phosphorylation of Ser13 inactivated FUNDC1 after
reperfusion; finally, in general, the total phosphorylated FUNDC1 at
Tyr18 and Ser13 sites decreased during the ischemic phase and
gradually increased during the reperfusion phase, which was
associated with FUNDC1-dependent mitophagy activation state was
negatively correlated (Zhou et al., 2017a; Zhou et al., 2017b; Zhang et al.,
2017; Zhou et al., 2018; Zhang, 2021). Although hypoxia and exercise-
induced hypoxia are different, the research related to hypoxia has
certainly provided ideas for the study of exercise.

6 Conclusion

In summary, the mechanisms regulating mitophagy are not a
few mutually independent signaling pathways, but a multi-level
regulatory network involving many cellular and mitochondrial
mechanisms (Zhou et al., 2020). As a recently discovered
receptor mediating mitophagy, FUNDC1 has been shown to not
only participate in maintaining mitochondrial morphology and
function but also perform an essential role in regulating
mitophagy and mitochondrial dynamics, and new evidence
suggests that FUNDC1 levels and phosphorylation status are
significantly related to the onset, development and even
prognosis for a variety of diseases, including heart disease, which
predicts that FUNDC1 and its mediated mitophagy have
tremendous potential applications in the intervention or
treatment of numerous human diseases (Zhang et al., 2021b;
Zhang et al., 2021d; Qiu et al., 2021; Sun et al., 2021; Zhang,
2021; Liu et al., 2022; Mao et al., 2022). However, our
understanding of FUNDC1 physiological functions is still limited,
for example, are there other targets that control FUNDC1-mediated
mitophagy? How are the various regulatory targets activated or
inhibited? Are there interactions, antagonisms, or compensatory
effects between regulatory targets? FUNDC1 is also involved in the
formation of MAMs, consistent with or contradictory to its role in
mediating mitophagy and mitochondrial dynamics? Therefore,
more comprehensive and in-depth studies are necessary. On the

one hand, the enigmatic role of FUNDC1 in regulating
mitochondrial dynamics and mitophagy remains incompletely
elucidated. On the other hand, the mechanism behind the action
of FUNDC1 in different diseases may be different, and new studies
are urgently needed to give further plausible explanations.
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